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Abstract

In this paper, we present a much simpler, direct and elegant approach to the

equivalence problem of measure many one-way quantum finite automata (MM-

1QFAs). The approach is essentially generalized from the work of Carlyle

[J. Math. Anal. Appl. 7 (1963) 167-175]. Namely, we reduce the equivalence

problem of MM-1QFAs to that of two (initial) vectors.

As an application of the approach, we utilize it to address the equivalence

problem of Enhanced one-way quantum finite automata (E-1QFAs) introduced

by Nayak [Proceedings of the 40th Annual IEEE Symposium on Foundations of

Computer Science, 1999, pp. 369-376]. We prove that two E-1QFAs A1 and A2

over Σ are equivalence if and only if they are n2
1 + n2

2 − 1-equivalent where n1

and n2 are the numbers of states in A1 and A2, respectively.

Keywords: quantum finite automata, measure-many one-way quantum finite

automata, enhanced one-way quantum finite automata, equivalence

1. Introduction

The theory of quantum computing is unquestionably one of the hottest and

front research fields in the theory of computing [1–3]. There exist a few works de-

veloped quantum computation model, such as quantum Turing machines [5, 6],

Quantum circuits [7, 8], and the quantum generalizations of finite automata, i.e.,
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Quantum finite automata (QFAs) [9–16, 22]. In particular, the study of QFAs

provides a good insight into the nature of quantum computation, since QFAs

can be viewed as the simplest theoretical model based on quantum mechanism.

The so-calledmeasure-many one-way quantum finite automata (MM-1QFAs),

introduced in [10], is a kind of QFA model whose tape head is subjected to mov-

ing one cell to the right at each computation step, and measurement is performed

after every computation step. There exist a few works dealt with the language

recognized ability of MM-1QFAs, such as [10, 11, 14, 17–21]. Incidentally, the

so-called enhanced one-way quantum finite automata (E-1QFAs) introduced by

Nayak [22] can be viewed as a generalization of MM-1QFAs.

Just as the equivalence problem of the classical finite automata [23–25, 34,

35], the concept of “equivalence” gives us a classification of the elements of the

set of MM-1QFAs over the same alphabet. On the equivalence issue of MM-

1QFAs, Li and Qiu [26] have shown, with the help of the so-called 1qfa with

control language [11], that two MM-1QFAs A1 and A2 over the same alphabet

are equivalent if and only if they are 3n2
1 + 3n2

2 − 1-equivalent where n1 and

n2 are the numbers of states in A1 and A2, respectively, and factor 3 is the

numbers of states in the minimal DFA [23–25] recognized the regular language

g∗a{a, g, r}∗. Incidentally, there exist some works dealt with the equivalence

issue with respect to other quantum finite automata [27–30]. However, the

equivalence problem of E-1QFAs is still open thus far. A more comprehensive

survey on this subject is [31] by Gruska.

We note that the method to the equivalence problem of MM-1QFAs, at-

tributed to Li and Qiu [26], is roundabout and somewhat complicated. There-

fore, the first aim of this paper is to present a much simpler, direct and elegant

approach to the equivalence problem of MM-1QFAs. We summarize our moti-

vations as follows. (1) As we know, the mathematical method is the essence of

mathematics. The mathematician usually investigates the same problem with

different mathematical methods and different concepts to fully understand it.

This method can be followed; (2) It is an interesting work of its own to find

a more general method to address the equivalence problem for MM-1QFAs;
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(3) We want to know whether the upper-bound 3n2
1 + 3n2

2 − 1 can be further

improved. Such considerations lead us to transform the word function of MM-

1QFAs defined in a “cumulation” manner (described in the sequel) to another

version which is in a “non-cumulation” manner. Then, we improve the previous

upper-bound to n2
1 + n2

2 − 1 by showing the following

Theorem 1. Let Ai = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi), i = 1, 2, be two MM-

1QFAs over Σ. Then A1 and A2 are equivalent iff they are (n2
1 + n2

2 − 1)-

equivalent, where n1 and n2 are the numbers of states in A1 and A2, respectively.

As mentioned earlier, the E-1QFA model [22] can be seen as a finite memory

version of the mixed state MM-1QFA. Thus, the approach to the equivalence

problem of MM-1QFAs also can be applied to that of E-1QFAs. Therefore, as

our second aim, we utilize the above approach to solve the equivalence problem

of E-1QFAs, which remains open so far, by showing the following

Theorem 2. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi),i = 1, 2, be

two E-1QFAs over Σ. Then A1 and A2 are equivalent iff they are (n2
1+n

2
2−1)-

equivalent where n1 and n2 are the numbers of states in A1 and A2, respectively.

The remainder of the paper is organized in the following way: Section 2 is

the preliminary part where basic concepts and notations used in the sequel are

reviewed. Section 3 and Section 4 are devoted to the proofs of Theorem 1 and

Theorem 2, respectively. Section 5 is the concluding section.

2. Preliminaries

For convenience, we briefly review some basic notions needed in the sequel.

To a more exhaustive illustration about linear algebra, we refer to [32]. Also,

we refer to [1–3] for a through treatment on the quantum theory.
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2.1. Some notation on Linear algebra

Let C denote the field of complex number,M a complex matrix, i.e.,




a11 · · · a1n

· · · · · · · · ·

am1 · · · amn




with aij ∈ C for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Some times, we use (aij)m×n

to denote M . In particular, 1 × n (resp. n × 1) complex matrices are called n

dimensional row vectors (resp. column vectors). If m = n, then M is called a

complex square matrix of order n (or m), and sometimes M is called a n-order

(or m-order) complex matrix. Let M = (aij)m×n be a m × n complex ma-

trix, then the transpose of M is denoted as M ′, i.e., M ′ = (aji)n×m, and the

conjugate-transpose ofM is denoted asM †. In this paper, the set of all n-order

complex matrices will be denoted as Mn(C). For any H ∈ Mn(C), H is said

to be Hermitian if H† = H , and is said to be Unitary if H†H = HH† = In

where In denotes the n-order identity matrix. Suppose that A and B are m and

n-order complex matrix, respectively, we define the “diagonal sum” of A and B

to be

A⊕B ,


 A 0

0 B


 .

Therefore, A⊕B is a (m+ n)-order complex matrix.

Let A = (aij) be an n × n matrix over C, let Tr(A) denote the trace of A,

i.e., Tr(A) =
n∑

i=1

aii. It is well known that

Tr(AB) = Tr(BA), and Tr(λ1A+ λ2B) = λ1Tr(A) + λ2Tr(B)

where λi ∈ C.

Let V be a finite dimensional vector space over C, and B = {η1, η2, · · · , ηn}

a basis for V over C. This means that for any vector α ∈ V , it has a unique

expression as a linear combination

α = c1η1 + c2η2 + · · ·+ cnηn

where ci ∈ C. The dimension of V , denoted by dimV , is defined to be the

cardinal number of B. Let span{B} denote the vector space generated by the
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vectors in B. Then, as a matter of fact, V =span{B}. Furthermore, Mn(C) is a

vector space over C with the dimension n2.

2.2. Some notation on Quantum mechanics

In quantum theory, for any isolated physical system, it is associated with a

(finite-dimensional) Hilbert space, denoted as H, which is called the state space

of the system. In Dirac notation, the row vector (resp. column vector) ϕ is

denoted as 〈ϕ| (resp. |ϕ〉). Incidentally, 〈ϕ| is the conjugate-transpose of |ϕ〉,

i.e., 〈ϕ| = |ϕ〉†. The inner product of two vectors |ϕ〉 and |ψ〉 is denoted as

〈ϕ|ψ〉. The norm (or length) of the vector |ϕ〉, denoted by ‖|ϕ〉‖, is defined

as ‖|ϕ〉‖ =
√

〈ϕ|ϕ〉. A vector |ϕ〉 (resp. 〈ϕ|) is said to be unit if ‖|ϕ〉‖ = 1

(resp. ‖〈ϕ|‖ = 1).

Suppose that Q = {q1, q2, · · · , qm} is the basic state set of a quantum system.

Then the corresponding Hilbert space is Hm = span{|qi〉 | qi ∈ Q, 1 ≤ i ≤ m}

where |qi〉 = (0, · · · , 0, 1, 0, · · · , 0)′ is a m dimensional column vector having

only 1 at the (i, 1) entry, together with the inner product 〈·|·〉, defined to be

〈α|β〉 =
∑m

i=1 x
∗
i yi where λ∗ stands for the conjugate of λ for each complex

number λ ∈ C, |α〉 = (x1, x2, · · · , xm)′ and |β〉 = (y1, y2, · · · , ym)′ are two

vectors in Hm. At any time, the state of this system is a superposition of |qi〉,

1 ≤ i ≤ m, and can be represented by a unit vector |φ〉 =
∑m

i=1 ci|qi〉 with

ci ∈ C such that
∑m

i=1 |ci|
2 = 1. One can perform a measure on Hm to extract

some information about the system. A measurement can be described by an

observable, i.e., a Hermitian matrix O = λ1P1 + · · · + λsPs where λi is its

eigenvalue and Pi is the projector onto the eigenspace corresponding to λi.

The above mathematical descriptions of quantum system are based on “pure

state”. We need some descriptions based on “mixed states”. In mixed states

picture, the states of quantum device are represented by density operator ρ ∈

L(H), i.e., ρ is self-adjoint, ρ ≥ 0 (semi-positive definite) and Tr(ρ) = 1. The

evolution of a closed quantum system is characterized by a unitary operation U

which maps ρ to UρU †. However, a general quantum operation U from L(H1)

to L(H2) is a trace-preserving completely positive mapping [1–3] with the form
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U(ρ) =
∑
i

MiρM
†
i for any ρ ∈ L(H1), where {Mi} are Kraus operators of U

satisfying
∑

iM
†
iMi = IdimH1

. Let H = P1 ⊕P2 ⊕ · · · ⊕Pk be a decomposition.

Then, for any ρ ∈ L(H), Tr(Pjρ) (equivalent to Tr(PjρP
†
j )) is the probability

that the property Pj is observed.

2.3. On relevant definitions of MM-1QFAs

For any finite set S, |S| denotes the cardinality of S. Throughout this paper,

Σ denotes the non-empty finite alphabet. A word over the alphabet Σ is a finite

sequence of symbols chosen from Σ. Let Σ∗ denote the set of all words over Σ.

For any word ω ∈ Σ∗, |ω| denotes the length of ω. Let Σn denote the set of all

words of length n over Σ where n is a non-negative integer. Then Σ∗ can be

represented as Σ∗ = ǫ ∪ Σ ∪ Σ2 ∪ · · · where ǫ denotes the empty word.

For a fixed alphabet Σ, letM(xi), where xi ∈ Σ, be complex square matrices

indexed by xi. For convenience, we define the formal product
1∏

i=n

M(xi) by

1∏

i=n

M(xi) , M(xn)M(xn−1) · · ·M(x1).

Now, we state the definition of MM-1QFA as follows.

Definition 1. Formally, an MM-1QFA with m states on the alphabet Σ is a

quadruple tuple

A = (Q, {U(σ)}σ∈Σ∪{$}, |π〉,O)

where Q = {q1, q2, · · · , qm} is the basic state set, |π〉 is the initial state vector

with ‖|π〉‖ = 1, $ /∈ Σ is an end-mark, for each σ ∈ Σ ∪ {$}, U(σ) ∈ Mm(C) is

an unitary matrix, and O is an observable with results in {a, r, g}, completely

described by the projectors P (a), P (r) and P (g).

The projectors P (a), P (g) and P (r) are given by

P (a) =
∑

q∈Qacc

|q〉〈q|, P (g) =
∑

q∈Qnon

|q〉〈q|, P (r) =
∑

q∈Qrej

|q〉〈q|

where Qnon = Q\(Qacc ∪ Qrej) is the set of non-halting states, Qacc ⊆ Q and

Qrej ⊆ Q (with Qacc ∩ Qrej = ∅) are the sets of accepting states and rejecting
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states, respectively, and |q〉〈q| denotes the matrix product of column vector |q〉

and row vector 〈q|.

Fed with x1x2 · · ·xn$ where x1x2 · · ·xn ∈ Σ∗, A computes as follows: start-

ing from |π〉, U(x1) is applied and a measurement of O is performed reaching

a new current state. If the measurement result is ‘g’, then U(x2) is applied

and a new measurement of O is performed. This process continues as far as

measurements yields the result ‘g’. As far as the result of measurement is ‘a’,

the computation stops and the word is accepted. If the measurement result is

‘r’, then the computation stops and the word is rejected. Therefore, A induces

a word function pA : Σ∗$ → [0, 1] in a “cumulation” manner, i.e.,

pA(x1x2 · · ·xn$) =

n+1∑

k=1

∥∥∥∥∥P (a)U(xk)

(
1∏

i=k−1

(
P (g)U(xi)

)
)

|π〉

∥∥∥∥∥

2

(1)

where xn+1 denotes $. By
1∏

i=0

(
P (g)U(xi)

)
we mean that

1∏

i=0

(
P (g)U(xi)

)
= Im

i.e., the m-order (m = |Q|) identity matrix. Further, the probability of A

accepting the word x1x2 · · ·xn is defined as

PA(x1x2 · · ·xn) = pA(x1x2 · · ·xn$). (2)

Definition 2. Two MM-1QFAs A1 and A2 over Σ are said to be equivalent

(resp. t-equivalent) if PA1
(ω) = PA2

(ω) for all ω ∈ Σ∗ (resp. for all ω ∈ Σ∗ with

|ω| ≤ t).

The probability PA(ω) of A accepting the word ω given in terms of Eq. (2)

is somewhat complicated. Now, we define another “probability function” of A

‘accepting’ the word ω as follows.

FA(ω) =





PA(x1x2 · · ·xn)− PA(x1x2 · · ·xn−1), ω = x1x2 · · ·xn;

PA(ǫ), ω = ǫ.
(3)
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Remark 1. Note that, if n = 1 in Eq. (3), then x1x2 · · ·x0 denotes the empty

word ǫ. More specifically, we define FA(x) to be the value: PA(x) − PA(ǫ) for

any x ∈ Σ.

For readability, we introduce the concept of “β-equivalence” for MM-1QFAs

in terms of Eq. (3) as follows.

Definition 3. Two MM-1QFAs A1 and A2 over the same input alphabet Σ are

said to be β-equivalent (resp. t-β-equivalent) if FA1
(ω) = FA2

(ω) for all ω ∈ Σ∗

(resp. for all ω ∈ Σ∗ with |ω| ≤ t).

The following Theorem is the basis that allowed us to present a much simpler

approach to the equivalence problem of MM-1QFAs.

Theorem 3. Let A1 and A2 be two MM-1QFAs over Σ. Then A1 and A2 are

equivalent iff they are β-equivalent.

Proof. We show first the “only if” part. Assume that A1 and A2 are equivalent,

then we have

PA1
(ω) = PA2

(ω) (∀ω ∈ Σ∗). (4)

We assert that FA1
(ω) = FA2

(ω) for all ω ∈ Σ∗. By Eq. (3) and Eq. (4), the

assertion is obvious when ω = ǫ; For the case when ω = x1x2 · · ·xn with n ≥ 1,

by Eq. (4) we have

PA1
(x1 · · ·xn)− PA1

(x1 · · ·xn−1) = PA2
(x1 · · ·xn)− PA2

(x1 · · ·xn−1)

i.e., FA1
(x1 · · ·xn) = FA2

(x1 · · ·xn). Thus the assertion holds for all ω ∈ Σ∗.

We show next the “if” part of the Theorem. By hypothesis

FA1
(ω) = FA2

(ω) (∀ω ∈ Σ∗) (5)

Also, it is clear that PA1
(ω) = PA2

(ω) when ω = ǫ. Assume that ω = x1x2 · · ·xn

with n ≥ 1. For simplicity, denote

an = PA1
(x1 · · ·xn)
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and

bn = PA2
(x1 · · ·xn)

for all n ≥ 1. Setting a0 = PA1
(ǫ) and b0 = PA2

(ǫ), then by Eq. (3), we find

that

FA1
(x1 · · ·xn) = an − an−1 and FA2

(x1 · · ·xn) = bn − bn−1.

Thus,

PA1
(x1 · · ·xn) = a0 +

n∑

k=1

(ak − ak−1)

= FA1
(ǫ) +

n∑

k=1

FA1
(x1 · · ·xk)

= FA2
(ǫ) +

n∑

k=1

FA2
(x1 · · ·xk) (by Eq. (5))

= b0 +
n∑

k=1

(bk − bk−1) = PA2
(x1 · · ·xn).

Theorem 3 follows. �

Remark 2. In fact, it is clear that the proof of Theorem 3 can be extended to

prove that two MM-1QFAs A1 and A2 are t-equivalent if and only if they are

t-β-equivalent.

For convenience, we expand Eq. (3) as follows. Note that, if ω = x1x2 · · ·xn,

then we have

FA(ω) = PA(x1x2 · · ·xn)− PA(x1x2 · · ·xn−1)

= 〈π|

(
1∏

i=n−1

(P (g)U(xi))

)†

U(xn)
†P (a)†P (a)U(xn)

(
1∏

i=n−1

(P (g)U(xi))

)
|π〉

+ 〈π|

(
1∏

i=n

(P (g)U(xi))

)†

U($)†P (a)†P (a)U($)

(
1∏

i=n

(P (g)U(xi))

)
|π〉

− 〈π|

(
1∏

i=n−1

(P (g)U(xi))

)†

U($)†P (a)†P (a)U($)

(
1∏

i=n−1

(P (g)U(xi))

)
|π〉

9



Setting A(σ) = P (g)U(σ) for each σ ∈ Σ and noting that P (a)2 = P (a),

P (a)† = P (a), we find that

FA(ω) = 〈π| ηA(ω) |π〉 (6)

where

ηA(ω) =





( 1∏
i=n−1

A(xi)
)†
δA(xn)

( 1∏
i=n−1

A(xi)
)
, ω = x1x2 · · ·xn ∈ Σn;

U($)†P (a)U($), ω = ǫ.

and δA(xn) is given by

δA(xn) = U(xn)
†P (a)U(xn) +A(xn)

†U($)†P (a)U($)A(xn)− U($)†P (a)U($).

We further introduce the following auxiliary definitions needed in the sequel.

Definition 4. Let Ai = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi), i = 1, 2, be two MM-

1QFAs over the alphabet Σ, whereO1 = {P1(a), P1(g), P1(r)} andO2 = {P2(a), P2(g), P2(r)}.

The diagonal sum of A1 and A2, denoted by A1⊕A2, is an MM-1QFA, defined

to be

A = A1 ⊕A2 = (Q, {U(σ)}σ∈Σ∪{$}, |ϑ〉,O)

whereQ = Q1∪Q2 with Q1∩Q2 = ∅, U(σ) = U1(σ)⊕U2(σ) for each σ ∈ Σ∪{$},

|ϑ〉 ∈ H|Q1|+|Q2| is an arbitrary unit vector and O = {P1(a) ⊕ P2(a), P1(g) ⊕

P2(g), P1(r) ⊕ P2(r)}.

It should be noted that the initial vector |ϑ〉 of A is arbitrary. Of particular

importance are the following two vectors

|ϕ〉 =



 |π1〉

0



 , |ψ〉 =



 0

|π2〉



 . (7)

With respect to the above vectors, we introduce the following technical def-

inition.
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Definition 5. Let Ai = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi), i = 1, 2, be two MM-

1QFAs over Σ. Let A = A1 ⊕ A2. Then, the vectors |ϕ〉 and |ψ〉, defined in

Eqs. (7), are said to be equivalent with respect to A (resp. t-equivalent with

respect to A), if

〈ϕ| ηA(ω) |ϕ〉 = 〈ψ| ηA(ω)|ψ〉 (8)

for all ω ∈ Σ∗ (resp. for all ω ∈ Σ∗ with |ω| ≤ t).

Remark 3. In fact, the left side of Eq. (8) is FA1
(ω), and the right side of

Eq. (8) is FA2
(ω). To see this, one can verify without difficulty that

ηA(ω) =


 ηA1

(ω) 0

0 ηA2
(ω)


 (9)

for all ω ∈ Σ∗. Hence, it is clear that

〈ϕ| ηA(ω) |ϕ〉 = 〈π1| ηA1
(ω) |π1〉 = FA1

(ω)

and

〈ψ| ηA(ω) |ψ〉 = 〈π2| ηA2
(ω) |π2〉 = FA2

(ω).

Let A = (Q, {U(σ)}σ∈Σ∪{$}, |π〉,O) be an MM-1QFA. Suppose that ω =

x1x2 · · ·xn ∈ Σ∗ and y ∈ Σ are arbitrary. It should be noted that

ηA(yω) =

[(
1∏

i=n−1

A(xi)

)
A(y)

]†
δA(xn)

[(
1∏

i=n−1

A(xi)

)
A(y)

]

= A(y)†



(

1∏

i=n−1

A(xi)

)†

δA(xn)

(
1∏

i=n−1

A(xi)

)
A(y)

= A(y)† ηA(ω)A(y) (10)

Remark 4. Eq. (10) pays a key role in the proof of Lemma 5 in the sequel,

and is inspired by the proof of Lemma 8 in [27] attributed to Li and Qiu, and

by the proof of Theorem 1 in [4] attributed to Carlyle.
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2.4. On relevant definitions of E-1QFAs

As mentioned earlier, an E-1QFA is a theoretical model for a quantum com-

puter with finite workspace [22] which can be seen as a generalization of MM-

1QFA. In what follows, we first state the definition of E-1QFA as follows.

Definition 6 (modification of [22]). An E-1QFA defined on the alphabet Σ is

a sextuple

A = (Q,Qacc, Qrej , {Uσ}σ∈Σ∪{#,$}, ρ,O)

where Q is a finite set of states, and Qacc ⊆ Q, Qrej ⊆ Q are the accepting and

rejecting states sets, respectively; For each symbol σ ∈ Σ∪ {#, $} where # and

$ are, respectively, the left and right end-marker, A has a corresponding “su-

peroperator” 1 Uσ; The density matrix ρ = |q0〉〈q0| (q0 ∈ Q) is the initial state

of A, and O = {Pa, Pg, Pr} where Pa, Pg and Pr are the orthogonal projection

onto span{|q〉|q ∈ Qacc}, span{|q〉|q ∈ Q\(Qacc∪Qrej)} and span{|q〉|q ∈ Qrej},

respectively.

The computing procedure of an E-1QFA is similar to that of an MM-1QFA.

For more details, we refer to [22] (cf. [22], section 3.2). Therefore, for a word

ω = x1x2 · · ·xn ∈ Σ∗, an E-1QFA A induces a word function as follows

pA(#ω$) = Tr

(
n+1∑

k=0

(Pa ◦ Uxk
) ◦

[
0∏

i=k−1

(Pg ◦ Uxi
)

]
(ρ)

)
(11)

where x0 = ‘#’, xn+1 = ‘$’. The probability of A accepting ω thus can be

defined as

PA(ω) = pA(#ω$). (12)

1Here, the “superoperator” [22] is given by a composition of a finite sequence of unitary

transformations and orthogonal measurements on the space CQ (i.e., HQ, see subsection 2.2).

However, if we allow any POVM measurements instead of orthogonal measurements, then the

set of “superoperators” consists of all possible quantum operations (superoperators) [33].
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In Eq. (11), the formal product
0∏

i=m

Ui is given by

0∏

i=m

Ui = Um ◦ Um−1 ◦ · · · ◦ U0.

By
0∏

i=−1

(Pg ◦ Uxi
) we mean I, i.e. the identity superoperator from L(HQ) to

L(HQ). The term Pg ◦ U is defined by the following rule

Pg ◦ U(ρ
′) = Pg

(
∑

i

Miρ
′M †

i

)
P †
g

=
∑

i

[
(PgMi)ρ

′(PgMi)
†
]

for any ρ′ ∈ L(HQ), where {Mi} are Kraus operators of U . Also, Pa ◦ U is

defined similarly.

Definition 7. Two E-1QFAs A1 and A2 over the same alphabet Σ are said to

be equivalent (resp. t-equivalent), if PA1
(ω) = PA2

(ω) for all ω ∈ Σ∗ (resp. for

all ω ∈ Σ∗ with |ω| ≤ t).

Similarly, the probability PA(ω) of A accepting ω given by Eq. (12) is in

a “cumulation” manner. We can define another version which is in a “non-

cumulation” manner as follows

FA(ω) =





PA(x1x2 · · ·xn)− PA(x1x2 · · ·xn−1), ω = x1x2 · · ·xn;

PA(ǫ), ω = ǫ.
(13)

Similar to the case of MM-1QFAs, we define the concept of “β-equivalence”

for E-1QFAs in terms of Eq. (13) as follows.

Definition 8. Two E-1QFAs A1 and A2 over the same alphabet Σ are said

to be β-equivalent (resp. t-β-equivalent) if FA1
(ω) = FA2

(ω) for all ω ∈ Σ∗

(resp. for all ω ∈ Σ∗ with |ω| ≤ t).

The following Theorem allows us to apply the approach to the equivalence

problem of MM-1QFAs to that of E-1QFAs.
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Theorem 4. Let A1 and A2 be two E-1QFAs over the same alphabet Σ. Then

A1 and A2 are equivalent (resp. t-equivalent) iff they are β-equivalent (resp. t-

β-equivalent).

Proof. The proof is similar to that of Theorem 3, and the detail is omitted. �

Note that, if ω = x1x2 · · ·xn with n ≥ 1, then FA(ω) can be reduced as

follows

FA(ω) = Tr

((
Pa ◦ Uxn

+ (Pa ◦ U$) ◦ (Pg ◦ Uxn
)− Pa ◦ U$

)
◦

0∏

i=n−1

(
Pg ◦ Uxi

)
(ρ)

)
(14)

We could rewrite Eq. (14) as

FA(ω) = Tr ((Pa ◦ Uxn
+ (Pa ◦ U$) ◦ (Pg ◦ Uxn

)− Pa ◦ U$)(ρ
′))

where

ρ′ =

0∏

i=n−1

(
Pg ◦ Uxi

)
(ρ)

=
∑

ixn−1

(PgMixn−1
)


· · ·



∑

ix0

(PgMix0
)|q0〉〈q0|(PgMix0

)†


 · · ·


 (PgMixn−1

)†

=
∑

ixn−1

· · ·
∑

ix0

[
(PgMixn−1

) · · · (PgMix0
)|q0〉〈q0|(PgMix0

)† · · · (PgMixn−1
)†
]
.

Setting PaMj = Aj and PgMj = Bj for all Mj , then a simple calculation

leads to the following

Tr(Pa ◦ Uxn
(ρ′)) = Tr



∑

ixn

∑

ixn−1

· · ·
∑

ix0

Aixn
Bixn−1

· · ·Bix0
|q0〉〈q0|B

†
ix0

· · ·B†
ixn−1

A†
ixn




(by the commutative law of Tr, we have)

= Tr



〈q0|




∑

ix0

· · ·
∑

ixn−1

∑

ixn

B†
ix0

· · ·B†
ixn−1

A†
ixn
Aixn

Bixn−1
· · ·Bix0



 |q0〉





= 〈q0|




∑

ix0

· · ·
∑

ixn−1

B†
ix0

· · ·B†
ixn−1




∑

ixn

A†
ixn
Aixn



Bixn−1
· · ·Bix0



 |q0〉;

14



Tr(Pa ◦ U$ ◦ Pg ◦ Uxn
(ρ′)) =

〈q0|




∑

ix0

· · ·
∑

ixn−1

B†
ix0

· · ·B†
ixn−1




∑

ixn

∑

ixn+1

B†
ixn
A†

ixn+1

Aixn+1
Bixn



Bixn−1
· · ·Bix0



 |q0〉;

and

Tr(Pa ◦ U$(ρ
′)) = 〈q0|



∑

ix0

· · ·
∑

ixn−1

B†
ix0

· · ·B†
ixn−1



∑

ixn+1

A†
ixn+1

Aixn+1


Bixn−1

· · ·Bix0


 |q0〉.

It is easy to verify that

FA(ω) = Tr (Pa ◦ Uxn
(ρ′)) + Tr ((Pa ◦ U$) ◦ (Pg ◦ Uxn

)(ρ′))− Tr (Pa ◦ U$(ρ
′))

= 〈q0|



∑

ix0

· · ·
∑

ixn−1

B†
ix0

· · ·B†
ixn−1

ξA(xn) Bixn−1
· · ·Bix0


 |q0〉

where ξA(xn) is given by

ξA(xn) =
∑

ixn

A†
ixn
Aixn

+
∑

ixn

∑

ixn+1

B†
ixn
A†

ixn+1

Aixn+1
Bixn

−
∑

ixn+1

A†
ixn+1

Aixn+1
.

Since an E-1QFA has a left end-marker ‘#’ which is different from an MM-

1QFA, the approach to the equivalence problem of MM-1QFAs may not be

applied directly to that of E-1QFAs. We need a more careful pre-treatment.

Thus, denote

ϑA(ω) =
∑

ix1

· · ·
∑

ixn−1

B†
ix1

· · ·B†
ixn−1

ξA(xn)Bixn−1
· · ·Bix1

and

θA(ω) =
∑

ix0

B†
ix0



∑

ix1

· · ·
∑

ixn−1

B†
ix1

· · ·B†
ixn−1

ξA(xn)Bixn−1
· · ·Bix1


Bix0

=
∑

ix0

B†
ix0
ϑA(ω)Bix0

(15)

for any ω = x1x2 · · ·xn ∈ Σ∗.

The following technical definition of “diagonal sum” of E-1QFAs will pay

the same role as the definition of “diagonal sum” of MM-1QFAs.
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Definition 9. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi), i = 1, 2, be

two E-1QFAs over Σ where Oi = {P
(i)
a , P

(i)
g , P

(i)
r }, and ρi = |q

(i)
0 〉〈q

(i)
0 |. The

diagonal sum of A1 and A2, denoted as A1 ⊕A2, is defined to be

A , A1 ⊕A2 = (Q,Qacc, Qrej, {Uσ}σ∈Σ∪{#,$}, ̺,O)

where Q = Q1 ∪Q2 with Q1 ∩Q2 = ∅, Uσ = U
(1)
σ ⊕U

(2)
σ

2, ̺ ∈ L(HQ1∪Q2
) is an

arbitrary density matrix, and O = {P
(1)
a ⊕ P

(2)
a , P

(1)
g ⊕ P

(2)
g , P

(1)
r ⊕ P

(2)
r }.

Also, as the case of MM-1QFA, the initial state ̺ of A is arbitrary. Of

particular importance are the following

ϕ =



 ρ1 0

0 0



 , ψ =



 0 0

0 ρ2



 . (16)

Similarly, we introduce the following definition.

Definition 10. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi), i = 1, 2,

be two E-1QFAs over Σ where Oi = {P
(i)
a , P

(i)
g , P

(i)
r }, and ρi = |q

(i)
0 〉〈q

(i)
0 |. Let

A = A1⊕A2. Then the density matrices ϕ and ψ, defined in Eqs. (16), are said

to be equivalent with respect to A (resp. t-equivalent with respect to A), if

(〈q
(1)
0 |,0) θA(ω)



 |q
(1)
0 〉

0



 = (0, 〈q
(2)
0 |) θA(ω)



 0

|q
(2)
0 〉



 (17)

for all ω ∈ Σ∗ (resp. for all ω ∈ Σ∗ with |ω| ≤ t).

Remark 5. Also, It is easy to find that

θA(ω) =


 θA1

(ω) 0

0 θA2
(ω)


 (18)

2Here, if U
(1)
σ and U

(2)
σ are given by the operators sets {Ei} and {Zj}, respectively, then

Uσ can be defined to be given by the operators set {Mi} , {Ei⊕Zi}. It is not hard to see that

∑

i M
†
i Mi =





∑

i E
†
iEi 0

0
∑

i Z
†
i Zi



 and Uσ(ρ) =





∑

i Eiρ1E
†
i 0

0
∑

i Ziρ2Z
†
i



 =





U
(1)
σ (ρ1) 0

0 U
(2)
σ (ρ2)



 for any ρ = ρ1 ⊕ ρ2.
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for all ω ∈ Σ∗. Thus,

(〈q
(1)
0 |,0) θA(ω)


 |q

(1)
0 〉

0


 = 〈q

(1)
0 |θA1

(ω)|q
(1)
0 〉 = FA1

(ω)

and

(0, 〈q
(2)
0 |) θA(ω)


 0

|q
(2)
0 〉


 = 〈q

(2)
0 |θA2

(ω)|q
(2)
0 〉 = FA2

(ω).

Namely, the left side of Eq. (17) is FA1
(ω), and the right side of Eq. (17) is

FA2
(ω).

In the following, we derive a relation which is similar to Eq. (10). Let

Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi), i = 1, 2, be two E-1QFAs, and

A = A1 ⊕ A2. Suppose that ω = x1x2 · · ·xn ∈ Σ∗ and y ∈ Σ are arbitrary.

Then, it is clear that

ϑA(yω) =
∑

iy

∑

ix1

· · ·
∑

ixn−1

B†
iy
B†

ix1
· · ·B†

ixn−1

ξA(xn)Bixn−1
· · ·Bix1

Biy

=
∑

iy

B†
iy




∑

ix1

· · ·
∑

ixn−1

B†
ix1

· · ·B†
ixn−1

ξA(xn)Bixn−1
· · ·Bix1



Biy

=
∑

iy

B†
iy
ϑA(ω)Biy . (19)

Remark 6. Just as the relation: Eq. (10), will play an important role in the

proof of Lemma 5, this relation, i.e., Eq. (19), will play a similar role in the

proof of Lemma 8.

3. Proof of Theorem 1

In this section, we present our approach to the equivalence problem of MM-

1QFAs. Let us first introduce some convenient notation.

For each i ≥ 0, let HA(i) denote the set {ηA(ω)|ω ∈ Σ∗, |ω| ≤ i} where

HA(0) = {U($)†P (a)U($)}, and VA(i) the vector space spanned by HA(i), i.e.,

VA(i) =span{HA(i)}. Then it is clear that VA(i) ⊆ VA(i + 1) since HA(i) ⊆

HA(i + 1). We prove
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Lemma 5. Let A = (Q, {U(σ)}σ∈Σ∪{$}, |π〉,O) be an MM-1QFA. Then there

exists an integer l < |Q|2, such that VA(l) = VA(l + j) for all j ≥ 1.

Proof. We show first that there exists an integer l < |Q|2 such that VA(l) =

VA(l + 1). Suppose there exists no such an integer, then for all i ≥ 0 we find

that VA(i) 6= VA(i + 1). This gives

VA(0) ⊂ VA(1) ⊂ · · · ⊆ M|Q|(C).

Since dimM|Q|(C) = |Q|2 and dimVA(0) ≥ 1, we have dimVA(|Q|2) ≥ |Q|2 + 1

which contradicts the fact that VA(|Q|2) ⊆ M|Q|(C).

We show next that VA(l) = VA(l + j) for all j ≥ 1 by induction on j. For

j = 1, we have shown in the above. Assume it is true for j < m (m > 1) and

consider the case j = m. Note that HA(l+m) = HA(l+(m− 1))∪{ηA(ω)|ω ∈

Σ∗, |ω| = l+m} and VA(l+m) = span{HA(l+m)}. Thus, for all η ∈ VA(l+m),

η can be written as

η =
∑

i1

ai1ηA(ωi1) +
∑

i2

ai2ηA(ωi2)

where ηA(ωi1) ∈ HA(l + (m − 1)) and ηA(ωi2) ∈ {ηA(ω)|ω ∈ Σ∗, |ω| = l +m}.

Clearly,
∑

i1
ai1ηA(ωi1) ∈ VA(l + (m − 1)). We assert that

∑
i2
ai2ηA(ωi2) ∈

VA(l + (m − 1)). To see this it suffices to prove that, for each ηA(ωi2) ∈

{ηA(ω)|ω ∈ Σ∗, |ω| = l + m}, it can be expressed as ηA(ωi2) =
∑

z bzηA(ωz)

with ηA(ωz) ∈ HA(l + (m− 1)) and bz ∈ C. This can be deduced as follows.

Note that ωi2 can be written as ωi2 = yi2ω
′
i2

with yi2 ∈ Σ and |ω′
i2
| =

l+(m−1) < l+m. By induction hypothesis, ηA(ω
′
i2
) ∈ VA(l) = VA(l+(m−1)).

Thus,

ηA(ω
′
i2
) =

∑

k

ckηA(ω
′
i2,k

) (ω′
i2,k

∈ Σ∗, |ω′
i2,k

| ≤ l and ck ∈ C). (20)

It follows that

ηA(ωi2) = ηA(yi2ω
′
i2
)

= A(yi2)
†ηA(ω

′
i2
)A(yi2) (by Eq. (10))
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= A(yi2)
†

(
∑

k

ckηA(ω
′
i2,k

)

)
A(yi2 ) (by Eq. (20))

=
∑

k

ck(A(yi2)
†ηA(ω

′
i2,k

)A(yi2 ))

=
∑

k

ckηA(yi2ω
′
i2,k

) (by Eq. (10))

which means that ηA(ωi2) ∈ VA(l + 1). Hence, the asserted result holds. �

Remark 7. Further, it should be noted that, ifAi = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi),

i = 1, 2, are two MM-1QFAs over Σ, and A = A1⊕A2 is the diagonal sum of A1

and A2, then dimVA(i) ≤ n2
1 + n2

2 for all i ≥ 0, where n1 = |Q1| and n2 = |Q2|.

To see this, let

B = {Eij | 1 ≤ i, j ≤ n1 } ∪ {Eij |n1 + 1 ≤ i, j ≤ n1 + n2 }

where the elements in B are (n1 +n2)-order matrices having only 1 at the (i, j)

entry and 0’s elsewhere. Since, for all ω ∈ Σ∗, ηA(ω) are of the form

ηA(ω) =


 ηA1

(ω) 0

0 ηA2
(ω)




where ηA1
(ω) and ηA2

(ω) are n1-order and n2-order complex matrices, respec-

tively, one can easy verify that

VA(i) ⊆ span{B} ( ∀i ≥ 0 )

This implies dimVA(i) ≤ n2
1 + n2

2 for all i ≥ 0. Hence, by replacing M|Q|(C)

with span{B} in the proof of Lemma 5, we have l < n2
1+n2

2. The above remark

shows the following

Corollary 6. Let Ai = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi), i = 1, 2, be two MM-

1QFAs over Σ, and A = A1 ⊕ A2. Then there exists an integer l < n2
1 + n2

2

where n1 = |Q1| and n2 = |Q2|, such that VA(l) = VA(l + j) for all j ≥ 1. �

By virtue of Corollary 6, we prove the following
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Theorem 7. Let Ai = (Qi, {Ui(σ)}σ∈Σ∪{$}, |πi〉,Oi), i = 1, 2, be two MM-

1QFAs over Σ, and A = A1 ⊕ A2. Then the unit vectors |ϕ〉 and |ψ〉, defined

in Eqs. (7), are equivalent with respect to A iff they are n2
1 + n2

2 − 1-equivalent

with respect to A, where n1 and n2 are the numbers of states in A1 and A2,

respectively.

Proof. The “only if” part is obvious, we show the “if” part. Suppose that

|ϕ〉 and |ψ〉 are n2
1 + n2

2 − 1-equivalent (with respect to A), then for all ω =

x1x2 · · ·xn ∈ Σ∗ with |ω| < n2
1 + n2

2 − 1, Eq. (8) holds. Namely,

〈ϕ|ηA(ω)|ϕ〉 = 〈ψ|ηA(ω)|ψ〉 (∀ ηA(ω) ∈ HA(n
2
1 + n2

2 − 1)) (21)

By Corollary 6, for all ω ∈ Σ∗, ηA(ω) ∈ VA(n
2
1+n

2
2−1) = span

{
HA(n

2
1+n

2
2−1)

}
.

Hence,

ηA(ω) =
∑

i

ai ηA(ωi) (ηA(ωi) ∈ HA

(
n2
1 + n2

2 − 1
)
) (22)

where ai ∈ C. It follows that

〈ϕ| ηA(ω) |ϕ〉 = 〈ϕ|

(
∑

i

ai ηA(ωi)

)
|ϕ〉 (by Eq. (22))

=
∑

i

ai

(
〈ϕ| ηA(ωi) |ϕ〉

)
(ηA(ωi) ∈ HA

(
n2
1 + n2

2 − 1
)
)

=
∑

i

ai

(
〈ψ| ηA(ωi) |ψ〉

)
(by Eq. (21))

= 〈ψ| ηA(ω) |ψ〉.

This means that Eq. (8) holds for all ω ∈ Σ∗. Thus |ϕ〉 and |ψ〉 are equivalent

with respect to A. �

Now, we can present the proof of Theorem 1 as follows.

Proof of Theorem 1. By Theorem 3, we only need to show that A1 and A2

are β-equivalent if and only if they are (n2
1 + n2

2 − 1)-β-equivalent.

Since it is obvious that if A1 and A2 are β-equivalent then they are (n2
1 +

n2
2− 1)-β-equivalent, we only need to show that if A1 and A2 are (n2

1 +n2
2− 1)-
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β-equivalent, then they are β-equivalent. Let A = A1 ⊕A2. By Remark 3,

FA1
(ω) = 〈ϕ| ηA(ω) |ϕ〉 (23)

and

FA2
(ω) = 〈ψ| ηA(ω) |ψ〉 (24)

for all ω ∈ Σ∗, where |ϕ〉 and |ψ〉 are defined in Eqs. (7).

Suppose that A1 and A2 are (n2
1 + n2

2 − 1)-β-equivalent. Then, we have

FA1
(ω) = FA2

(ω) (25)

for all ω ∈ Σ∗ with |ω| < n2
2 + n2

2 − 1. It follows from Eq. (23), Eq. (24) and

Eq. (25) that

〈ϕ| ηA(ω) |ϕ〉 = 〈ψ| ηA(ω) |ψ〉 (|ω| < n2
1 + n2

2 − 1)

This implies that |ϕ〉 and |ψ〉 are n2
1 + n2

2 − 1-equivalent with respect to A.

Thus, by Theorem 7, |ϕ〉 and |ψ〉 are equivalent with respect to A. This implies

that 〈ϕ| ηA(ω) |ϕ〉 = 〈ψ| ηA(ω) |ψ〉 for all ω ∈ Σ∗, i.e., FA1
(ω) = FA2

(ω) for all

ω ∈ Σ∗. Hence, A1 and A2 are β-equivalent. �

Someone may argue that the improvement from 3n2
1+3n2

2− 1 to n2
1+n

2
2− 1

is not essential, since they are both quadratic. We conjecture that the upper-

bound n2
1 + n2

2 − 1 can not be further improved to linear bound. However, we

have no ability to prove it.

4. Proof of Theorem 2

In this section, we investigate the equivalence problem of E-1QFAs. For

convenience, we will use the following notations.

For any i ≥ 0, we let HA(i) denote the set {θA(ω)|ω ∈ Σ∗, |ω| ≤ i}, VA(i)

the vector space spanned by HA(i), KA(i) the set {ϑA(ω)|ω ∈ Σ∗, |ω| ≤ i},

and SA(i) the vector space spanned by KA(i). Also, the following relations are

obvious

HA(i) ⊆ HA(i+ 1), VA(i) ⊆ VA(i + 1)

KA(i) ⊆ KA(i+ 1), SA(i) ⊆ SA(i + 1).
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Lemma 8. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi), i = 1, 2, be

two E-1QFAs over Σ, and A = A1 ⊕ A2. Then, there exists an integer l <

n2
1 + n2

2, where n1 = |Q1| and n2 = |Q2|, such that SA(l) = SA(l + j) for all

j ≥ 1.

Proof. The proof of this lemma is similar to that of Lemma 5. First, we remark

that, if Ai, i = 1, 2, are two E-1QFAs over Σ and A = A1 ⊕A2, then

ϑA(ω) =


 ϑA1

(ω) 0

0 ϑA2
(ω)




for all ω ∈ Σ∗. Hence, by the argument similar to Remark 7 we find that

dimSA(i) ≤ n2
1 + n2

2 for all i ≥ 0.

Then by using the same argument that we have just used in the proof of

Lemma 5, we see that there exists an integer l < n2
1 + n2

2 such that SA(l) =

SA(l + 1).

Next, we show that SA(l) = SA(l + j) for all j ≥ 1 by induction on j.

For j = 1, we have done. Assume it is true for j < m (m > 1) and consider

the case j = m. Since SA(l + m) = span{KA(l + m)} and KA(l + m) =

KA(l+ (m− 1)) ∪ {ϑA(ω)|ω ∈ Σ∗, |ω| = l+m}, thus, for any ϑ ∈ SA(l+m), ϑ

can be written as

ϑ =
∑

i1

ai1 ϑA(ωi1) +
∑

i2

ai2 ϑA(ωi2)

where ϑA(ωi1) ∈ KA(l + (m− 1)) and ϑA(ωi2) ∈ {ϑA(ω)|ω ∈ Σ∗, |ω| = l +m}.

We must to show that ϑ ∈ SA(l+(m−1)). For this, we only need to prove that

∑

i2

ai2 ϑA(ωi2) ∈ SA(l + (m− 1)). (26)

Note that |ωi2 | = l+m. Assume that ωi2 = yx1x2 · · ·xl+(m−1), then, we get

ϑA(ωi2) =
∑

iy

B†
iy
ϑA(x1x2 · · ·xl+(m−1))Biy (by Eq. (19))

(by induction hypothesis, we have)

=
∑

iy

B†
iy

(
∑

z

azϑA(ωz)

)
Biy (ϑA(ωz) ∈ KA(l))
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=
∑

z

az




∑

iy

B†
iy
ϑA(ωz)Biy





=
∑

z

az ϑA(yωz) (by Eq. (19))

with |yωz| ≤ l + 1 and az ∈ C, as required. �

Now, we can prove the following

Lemma 9. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi) be two E-1QFAs

over Σ, and A = A1 ⊕A2. Then, VA(n
2
1 + n2

2 − 1) = VA((n
2
1 + n2

2 − 1) + j) for

all j ≥ 1.

Proof. For any ω ∈ Σ∗ with |ω| = (n2
1 + n2

2 − 1) + j, we have

θA(ω) =
∑

ix0

B†
ix0

ϑA(ω)Bix0
(by Eq. (15))

(by Lemma 8, we have)

=
∑

ix0

B†
ix0

(
∑

z

az ϑA(ωz)

)
Bix0

( ϑA(ωz) ∈ KA(n
2
1 + n2

2 − 1) )

=
∑

z

az



∑

ix0

B†
ix0
ϑA(ωz)Bix0




=
∑

z

az θA(ωz) (by Eq. (15))

where |ωz| ≤ n2
1 + n2

2 − 1 and az ∈ C. Hence, VA((n
2
1 + n2

2 − 1) + j) = VA(n
2
1 +

n2
2 − 1). The above argument holds for all j ≥ 1. The lemma follows. �

Remark 8. It should be noted that we achieve the proof of Lemma 9 by dint

of Lemma 8. The reason for this is that an E-1QFA has the left end-mark ‘#’,

which prevents us from achieving the proof directly. This is also the reason for

why the formula θA(ω) is given in the form of Eq. (15).

The proof of the following theorem and the proof of Theorem 2 are similar

to the proof of Theorem 7 and the proof of Theorem 1, respectively. Since our

presentation here is self-contained, we present the proofs in detail.
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Theorem 10. Let Ai = (Qi, Qacc,i, Qrej,i, {U
(i)
σ }σ∈Σ∪{#,$}, ρi,Oi), i = 1, 2, be

two E-1QFAs over Σ, and A = A1 ⊕A2. Then the density matrices ϕ and ψ,

defined in Eqs. (16), are equivalent with respect to A iff they are n2
1 + n2

2 − 1-

equivalent with respect to A, where n1 and n2 are the numbers of states in A1

and A2, respectively.

Proof. The “only if” part of the theorem is trivial, we only need to show the

“if” part. Assume that ϕ and ψ are n2
1+n

2
2−1-equivalent. Then, for all ω ∈ Σ∗

with |ω| ≤ n2
1 + n2

2 − 1, Eq. (17) holds. Namely

(〈q
(1)
0 |,0)θA(ω)



 |q
(1)
0 〉

0



 = (0, 〈q
(2)
0 |)θA(ω)



 0

|q
(2)
0 〉



 (27)

for all θA(ω) ∈ VA(n
2
1 + n2

2 − 1).

By Lemma 9, for all ω ∈ Σ∗, we have

θA(ω) =
∑

i

aiθA(ωi) (θA(ωi) ∈ HA(n
2
1 + n2

2 − 1), ai ∈ C) (28)

Thus

(〈q
(1)
0 |,0)θA(ω)



 |q
(1)
0 〉

0



 = (〈q
(1)
0 |,0)

(
∑

i

aiθA(ωi)

)

 |q
(1)
0 〉

0



 (by Eq. (28))

=
∑

i

ai


(〈q

(1)
0 |,0)θA(ωi)


 |q

(1)
0 〉

0






=
∑

i

ai


(0, 〈q

(2)
0 |)θA(ωi)


 0

|q
(2)
0 〉




 (by Eq. (27))

= (0, 〈q
(2)
0 |)

(
∑

i

aiθA(ωi)

)
 0

|q
(2)
0 〉




= (0, 〈q
(2)
0 |)θA(ω)


 0

|q
(2)
0 〉


 (by Eq. (28))

This implies that Eq. (17) holds for all ω ∈ Σ∗. Thus, by Definition 10, ϕ and

ψ are equivalent with respect to A. �
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Finally, we present the proof of Theorem 2 as follows.

Proof of Theorem 2. By Theorem 4, we only need to show that A1 and A2

are β-equivalent if and only if they are (n2
1 + n2

2 − 1)-β-equivalent.

Also, it is clear that if A1 and A2 are β-equivalent then they are (n2
1+n

2
2−1)-

β-equivalent. Let A = A1 ⊕A2. Suppose that A1 and A2 are (n2
1 + n2

2 − 1)-β-

equivalent. Then for all ω ∈ Σ∗ with |ω| ≤ n2
1 + n2

2 − 1, we have

FA1
(ω) = FA2

(ω) ( |ω| ≤ n2
1 + n2

2 − 1 ) (29)

By Remark 5,

FA1
(ω) = (〈q

(1)
0 |,0) θA(ω)



 |q
(1)
0 〉

0



 (30)

FA2
(ω) = (0, 〈q

(2)
0 |) θA(ω)



 0

|q
(2)
0 〉



 (31)

Eqs. (29), (30) and (31) imply that ϕ and ψ are n2
1 + n2

2 − 1-equivalent with

respect to A. By Theorem 10, ϕ and ψ are equivalent with respect to A, which

means that FA1
(ω) = FA2

(ω) for all ω ∈ Σ∗. i.e., A1 and A2 are β-equivalent.

Theorem 2 follows. �

5. Conclusions

In this paper, it has shown that two MM-1QFAs A1 and A2 over the same

alphabet Σ are equivalent if and only if they are (n2
1 + n2

2 − 1)-equivalent. Our

result indicates that the upper-bound for the equivalence problem of MM-1QFAs

is irrelevant to the numbers of states in the minimal DFA recognized the regular

language g∗a{a, r, g}∗. The approach used in this paper is similar to the work

of Carlyle [4]. Also, comparing with [26], the reader may find that the approach

used in this paper is much simpler, direct and elegant.

As an application of the approach, we utilize it to address the equivalence

problem of E-1QFAs which has not been answered previously by showing The-

orem 2.
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As mentioned earlier, from the algebraic point of view, the concept of “equiv-

alence” provides us a classification of the elements of the set of MM-1QFAs over

the same alphabet. Let A be an MM-1QFA over Σ, and let Ã denote the set

of MM-1QFAs over Σ which is equivalent to A. Then, a natural question to

be asked is whether there exists an MM-1QFA A′ ∈ Ã with least (minimal)

numbers of basic states? If such an element exists, then how to construct it? It

is our future work to consider these interesting and more challenging problems.
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