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Abstract

We address the issue of incorporating a particular yet expressive form of integrity constraints (namely, denial constraints) into
probabilistic databases. To this aim, we move away from the common way of giving semantics to probabilistic databases, which
relies on considering a unique interpretation of the data, and address two fundamental problems:consistency checkingandquery
evaluation. The former consists in verifying whether there is an interpretation which conforms to both the marginal probabilities
of the tuples and the integrity constraints. The latter is the problem of answering queries under a “cautious” paradigm,taking
into account all interpretations of the data in accordance with the constraints. In this setting, we investigate the complexity of the
above-mentioned problems, and identify several tractablecases of practical relevance.

Keywords: Probabilistic databases, Integrity constraints, Consistency checking

1. Introduction

Probabilistic databases (PDBs) are widely used to represent uncertain information in several contexts, ranging
from data collected from sensor networks, data integrationfrom heterogeneous sources, bio-medical data, and, more
in general, data resulting from statistical analyses. In this setting, several relevant results have been obtained re-
garding the evaluation of conjunctive queries, thanks to the definition of probabilistic frameworks dealing with two
substantially different scenarios: the case oftuple-independentPDBs [11, 24], where all the tuples of the database are
considered independent one from another, and the case of PDBs representing probabilistic networks encoding even
complex forms of correlations among the data [44]. However,none of these frameworks takes into account integrity
constraints in the same way as it happens in the deterministic setting, where constraints are used to enforce the con-
sistency of the data. In fact, the former framework stronglyrelies on the independence assumption (which clearly is
in contrast with the presence of the correlations entailed by integrity constraints). The latter framework is closer toan
AI perspective of representing the information, as it requires the correlations among the data to be represented as data
themselves. This is different from the DB perspective, where constraints are part ofthe schema, and not of the data.

In this paper, we address the issue of incorporating integrity constraints into probabilistic databases, with the aim
of extending the classical semantics and usage of integrityconstraints of the deterministic setting to the probabilistic
one. Specifically, we consider one of the most popular logical models for the probabilistic data, where information
is represented into tuples associated with probabilities,and give the possibility of imposingdenial constraintson the
data, i.e., constraints forbidding the co-existence of certain tuples. In our framework, the role of integrity constraints
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is the same as in the deterministic setting: they can be used to decide whether a new tuple can be inserted in the
database, or to decide (a posteriori w.r.t. the generation of the data) if the data are consistent.

Before explaining in detail the main contribution of our work, we provide a motivating example, which clarifies the
impact of augmenting a PDB with (denial) constraints. In particular, we focus on the implications on the consistency
of the probabilistic data, and on the evaluation of queries.We assume that the reader is acquainted with the data
representation model where uncertainty is represented by associating tuples with a probability, and with the notion of
possible world. (however, these concepts will be formally recalled in the first sections of the paper).

Motivating Example

Consider the PDB schemaDp consisting of the relation schemaRoomp(Id, Hid, Price, Type, View, P), and its
instanceroomp in Figure 1.

Id Hid Price Type View P

t1 1 1 120 Std Sea p1

t2 2 1 70 Suite Courtyard p2

t3 3 1 120 Std Sea p3

Figure 1. Relation instanceroomp

Every tuple inroomp is characterized by the room identifierId, the identifierHid of the hotel owning the room,
its price per night, its type (e.g., “Standard”, “Suite”), and the attributeViewdescribing the room view. The attribute
P specifies the probability that the tuple is true. For now, we leave the probabilities of the three tuples as parameters
(p1, p2, p3), as we will consider different values to better explain the main issues related to theconsistency and the
query evaluation.

Assume that the following constraintic is defined overDp: “ in the same hotel, standard rooms cannot be more
expensive than suites”. This is a denial constraint, as it forbids the coexistenceof tuples not satisfying the specified
property. In particular,ic entails thatt1 andt2 are mutually exclusive, as, according tot1, the standard room 1 would
be more expensive than the suite room 2 belonging to the same hotel as room 1. For the same reason,ic forbids the
coexistence oft2 andt3.

Finally, consider the following queryq onDp: “Are there two standard rooms with sea view in hotel1?”. We now
show how the consistency of the database and the answer ofq vary when changing the probabilities ofroomp’s tuples.
Case 1 (No admissible interpretation): p1 =

3
4; p2 =

1
2; p3 =

1
2.

In this case, we can conclude that the database is inconsistent. In fact,ic forbids the coexistence oft1 andt2, which
means that the possible worlds containingt1 must be distinct from those containingt2. But the marginal probabilities
of t1 andt2 do not allow this: the fact thatp1 =

3
4 and p2 =

1
2 implies that the sum of the probabilities of the worlds

containing eithert1 or t2 would be3
4+

1
2, which is greater than 1.

Case 2 (Unique admissible interpretation): p1 =
1
2; p2 =

1
2; p3 =

1
2.

In this case, the database is consistent, as it represents two possible worlds:w1 = {t1, t3} andw2 = {t2}, both with
probability 1

2 (correspondingly, the possible worlds representing the other subsets of{t1, t2, t3} have probability 0).
Observe that there is no other way to interpret the database,while making the constraint satisfied in each possible
world, and the probabilities of the possible worlds compatible w.r.t. the marginal probabilities oft1, t2, t3. Thus, the
database is consistent and has a unique admissible interpretation.
Now, evaluating the above-defined queryq over all the admissible interpretations of the database yields the answer
true with probability 1

2 (which is the probability ofw1, the only non-zero-probability world, in the unique admissible
interpretation, whereq evaluates totrue). Note that, ific were disregarded andq were evaluated using the indepen-
dence assumption, the answer ofq would betruewith probability 1

4.

Case 3 (Multiple admissible interpretations): p1 =
1
2; p2 =

1
4; p3 =

1
2.

In this case, we can conclude that the database is consistent, as it admits at least the interpretationsI1 and I2 repre-
sented in the two rows of the following table (each cell is theprobability of the possible world reported in the column
header).
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∅ {t1} {t2} {t3} {t1, t2} {t1, t3} {t2, t3} {t1, t2, t3}

I1 0 1/4 1/4 1/4 0 1/4 0 0
I2 1/4 0 1/4 0 0 1/2 0 0

With a little effort, the reader can check that there are infinitely many ways of interpreting the database while
satisfying the constraints: each interpretation can be obtained by assigning to the possible world{t1, t3} a different
probability in the range [14 ,

1
2], and then suitably modifying the probabilities of the other possible worlds whereic is

satisfied. Basically, the interpretationsI1 andI2 correspond to the two extreme possible scenarios where, compatibly
with the integrity constraintic, a strong negative or positive correlation exists betweent1 andt3. The other interpreta-
tions correspond to scenarios where an “intermediate” correlation exists betweent1 andt3. Thus, differently from the
previous case, there is now more than one admissible interpretation for the database.
Observe that, in the absence of any additional information about the actual correlation among the tuples ofroomp, all
of the above-described admissible interpretations are equally reasonable. Hence, when evaluating queries, we use a
“cautious” paradigm, where all the admissible interpretations are taken into account – meaning that no assumption on
the actual correlations among tuples is made, besides thosewhich are derivable from the integrity constraints. Thus,
according to this paradigm, the answer of queryq is truewith a probability range [14 ,

1
2] (where the boundaries of this

range are the overall probabilities assigned to the possible worlds containing botht1 andt3 by I1 andI2). As pointed
out in the discussion of Case 2, if the independence assumption were adopted (andic disregarded), the answer ofq
would betrue with probability 1

4, which is the left boundary of the probability range got as cautious answer.

Main contribution

We address the following two fundamental problems:

1) Consistency checking: the problem of deciding the consistency of a PDB w.r.t. a given set of denial constraints,
that is deciding if there is at least one admissible interpretation of the data. This problem naturally arises
when integrity constraints are considered over PDBs: the information encoded in the data (which are typically
uncertain) may be in contrast with the information encoded in the constraints (which are typically certain, as
they express well-established knowledge about the data domain). Hence, detecting possible inconsistencies
arising from the co-existence of certain and uncertain information is relevant in several contexts, such as query
evaluation, data cleaning and repairing.
In this regard, our contribution consists in a thorough characterization of the complexity of this problem. Specif-
ically, after noticing that, in the general case, this problem isNP-complete (owing to its interconnection to the
probabilistic version of SAT), we identify several islandsof tractability, which hold when either:

i) the conflict hypergraph (i.e., the hypergraph whose edges are the sets of tuples which can not coexist
according to the constraints) has some structural property(namely, it is a hypertree or a ring), or

ii ) the constraints have some syntactic properties (independently from the shape of the conflict hypergraph).
2) Query evaluation: the problem of evaluating queries over a database which is consistent w.r.t. a given set of

denial constraints. Query evaluation relies on the “cautious” paradigm described in Case 3 of the motivating
example above, which takes into account all the possible ways of interpreting the data in accordance with the
constraints. Specifically, query answers consist of pairs〈t, rp〉, wheret is a tuple andrp a range of probabilities.
Therein,rp is the narrowest interval containing all the probabilitieswhich would be obtained fort as an answer
of the query when considering all the admissible interpretations of the data (and, thus, all the correlations among
the data compatible with the constraints).
For this problem, we address both its decisional and search versions, studying the sensitivity of their complexity
to the specific constraints imposed on the data and the characteristics of the query. We show that, in the case
of general conjunctive queries, the query evaluation problem is FPNP[log n]-hard and inFPNP (note thatFPNP

is contained in #P, the class for which the query evaluation problem under the independence assumption is
complete). Moreover, we identify tractable cases where thequery evaluation problem is inPTIME, which
depend on the characteristics of the query and, analogouslyto the case of the consistency checking problem, on
either the syntactic form of the constraints or on some structural properties of the conflict hypergraph.
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Moreover, we consider the following extensions of the framework and discuss their impact on the above-summarized
results:

A) tuples are associated with probability ranges, rather thansingle probabilities: this is useful when the data
acquisition process is not able to assign a precise probability value to the tuples [31, 35];

B) also denial constraints are probabilistic: this allows also the domain knowledge encoded by the constraints to
be taken into account as uncertain;

C) pairs of tuples are considered independent unless this contradicts the constraints: this is a way of interpreting
the data in between adopting tuple-independence and rejecting it, and is well suited for those cases where one
finds it reasonable to assume some groups of tuples as independent from one another. For instance, if we
consider further tuples pertaining to a different hotel in the introductory example (where constraintsinvolve
tuples over the same hotel), it may be reasonable to assume that these tuples encode events independent from
those pertaining hotel 1.

2. Fundamental notions

2.1. Deterministic Databases and Constraints
We assume classical notions of database schema, relation schema, and relation instance. Relation schemas will be

represented by sorted predicates of the formR(A1, . . . ,An), whereR is said to be the name of the relation schema and
A1, . . . ,An are attribute names composing the set denoted asAttr(R). A tuple over a relation schemaR(A1, . . . ,An) is
a member of∆1 × · · · × ∆n, where each∆i is the domain of attributeAi (with i ∈ [1..n]). A relation instance ofR is a
setr of tuples overR. A database schemaD is a set of relation schemas, and a database instanceD of D is a set of
relation instances of the relation schemas ofD. Given a tuplet, the value of attributeA of t will be denoted ast[A].

A denial constraintover a database schemaD is of the form∀~x.¬[R1(~x1) ∧ · · · ∧ Rm(~xm) ∧ φ(~x)], where:
– R1, . . . ,Rm are name of relations inD;

– ~x is a tuple of variables and~x1, . . . , ~xm are tuples of variables and constants such that~x = Var(~x1) ∪ · · · ∪ Var(~xm),
where Var(~xi) denotes the set of variables in~xi ;

– φ(~x) is a conjunction of built-in predicates of the formx⋄ y, wherex andy are either variables in~x or constants, and
⋄ is a comparison operator in{=,,,≤,≥, <, >}.

m is said to be thearity of the constraint. Denial constraints of arity 2 are said to bebinary. For the sake of brevity,
constraints will be written in the form:¬[R1(~x1) ∧ · · · ∧Rm(~xm) ∧ φ(~x)], thus omitting the quantification∀~x.

We say that a denial constraintic is join-free if no variable occurs in two distinct relation atoms ofic, and, for
each built-in predicate occurring inφ, at least one term is a constant. Observe that join-free constraints allow multiple
occurrences of the same relation name.

It is worth noting that denial constraints enableequality generating dependencies(EGDs) to be expressed: an EGD
is a denial constraint where all the conjuncts ofφ are not-equal predicates. Obviously, this means that a denial con-
straints enables also a functional dependency (FD) to be expressed, as an FD is a binary EGDs over a unique relation
(when referring to FDs, we consider also non-canonical ones, i.e., FDs whose RHSs contain multiple attributes).

Given an instanceD of the database schemaD and an integrity constraintic overD, the fact thatD satisfies (resp.,
does not satify)ic is denoted asD |= ic (resp.,D 6|= ic) and is defined in the standard way.D is said to be consistent
w.r.t. a set of integrity constraintsIC, denoted withD |= IC, iff ∀ic ∈ ICD |= ic .

Example 1. LetD be the (deterministic) database schema consisting of the relation schemaRoom(Id, Hid, Price,
Type, View), obtained by removing the probability attribute from the relation schema of our motivating example.
Assume the following denial constraints overD:
ic: ¬[Room(x1, x2, x3, ‘Std’, x4)∧ Room(x5, x2, x6, ‘Suite’ , x7) ∧ x3 > x6], saying that, in the same hotel, there can

not be standard rooms more expensive than suites;
ic′: ¬[Room(x1, x2, x3, x4, x5)∧ Room(x6, x2, x7, x4, x8) ∧ x3 , x7], imposing that rooms of the same type and hotel

have the same price. Thus, ic′ is the FD:HId, Type→ Price.
where ic is the constraint presented in the introductory example. Consider the relation instanceroom of Room,
obtained from the instanceroomp of the motivating example by removing columnP. It is easy to see thatroom
satisfies ic′, but does not satisfy ic, since, for the same hotel, the priceof standard rooms (rooms1 and3) is greater
than that of suite room2. ✷
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Figure 2. An example of hypergraph (a), ring (b), hypertree (c)

2.2. Hypergraphs and hypertrees
A hypergraph is a pairH = 〈N,E〉, whereN is a set ofnodes, andE a set of subsets ofN, called thehyperedgesof

H. The setsN andE will be also denoted asN(H) andE(H), respectively. Hypergraphs generalize graphs, as graphs
are hypergraphs whose hyperedges have exactly two elements(and are callededges). Examples of hypergraphs are
depicted in Figure 2.

Given a hypergraphH = 〈N,E〉 and a pair of its nodesn1, n2, apathconnectingn1 andn2 is a sequencee1, . . . ,
em of distinct hyperedges ofH (with m ≥ 1) such thatn1 ∈ e1, n2 ∈ em and, for eachi ∈ [1..m− 1], ei ∩ ei+1 , ∅. A
path connectingn1 andn2 is said to betrivial if m= 1, that is, if it consists of a single edge containing both nodes.

Let R = e1, . . . , em be a sequence of hyperedges. We say thatei andej areneighborsif j = i + 1, or i = m and
j = 1 (or: if i = j + 1, or i = 1 and j = m). The sequenceR is said to be aring if: i) m ≥ 3; ii ) for each pairei , ej

(i , j), it holds thatei ∩ ej , ∅ if and only if ei andej are neighbors. An example of ring is depicted in Figure 2(b).It
is easy to see that the definition of ring collapses to the definition of cycle in the case that the hypergraph is a graph.

The nodes appearing in a unique edge will be said to beearsof that edge. The set of ears of an edgee will be
denoted asears(e). For instance, in Figure 2(a),ears(e1) = {t2} andears(e3) = ∅.

A set of nodesN′ of H is said to be anedge-equivalent setif all the nodes inN′ appear altogether in the edges of
H. That is, for eache ∈ E such thate∩ N′ , ∅, it holds thate∩ N′ = N′. Equivalently, the nodes inN′ are said to
beedge-equivalent. For instance, in the hypergraph of Figure 2(b),{t1, t2} is an edge-equivalent set, as botht1 andt2
belong to the edgese1, e2 only. Analogously, in the hypergraph of Figure 2(c), nodest2 andt3 are edge equivalent,
while {t2, t3, t4} is not an edge-equivalent set. Observe that sets of nodes which do not belong to any edge, as well as
the ears of an edge (which belong to one edge only), are particular cases of edge-equivalent sets.

A hypergraph is said to beconnectediff, for each pair of its nodes, a path connects them. A hypergraph H
is a hypertreeiff it is connected and it satisfies the followingacyclicity property: there is no pair of edgese1, e2

such that removing the nodes composing their intersection from every edge ofH results in a new hypergraph where
the remaining nodes ofe1 are still connected to the remaining nodes ofe2. An instance of hypertree is depicted
in Figure 2(c). Observe that the hypergraph in Figure 2(a) isnot a hypertree, as the nodest2 and t6 of e1 ande2,
respectively, are still connected (through the pathe1, e3, e2) even if we remove nodet1, which is shared bye1 ande2.
It is easy to see that hypertrees generalize trees. Basically, the acyclicity property of hypertrees used in this paper is
the well-knownγ-acyclicity property introduced in [16]. In [15, 16], polynomial time algorithms for checking that a
hypergraph isγ-acyclic (and thus a hypertree) are provided.

3. PDBs under integrity constraints

3.1. Probabilistic Databases (PDBs)
A probabilistic relation schema is a classical relation schema with a distinguished attributeP, calledprobability,

whose domain is the real interval [0, 1] and which functionally depends on the set of the other attributes. Hence,
a probabilistic relation schema has the formRp(A1, . . . ,An,P). A PDB schemaDp is a set of probabilistic relation
schemas. A probabilistic relation instancer p is an instance ofRp and a PDB instanceDp is an instance ofDp. We
use the superscriptp to denote probabilistic relation and database schemas, andtheir instances. For a tuplet ∈ Dp,
the valuet[P] is the probability thatt belongs to the real world. We also denotet[P] as p(t).

Given a probabilistic relation schemaRp (resp., relation instancer p, probabilistic tuplet), we writedet(Rp) (resp.,
det(r p), det(t)) to denote its “deterministic” part. Hence, givenRp(A1, . . . ,An,P), det(Rp) = R(A1, . . . ,An), and
det(r p) = πAttr(det(Rp))(r p), anddet(t) = πAttr(det(Rp))(t). This definition is extended to deal with the deterministicpart of
PDB schemas and instances in the obvious way.

5
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3.1.1. Possible world semantics
The semantics of a PDB is based onpossible worlds. Given a PDBDp, a possible world is any subset of its

deterministic partdet(Dp). The set of possible worlds ofDp is as follows: pwd(Dp) = {w | w ⊆ det(Dp)}. An
Pr interpretation ofDp is a probability distribution function(PDF) over the set of possible worldspwd(Dp) which
satisfies the following property:

(i) ∀t ∈ Dp, p(t) =
∑

w ∈ pwd(Dp)
∧ det(t) ∈ w

Pr(w).

Condition (i) imposes that the probability of each tuplet of Dp coincides with that specified int itself. Observe
that, from definition of PDF,Pr must also satisfy the following conditions:

(ii )
∑

w ∈ pwd(Dp)

Pr(w) = 1; (iii ) ∀w ∈ pwd(Dp), Pr(w) ≥ 0;

meaning thatPr assigns a non-negative probability to each possible world,and that the probabilities assigned byPr
to the possible worlds sum up to 1.

The set of interpretations of a PDBDp will be denoted asI(Dp).
Observe that, strictly speaking, possible worlds are sets of deterministic counterparts of probabilistic tuples. How-

ever, for the sake of simplicity, with a little abuse of notation, in the following we will say that a probabilistic tuple
t belongs (resp., does not belong) to a possible worldw – written t ∈ w (resp.,t < w) – if w contains (resp., does not
contain) the deterministic counterpart oft, i.e.,det(t) ∈ w (resp.,det(t) < w). Moreover, given a deterministic tuplet,
we will write p(t) to denote the probability associated with the probabilistic counterpart oft. Thus,p(t) will denote
eithert[P], in the case thatt is a probabilistic tuple, ort′[P], in the case thatt is deterministic andt′ is its probabilistic
counterpart.

If independence among tuples is assumed, only one interpretation ofDp is considered, assigning to each possible
world w the probabilityPr(w)=

∏
t∈w p(t)×

∏
t<w(1−p(t)). In fact, under the independence assumption, the probability

of a conjunct of events is equal to the product of their probabilities. In turn, queries over the PDB are evaluated by
considering this unique interpretation. In this paper, we consider a different framework, where independence among
tuples is not assumed, and all the possible interpretationsare considered.

Example 2. Consider the PDB schemaDp and its instance Dp introduced in our motivating example. Dp consists
of the relation instanceroomp reported in Figure 1. Assume that t1, t2, t3 have probabilities p1= p2= p3= 1/2, and
disregard the integrity constraint defined in the motivating example.

Table 1 shows some interpretations of Dp. Pr1 corresponds to the interpretation obtained by assuming tuple
independence. Interpretation Pr5, whereǫ is any real number in[0, 1/4], suffices to show that there are infinitely
many interpretations of Dp. ✷

Possible worlds (w)

∅ {t1} {t2} {t3} {t1, t2} {t1, t3} {t2, t3} {t1, t2, t3}

In
te

rp
re

ta
tio

ns Pr1(w) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 } Assuming tuple independence

Pr2(w) 0 1/2 0 0 0 0 1/2 0


Further interpretations
corresponding to different
correlations among tuples

Pr3(w) 0 0 1/2 0 0 1/2 0 0

Pr4(w) 0 0 0 1/2 1/2 0 0 0

Pr5(w) 1/2− 2ǫ ǫ ǫ ǫ 0 0 0 1/2− ǫ

Table 1. Some interpretations ofDp

3.2. Imposing denial constraints over PDBs

An integrity constraint over a PDB schemaDp is written as an integrity constraint over its deterministic part
det(Dp). Its impact on the semantics of the instances ofDp is as follows. As explained in the previous section, a
PDBDp, instance ofDp, may have several interpretations, all equally sound. However, if some constraints are known

6



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 7

on its schemaDp, some interpretations may have to be rejected. The interpretations to be discarded are those “in
contrast” with the domain knowledge expressed by the constraints, that is, those assigning a non-zero probability to
worlds violating some constraint.

Formally, given a set of constraintsIC onDp, an interpretationPr ∈ I(Dp) is admissible(and said to be amodel
for Dp w.r.t. IC) if

∑
w∈pwd(Dp)∧w|=IC Pr(w) = 1 (or, equivalently, if

∑
w∈pwd(Dp)∧w6|=IC Pr(w) = 0). The set of models of

Dp w.r.t. IC will be denoted asM(Dp,IC). Obviously,M(Dp,IC) coincides with the set of interpretationsI(Dp) if
no integrity constraint is imposed (IC = ∅), while, in general,M(Dp,IC) ⊆ I(Dp).

Example 3. Consider the PDB Dp and the integrity constraint ic introduced in our motivating example. Assume that
all the tuples ofroomp have probability1/2. Thus, the interpretations for Dp are those discussed in Example 2 (see
also Table 1). It is easy to see thatroomp admits at least one model, namely Pr3 (shown in Table 1), which assigns
non-zero probability only to w1 = {t2} and w2 = {t1, t3}. In fact, it can be proved that Pr3 is the unique model of
roomp w.r.t. ic, since every other interpretation ofroomp, including Pr1 where tuple independence is assumed, makes
the constraint ic violated in some non-zero probability world. This example shows an interesting aspect of denial
constraints. Although denial constraints only explicitlyforbid the co-existence of tuples, they may implicitly entail the
co-existence of tuples: for instance, for the given probabilities of t1, t2, t3, constraint ic implies the coexistence of t1

and t3. ✷

Example 3 re-examines Case 2 of our motivating example, and shows a case where the PDB is consistent and ad-
mits a unique model. The reader is referred to the discussions of Case 1 and Case 3 of the motivating example to con-
sider different scenarios, where the PDB is not consistent (Case 1), oris consistent and admits several models (Case 3).

3.2.1. Modeling denial constraints as hypergraphs
Basically, a denial constraint over a PDB restricts its models w.r.t. the set of interpretations, as it expresses the fact

that some sets of tuples ofDp areconflicting, that is, they cannot co-exist: an interpretation is not a model if it assigns
a non-zero probability to a possible world containing thesetuples altogether. Hence, a set of denial constraintsIC can
be naturally represented as aconflict hypergraph, whose nodes are the tuples ofDp and where each hyperedge consists
of a set of tuples whose co-existence is forbidden by a denialconstraint inIC (in fact, hypergraphs were used to model
denial constraints also in several works dealing with consistent query answers in the deterministic setting [8]). The
definitions ofconflicting tuplesandconflict hypergraphare as follows.

Definition 1 (Conflicting set of tuples). LetDp be a PDB schema,IC a set of denial constraints onDp, and Dp an
instance ofDp. A set T of tuples of Dp is said to be aconflicting setw.r.t. IC if it is a minimal set such that any
possible world containing all the tuples in T violatesIC.

Example 4. In Example 3, both{t1, t2} and{t2, t3} are conflicting sets of tuples w.r.t.IC = {ic}, while {t1, t2, t3} is not,
as it is not minimal. ✷

Definition 2 (Conflict hypergraph). LetDp be a PDB schema,IC a set of denial constraints onDp, and Dp an
instance ofDp. The conflict hypergraph of Dp w.r.t. IC is the hypergraph HG(Dp,IC) whose nodes are the tuples of
Dp and whose hyperedges are the conflicting sets of Dp w.r.t. IC.

Example 5. Consider a database instance Dp having tuples t1, . . . , t9, and a set of denial constraintsIC stating
that e1 = {t1, t4, t7}, e2 = {t1, t2, t3, t4, t5, t6}, e3 = {t3, t6, t9}, and e4 = {t6, t8} are conflicting sets of tuples. The conflict
hypergraph HG(Dp,IC) in Figure 3 concisely represents this fact. ✷

It is easy to see that, ifIC contains binary denial constraints only, then the conflict hypergraph collapses to a graph.

Example 6. Consider Dp andIC = {ic} of our motivating example – observe that ic is a binary denialconstraint.
The graph representing HG(Dp,IC) is shown in Figure 4. ✷

It is easy to see that the size of the conflict hypergraph is polynomial w.r.t. the size ofDp (in particular, its num-
ber of nodes is bounded by the number of tuples ofDp) and can be constructed in polynomial time w.r.t. the size ofDp.

Remark 1. Observe that the conflict hypergraphH(Dp,IC) corresponds to a representation of the dual lineage of the
constraint query qIC, i.e., the boolean queryqIC =

∨
ic∈IC(¬ic) which basically asks whether there isnomodel forDp

7
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the motivating example

w.r.t. IC. For instance, consider the case of Example 3. A lineage ofqIC is the DNF expression: (X1∧X2)∨ (X2∧X3),
where eachXi corresponds to tupleti . Thus, the semantics of the considered constraints is captured by the dual lineage,
that is the CNF expression (Y1∨Y2)∧ (Y2∨Y3), where eachYi = not(Xi). It is easy to see that the conflict hypergraph
(as described in Example 6) is the hypergraph of this CNF expression. In the conclusions (Section 8), we will
elaborate more on this relationship between conflict hypergraphs and (dual) lineages of constraint queries: exploiting
this relationship may help to tackle the problems addressedin this paper from a different perspective.

4. Consistency checking

Detecting inconsistencies is fundamental for certifying the quality of the data and extracting reliable information
from them. In the deterministic setting, inconsistency typically arises from errors that occurred during the generation
of the data, as well as during their acquisition. In the probabilistic setting, there is one more possible source of incon-
sistency, coming from the technique adopted for estimatingthe “degree of uncertainty” of the acquired information,
which determines the probability values assigned to the probabilistic tuples. Possible bad assignments of probability
values can turn out when integrity constraints on the data domain (which typically encode certain information coming
from well-established knowledge of the domain) are considered.

In this section, we address the problem of checking this formof consistency, that is, the problem of checking
whether the probabilities associated with the tuples are “compatible” with the integrity constraints defined over the
data. It is worth noting that the study of this problem has a strong impact in several aspects of the management of
probabilistic data: checking the consistency can be used during the data acquisition phase (in order to “certify” the
validity of the model applied for determining the probabilities of the tuples), as well as a preliminary step of the
computation of the query answers. Moreover, it is strongly interleaved with the problem of repairing the data, whose
study is deferred to future work.

Before providing the formal definition of the consistency checking problem, we introduce some basic notions and
notations. Given a PDB schemaDp, a set of integrity constraintIC, and an instanceDp of Dp, we say thatDp

satisfies (resp., does not satisfy)IC, denoted asDp |= IC (resp.,Dp 6|= IC ) iff the set of modelsM(Dp,IC) is not
empty. In the following, we will say “consistent w.r.t.” (resp., “inconsistent w.r.t.”) meaning the same as “satisfies”
(resp., “does not satisfy”).

We are now ready to provide the formal definition of the consistency checking problem. In this definition, as well
as in the rest of the paper, we assume that a PDB schemaDp and a set of denial constraintsIC overDp are given.

Definition 3 (Consistency Checking Problem (cc)). Given a PDB instance Dp ofDp, the consistency checking prob-
lem (cc) is deciding whether Dp |= IC.

We point out that, in our complexity analysis,Dp andIC will be assumed of fixed size, thus we refer to data
complexity.

The following theorem states thatcc is NP-complete, and it easily derives from the interconnection of cc with
the NP-complete problem PSAT [22] (Probabilistic satisfiability), which is the generalization of SAT defined as
follows: “Let S = {C1, . . . ,Cm} be a set of m clauses, where each Ci is a disjunction of literals (i.e, possibly negated
propositional variables x1, . . . , xn) and each Ci is associated with a probability pi . Decide whether S issatisfiable,
that is, whether there is a probability distributionπ over all the2n possible truth assignments over x1, . . . , xn such
that, for each Ci , the sum of the probabilities assigned byπ to the truth assignments satisfying Ci is equal to pi .”
Basically, the membership inNP of cc derives from the fact that any instance ofcc over a PDBDp can be reduced to
an equivalent PSAT instance where:a) the propositional variables correspond to the tuples ofDp, b) the constraints
of cc are encoded into clauses with probability 1,c) the fact that the tuples are assigned a probability is encoded

8
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into a clause for each tuple, with probability equal to the tuple probability. As regards the hardness ofcc for NP, it
intuitively derives from the fact that the hardness of PSAT was shown in [22] for the case that only unary clauses have
probabilities different from 1: thus, this proof can be applied oncc, by mapping unary clauses to tuples and the other
clauses (which are deterministic) to constraints1.

Theorem 1(Complexity ofcc). cc is NP-complete.

In the following, we devote our attention to determining tractable cases ofcc, from two different perspectives.
First, in Section 4.1, we will show tractable cases which depend from the structural properties of the conflict hyper-
graph, and, thus, from how the data combine with the constraints. The major results of this section are thatcc is
tractable if the conflict hypergraph is either a hypertree orring. Then, in Section 4.2, we will show syntactic condi-
tions on the constraints which makecc tractable, independently from the shape of the conflict hypergraph. At the end
of the latter section, we also discuss the relationship between these two kinds of tractable cases.

4.1. Tractability arising from the structure of the conflicthypergraph

It is worth noting that, since there is a polynomial-time reduction fromcc to PSAT, the tractability results for
PSAT may be exploited for devising efficient strategy for solvingcc. In fact, in [22], it was shown that 2PSAT (where
clauses are binary) can be solved in polynomial time if the graph of clauses (which contains a node for each literal and
an edge for each pair of literals occurring in the same clause) is outerplanar. This result relies on a suitable reduction
of 2PSAT to a tractable instance of 2MAXSAT (maximum weight satisfiability with at most two literals per clause).
Since, in the case of binary denial constraints, the conflicthypergraph is a graph and the above-discussed reduction
of cc to PSAT results in an instance of 2PSAT where the graph of clauses has the same “shape” of our conflict graph,
we have thatcc is polynomial-time solvable if denial constraints are binary and the conflict graph is outerplanar.
However, on the whole, reducing 2PSAT to 2MAXSAT and then solving the obtained 2MAXSAT instance require a
high polynomial-degree computation (specifically, the complexity is O(n6 logn), wheren is the number of literals in
the PSAT formula, corresponding to the number of tuples in our case).

Here, we detect tractable cases ofcc, which, up to our knowledge, are not subsumed by any known tractability
result for PSAT. Our tractable cases have the following amenities:

– no limitation is put on the arity of the constraints;
– instead of exploiting reductions ofcc to other problems, we determine necessary and sufficient conditions which can

be efficiently checked (in linear time) by only examining the conflict hypergraph and the probabilities of the tuples.

Our main results regarding the tractability arising from the structure of the conflict hypergraph (which will be
given in sections 4.1.2 and 4.1.3) are that consistency can be checked in linear time over the conflict hypergraph if it
is either a hypertree or a ring.

4.1.1. New notations and preliminary results
Before providing our characterization of tractable cases arising from the structure of the conflict hypergraph, we

introduce some preliminary results and new notations. Given a hypergraphH = 〈N,E〉 and a hyperedgee ∈ E, the
set of intersections ofe with the other hyperedges ofH is denoted asInt(e,H) = {s | ∃e′ ∈ E s.t. e′ , e∧ s= e∩ e′}.
For instance, for the hypertreeH in Figure 2(c),Int(e1,H) = {{t2, t3}, {t2, t3, t4}}. Moreover, given a set of setsS, we
call S a matryoshkaif there is a total orderings1, . . . , sn of its elements such that, for eachi, j ∈ [1..n] with i < j it
holds thats1 ⊂ s2 ⊂ · · · ⊂ sn. For instance, the above-mentioned setInt(e1,H) is a matryoshka. Finally, given a set
of hyperedgesS, we denote asH−S the hypergraph obtained fromH by removing the edges ofS and the nodes in
the edges ofS which do not belong to any other edge of the remaining part ofH. That is,H−S = 〈N′,E′〉, where
E′ = E \ S, N′ =

⋃
e∈E′ e. For instance, for the hypergraphH in Figure 2(a),H−{e1} is obtained by removinge1 from

the set of edges ofH, andt2 from the set of its nodes. Analogously,H−{e1,e2} will not contain edgese1 ande2, as well
as nodest1, t2, t6.

1 However, we will not provide a formal proof of theNP-hardness ofcc based on this reasoning, that is, based on reducing hard instances of
PSAT tocc instances. Indeed, a formal proof of the hardness will be provided for the theorems 5 and 7 introduced in Section 4.2, which are more
specific in stating the hardness ofcc in that they say thatcc is NP-hard in the presence of denial constraints of some syntactic forms.
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The first preliminary result (Proposition 1) states a general property of hypertrees: any hypertreeH contains at
least one edgee which is attached to the rest ofH so that the set of intersections ofe with the other edges ofH is
a matryoshka. Moreover, removing this edge fromH results in a new hypergraph which is still a hypertree. This
result is of independent interest, as it allows for reasoning on hypertrees (conforming to theγ-acyclicity property) by
using induction on the number of hyperedges: any hypertree with x edges can be viewed as a hypertree withx − 1
edges which has been augmented with a new edge, attached to the rest of the hypertree by means of sets of nodes
encapsulated one to another.

Proposition 1. Let H = 〈N,E〉 be a hypertree. Then, there is at least one hyperedge e∈ E such that Int(e,H) is a
matryoshka. Moreover, H−{e} is still a hypertree.

As an example, consider the hypertree in Figure 2(c). As ensured by Proposition 1, this hypertree contains the edge
e1 whose set of intersections with the other edges is{{t2, t3}, {t2, t3, t4}}, which is a matryoska. Moreover, removinge1

from the set of hyperedges, and the ears ofe1 from the set of nodes, still yields a hypertree. The same holds fore2 and
e4, but not fore3.

The second preliminary result (which will be stated as Lemma1) regards the minimum probability that a set of
tuples co-exist according to the models of the given PDB. Specifically, given a set of tuplesT of the PDBDp, we
denote this minimum probability aspmin(T), whose formal definition is as follows:

pmin(T) =
min

Pr ∈ M(Dp,IC)

{ ∑
Pr(w)

w ∈ pwd(Dp) ∧ T⊆w

}

The following example clarifies the semantics ofpmin.

Example 7. Consider the case discussed in Example 2 (the same as Case 2 ofour motivating example, but with
IC = ∅). Here, every interpretation is a model. Hence, pmin(t1, t3) = 0, as there is an interpretation (for instance, Pr2

or Pr4 in Table 1) which assigns probability0 to both the possible worlds{t1, t3} and{t1, t2, t3} – the worlds containing
both t1 and t3. However, if we imposeIC = {ic} of the motivating example, we have that pmin(t1, t3) = 1/2, as
according to Pr3 (the unique model for the database w.r.t.IC) the probabilities of worlds{t1, t3} and {t1, t2, t3} are,
respectively,1/2 and0 (hence, their sum is1/2). ✷

Lemma 1 states that, for any set of tuplesT = {t1, . . . , tn}, independently from how they are connected in the
conflict hypergraph, the probability that they co-exist, for every model, has a lower bound which is implied by their
marginal probabilities. This lower bound is max

{
0,
∑n

i=1 p(ti) − n+ 1
}
, which is exactly the minimum probability of

the co-existence oft1, . . . , tn in two cases:i) the case thatt1, . . . , tn are pairwise disconnected in the conflict hypergraph
(which happens, for instance, in the very special case thatt1, . . . , tn are not involved in any constraint);ii ) the case
that the set of intersections ofT with the edges ofH is a matryoshka. This is interesting, as it depicts a case of
tuples correlated through constraints which behave similarly to tuples among which no correlation is expressed by
any constraint.

Lemma 1. Let Dp be an instance ofDp consistent w.r.t.IC, T a set of tuples of Dp, and let H denote the conflict
hypergraph HG(Dp,IC). If either i) the tuples in T are pairwise disconnected in H, orii) Int(T,H) is a matryoshka,
then pmin(T) = max{0,

∑
t∈T p(t) − |T | + 1}. Otherwise, this formula provides a lower bound for pmin(T).

4.1.2. Tractability of hypertrees
We are now ready to state our first result oncc tractability.

Theorem 2. Given an instance Dp ofDp, if HG(Dp,IC) is a hypertree, then Dp |= IC iff, for each hyperedge e of
HG(Dp,IC), it holds that ∑

t∈e

p(t) ≤ |e| − 1 (1)

Proof. (⇒): We first show that if there is a model forDp w.r.t. IC, then inequality (1) holds for each hyperedge
of HG(Dp,IC). Reasoning by contradiction, assume thatDp |= IC and there is an hyperedgee = {t1, . . . , tn} of
HG(Dp,IC) such that

∑n
i=1 p(ti) − n+ 1 > 0. Since this value is a lower bound forpmin(t1, . . . , tn) (due to Lemma 1),
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it holds that every modelM for Dp w.r.t. IC assigns a non-zero probability to some possible world containing all the
tuplest1, . . . , tn. This contradicts thatM is a model, since any possible world containingt1, . . . , tn does not satisfyIC.
(⇐): We now prove that if inequality (1) holds for each hyperedge of HG(Dp,IC), then there is a model forDp w.r.t.
IC. We reason by induction on the number of hyperedges ofHG(Dp,IC).

The base case is whenHG(Dp,IC) consists of a single hyperedgee = {t1, . . . , tk}. Consider the same database
Dp, but impose over it the empty set of denial constraints, instead ofIC. Then, from Lemma 1 (casei)), we
have that there is at least one modelM for Dp (w.r.t. the empty set of constraints) such that

∑
w⊇{t1,...,tk} M(w) =

max
{
0,
∑k

i=1 p(ti) − k+ 1
}
. The term on the right-hand side evaluates to 0, as, from the hypothesis, we have that

∑k
i=1 p(ti) ≤ k − 1. Hence,M is a model forDp also w.r.t.IC, since the only constraint entailed byIC is that the

tuplest1, . . . , tk can not be altogether in any possible world with non-zero probability.
We now prove the induction step. Consider the case thatH = HG(Dp,IC) is a hypertree withn hyperedges. The

induction hypothesis is that the property to be shown holds in the presence of any conflict hypergraph consisting of a
hypertree withn− 1 hyperedges. Lete be a hyperedge ofH such thatInt(e,H) is a matryoshka, andH′ = H−{e} is a
hypertree. The existence ofeand the fact thatH′ is a hypertree are guaranteed by Proposition 1. We denote thenodes
in east′1, . . . , t

′
m, t
′′
1 , . . . , t

′′
n , whereT′ = {t′1, . . . , t

′
m} is the set of nodes ofe in H′, andT′′ = {t′′1 , . . . t

′′
n } are the ears ofe.

Correspondingly,D′′ is the portion ofDp containing only the tuplest′′1 , . . . t
′′
n , andD′ is the portion ofDp containing

all the other tuples (that is, the tuples corresponding to the nodes ofH′). We considerD′ associated with the set of
constraints imposed byH′, andD′′ associated with an empty set of constraints.

Thanks to the induction hypothesis, and to the fact that inequality (1) holds, we have thatD′ is consistent w.r.t.
the set of constraints encoded byH′. Moreover, sinceInt(e,H) is a matryoshka, we have that the setT′ is such that
Int(T′,H′) is a matrioshka too. Hence, from Lemma 1 (caseii ) we have that there is a modelM′ for D′ w.r.t. H′ such
that
∑

w⊇{t′1,...,t
′
m}

M′(w) = max{0,
∑m

i=1 p(t′i ) −m+ 1
}
. We denote this value asp′, and consider the case thatp′ > 0

(that is,p′ =
∑m

i=1 p(t′i )−m+1 as the case thatp′ = 0 can be proved analogously). Since inequality (1) holds forevery
edge ofHG(Dp,IC), the following inequality holds for the tuples ofe:

∑
i=1..m p(t′i ) +

∑
i=1..n p(t′′i ) −m− n+ 1 ≤ 0.

The quantitym−
∑

i=1..m p(t′i ) is equal to 1− p′, that is the overall probability assigned byM′ to the possible worlds
of D′ not containing at least one tuplet′1, . . . , t

′
m. Denoting the probability 1− p′ asp′, the above inequality becomes∑

i=1..n p(t′′i ) − n+ 1 ≤ p′. Owing to Lemma 1 (casei), the term on the left-hand side corresponds topmin(t′′1 , . . . , t
′′
n ).

Intuitively enough, this suffices to end the proof, as it means that, if we arrange the tuplest′′1 , . . . , t
′′
n according to

a modelM′′ for D′′ which minimizes the overall probability of the possible worlds of D′′ containingt′′1 , . . . , t
′′
n alto-

gether, the portion of the probability space invested to represent these worlds is less than the portion of the probability
space invested byM′ to represent the possible worlds ofD′ not containing at least one tuple amongt′1, . . . , t

′
m. For the

sake of completeness, we formally show how to obtain a model for Dp w.r.t. IC starting fromM′ andM′′.
First of all, observe that any interpretationPr can be represented as a sequenceS(Pr) = (w1, p1), . . . , (wk, pk)

where:

• w1, . . . ,wk are all the possible worlds such thatPr(wi) , 0 for eachi ∈ [1..k];

• p1 = Pr(w1);

• for eachi ∈ [2..n] pi = pi−1 + Pr(wi) (that is,pi is the cumulative probability of all the possible worlds inS(M)
occurring in the positions not greater thani). In particular, this entails thatpn = 1.

It is easy to see that many sequences can represent the same interpretationPr, each corresponding to a different
permutation of the set of the possible worlds which are assigned a non-zero probability byPr.

Consider the modelM′, and letα be the number of possible worlds which are assigned byM′ a non-zero proba-
bility and which do not contain at least one tuple amongt′1, . . . , t

′
m. Then, take a sequenceS(M′) such that the firstα

pairs are possible worlds not containing at least one tuple amongt′1,. . . ,t
′
m. In this sequence, denoting the generic pair

occurring in it as (w′i , p
′
i ), it holds thatp′α = p′.

Analogously, consider the modelM′′ , and take any sequenceS(M′′) where the first pair contains the possible
world containing all the tuplest′′1 , . . . , t

′′
n . Obviously, denoting the generic pair occurring inS(M′′) as (w′′i , p

′′
i ) it

holds thatp′′1 = pmin(t′′1 , . . . , t
′′
n ) is less than or equal top′.

Now consider the sequenceS′ = (w′′′1 , p
′′′
1 ), . . . ,′ (w′′′k , p

′′′
k ) defined as follows:
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• p′′′1 , . . . , p
′′′
k are the distinct (cumulative) probability values occurring in S(M′) andS(M′′), ordered by their

values;

• for eachi ∈ [1..k], w′′′i = w′j ∪ w′′l , wherew′j (resp.,w′′l ) is the possible world occurring in the left-most pair of
S(M′) (resp.,S(M′′)) containing a (cumulative) probability value not less than p′′′i .

Consider the functionf over the set of possible worlds ofDp defined as follows:

f (w) =



0 if w does not occur in any pair ofS′

p′′′1 if w occurs in the first pair ofS′

p′′′i − p′′′i−1 if w occurs in thei-th pair ofS′(i > 1)

It is easy to see thatf is an interpretation forDp. In fact, by construction, it assigns to each possible worldof
Dp a value in [0, 1], and the sum of the values assigned to the possible worlds is 1. Moreover, the values assigned
by f to the possible worlds are compatible with the marginal probabilities of the tuples, since, for each tuplet of D′,∑

w′′′ |t∈w′′′ f (w′′′) =
∑

w′ |t∈w′ M′(w′) = p(t), as well as for each tuplet of D′′,
∑

w′′′ |t∈w′′′ f (w′′′) =
∑

w′′ |t∈w′′ M′′(w′′) =
p(t).

In particular,f is also a model forDp w.r.t. IC: on the one hand,f assigns 0 to every possible world containing
tuples which are conflicting according toH′ (this follows from howf was obtained starting fromM′). Moreover,f as-
signs 0 to every possible world containing tuples which are conflicting according to the hyperedgee. In fact, the worlds
containing all the tuplest′1, . . . , t

′
m, t
′′
1 , . . . , t

′′
n are assigned 0 byf , since the worlds occurring inS′ containingt′′1 , . . . , t

′′
n

do not contain at least one tuple amongt′1, . . . , t
′
m (this trivially follows from the fact thatp′ > pmin(t′′1 , . . . , t

′′
n )). The

fact that f is a model forDp w.r.t. IC means thatDp |= IC.

The above theorem entails that, ifHG(Dp,IC) is a hypertree, thencc can be decided in timeO(|E|·k) overHG(Dp,

IC), whereE is the set of hyperedges ofHG(Dp,IC) andk is the maximum arity of the constraints (which bounds
the number of nodes in each hyperedge). The number of hyperedges in a hypertree is bounded by the number of nodes
|N| (this easily follows from Proposition 1), thusO(|E| · k) = O(|N| · k). Interestingly, even if denial constraints of any
arity were allowed, the consistency check could be still accomplished over the conflict hypertree in polynomial time
(that is, replacingk with |N|, we would get the boundO(|N|2)).

Example 8. Consider the PDB schmeDp consisting of relation schemePersonp(Name, Age, Parent, Date, City, P)
representing some personal data obtained by integrating various sources. A tuple overPersonp refers to a person,
and, in particular, attributeParentreferences the name of one of the parents of the person, whileCity is the city of
residence of the person in the date specified inDate. Consider the PDB instance Dp consisting of the instancepersonp

of Personp shown in Figure 5(a).

Name Age Parent Date City P

t1 A 40 B 2010 NY p1

t2 A 40 B 2012 Rome p2

t3 A 40 C 2010 NY p3

t4 A 40 D 2010 NY p4

t5 C 30 E 2010 NY p5

e
3

e
2

e
1

t
4

t
5t

2 t
3

t
1

(a) (b)

Figure 5. (a) PDB instanceDp; (b) Conflict hypergraphHG(Dp,IC)

Assume thatIC consists of the following constraints defined overPersonp:

ic1: ¬
[

Person(x1, y1, z1, v1,w1)∧ Person(x1, y2, z2, v2,w2)∧ Person(x1, y3, z3, v3,w3) ∧ z1 , z2 ∧ z1 , z3 ∧ z2 , z3
]
,

imposing that no person has more than 2 parents;

ic2: ¬
[

Person(x1, y1, z1, v1,w1)∧ Person(z1, y2, z2, v2,w2) ∧ y1 > y2
]
, imposing that no person is older than any of

her parents.
12
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The conflict hypergraph HG(Dp,IC) is shown in Figure 5(b). Here, the conflicting sets e1, e2 are originated
by violations of ic1, while e3 is originated by the violation of ic2. It is easy to check that HG(Dp,IC) is a hy-
pertree. In particular, observe that set of intersections of e1 with the other hyper-edges of HG(Dp,IC), that is
Int(e1,HG(Dp,IC)) = {{t3}, {t3, t4}}, is a matryoshka. Analogously,Int(e2,HG(Dp,IC)) is matryoshka as well.

Since HG(Dp,IC) is a hyper-tree, thanks to Theorem 2, we can conclude that Dp is consistent iff the following
inequalities hold:

p1 + p3 + p4 ≤ 2; p2 + p3 + p4 ≤ 2; p3 + p4 ≤ 1.

✷

Note that the condition of Theorem 2 is a necessary conditionfor consistency in the presence of conflict hyper-
graphs of any shape, not necessarily hypertrees (in fact, inthe proof of the necessary condition of Theorem 2, we did
not use the assumption that the conflict hypergraph is a hypertree). The following example shows that this condition
is not sufficient in general, in particular when the conflict hypergraphcontains “cycles”.

Example 9. Consider the hypergraph HG(Dp,IC) obtained by augmenting the hypertree in Figure 3 with the hyper-
edge e5 = {t8, t9} (whose presence invalidates the acyclicity of the hypergraph). Let the probabilities of t1, . . . , t9 be as
follows:

ti t1 t2 t3 t4 t5 t6 t7 t8 t9

p(ti) 3
4 1 3

4
3
4 1 1

2
1
2

1
2

1
2

Although the condition of Theorem 2 holds for every hyperedge ei , with i in [1..5], there is no model of Dp w.r.t. IC.
In fact, the overall probability of the possible worlds containing t8 must be1/2; due to hyperedges e4 and e5, these
possible worlds can not contain neither t6 nor t9, which must appear together in the remaining possible worlds (since
the marginal probability of t6 and t9 is equal to the sum of the probabilities of the possible worlds not containing t8);
however, as t3 can not co-exist with both t6 and t9 (due to e3), it must be in the worlds containing t8; but, as the overall
probability of these worlds is1/2, they are not sufficient to make the probability of t3 equal to3/4. ✷

4.1.3. “Cyclic” hypergraphs: cliques and rings
An interesting tractable case which holds even in the presence of cycles in the conflict hypergraph is when the

constraints definebucketsof tuples: buckets are disjoint sets of tuples, such that each pair of tuples in the same bucket
are mutually exclusive. The conflict hypergraph describinga set of buckets is simply a graph consisting of disjoint
cliques, each one corresponding to a bucket. It is straightforward to see that, in this case, the consistency problem can
be decided by just verifying that, for each clique, the sum ofthe probabilities of the tuples in it is not greater than 1.
Observe that the presence of buckets in the conflict hypergraph can be due to key constraints. Thus, what said above
implies thatcc is tractable in the presence of keys. However, we will be backon the tractability of key constraints in
the next section, where we will generalize this tractability result to the presence of one FD per relation.

We now state a more interesting tractability result holdingin the presence of “cycles” in the conflict hypergraph.

Theorem 3. Given an instance Dp ofDp, if H(Dp,IC) = 〈N,E〉 is a ring, then Dp |= IC iff both the following hold:

1) ∀e∈ E,
∑

t∈e p(t) ≤ |e| − 1; 2)
∑

t∈N p(t) − |N| + ⌈ |E|2 ⌉ ≤ 0.

Interestingly, Theorem 3 states that, when deciding the consistency of tuples arranged as a ring in the conflict
hypergraph, it is not sufficient to consider the local consistency w.r.t. each hyperedge (as happens in the case of
conflict hypertrees), as also a condition involving all the tuples and hyperdges must hold. As an application of this
result, consider the case thatH(Dp,IC) is the ring whose nodes aret1, t2, t3, t4 (where: p(t1) = p(t2) = p(t3) = 1/2

and p(t4) = 1), and whose edges are:e1 = {t1, t2, t4}, e2 = {t1, t3, t4}, e3 = {t2, t3}. It is easy to see that property 1)
of Theorem 3 (which is necessary for consistency, as alreadyobserved) is satisfied, while property 2) is not (in fact,∑

t∈N p(t)−|N|+
⌈
|E|
2

⌉
= 5/2 − 4 + 2 = 1/2 > 0), which implies inconsistency. Note that changingp(t4) to 1/2 yields

consistency.

Remark 2. Further tractable cases due to the conflict hypergraph.The tractability results given so far can be
straightforwardly merged into a unique more general result: cc is tractable if the conflict hypergraph consists of max-
imal connected components such that each of them is either a hypertree, a clique, or a ring. In fact, it is easy to see
that the consistency can be checked by considering the connected components separately.
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4.2. Tractability arising from the syntactic form of the denial constraints

We now address the determination of tractable cases from a different perspective. That is, rather than searching
for other properties of the conflict hypergraph guaranteeing that the consistency can be checked in polynomial time,
we will search for syntactic properties of denial constraints which can be detected without looking at the conflict
hypergraph and which yield the tractability ofcc. We start from the following result.

Theorem 4. If IC consists of a join-free denial constraint, thencc is in PTIME. In particular, Dp |= IC iff, for each
hyperedge e of HG(Dp,IC), it holds that

∑
t∈ep(t)≤|e|−1.

Example 10.Consider the PDB scheme consisting of the probabilistic relation schemeEmployeep(Name, Age, Team,
P). This scheme is used to represent some (uncertain) personalinformation about the employees of an enterprise. The
uncertain data were obtained starting from anonymized data, and then estimating sensitive information (such as the
names of the employees). Assume that the PDB instance Dp obtained this way consists of the instanceemployeep of
Employeep shown in Figure 6(a).

Name Age Team P

t1 P. Jane 35 A 1
t2 T. Lisbon 25 B 1
t3 W. Rigsby 40 B 1/2
t4 K. Cho 40 B 1/2
t5 G. Van Pelt 22 C 1
t6 G. Bertram 40 C 1/2
t7 R. John 40 C 1/2

t
3

t
1

t
6

t
4

t
7

(a) (b)

Figure 6. (a) PDB instanceDp; (b) Conflict hypergraphHG(Dp,IC)

From some knowledge of the domain, it is known that at least one team among ‘A’, ‘ B’, ‘ C’ consists of only
young employees, i.e., employees at most30-year old. This corresponds to consideringIC = {ic} as the set of denial
constraints, where ic is as follows:

ic : ¬
[

Employee(x1, x2, ‘A’ ) ∧ Employee(x3, x4, ‘B’ ) ∧ Employee(x5, x6, ‘C’ ) ∧ x2>30∧ x4>30∧ x6>30
]
.

It is easy to see that ic is a join-free denial constraint, thus the consistency of Dp can be decided using Theorem 4.
In particular, since HG(Dp,IC) is the hypergraph depicted in Figure 6(b), we have that Dp is consistent if and only
if the following inequalities hold:

p(t1)+ p(t3)+ p(t6) ≤ 2; p(t1)+ p(t3)+ p(t7) ≤ 2; p(t1)+ p(t4)+ p(t6) ≤ 2; p(t1)+ p(t4)+ p(t7) ≤ 2;

As a matter of fact, all these inequalities are satisfied, thus the considered PDB is consistent. In fact, there is a unique
model Pr for Dp w.r.t. IC. In particular, Pr assigns probability1/2 to each of the possible worlds w1 = {t1, t2, t3, t4, t5}
and w2 = {t1, t2, t5, t6, t7}, and probability0 to all the other possible worlds. ✷

The result of Theorem 4 strengthens what already observed inthe previous section: the arity of constraints is not,
per se, a source of complexity. In what follows, we show that the arity can become a source of complexity when
combined with the presence of join conditions.

Theorem 5. There is anIC consisting of a non-join-free denial constraint of arity3 such thatcc is NP-hard.

Still, one may be interested in what happens to the complexity of cc for denial constraints containing joins and
having arity strictly lower than 3. In particular, since in the proof of Theorem 5 we exploit a ternary EGD to show
theNP-hardness ofcc in the presence of ternary constraints with joins (see Appendix A.3), it is worth investigating
what happens when only binary EGDs are considered, which aredenial constraints with arity 2 containing joins. The
following theorem addresses this case, and states thatcc becomes tractable for anyIC consisting of a binary EGD.

Theorem 6. If IC consists of a binary EGD, thencc is in PTIME.
14
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Differently from the previous theorems on the tractability ofcc, in the statement of Theorem 6, for the sake of
presentation, we have not explicitly reported the necessary and sufficient conditions for consistency. In fact, in this
setting, deciding on the consistency requires reasoning bycases, and then checking some conditions which are not
easy to be defined compactly. However, these conditions can be checked in polynomial time, and the interested reader
can find their formal definition in the proof of Theorem 6 (see Appendix A.3).

Binary EGDs can be viewed as a generalization of FDs, involving pairs of tuples possibly belonging to different
relations. For instance, over the relation schemesStudent(Name, Address, University) andEmployee(Name, Address,
Firm), the binary EGD¬

[
Student(x1, x2, x3)∧ Employee(x1, x3, x4) ∧ x2 , x3

]
imposes that if a student and an

employee are the same person (i.e., they have the same name),then they must have the same address. Thus, an
immediate consequence of Theorem 6 is thatcc is tractable in the presence of a single FD.

The results presented so far refer to cases whereIC consists of a single denial constraint. We now devote our
attention to the case thatIC is not a singleton. In particular, the last tractability result makes the following question
arise: “Is cc still tractable whenIC contains several binary EGDs?”. (Obviously, we do not consider the case of
multiple EGDs of any arity, as Theorem 5 states thatcc is already hard ifIC merely contains one constraint of this
form.) The following theorem provides a negative answer to this question, as it states thatcc can be intractable even
in the simple case thatIC consists of just two FDs (as recalled above, FDs are special cases of binary EGDs).

Theorem 7. There is anIC consisting of2 FDs over the same relation scheme such thatcc is NP-hard.

However, the source of complexity in the case of two FDs is that they are defined over the same relation (see the
proof of Theorem 7 in Appendix A.3). As a matter of fact, the following theorem states that all the tractability results
stated in this section in the presence of only one denial constraint can be extended to the case of multiple denial
constraints defined over disjoint sets of relations. Intuitively enough, this derives from the fact that, if the denial
constraints involve disjoint sets of relation, the overallconsistency can be checked by considering the constraints
separately.

Theorem 8. Let each denial constraint inIC be join-free or a BEGD. If, for each pair of distinct constraints ic1,ic2

in IC, the relation names occurring in ic1 are distinct from those in ic2, thencc is in PTIME.

Hence, the above theorem entails thatcc is tractable in the interesting case thatIC consists of one FD per relation.
In the following theorem, we elaborate more on this case, andspecify necessary and sufficient conditions which can
be checked to decide the consistency.

Theorem 9. If IC consists of one FD per relation, then HG(Dp,IC) is a graph where each connected component
is either a singleton or a complete multipartite graph. Moreover, Dp is consistent w.r.t.IC iff the following property
holds: for each connected component C of HG(Dp,IC), denoting the maximal independent sets of C as S1, . . . ,Sk, it
is the case that

∑
i∈[1..k] p̃i ≤ 1, wherep̃i = maxt∈Si p(t).

We recall that a complete multipartite graph is a graph whosenodes can be partitioned into sets such that an edge
exists if and only if it connects two nodes belonging to distinct sets. Each of these sets is a maximal independent set
of nodes. For instance, the portion of the graph in Figure 7(b) containing only the nodest1, t2, t3, t4, t5 is a complete
multipartite graph whose maximal independent sets areS1 = {t1, t2}, S2 = {t3, t4}, S3 = {t5}. The following example
shows an application of Theorem 9.

Example 11. Consider the PDB scheme consisting of the probabilistic relation schemePersonp(Name, City, State,
P), and its instance Dp consisting of the instancepersonp of Personp shown in Figure 7(a).

Consider the FD ic:City→ State, which can be rewritten as¬
[

Person(x1, x2, x3)∧ Person(x4, x2, x5) ∧ x3, x5
]
.

The conflict hypergraph HG(Dp,IC) is the graph depicted in Figure 7(b). It consists of3 connected components:
one of them is a singleton (and corresponds to the maximal independent set S4), and the other two are the complete
multipartite graphs over the maximal independent sets S1,S2,S3 and S5,S6, respectively. Theorem 9 says that Dp is
consistent if and only if the following three inequalities (one for each connected component of HG(Dp,IC)) hold:

max{p(t1), p(t2)} +max{p(t3), p(t4)} + p(t5) ≤ 1; p(t6) ≤ 1; max{p(t7), p(t8)} + p(t9) ≤ 1.

As a matter of fact, all these inequalities are satisfied, thus the considered PDB is consistent. In fact, there is a
model M for Dp w.r.t. IC assigning probability1/4 to each of the possible worlds w1 = {t1, t2, t6, t7, t8}, w2 = {t1, t6, t7},
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Name City State P

t1 B. Van de Kamp Sioux City IA 1/2
t2 S. Delfino Sioux City IA 1/4
t3 L. Scavo Sioux City NE 1/4
t4 G. Solis Sioux City NE 1/4
t5 E. Britt Sioux City SD 1/4
t6 K. Mayfair Baltimore MD 3/4
t7 R. Perry Fargo ND 3/4
t8 M. A. Young Fargo ND 1/4
t9 K. McCluskey Fargo MN 1/4

t
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t
3

t
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(a) (b)

Figure 7. (a) PDB instanceDp; (b) Conflict hypergraphHG(Dp,IC)

w3 = {t3, t4, t6, t7}, and w4 = {t5, t9}, and probability0 to all the other possible worlds. The reader can easily check
that there are models for Dp w.r.t. IC other than M. ✷

4.3. Tractability implied by conflict-hypergraph properties vs. tractability implied by syntactic forms.

The tractability results stated in sections 4.1 and 4.2 can be viewed as complimentary to each other. In fact, an
instance ofcc may turn out to be tractable due the syntactic form of the constraints, even if the shape of the conflict
hypergraph is none of those ensuring tractability, and viceversa. For instance, in the case thatIC consists of a
join-free denial constraint or a binary EGD, it is easy to seethat the conflict hypergraph may not be a hypertree or a
ring, butcc is nevertheless tractable due to theorems 2 and 3. Vice versa, if IC contains two FDs per relation or a
ternary denial constraints with joins (which, potentially, are hard cases, due to theorems 5 and 7),cc may turn out to
be tractable, if the way the data combine with the constraints yields a conflict hypergraph which is a hypertree or a
ring (see theorems 2 and 3).

On the whole, the tractability results presented in sections 4.1 and 4.2 can be used conjunctively when addressing
cc: for instance, one can start by examining the constraints and check whether they conform to a tractable syntactic
form, and, if this is not the case, one can look at the conflict hypergraph and check whether its structure entails
tractability.

5. Querying PDBs under constraints

As explained in the previous section, given a PDBDp in the presence of a setIC of integrity constraints, not all
the interpretations ofDp are necessarily models w.r.t.IC. If Dp is consistent w.r.t.IC, there may be exactly one
model (Case 2 of the motivating example), or more (Case 3 of the same example). In the latter case, given that all the
models satisfy all the constraints inIC, there is no reason to assume one model more reasonable than the others (at
least in the absence of other knowledge not encoded in the constraints). Hence, when queryingDp, it is “cautious”
to answer to queries by taking into account all the possible models forDp w.r.t. IC. In this section, we follow this
argument and introduce acautious querying paradigmfor conjunctive queries, where query answers consist of tuples
associated with probability ranges: given a queryQ posed overDp, the range associated with a tuplet in the answer of
Q contains every probability with whicht would be returned as an answer ofQ if Q were evaluated separately on every
model ofDp. In what follows, we first introduce the formal definition of conjunctive query in the probabilistic setting,
and introduce its semantics according to the above-discussed cautious paradigm. Then, we provide our contributions
on the characterization of the problem of computing query answers.

A (conjunctive) query over a PDB schemaDp is written as a (conjunctive) query over its deterministic part
det(Dp). Thus, it is an expression of the form:
Q(~x) = ∃~z. R1(~y1) ∧ · · · ∧Rm(~ym) ∧ φ(~y1, . . . , ~ym), where:

– R1, . . . ,Rm are name of relations indet(Dp);
– ~x and~zare tuples of variables, having no variable common;
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– ~y1,. . . ,~ym are tuples of variables and constants such that every variable in any~yi occurs in either~x or ~z, and vice
versa;

– φ(~y1, . . . , ~ym) is a conjunction of built-in predicates, each of the formα ⋄ β, whereα andβ are either variables in
~y1, . . . , ~ym or constants, and⋄ ∈ {=,,,≤,≥, <, >}.

A queryQ will be said to beprojection-freeif ~z is empty.
The semantics of a queryQ over a PDBDp in the presence of a set of integrity constraintsIC is given in two

steps. First, we define the answer ofQ w.r.t. a single modelM of Dp. Then, we define the answer ofQ w.r.t. Dp,
which summarizes all the answers ofQ obtained by separately evaluatingQ over every model ofDp . Obviously, we
rely on the assumption thatDp is consistent w.r.t.IC, thusM(Dp,IC) is not empty.

The answer ofQ over a modelM of Dp w.r.t. IC is the setAnsM(Q,Dp,IC) of pairs of the form〈~t, pM
Q (~t)〉 such

that:

– ~t is a ground tuple such that∃w∈pwd(Dp) s.t. w|= Q(~t);

– pM
Q (~t) =

∑
w∈pwd(Dp)∧w|=Q(~t) M(w) is the overall probability of the possible worlds whereQ(~t) evaluates to true,

wherew |= Q(~t) denotes thatQ(~t) evaluates to true inw.

In general, there may be several models forDp, and the same tuple~t may have different probabilities in the answers
evaluated over different models. Thus, the overall answer ofQ overDp is defined in what follows as a summarization
of all the answers ofQ over all the models ofDp.

Definition 4 (Query answer). Let Q be a query overDp, and Dp an instance ofDp. The answer of Q over Dp is the
setAns(Q,Dp,IC) of pairs〈~t, [pmin, pmax]〉, where:

– ∃M∈M(Dp,IC) s.t.~t is a tuple inAnsM(Q,Dp,IC);

– pmin=
min

{
pM

Q (~t)
}
,

M∈M(Dp,IC)
pmax=

max
{
pM

Q (~t)
}
.

M∈M(Dp,IC)

Hence, each tuple~t in Ans(Q,Dp,IC) is associated with an interval [pmin, pmax], whose extremes are, respectively,
the minimum and maximum probability of~t in the answers ofQ over the models ofDp. Examples of answers of a
query are reported in the motivating example. In the following, we say that~t is an answer ofQ with minimum and
maximum probabilitiespmin andpmax if 〈~t, [pmin, pmax]〉 ∈Ans(Q,Dp,IC).

The following proposition gives an insight on the semanticsof query answers, as it better explains the meaning of
the probability range associated with each tuple occurringin the set of answers of a query. That is, it states that, taken
any pair〈~t, [pmin, pmax]〉 in Ans(Q,Dp,IC), every valuep inside the interval [pmin, pmax] is “meaningful”, in the sense
that there is at least one model for which~t is an answer ofQ with probability p. Considering this property along the
fact that the boundariespmin, pmax are the minimum and maximum probabilities of~t as an answer ofQ (which follows
from Definition 4), we have that [pmin, pmax] is the tightest interval containing all the probabilitiesof ~t as an answer of
Q, and is dense (every value inside it corresponds to a probability of ~t as an answer ofQ).

Proposition 2. Let Q be a query overDp, and Dp an instance ofDp. For each pair〈~t, [pmin, pmax]〉 in Ans(Q,Dp,IC),
and each probability value p∈ [pmin, pmax], there is a model M of Dp w.r.t. IC such that〈~t, p〉 ∈ AnsM(Q,Dp,IC).

Proof. We first introduce a systemS(Dp,IC,Dp) of linear (in)equalities whose solutions one-to-one correspond to
the models ofDp w.r.t. IC. For everywi ∈ pwd(DP), let vi be a variable ranging over the domain of rational numbers.
The variablevi will be used to represent the probability assigned towi by an interpretation ofDp. The system of linear
(in)equalitiesS(Dp,IC,Dp) is as follows:



∀t ∈ Dp,
∑

i|wi∈pwd(Dp)∧t∈wi
vi = p(t) (e1)∑

i|wi∈pwd(Dp)∧wi 6|=IC
vi = 0 (e2)∑

i|wi∈pwd(Dp) vi = 1 (e3)
∀wi ∈ pwd(Dp), vi ≥ 0 (e4)

The first |Dp| equalities (e1) in S(Dp,IC,Dp) encode the fact that, for each tuplet in the PDB instance, the sum
of the probabilities assigned to the worlds containing the tuple t must be equal to the marginal probability oft. The
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subsequent two equalities (e2), (e3), along with the inequalities (e4) imposing that the probabilitiesvi assigned to each
possible world are non-negative, entail that the probability assigned to any world violatingIC is 0, as well as that the
probabilities assigned to all the possible worlds sum up to 1.

It is easy to see that every solutions of S(Dp,IC,Dp) one-to-one corresponds to a modelPr for Dp w.r.t. IC,
wherePr(wi) is equal tovi [s], i.e., the value ofvi in s.

We now consider the system of linear (in)equalitiesS∗(Dp,IC,Dp) obtained by augmenting the set of (in)equalities
in S(Dp,IC,Dp) with the following equality:

v∗ =
∑

i|wi∈pwd(Dp)∧wi |=~t

vi

wherev∗ is a new variable symbol not appearing inS(Dp,IC, Dp).
Obviously, every solutions of S∗(Dp,IC,Dp) still one-to-one corresponds to a modelPr for Dp w.r.t. IC such

that, for each possible worldwi ∈ pwd(Dp), Pr(wi) is equal tovi [s], andv∗[s] (the value ofv∗ in s) is equal to the sum
of the probabilities assigned byPr to the possible worlds where~t is an answer ofQ. Therefore,pmin (resp. pmax) is
the solution of the following linear programming problemLP(S∗):

minimize (resp. maximize)v∗

subject toS∗(Dp,IC,Dp)

Since the feasible region shared by the min- and max- variants of LP(S∗) is defined by linear inequalities only,
it follows that it is a convex polyhedron. Hence, the following well-known result [42] can be exploited: “given two
linear programming problem LP1 and LP2 minimizing and maximizing the same objective function f over the same
convex feasible region S , respectively, it is the case that for any value v belonging to the interval[vmin, vmax], whose
extreme values are the optimal solutions of LP1 and LP2, respectively, there is a solution s of S such that v is the
value taken by f when evaluated over s”. This result entails that, for every probability valuep ∈ [pmin, pmax] taken by
the objective functionv∗ of LP(S∗), there is a feasible solutions of S∗(Dp,IC,Dp) such thatp = v∗[s]. Hence, the
statement follows from the fact that every solution ofS∗(Dp,IC,Dp) one-to-one corresponds to a model forDp w.r.t.
IC.

The definition of query answers with associated ranges is reminiscent of the treatment of aggregate queries in
inconsistent databases [4]. In that framework, the consistent answer of an aggregate queryAgg is a range [v1, v2],
whose boundaries represent the minimum and maximum answer which would be obtained by evaluatingAggon at
least one repair of the database. However, the consistent answer is not, in general, a dense interval: for instance, it can
happen that there are only two repairs, one corresponding tov1 and one tov2, while the values betweenv1 andv2 can
not be obtained as answers on any repair.

In the rest of this section, we address the evaluation of queries from two standpoints: we first consider a decision
version of the query answering problem, and then we investigate the query evaluation as a search problem. In the
following, besides assuming that a database schemaDp and a set of constraintsIC of fixed size are given, we also
assume that queries overDp are of fixed size. Thus, all the complexity results refer to data complexity.

5.1. Querying as a decision problem

In the classical “deterministic” relational setting, the decision version of the query answering problem is com-
monly defined as themembership problemof deciding whether a given tuple belongs to the answer of a given query.
In our scenario, tuples belong to query answers with some probability range, thus it is natural to extend this definition
to our probabilistic setting in the following way.

Definition 5 (Membership Problem (mp)). Given a query Q overDp, an instance Dp ofDp, a ground tuple~t, and the
constants k1 and k2 (with 0≤k1≤k2≤1), the membership problem is deciding whether~t is an answer of Q with minimum
and maximum probabilities pmin and pmax such that pmin≥k1 and pmax≤k2.

Hence, solvingmp can be used to decide whether a given tuple is an answer with a probability which is at leastk1

and not greater thank2. Observe that Definition 5 collapses to the classical definition of membership problem when
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data are deterministic: in fact, asking whether a tuple belongs to the answer of a query posed over a deterministic
database corresponds to solvingmp over the same database withk1=k2=1.

From the results in [35], where an entailment problem more general thanmp was shown to be in coNP (see Section
7), it can be easily derived thatmp is in coNPas well. The next theorems (which are preceded by a preliminary lemma)
determine two cases when this upper bound on the complexity is tight.

Lemma 2. Let Q be a conjunctive query overDp, Dp an instance ofDp, and~t an answer of Q having minimum
probability pmin and maximum probability pmax. Let m be the number of tuples in Dp plus3 and a be the maximum
among the numerators and denominators of the probabilitiesof the tuples in Dp. Then pmin and pmax are expressible
as fractions of the formη

δ
, with 0 ≤ η ≤ (ma)m and0 < δ ≤ (ma)m.

Theorem 10 (Lower bound ofmp). There is at least one conjunctive query containing projection for whichmp is
coNP-hard, even ifIC is empty.

Proof. We show a LOGSPACE reduction from the consistency checking problem (cc) in the presence of binary denial
constraints, which isNP-hard (see Theorem 7), to the complement of the membership problem (mp).

Let 〈Dp
cc,ICcc,D

p
cc〉 be an instance ofcc. We construct an equivalent instance〈Dp

mp
,ICmp,D

p
mp
,Q, t∅, k1, k2〉 of mp

as follows.

– Dp
mp

consists of relation schemasRp(tid,P) andSp(tid1, tid2,P);

– ICmp = ∅, that is, no constraint is assumed onDp
mp

;

– Dp
mp

is the instance ofDp
mp

which contains, for each tuplet ∈ Dp
cc, the tupleRp(id(t), p(t)), whereid(t) is a unique

identifier associated to the tuplet. Moreover,Dp
mp

contains, for each pair of tuplest1, t2 in Dp
cc which are conflicting

w.r.t. ICcc, the tupleSp(id(t1), id(t2), 1).

– Q = ∃x, y R(x) ∧ R(y) ∧ S(x, y);

– t∅ is the empty tuple;

– the lower boundk1 of the minimum probability oft∅ as answer ofQ is set equal tok1 =
1

(ma)m , wherem is the
number of tuples inDp

mp
plus 3, anda the maximum among the numerators and denominators of the probabilities of

the tuples inDp
mp

;

– the upper boundk2 of the maximum probability oft∅ as answer ofQ is set equal to 1.

Obviously, themp instance returns true iff the minimum probability thatt∅ is an answer toQ overDp
mp

is (strictly)
less thank1.

It is easy to see that every interpretation ofDp
cc (the database in thecc instance) corresponds to a unique interpreta-

tion of Dp
mp

(the database in themp instance), and vice versa. Observe thatDp
mp

is consistent, since the set of constraints
considered in themp instance is empty.

We show now that the above-consideredcc andmp instances are equivalent, that is, thecc instance is true iff themp
instance is true. On the one hand, if thecc instance is true, then there is at least is one modelPrcc for Dp

cc w.r.t. ICcc
(that is,Prcc assigns probability 0 to every possible worldw which contains tuples which are conflicting according to
ICcc). It is easy to see that evaluatingQ on the corresponding interpretationPrmp of mp yields probability 0 for the
empty tuplet∅. Hence, themp instance is true in this case.

On the other hand, if themp instance is true, then the minimum probability thatt∅ is an answer ofQ must be
less than 1

(ma)m . Since 1
(ma)m is the smallest non-zero value that can be assumed by the minimum probability oft∅ (see

Lemma 2), this implies that the minimum probability thatt∅ is an answer ofQ is 0. This means that there is a model
Prmp that assigns probability 0 to every possible worldw which contains three tuplesR(x1), R(y1) andS(x2, y2) with
x1 = x2 andy1 = y2. It is easy to see that the corresponding interpretationPrcc is a model forDp

cc w.r.t. ICcc, as it
assigns probability 0 to every possible world which contains conflicting tuples. Hence thecc instance is true in this
case.

The above theorem establishes that the type of the query, andin particular that fact that it contains projection, is
an important source of complexity makingmp hard, irrespectively of the constraints considered. For projection-free
queries, the next theorem states thatmp remains hard even if only binary constraints are considered.
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Theorem 11(Lower bound ofmp). There is at least one projection-free conjunctive query anda setIC consisting of
only binary constraints for whichmp is coNP-hard.

We recall that, when addressingmp, we assume that the database is consistent w.r.t. the constraints. Thus, the
hardness results formp do not derive from any source of complexity inherited bymp from cc. On the whole, theorems
10 and 11 suggest thatmp has at least two sources of complexity: the type of query (thefact that the query contains
projection or not), and the form of the constraints.

Once some sources of complexity ofmp have been identified, the problem is worth addressing of determining
tractable cases. We defer this issue after the characterization of the query evaluation as a search problem, since, as it
will be clearer in what follows, the conditions yielding tractability of the latter problem also ensure the tractability of
mp.

5.2. Querying as a search problem

Viewed a search problem, the query answering problem (qa) is the problem of computing the setAns(Q,Dp,IC).
The complexity of this problem is characterized as follows.

Theorem 12. qa is in FPNP and is FPNP[log n]-hard.

The fact thatqa is in FPNP means that our “cautious” query evaluation paradigm is not more complex than the query
evaluation based on the independence assumption, which hasbeen shown in [11] to be complete for #P (which strictly
containsFPNP, assumingP,NP). On the other hand, the hardness forFPNP[log n] is interesting also because it tightens
the characterization given in [35] of the more general entailment problem for probabilistic logic programs containinga
general form of probabilistic rules (conditional rules). Specifically, in [35], the above-mentioned entailment problem
was shown to be inFPNP, but no lower bound on its data complexity was stated. Thus, our result enriches the
characterization in [35], as it implies thatFPNP[log n] is a lower bound for the entailment problem for probabilistic
logic programs under data complexity even in the presence ofrules much simpler than conditional rules. More details
are given in Section 7, where we provide a more thorough comparison with [35]. However, finding the tightest
characterization forqa remains an open problem, as it might be the case thatqa is complete for eitherFPNP[log n]

or FPNP. We conjecture that none of these cases holds (thus a characterization ofqa tighter than ours can not be
provided), thusqa is likely to be in the “limbo” containing the problems inFPNP but not inFPNP[log n] , without being
hard for the former (this limbo is non-empty ifP,NP [30]).

5.3. Tractability results

In this section, we show some sufficient conditions for the tractability of the query evaluation problem, which hold
for both its decision and search versions. When stating our results, we refer toqa only, as its tractability implies that
of mp (asmp is straightforwardly reducible toqa).

Again, we address the tractability from two standpoints: wewill show sufficient conditions which regard either
a) the shape of the conflict hypergraph, orb) the syntactic form of the constraints. Specifically, we focus on finding
islands of tractability when queries are projection-free and either the conflict hypergraph collapses to a graph – as for
directiona), or the constraints are binary – as for directionb). These are interesting contexts, since Theorem 11 entails
thatmp (and, thus, alsoqa) is, in general, hard in these cases (indeed, Theorem 11 implicitly shows the hardness for
the case of conflict hypergraphs collapsing to graphs, as, inthe presence of binary constraints, the conflict hypergraph
is a graph).

The next result goes into directiona), as it states that, for projection-free queries,qa is tractable if the conflict
hypergraph is a graph satisfying some structural properties.

Theorem 13. For projection-free conjunctive queries,qa is in PTIME if HG(Dp,IC) is a graph where each maximal
connected component is either a tree or a clique.

The polynomiality result stated above is rather straightforward in the case that each connected component is a
clique, but is far from being straightforward in the presence of connected components which are trees. Basically, when
the conflict hypergraph is a tree, the tractability derives from the fact that, for any conjunction of tuples, its minimum
(or, equivalently, maximum) probability can be evaluated as the solution of an instance of a linear programming
problem. In particular, differently from the “general” system of inequalities used in the proof of Proposition 2 (where

20



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 21

the variables corresponds to the possible worlds, thus their number is exponential in the number of tuples), here we
can define a system of inequalities where both the number of inequalities and variables depend only on the arity of the
query (which is constant, as we address data complexity). Wedo not provide an example of the form of this system
of inequalities, as explaining the correctness of the approach on a specific case is not easier than proving its validity
in the general case. Thus, the interested reader is referredto the proof of Theorem 13 reported in Appendix A.6 for
more details.

The following result goes into direction of locating tractability scenarios arising from the syntactic form of the
constraints, as it states that, ifIC consists of one FD for each relation scheme, the evaluation of projection-free queries
is tractable.

Theorem 14. For projection-free conjunctive queries,qa is in PTIME if IC consists of at most one FD per relation
scheme.

Proof. We consider the case thatIC contains one relation and one FD only, as the general case (more relations, and
one FD per relation) follows straightforwardly. Let the denial constraintic in IC be the following FD over relation
schemeR: X → Y, whereX, Y are disjoint sets of attributes ofR. We denote asr the instance ofR in the instance
of qa. Constraintic implies a partition ofr into disjoint relations, each corresponding to a different combination of
the values of the attributes inX in the tuples ofr. Taken one of this combinations~x (i.e., ~x ∈ ΠX(r)), we denote the
corresponding set of tuples in this partition asr(~x). That is,r(~x) = {t ∈ r |ΠX(t) = ~x}. In turn, for eachr(~x), ic partitions
it into disjoint relations, each corresponding to a different combinations of the values of the attributes inY. Taken one
of this combinations~y (i.e.,~y ∈ ΠY(r(~x))), we denote the corresponding set of tuples in this partition asr(~x, ~y).

Given this, constraintic entails that the conflict hypergraph is a graph with the following structure: there is an
edge (t1, t2) iff ∃~x, ~y1, ~y2, with ~y1 , ~y2, such thatt1 ∈ r(~x, ~y1) andt2 ∈ r(~x, ~y2).

Now, consider any conjunction of tuplesT = t1, . . . , tn. The probability ofT as an answer of the queryq specified
in the instance ofqa can be computed as follows. First, we partition{t1, . . . , tn} according to the maximal connected
components of the conflict hypergraph. This way we obtain thedisjoint subsetsT1, . . . ,Tk of {t1, . . . , tn}, where
eachTi corresponds to a maximal connected component of the conflicthypergraph, and contains all the tuples of
{t1, . . . , tn} which are in this component. The minimum and maximum probabilities of T as answer ofq can be
obtained by computing the minimum and maximum probability of each setTi, and then combining them using the
well known Frechet-Hoeffding formulas (reported also in the appendix as Fact 2), which give the minimum and
maximum probabilities of a conjunction of events among which no correlation is known (in fact, sinceT1, . . . ,Tk

correspond to distinct connected components, they can be viewed as pairwise uncorrelated events).
Then, it remains to show how the minimum and maximum probabilities of a singleTi can be computed. We

consider the case thatTi contains at least two tuples (otherwise, the minimum and themaximum probabilities ofTi

coincide with the marginal probability of the unique tuple in Ti). If ∃tα, tβ ∈ Ti ∃~x, ~y1, ~y2 such thattα , tβ and~y1 , ~y2

andtα ∈ r(~x, ~y1), while tβ ∈ r(~x, ~y2), then the minimum and maximum probabilities ofTi are both 0 (since{tα, tβ} is
a conflicting set). Otherwise, it is the case that all the tuples inTi share all the values~x for the attributesX, and the
same values~y for the attributesY. Due to the structure of the conflict hypergraph, it is easy tosee that this implies that
the tuples inTi can be distributed in any way in the portion of the probability space which is not invested to represent
the tuples having the same values~x for X, but combinations forY other than~y. The size of this probability space is
S = 1−

∑
~y∗,~y max{p(t)|t ∈ r(~x, ~y∗)}. Hence, the minimum and maximum probabilities ofTi are:

pmin = max
{
0,
∑

t∈Ti
p(t) − |Ti | + S

}
; pmax = min {p(t) | t ∈ Ti}.

The first formula is an easy generalization of the corresponding formula for the minimum probability given in
Lemma 1 to the case of a probability space of a generic size less than 1. The second formula derives from the
above-recalled Frechet-Hoeffding formulas, and from the fact that the database is consistent (we recall that we rely on
this assumption when addressing the query evaluation problem).

Again, observe that the last two results are somehow complementary: it is easy to see that there are FDs yielding
conflict hypergraphs not satisfying the sufficient condition of Theorem 13, as well as conflict hypergraphs which are
trees generated by some “more general” denial constraint, not expressible as a set of FDs over distinct relations.
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6. Extensions of our framework

Some extensions of our framework are discussed in what follows. In particular, for each extension, we show its
impact on our characterization of the fundamental problemsaddressed in the paper.

6.1. Tuples with uncertain probabilities

All the results stated in this paper can be trivially extended to the case that tuples are associated with ranges of
probabilities, rather than single probabilities (as happens in several probabilistic data models, such as [31, 35]).

Obviously, all the hardness results forcc, mp, qa hold also for this variant, since considering tuples with single
probabilities is a special case of allowing tuples associated with range of probabilities.

As regardscc, both the membership inNP and the extendability of the tractable cases straightforwardly derive
from the fact that, as only denial constraints are considered, deciding on the consistency of an assignment of ranges
of probabilities can be accomplished by looking only at the minimum probabilities of each range.

As regardsmp andqa, the fact that the complexity upper-bounds do not change follows from the results in [35].
Finally, it can be shown, with minor changes to the proof of Theorem 13, thatmp and qa are still tractable un-
der the hypotheses on the shape of the conflict hypergraph stated in this theorem. We refer the interested reader
to Appendix A.7, where a hint is given on how the proof of Theorem 13 can be extended to deal with tuples with
uncertain probabilities. The extension of the tractability results formp andqa regarding the syntactic forms of the
constraints is even simpler, and can be easily understood after reading the proofs of these results.

6.2. Associating constraints with probabilities.

Another interesting extension consists in allowing constraints to be assigned probabilities. In our vision, con-
straints should encode some certain knowledge on the data domain, thus they should be interpreted as deterministic.
However, this extension can be interesting at least from a theoretical point of view, or when constraints are derived
from some elaboration on historical data [18]. Thus, the point becomes that of giving a semantics to the probability
assigned to the constraints. The semantics which seems to bethe most intuitive is as follows: “A constraint with
probability p forbidding the co-existence of some tuples issatisfied if there is an interpretation where the overall
probability of the possible worlds satisfying the constraint is at least p”. This means that the condition imposed by
the constraint must hold in a portion of sizep of the probability space, while nothing is imposed on the remaining
portion of the probability space.

Starting from this, we first discuss the impact of associating constraints with probabilities on our results aboutcc.
First of all, it is easy to see that there is a reduction from any instanceProb-ccof the variant ofcc with probabilistic
constraints to an equivalent instanceStd-ccof the standard version ofcc. Basically, this reduction constructs the
conflict hypergraphH(Std-cc) of Std-ccas follows: denoting the conflict hypergraph ofProb-ccasH(Prob-cc), each
hyperedgee ∈ H(Prob-cc) (with probability p(e)) is transformed into a hyperedgee′ of H(Std-cc) which consists of
the same nodes ineplus a new node with probabilityp(e). On the one hand, the existence of this reduction suffices to
state that also the probabilistic version ofcc is NP-complete. On the other hand, it is worth noting that applying this
reduction yields a conflict hypergraphH(Std-cc) with the same “shape” asH(Prob-cc), except that each hyperedge
has one new node, belonging to no other hyperedge: hence, ifH(Prob-cc) is a hypertree (resp., a ring), thenH(Std-cc)
is a hypertree (resp., a ring) too. This means that all the tractability results given forcc concerning the shapes of the
conflict hypergraph hold also when stated directly on its probabilistic version. However, this does not suffice to extend
the tractability results forcc regarding the syntactic forms of the constraints, as in the considered cases the conflict
hypergraph may not be a hypertree or a ring. Thus, the extension of the tractability results on the syntactic forms is
deferred to future work.

As regardsmp andqa, the arguments used in the discussion of the previous extension can be used to show that
our lower and upper bounds still hold for the variants of these problems allowing probabilistic constraints. As for the
tractability results, in Appendix A.7, a more detailed discussion is provided explaining how the proof of Theorem 13
(which deal with conflict hypergraphs where each maximal connected componenent is either a clique or a tree) can be
extended to deal with probabilistic constraints. The extension of the tractability result for FDs stated in Theorem 14
is deferred to future work.
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6.3. Assuming pairs of tuples as independent unless this contradicts the constraints

As observed in the introduction, in some cases, rejecting the assumption of independence for some groups of
tuples may be somehow “overcautious”. For instance, if we consider further tuples pertaining to a different hotel in
the introductory example (where constraints involve tuples over the same hotel), it may be reasonable to assume that
these tuples encode events independent from those pertaining hotel 1.

A naive way of extending our framework in this direction is that of assuming every pair of tuples which are not
explicitly “correlated” by some constraint as independentfrom one another. This means considering as independent
any two tuplest1, t2 such that there is no hyperedge in the conflict hypergraph containing both of them. However,
this strategy can lead to wrong interpretations of the data.For instance, consider the case of Example 3, where each
of the three tuplest1, t2, t3 has probability 1/2, and two (ground) constraints are defined over them: one forbidding
the co-existence oft1 with t2, and the other forbidding the co-existence oft2 with t3. As observed in Example 3, the
combination of these two constraints implicitly enforces the co-existence oft1 with t3. Hence, the fact thatt1 andt3
are not involved in the same (ground) constraint does not imply that these two tuples can be considered as independent
from one another.

However, it is easy to see that if two tuples are not connectedthrough any path in the conflict hypergraph, assuming
independence among them does not contradict the constraints in any way. Hence, a cautious way of incorporating the
independence assumption in our framework is the following:any two tuples are independent from one another iff they
belong to distinct maximal connected components of the conflict hypergraph.

If this model is adopted, nothing changes in our characterization of the consistency checking problem. In fact, it
is easy to see that an instance ofcc is equivalent to an instance of the variant ofcc where independence is assumed
among maximal connected components of the conflict hypergraph. This trivially follows from the fact that, if a PDB
Dp is consistent according to the original framework, all the possible interpretations combining the models of the
maximal connected components are themselves models ofDp, and the set of these interpretations contains also the
interpretation corresponding to assuming independence among the maximal connected components.

As regards the query evaluation problem, adopting this variant of the framework makesqa #P-hard (asqa becomes
more general than the problem of evaluating queries under the independence assumption [11]). However, all our
tractability results for projection-free queries still hold. In fact, the probability oft1, . . . , tn as an answer of a query
can be obtained as follows. First, the setT = {t1, . . . , tn} is partitioned into the (non-empty) setsS1, . . . ,Sk which
correspond to distinct maximal connected components of theconflict hypergraph, and where eachSi consists of
all the tuples inT belonging to the connected component corresponding toSi . Then, the minimum and maximum
probabilities of eachSi are computed (inPTIME, when our sufficient conditions for tractability hold), by considering
eachSi separately. Finally, the independence assumption among the tuples belonging to distinct maximal components
is exploited, so that the minimum (resp., maximum) probability of t1, . . . , tn is evaluated as the product of the so
obtained minimum (resp., maximum) probabilities ofS1, . . . ,Sk.

7. Related work

We separately discuss the related work in the AI and DB literature.
AI setting. The works in the AI literature related to ours are mainly those dealing with probabilistic logic. The problem
of integrating probabilities into logic was first addressed(though pretty informally) in [39]. Then, in [22] the PSAT
problem was formalized as the satisfiability problem in a propositional fragment of the logic discussed in [39], and
shown to beNP-complete. In [17], a more general probabilistic propositional logic than that in [22] was defined, which
enables algebraic relations to be specified among the probabilities of propositional formulas (such as “the probability
of φ1 ∧ φ2 is twice that ofφ3 ∨ φ4). [17] mainly focuses on the satisfiability problem, showing that it isNP-complete
(thus generalizing the result on PSAT of [22]). However, it provides no tractability result (whose investigation is our
main contribution in the study of the corresponding consistency problem). Up to our knowledge, most of the works
devising techniques for efficiently solving the satisfiability problem (such as [27, 34]) rely on translating it into a
Linear Programming instance and using some heuristics, which do not guarantee polynomial-bounded complexity.
Thus, the only works determining provable polynomial casesof probabilistic satisfiability are [2, 22]. As for [22],
we refer the reader to the discussions in Section 4 (right after Definition 3) and at the begininning of Section 4.1. As
regards [2], it is related to our work in that it showed that PSAT is tractable if the hypergraph of the formula (which
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corresponds to our conflict hypergraph) is a hypertree. However, the notion of hypertree in [2] is very restrictive, as it
relies on a notion of acyclicity much less general than theγ-acyclicity used here. In fact, even the simple hypergraph
consisting ofe1 = {t1, t2, t3}, e2 = {t2, t3, t4} is not viewed in [2] as a hypertree, since it contains at leastone cycle, such
ast1, e1, t2, e2, t3, e1, t1 (note that, in our framework, this would not be a cycle). Basically, hypertrees in [2] are special
cases of our hypertrees, as they require distinct hyperedges to have at most one node in common. Hence, our result
strongly generalizes the forms of conflict hypergraphs overwhich cc turns out to be tractable according to the result
of [2] on PSAT.

The entailment problem (which corresponds to our query answering problem) was studied both in the proposi-
tional [34] and in the (probabilistic-)logic-programmingsetting [35, 38, 37]. The relationship between these works
and ours is in the fact that they deal with knowledge bases where rules and facts can be associated with probabilities.
Intuitively, imposing constraints over a PDB might be simulated by a probabilistic logic program, where tuples are
encoded by (probabilistic) facts and constraints by (probabilistic) rules with probability 1. However, not all the above-
cited probabilistic-logic-programming frameworks can beused to simulate our framework: for instance, [38, 37] use
rules which can not express our constraints. On the contrary, the framework in [35] enables pretty general rules to
be specified, that isconditional rulesof the form (H|B)[p1, p2], whereH andB are classical open formulas, stating
that the probability of the formulaH ∧ B is betweenp1 and p2 times the probability ofB. Obviously, any denial
constraintic can be written as a conditional rule of the form (H|true)[1, 1], whereH is the open formula inic. In
the presence of conditional rules, [35] characterizes the complexity of the satisfiability and the entailment problems.
The novelty of our contribution w.r.t. that of [35] derives from the specific database-oriented setting considered in our
work. In particular, as regards the consistency problem, our tractable cases are definitely a new contribution, as [35]
does not determine polynomially-solvable instances. As regards the query answering problem, our contribution is
relevant from several standpoints. First, we provide a lower bound of the membership problem by assuming that the
database is consistent: this is a strong difference with [35], where the decisional version of the entailment problem has
been addressed without assuming the satisfiability of the knowledge base, thus the satisfiability checking is used as a
source of complexity when deciding the entailment. Second,we have characterized the lower bound of the member-
ship problem w.r.t. two specific aspects, which make sense ina database-perspective and were not considered in [35]:
the presence of projection in the query (Theorem 10) and the type of denial constraints (Theorem 11). Third, [35]
did not prove any lower bound for the data complexity of the search version of the entailment problem. Indeed, it
provided anFPNP-hardness result only under combined complexity (assumingall the knowledge base as part of the
input, while we consider constraints of fixed size) and exploiting the strong expressiveness of conditional rules, which
enable also constraints not expressible by denial constraints to be specified. Hence, in brief, our Theorem 12 shows
that constraints simpler than conditional constraints suffice to get anFPNP[log n]-hardness of the entailment for proba-
bilistic logic programs, even under data complexity. Finally, our tractable cases of the query evaluation problem, up
to our knowledge, are not subsumed by any result in the literature, and depict islands of tractability also for the more
general entailment problem studied in [35].

DB setting. The database research literature contains several works addressing various aspects related to probabilistic
data, and a number of models have been proposed for their representation and querying. In this section, we first
summarize the most important results on probabilistic databases relying on the independence assumption (which, ob-
viously, is somehow in contrast with allowing integrity constraints to be specified over the data, thus making these
works marginally related to ours). Then, we focus our attention on other works, which are more related to ours as they
allow some forms of correlations among data to be taken into account when representing and querying data.

As regards the works relying on the independence assumption, the problem of efficiently evaluating (conjunctive)
queries was first studied in [11], where it was shown that thisproblem is #P-hard in the general case of queries
without self-joins, but can be solved in polynomial time forqueries admitting a particular evaluation plan (namely,
safe plan). Basically, a safe plan is obtained by suitably pushing theprojection in the query expression, in order to
extend the validity of the independence assumption also to the partial results of the query. The results of [11] were
extended in [10, 14, 13, 24, 41]. Specifically, in [14], a technique was presented for computing safe plans on disjoint-
independent databases (where only tuples belonging to different buckets are considered as independent). In [13]
and [10], the dichotomy theorem of [11] was extended to deal with conjunctive queries with self-joins and unions
of conjunctive queries, respectively. In [41], it was shownthat a polynomial-time evaluation can be accomplished
also with query plans with any join ordering (not only those orderings required by safe plans). Finally, in [24], a
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technique was presented enabling the determination of efficient query plans even for queries admitting no safe plan
(this is allowed by looking at the database instance to decide the most suitable query plan, rather than looking only at
the database schema).

The problem of dealing with probabilistic data when correlations are not known (and independence may not
be assumed) was addressed in [31]. Here, an algebra for querying probabilistic data was introduced, as well as a
system calledProbView, which supports the evaluation of algebraic expressions byreturning answers associated with
probability intervals. However, the query evaluation is based on an extensional semantics and no integrity constraints
encoding domain knowledge were considered.

One of the first works investigating a suitable model for representing correlations among probabilistic data is [23],
whereprobabilistic c-tableswere introduced. In this framework, whose rationale is alsoat the basis of the PDB
MayBMS[28], correlations are expressed by associating tuples with boolean formulas on random variables, whose
probability functions are represented in a table. However,in this approach, only one interpretation for the database is
considered (the one deriving from assuming the random variables independent from one another), and it is not suitable
for simulating the presence of integrity constraints on thedata when the marginal probabilities of the tuples are known.
Similar differences, such as that of assuming only one interpretation, hold between our framework and that at the basis
of Trio [5, 1], where incomplete and probabilistic data are modeledby combining the possibility of specifying buckets
of tuples with the association of each tuple with its lineage(expressed as the set of tuples from which each tuple
derived). In particular, in [1] an extension of Trio is proposed which aims at better managing the epistemic uncertainty
(i.e., the information about uncertainty is itself incomplete). Here, the semantics ofgeneralized uncertain databases
is given in terms of a Dempster-Shafer mass distribution over the powerset of the possible worlds (this collapses to the
case of a PDB with one probability distribution, if the mass distribution is defined over every single possible world).
Further approaches to representing rich correlations and querying the data are those in [43, 32, 26], where correlations
among data are represented according to some graphical models (such as PGMs, junction trees, AND/XOR trees).
In these approaches, correlations are detected while data are generated and, in some sense, they are data themselves:
the database consists of a graph representing correlationsamong events, so that the marginal distributions of tuples
are not explicitly represented, but derive from the correlations encoded in the graph. This is a strong difference with
our framework, where a PDB is a set of tuples associated with their marginal probabilities, and constraints can be
imposed by domain experts with no need of taking part to the data-acquisition process. Moreover, in [43, 32, 26],
independence is assumed between tuples for which a correlation is not represented in the graph of correlations. On the
contrary, our query evaluation model relies on a “cautious”paradigm, where no assumption is made between tuples
not explicitly correlated by the constraints. In [12], the problem of evaluating queries over probabilistic views under
integrity constraints (functional and inclusion dependencies) and in the presence of statistics on the cardinality ofthe
source relations was considered. In this setting, when evaluating query answers and their probabilities, all the possible
values of the attribute values of the original relations must be taken into account, and this backs the use of the Open
World Assumption (as the original relations may contain attribute values which do not occur in the views). Under
this assumption, queries are evaluated over the interpretation of the data having the maximum entropy among all the
possible models.

All the above-cited works assume that the correlations represented among the data are consistent. In [29], the
problem was addressed of querying a PDB when integrity constraints are considered a posteriori, thus some possible
worlds having non-zero probability under the independenceassumption may turn out to be inconsistent. In this
scenario, queries are still evaluated on the unique interpretation entailed by the independence assumption, but the
possible worlds are assigned the probabilitiesconditionedto the fact that what entailed by the constraint is true. That
is, in the presence of a constraintΓ, the probabilityP(Q) of a queryQ is evaluated asP(Q|Γ), which is the probability
of Q assuming thatΓ holds. This corresponds to evaluating queries by augmenting them with the constraints, thus it is
a different way of interpreting the constraints and queries from the semantics adopted in our paper, where constraints
are applied on the database. The same spirit as this approachis at the basis of [9], where specific forms of integrity
constraints in the special case of probabilistic XML data are taken into account by considering a single interpretation,
conditioned on the constraints.

25



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 26

8. Conclusions and Future work

We have addressed two fundamental problems dealing with PDBs in the presence of denial constraints: thecon-
sistency checkingand thequery evaluationproblem. We have thoroughly studied the complexity of theseproblems,
characterizing the general cases and pointing out several tractable cases.

There exist a number of interesting directions for future work. First of all, the cautious querying paradigm will be
extended to deal with further forms of constraints. This will allow for enriching the types of correlations which can be
expressed among the data, and this may narrow the probability ranges associated with the answers (in fact, for queries
involving tuples which are not involved in any denial constraint, the obtained probability ranges may be pretty large,
and of limited interest for data analysis).

Another interesting direction for future work is the identification of other tractable cases of the consistency check-
ing and the query evaluation problems. As regards the consistency checking problem, we conjecture that polynomial-
time strategies can be devised when the conflict hypergraph exhibits a limited degree of cyclicity (as a matter of fact,
we have shown that this problem is feasible in linear time notonly for hypertrees, but also for rings, which have
limited cyclicity as well). A possible starting point is investigating the connection between the consistency checking
problem (viewed as evaluating the (dual) lineage of the constraint query - see Remark 1) and the model checking
problem of Boolean formulas. The connection between lineage evaluation and model checking has been well estab-
lished mainly for the cases of tuple-independent PDBs [40, 25]. In fact, in this setting, it has been shown that, as it
happens for checking Boolean formulas, the probability of alineage can be evaluated by compiling it into aBinary
Decision Diagram- BDD [36], and then suitably processing the diagram. Specifically, if the lineage (or, equivalently,
the Boolean formula to be checked)L can be compiled into a particular case of BDDs (such asRead-Onceor Ordered
BDD), the lineage evaluation (as well as the formula verification) can be accomplished as the result of a traversal of
the BDD, in time linear w.r.t. the diagram size. Hence, in allthe cases whereL can be compiled into aRead-Onceor
anOrderedBDD of polynomial size,L can be evaluated in polynomial time. One of the most general result about the
compilability of Boolean formulas intoOrderedBDDs was stated in [19], where it was shown that any CNF expres-
sion overn variables whose hypergraph of clauses has bounded treewidth (< k) admits an equivalent ordered BDD of
sizeO(nk+1). Then, the point becomes devising a mechanism for exploiting an Ordered BDD equivalent to a Boolean
formula f to evaluate the probability off , when neither independence nor precise correlations can beassumed among
the terms off . Up to our knowledge, this topic has not been investigated yet, and we plan to address it in future
work. If it turned out that, under no assumption on the way terms are correlated, the probability of formulas can be
evaluated by traversing their equivalent Ordered BDDs, then the above-cited result of [19] would imply other tractable
cases of our consistency checking problem. However, our results on hypertrees and rings would be still of definite
interest, as we have found that in these cases the consistency checking problem can be solved in linear time, while
the construction of the ordered BDD isO(nk+1). Moreover, our results show that the consistency checkingproblem
over hypertrees and rings is still polynomially solvable (actually, in quadratic time) in the case that the cardinality
of hyperedges is not known to be bounded by constants (see thediscussion right after Theorem 2), which does not
always correspond to structures having bounded treewidth.

Finally, our framework can be exploited to address the problem of repairing data and extracting reliable informa-
tion from inconsistent PDBs. This research direction is somehow related to [3], where the evaluation of clean answers
overdeterministicdatabases which are inconsistent due to the presence of duplicates is accomplished by encoding
the inconsistent database into a PDB adopting the bucket independent model. Basically, in this PDB, probabilities are
assigned to tuples representing variants of the same tuple,and these variants are grouped in buckets. However, the so
obtained PDB is consistent, thus this approach is not a repairing framework for inconsistent PDBs, but is a technique
for getting clean answers over inconsistent deterministicdatabases after rewriting queries into “equivalent” queries
over the corresponding consistent PDBs. A more general repairing problem in the probabilistic setting has been re-
cently addressed in [33], where a strategy based on deletingtuples has been proposed, “inspired” by the common
approaches for inconsistent deterministic databases [6].We envision a different repairing paradigm, which addresses
a source of inconsistency which is typical of the probabilistic setting: inconsistencies may arise from wrong assign-
ments to the marginal probabilities of tuples, due to limitations of the model adopted for encoding uncertain data into
probabilistic tuples. In this perspective, a repairing strategy based on properly updating the probabilities of the tuples
(possibly by adapting frameworks for data repairing in the deterministic setting based on attribute updates [20, 21, 45])
seems to be the most suitable choice.

26



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 27

Acknowledgements.We are grateful to the anonymous reviewers of an earlier conference submission of a previous
version of this paper for their fruitful suggestions (one especially for pointing out the reduction ofcc to PSAT), as
well as Thomas Lukasiewicz, for insightful discussions about his work [35], and Francesco Scarcello, for valuable
comments about our work.

References

[1] P. Agrawal, J. Widom, Generalized uncertain databases:First steps, in: Proc. 4th Int. VLDB workshop on Management of Uncertain Data
(MUD), pp. 99–111.

[2] K.A. Andersen, D. Pretolani, Easy cases of probabilistic satisfiability, Annals of Mathematics and Artificial Intelligence (AMAI) 33 (2001).
[3] P. Andritsos, A. Fuxman, R.J. Miller, Clean answers overdirty databases: A probabilistic approach, in: Proc. 22nd Int. Conf. on Data

Engineering (ICDE), p. 30.
[4] M. Arenas, L.E. Bertossi, J. Chomicki, X. He, V. Raghavan, J. Spinrad, Scalar aggregation in inconsistent databases, Theoretical Computer

Science 296 (2003) 405–434.
[5] O. Benjelloun, A.D. Sarma, A.Y. Halevy, J. Widom, Uldbs:Databases with uncertainty and lineage, in: Proc. 32nd Int.Conf. on Very Large

Data Bases (VLDB), pp. 953–964.
[6] L. Bertossi, Database Repairing and Consistent Query Answering, Morgan & Claypool Publishers, 2011.
[7] G. Boole, An Investigation of the Laws of Thought on Whichare Founded the Mathematical Theories of Logic and Probabilities, Macmillan,

London, 1854.
[8] J. Chomicki, J. Marcinkowski, S. Staworko, Computing consistent query answers using conflict hypergraphs, in: Proc. 2004 Int. Conf. on

Information and Knowledge Management (CIKM), pp. 417–426.
[9] S. Cohen, B. Kimelfeld, Y. Sagiv, Incorporating constraints in probabilistic XML, ACM Transactions on Database Systems 34 (2009).

[10] N.N. Dalvi, K. Schnaitter, D. Suciu, Computing query probability with incidence algebras, in: Proc. 29th Symp. on Principles of Database
Systems (PODS), pp. 203–214.

[11] N.N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases, in: Proc. 30th Int. Conf. on Very Large Data Bases (VLDB), pp.
864–875.

[12] N.N. Dalvi, D. Suciu, Answering queries from statistics and probabilistic views, in: Proc. 31st Int. Conf. on Very Large Data Bases (VLDB),
pp. 805–816.

[13] N.N. Dalvi, D. Suciu, The dichotomy of conjunctive queries on probabilistic structures, in: Proc. 26th Symp. on Principles of Database
Systems (PODS), pp. 293–302.

[14] N.N. Dalvi, D. Suciu, Management of probabilistic data: foundations and challenges, in: Proc. 26th Symp. on Principles of Database Systems
(PODS), pp. 1–12.

[15] A. D’Atri, M. Moscarini, On the recognition and design of acyclic databases, in: Proc. 3rd Symp. on Principles of Database Systems (PODS),
pp. 1–8.

[16] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, Journal of the ACM 30 (1983).
[17] R. Fagin, J. Halpern, N. Megiddo, A logic for reasoning about probabilities, Information and Computation (IC) 87 (1990) 78–128.
[18] F. Fassetti, B. Fazzinga, Fox: Inference of approximate functional dependencies from xml data, in: 2nd Int. DEXA Workshop on XML Data

Management Tools and Techniques (XANTEC), pp. 10–14.
[19] A. Ferrara, G. Pan, M.Y. Vardi, Treewidth in verification: Local vs. global, in: Proc. 12th Int. Conf. on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR), pp. 489–503.
[20] S. Flesca, F. Furfaro, F. Parisi, Preferred database repairs under aggregate constraints, in: Proc. 1st Int. Conf.on Scalable Uncertainty

Management (SUM), pp. 215–229.
[21] S. Flesca, F. Furfaro, F. Parisi, Querying and repairing inconsistent numerical databases, ACM Transactions on Database Systems 35 (2010).
[22] G.F. Georgakopoulos, D.J. Kavvadias, C.H. Papadimitriou, Probabilistic satisfiability, Journal of Complexity 4(1988) 1–11.
[23] T.J. Green, V. Tannen, Models for incomplete and probabilistic information, in: Proc. 2006 EDBT Workshop on Inconsistency and Incom-

pleteness in Databases (IIDB), pp. 278–296.
[24] A.K. Jha, D. Olteanu, D. Suciu, Bridging the gap betweenintensional and extensional query evaluation in probabilistic databases, in: Proc.

13th Int. Conf. on Extending Database Technology (EDBT), pp. 323–334.
[25] A.K. Jha, D. Suciu, Knowledge compilation meets database theory: compiling queries to decision diagrams, in: Proc. 14th Int. Conf. on

Database Theory (ICDT), pp. 162–173.
[26] B. Kanagal, A. Deshpande, Lineage processing over correlated probabilistic databases, in: Proc. 2010 Int. Conf. on Management of Data

(SIGMOD), pp. 675–686.
[27] D.J. Kavvadias, C.H. Papadimitriou, A linear programming approach to reasoning about probabilities, Annals of Mathematics and Artificial

Intelligence 1 (1990) 189–205.
[28] C. Koch, MayBMS: A system for managing large uncertain and probabilistic databases, Managing and Mining UncertainData Ch. 9 (2009).
[29] C. Koch, D. Olteanu, Conditioning probabilistic databases, Proceedings of the VLDB Endowment (PVLDB) 1 (2008) 313–325.
[30] M.W. Krentel, The complexity of optimization problems, Journal of Computer and System Sciences 36 (1988) 490–509.
[31] L.V.S. Lakshmanan, N. Leone, R.B. Ross, V.S. Subrahmanian, Probview: A flexible probabilistic database system, ACM Transactions on

Database Systems 22 (1997) 419–469.
[32] J. Li, A. Deshpande, Consensus answers for queries overprobabilistic databases, in: Proc. 28th Symp. on Principles of Database Systems

(PODS), pp. 259–268.

27



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 28

[33] X. Lian, L. Chen, S. Song, Consistent query answers in inconsistent probabilistic databases, in: Proc. 2010 Int. Conf. on Management of Data
(SIGMOD), pp. 303–314.

[34] T. Lukasiewicz, Probabilistic deduction with conditional constraints over basic events, Journal of Artificial Intelligence Research (JAIR) 10
(1999) 199–241.

[35] T. Lukasiewicz, Probabilistic logic programming withconditional constraints, ACM Transactions on Computational Logic 2 (2001) 289–339.
[36] C. Meinel, T. Theobald, Algorithms and Data Structuresin VLSI Design, Springer-Verlag, 1998.
[37] R.T. Ng, Semantics, consistency, and query processingof empirical deductive databases, IEEE Transactions on Knowledge and Data Engi-

neering (TKDE) 9 (1997) 32–49.
[38] R.T. Ng, V.S. Subrahmanian, Probabilistic logic programming, Information and Computation 101 (1992) 150–201.
[39] N.J. Nilsson, Probabilistic logic, Artificial Intelligence 28 (1986) 71–87.
[40] D. Olteanu, J. Huang, Using obdds for efficient query evaluation on probabilistic databases, in: Proc. 2nd Int. Conf. on Scalable Uncertainty

Management (SUM), pp. 326–340.
[41] D. Olteanu, J. Huang, C. Koch, SPROUT: Lazy vs. eager query plans for tuple-independent probabilistic databases, in: Proc. 25th Int. Conf.

on Data Engineering (ICDE), pp. 640–651.
[42] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications,Inc, Mineola, New York,

1998.
[43] P. Sen, A. Deshpande, Representing and querying correlated tuples in probabilistic databases, in: Proc. 23rd Int.Conf. on Data Engineering

(ICDE), pp. 596–605.
[44] P. Sen, A. Deshpande, L. Getoor, Prdb: managing and exploiting rich correlations in probabilistic databases, VLDBJournal 18 (2009)

1065–1090.
[45] J. Wijsen, Database repairing using updates, ACM Transactions on Database Systems 30 (2005) 722–768.

28



S. Flesca, F. Furfaro, F. Parisi/ submitted to Journal of Computer and System Sciences 00 (2021) 1–48 29

Appendix A. Proofs

In this appendix we report the proofs of the theorems whose statement have been provided and commented in the
main body of the paper. Furthermore, the appendix contains some new lemmas which are exploited in these proofs.

Appendix A.1. Proofs of Theorem 1, Proposition 1, and Lemma 1

Theorem 1. (Complexity ofcc) cc is NP-complete.

Proof. The membership ofcc in NP has been already proved in the core of the paper, where a reduction from cc to
PSAThas been described. As regards the hardness, it follows fromTheorem 7 (or, equivalently, from Theorem 5),
whose proof is given in Section Appendix A.3.

We now report a property ofγ-acyclic hypergraphs from [15], which will be used in the proof of Proposition 1.

Fact 1. [15] Let H = 〈N,E〉 be a hypertree. There exists at least one hyperedge e∈ E such that at least one of the
following conditions hold:

1. e∩ N(H−{e}) is a set of edge equivalent nodes;
2. there exists e′ ∈ E such that e′ , e and e∩ N(H−{e,e

′}) = e′ ∩N(H−{e,e
′}).

Moreover, H−{e} is still a hypertree.

Proposition 1. Let H = 〈N,E〉 be a hypertree. Then, there is at least one hyperedge e∈ E such that Int(e,H) is a
matryoshka. Moreover, H−{e} is still a hypertree.

Proof. Reasoning by induction on the number of hyperedges inE, we prove that there is a total orderinge1, · · · , en of
the edges inE such that all the following conditions hold for eachi ∈ [1..n]:

1. eitherei ∩ N(H−{e1,··· ,ei−1}) is a set of edge equivalent nodes, or there existse′ ∈ E(H−{e1,··· ,ei−1}) such thate′ , e
ande∩ N(H−{e,e

′}) = e′ ∩N(H−{e,e
′});

2. H−{e1,··· ,ei } is a hypertree;
3. Int(ei ,H−{e1,··· ,ei−1}) is a matryoshka.

The base case (|E| = 1) is straightforward. In order to prove the induction step,we reason as follows. SinceH is
a hypertree, Fact 1 implies that there is a nodee such that 1) eithere∩ N(H−{e}) is a set of edge equivalent nodes, or
there existse′ ∈ E such thate′ , eande∩ N(H−{e,e

′}) = e′ ∩ N(H−{e,e
′}), and 2)H−{e} is a hypertree.

From the inductive hypothesis, sinceH−{e} is a hypertree, there exists a total orderinge1, · · · , en−1 of the nodes in
E − {e} such that for eachi ∈ [1..n− 1] conditions 1, 2 and 3 are satisfied w.r.t.H−{e}.

If Int(e,H) is a matryoshka, then the total orderinge, e1, · · · , en−1 of the nodes inE satisfies conditions 1, 2 and 3
for every edge in the sequence thus the statement is proved inthis case.

Otherwise, sinceInt(e,H) is not a matryoshka thene∩N(H−{e}) is not a set of edge equivalent nodes. Hence, since
esatisfies the conditions of Fact 1 then there existsej ∈ {e1, · · · , en−1} such thate∩ N(H−{e,ej}) = ej ∩ N(H−{e,ej}).

We now consider separately the following two cases:

Case 1): there isk ∈ [1.. j − 1] such thatek ∩ N(H−{e,e1,··· ,ek,ej }) = ej ∩N(H−{e,e1,··· ,ek,ej }).

Case 2): there is nok ∈ [1.. j − 1] such thatek ∩ N(H−{e,e1,··· ,ek,ej }) = ej ∩ N(H−{e,e1,··· ,ek,ej }).

We first prove Case 1). Letk ∈ [1.. j−1] be the smallest index such thatek∩N(H−{e,e1,··· ,ek,ej }) = ej∩N(H−{e,e1,··· ,ek,ej }).
We consider the total ordering of the edges ofE obtained by insertinge immediately beforeek in e1, · · · , en−1, i.e.,
e1, · · · , ek−1, e, ek, · · · , ej , · · · , en−1.

We first prove that for eachi ∈ [1..k−1] conditions 1, 2 and 3 still hold. For eachi ∈ [1..k−1] one of the following
cases occur:

• ei ∩ ej = ∅. In this case sincee∩ N(H−{e,ej }) = ej ∩ N(H−{e,ej}), it is straightforward to see that conditions 1, 2
and 3 hold.
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• ei ∩ ej , ∅ andei ∩ N(H−{e,e1,··· ,ei−1}) is a set of edge equivalent nodes. Sincee∩ N(H−{e,ej }) = ej ∩ N(H−{e,ej}),
ei ∩ ej , ∅ andej is an edge ofH−{e,e1,··· ,ei−1} thenei ∩ N(H−{e,e1,··· ,ei−1}) = ei ∩ N(H−{e1,··· ,ei−1}). Therefore, the
nodes inei ∩N(H−{e1,··· ,ei−1}) are edge equivalent w.r.tH−{e1,··· ,ei−1} too. Hence, conditions 1, 2 and 3 hold.

• ei ∩ ej , ∅ and there is anh ∈ [i + 1..n− 1], with h , j, such thatei ∩N(H−{e,e1,··· ,ei ,eh}) = eh ∩N(H−{e,e1,··· ,ei ,eh}).
Since,ej is and edge ofH−{e,e1,··· ,ei ,eh} ande∩ N(H−{e,ej }) = ej ∩ N(H−{e,ej }) it holds thatei ∩ N(H−{e,e1,··· ,ei ,eh}) =
ei ∩ N(H−{e1,··· ,ei ,eh}) = eh ∩ N(H−{e1,··· ,ei ,eh}). Hence conditions 1, 2 and 3 hold in this case too.

Observe that, in the last two cases mentioned above the fact that Int(ei,H−{e1,··· ,ei−1}) is a matryoshka follows from the
fact thatei ∩ N(H−{e1,··· ,ei−1}) = ei ∩ N(H−{e,e1,··· ,ei−1}) andei ∩ e= ei ∩ ej . Moreover, conditions 1, 2 and 3 still hold for
eachi ∈ [k..n− 1] since they are not changed w.r.t. the inductive hypothesis.

As regards the edgee, it is easy to see that conditions 1 and 2 are satisfied sinceej appears aftere in the total
orderinge1, · · · , ek−1, e, ek, · · · , ej , · · · , en−1.

We now prove that condition 3 holds fore. We know from the induction hypothesis thatInt(ek,H{e,e1,··· ,ek−1}) is a
matryoshka. However, sincee∩N(H−{e,ej}) = ej ∩N(H−{e,ej}) and j > k thenInt(ek,H{e,e1,··· ,ek−1}) = Int(ek,H{e1,··· ,ek−1}).
Since,ek ∩ N(H−{e,e1,··· ,ek,ej }) = ej ∩ N(H−{e,e1,··· ,ek,ej }) ande∩N(H−{e,ej}) = ej ∩ N(H−{e,ej }) it holds that

ek ∩ N(H−{e,e1,··· ,ek,ej }) = ej ∩N(H−{e,e1,··· ,ek,ej }) = e∩ N(H−{e,e1,··· ,ek,ej }).

Therefore the set of nodes ine∩ N(H−{e1,··· ,ek−1}) can be partitioned in three setsN,N′,N′′ such that:

– N = ek ∩N(H−{e,e1,··· ,ek,ej }) =
⋃

S∈Int(ek,H{e,e1,··· ,ek−1}) S,

– N′ = ek ∩ ej − N, and

– N′′ = e∩ ej − N′ − N.

Hence, it is easy to see thatInt(e,H{e1,··· ,ek−1}) = Int(ek,H{e,e1,··· ,ek−1})∪{N∪N′}∪{N∪N′∪N′′}. Therefore,Int(e,H{e1,··· ,ek−1})
is a matryoshka. Hence, the proof for Case 1) is completed.

We now prove Case 2). We consider the total ordering of the edges of E obtained by insertinge immediately
beforeej in e1, · · · , en−1, i.e.,e1, · · · , ej−1, e, ej, · · · , en−1. It is easy to see that we can prove that for eachi ∈ [1.. j − 1]
conditions 1, 2 and 3 are satisfied applying the same reasoning applied in Case 1) in order to prove that for each
i ∈ [1..k−1] conditions 1, 2 and 3 hold. Analogously to the proof of Case 1) it is straightforward to see that conditions
1, 2 and 3 still hold for eachi ∈ [ j..n− 1] since they are not changed w.r.t. the inductive hypothesis.

As regards the edgee, it is easy to see that conditions 1 and 2 are satisfied sinceej appears aftere in the total
orderinge1, · · · , ej−1, e, ej, · · · , en−1.

To complete the proof we show that condition 3 holds fore in this case. From the induction hypothesis, we know
that it is the case thatInt(ej ,H{e,e1,··· ,ej−1}) is a matryoshka. However, sincee∩ N(H−{e,ej}) = ej ∩ N(H−{e,ej }) then
e∩ N(H−{e,e1,··· ,ej }) = ej ∩N(H−{e,e1,··· ,ej }), and it holds that the set of nodes ine∩ N(H−{e1,··· ,ek−1}) can be partitioned in
the setsN andN′ such that:

– N = ej ∩N(H−{e,e1,··· ,ej }) =
⋃

S∈Int(ej ,H{e,e1,··· ,ek−1}) S,

– N′ = ek ∩ ej − N.

It is easy to see that the following holdsInt(e,H{e1,··· ,ej−1}) = Int(ej,H{e,e1,··· ,ek−1})∪{N∪N′}. Therefore,Int(e,H{e1,··· ,ej−1})
is a matryoshka, which completes the proof for Case 2) and theproof of the proposition.

Before providing the proof of Lemma 1, we report a well-knownresult on the minimum and maximum probability
of the conjunction of events among which no correlation is known, taken from [7].

Fact 2. Let E1,E2 be a pair of events such that their marginal probabilities p(E1), p(E2) are known, while no
correlation among them is known. Then, the minimum and maximum probabilities of the event E1∧E2 are as follows:
pmin(E1 ∧ E2) = max{0, p(E1) + p(E2) − 1}; and pmax(E1 ∧ E2) = min {p(E1), p(E2)}.
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The formulas reported above are also known as Frechet-Hoeffding formulas. In Lemma 1, we generalize the for-
mula for the minimum probability, and adapt it to our database setting.

Lemma 1. Let Dp be an instance ofDp consistent w.r.t.IC, T a set of tuples of Dp, and H= HG(Dp,IC). If either i)
the tuples in T are pairwise disconnected in H, or ii) Int(T,H) is a matryoshka, then pmin(T) = max{0,

∑
t∈T p(t)− |T |+1}.

Otherwise, this formula provides a lower bound for pmin(T).

Proof. Casei): In the case thatt1, . . . , tn are pairwise disconnected in the conflict hypergraph, the formula for
pmin(t1, . . . , tn) can be proved by induction onn, considering as base case the formula for the minimum probabil-
ity of a pair of events reported in Fact 2.

Caseii ): We prove an equivalent formulation of the statement over the same instance ofDp: “Let T be a set of nodes
of H = HG(Dp,IC) such that Int(T,H) is a matryoshka. Let Tn = t1, . . . , tn be a sequence consisting of the nodes
of T ordered as follows: i> j =⇒ s(ti) ⊇ s(t j), where s(ti) is the maximal set in Int(T,H) containing ti . Then,

pmin(t1, . . . , tn) = max
{
0,
∑n

i=1 p(ti) − n+ 1
}
”. That is, we consider the nodes inT suitably ordered, as this will help

us to reason inductively.
We reason by induction on the length of the sequenceTn. The base case (n = 1) trivially holds, as, for any tuplet,

pmin(t) = p(t). We now prove the induction step: we assume that the property holds for any sequence of the considered
form of lengthn− 1, and prove that this implies that the property holds for sequences ofn nodes.

From induction hypothesis, we have that the property holds for the subsequenceTn−1 = t1, . . . , tn−1 of Tn. That
is, there is a modelM for Dp w.r.t. IC such that

∑
w⊇{t1,...,tn−1}

M(w) = max{0,
∑n−1

i=1 p(ti) − (n − 1) + 1}. We show
how, starting fromM, a modelM′ can be constructed such that

∑
w⊇{t1,...,tn−1,tn} = max{0,

∑n
i=1 p(ti) − n+ 1}, which is

the formula reported in the statement forpmin(t1, . . . , tn). According toM, the set of possible worlds ofDp can be
partitioned into:

• W (t1 ∧ · · · ∧ tn−1 ∧ tn): the set of possible worlds containing all the tuplest1, . . . , tn−1, tn;

• W (¬(t1 ∧ · · · ∧ tn−1) ∧ tn): the set of possible worlds containingtn, but not containing at least one among
t1, . . . , tn−1;

• W (t1 ∧ · · · ∧ tn−1,¬tn): the set of possible worlds containing all the tuplest1, . . . , tn−1, but not containingtn;

• W (¬(t1 ∧ · · · ∧ tn−1) ∧ ¬tn): the set of possible worlds not containingtn and not containing at least one tuple
amongt1, . . . , tn−1.

For the sake of brevity, the set of worlds defined above will bedenoted asW, W′, W′′, W′′′, respectively. In
the following, given a set of possible worldsW, we denote asM(W) the overall probability assigned byM to
the worlds inW, i.e., M(W) =

∑
w∈W M(w). Thus, if M(W) = max{0,

∑n
i=1 p(ti) − n + 1}, then we are done,

since the right-hand side of this formula is the expression for pmin(t1, . . . , tn) given in the statement, and it is in
every case a lower bound forpmin(t1, . . . , tn) (in fact, pmin(t1, . . . , tn) can not be less than the case that the tuples
are pairwise disconnected inH). Otherwise, it must be the case thatM(W) > max{0,

∑n
i=1 p(ti) − n + 1}. Assume

that
∑n

i=1 p(ti) − n + 1 > 0 (the case that max{0,
∑n

i=1 p(ti) − n + 1} = 0 can be proved similarly). Hence, we are
in the case thatM(W) =

∑n
i=1 p(ti) − n + 1 + ǫ > 0, with ǫ > 0. SinceM(W′) = p(tn) − M(W), this means that

M(W′) = p(tn) −
(∑n

i=1 p(ti) − n+ 1+ ǫ
)
= −
∑n−1

i=1 p(ti) + (n − 1) − ǫ. From the induction hypothesis, the term

−
∑n−1

i=1 p(ti) + (n − 1) is equal to 1− pmin(t1, . . . , tn−1), thus we have:M(W′) = 1 − pmin(t1, . . . , tn−1) − ǫ. Since
pmin(t1, . . . , tn−1) is exactly the overall probability, according toM, of the possible worlds containing all the tuples
t1, . . . , tn−1, we have that 1− pmin(t1, . . . , tn−1) = M(W′) + M(W′′′), thus we obtain:M(W′) = M(W′) + M(W′′′) − ǫ.
This means thatM(W′′′) = ǫ, whereǫ > 0. That is, the overall probability of the possible worlds inW′′′ is equal to
the differenceǫ betweenM(W) and the value

∑n
i=1 p(ti) − n+ 1 that we want to obtain for the cumulative probability

of the worlds inW. We now show howM can be modified in order to obtain a modelM′ such thatM′(W) is exactly
this value. We constructM′ as follows. Letw′′′1 , . . . ,w

′′′
k be the possible worlds inW′′′ such thatM(w′′′i ) > 0, for

eachi ∈ [1..k]. Take k valuesǫ1, . . . , ǫk, where eachǫi is equal toM(w′′′i ). Hence
∑k

i=1 ǫi = ǫ. Then, for each
i ∈ [1..k], let M′(w′′′i ) = M(w′′′i ) − ǫi = 0, and, for eachw′′′ ∈ W′′′ \ {w′′′1 , . . . ,w

′′′
k }, M′(w′′′) = 0. This way,

M′(W′′′) =
∑

w′′′∈W′′′ M′(w′′′) = M(W′′′) − ǫ = 0. For eachw′′′i (with i ∈ [1..k]), let w′i be the possible world inW′
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“corresponding” tow′′′i : that is,w′i is the possible worldw′′′i ∪ {tn}. The, for eachi ∈ [1..k], let M′(w′i ) = M(w′i ) + ǫi ,
and, for eachw′ ∈ W′ \ {w′1, . . . ,w

′
k}, M′(w′) = M(w′). This way,M′(W′) =

∑
w′∈W′ M′(w′) = M(W′) + ǫ. Basically,

we are constructing the modelM′ by “moving” ǫ from the overall probability assigned byM to the worlds ofW′′′

towards the worlds ofW′. Observe that every worldw′i ∈ W′ such thatM′(w′i ) > 0 is consistent w.r.t.IC, for the
following reason. IfM′(w′i ) = M(w′i ) the property derives from the fact thatM is a model. Otherwise, we are in the
case thatw′i = w′′′i ∪ {tn}, whereM(w′′′i ) > 0. SinceM is a model,M(w′′′i ) > 0 implies thatw′′′i is consistent w.r.t.IC.
Then, addingtn to w′′′i to obtainw′i has no impact on the consistency:w′i does not contain at least one tuple among
t1, . . . , tn−1, and from the fact that any hyperedge ofHG(Dp,IC) containingtn contains all the tuplest1, . . . , tn−1 no
constraint encoded by the hyperedges containingtn is fired inw′i .

It is easy to see that the strategy that we used to moveǫ from the overall probability ofW′′′ to W′ does not change
the overall probabilities assigned to the tuples different fromtn in the worlds inW′ ∪W′′, but it changes the overall
probability assigned to tupletn in the same worlds, as it is increased byǫ. Hence, to adjust this, we perform an
analogous reasoning to “move”ǫ from the overall probabilityM(W) (which is at leastǫ and whose worlds contain
tn) to the overall probability assigned toW′′ (which contains the same worlds ofW deprived oftn). Thus, we define
M′ by “moving” portions ofǫ from the worlds ofW to the corresponding worlds ofW′′ (where the corresponding
worlds are those having the same tuples except fromtn), analogously to what done before from the worlds ofW′′′ to
those ofW′. This way, we obtain thatM′(W) = M(W) − ǫ andM′(W′′) = M(W) + ǫ. Also in this case,M′ does not
assign a non-zero probability to inconsistent worlds ofW′′: for anyw′′i such thatM′(w′′i ) > M(w′′i ), it is the case that
M(wi) > 0 (wherewi = w′′i ∪ {tn}, which means thatwi is consistent, and thusw′′i (which results from removing a
tuple fromwi) must be consistent as well (removing a tuple cannot fire any denial constraint). Finally, observe that
this strategy for movingǫ from the cumulative probability ofW to W′′ does not alter the marginal probabilities of the
tuples different fromtn in these worlds.

Therefore,M′ is a model forDp w.r.t. IC which assigns toW a cumulative probability equal toM′(W) =
M(W) − ǫ =

∑n
i=1 p(ti) − n+ 1, which ends the proof.

Appendix A.2. Proof of Theorem 3

In order to prove Theorem 3, we exploit a property that holds for particular conflict hypergraphs, calledchains.
Basically, a chain is the hypergraph resulting from removing a hyperedge from a ring. Thus, a chain consists of a
sequence of hyperedgese1, . . . , en where all and only the pairs of consecutive hyperedges have non-empty intersection
(differently from the ring,e1 ∩ en = ∅).

Given a chainC = e1, . . . , en, we say thatn is its length, and denote it withlength(C). Moreover, for each
i ∈ [1..n− 1], we will use the symbolαi to denote the intersectionei ∩ ei+1 of consecutive hyperedges, and, for each
i ∈ [1..n], we will use the symbolβi to denoteears(ei), and β̃i to denote a subset ofears(ei). Finally, sub(C) will
denote the subsequencee2, . . . , en−1 of the hyperedges inC.

In the following, given a set of tuplesX, we will use the term “event X” to denote the event that all the tuples in
the setX co-exist. Furthermore,pmin

H (E) will denote the minimum probability of the eventE involving the tuples of
the databaseDp when the conflict hypergraph contains only the hyperedges inH.

Lemma 3. Let Dp be a PDB instance ofDp such that Dp |= IC. Assume that HG(Dp,IC) is the chainC = e1, . . . , en

(with n> 1). Moreover, letβ̃1, β̃n be subsets of the earsβ1, βn of e1 and en, respectively. Then:

pmin
C (β̃1 ∪ β̃n) = max

{
0, pmin

∅ (β̃1) + pmin
∅ (β̃n) −

[
1− pmin

sub(C)(α1 ∪ (β1\β̃1) ∪ αn−1 ∪ (βn\β̃n))
]}

where: pmin
sub(C)(α1 ∪ (β1\β̃1) ∪ αn−1 ∪ (βn\β̃n)) = max

{
0, pmin

sub(C)(α1 ∪ αn−1)+pmin
∅

(
(β1\β̃1)∪(βn\β̃n)

)
−1
}

and, for any

set of tuplesγ, pmin
∅

(γ)=max
{
0,
∑

t∈γ p(t)−|γ|+1
}
.

Proof. p(β̃1 ∪ β̃n) can be minimized as follows.
1) We start from any modelM of Dp minimizing the portion of the probability space where neither the event̃β1 nor the
eventβ̃n can occur. That is,M is any model minimizing the probability of the eventE = α1∪ (β1\β̃1)∪αn−1∪ (βn\β̃n)
(this event is mutually exclusive with both̃β1 andβ̃n due to hyperedgese1 anden). It is easy to see thatM is also a
model forDp w.r.t. the conflict hypergraphsub(C), and that the minimum probabilitypmin

sub(C)(E) of E w.r.t. sub(C) is

equal to the minimum probabilitypmin
C

(E) of E w.r.t. C. We denote this probability asY.
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2) We re-distribute the tuples iñβ1 ∪ β̃n over the portion of size 1−Y of the probability space not assigned toE, so
that p(β̃1) = pmin

∅
(β̃1) andp(β̃2) = pmin

∅
(β̃n), and with the aim of minimizing the intersection of the events β̃1 andβ̃n.

The fact that the events̃β1 andβ̃n can be simultaneously assigned their minimum probabilities pmin
∅

(β̃1) andpmin
∅

(β̃n),
respectively, derives from Lemma 1 and from the consistencyof Dp w.r.t. C. This yields a (possibly) new modelM′

for Dp w.r.t. the “original” chainC wherep(β̃1 ∪ β̃n) = max
{
0, pmin(β̃1) + pmin(β̃n) − [1 − Y]

}
. In fact, viewing the

available probability space as a segment of length 1−Y, this corresponds to assigning the left-most part of the segment
of lengthpmin(β̃1) to eventβ̃1, and the right-most part of lengthpmin(β̃n) to eventβ̃n. This way, the probability of the
intersection is the length of the segment portion (if any) assigned to both̃β1 andβ̃n. In brief, we obtain the formula
reported in the statement forpmin(β̃1 ∪ β̃n).

The formula forpmin(α1∪ (β1\β̃1)∪αn−1∪ (βn\β̃n)) can be proved with an analogous reasoning, while the formula
for pmin

∅
(γ) follows from Lemma 1.

Theorem 3. Given an instance Dp ofDp, if HG(Dp,IC) = 〈N,E〉 is a ring, then Dp |= IC iff both the following
hold: 1)∀e∈ E,

∑
t∈e p(t) ≤ |e| − 1; 2)

∑
t∈N p(t) − |N| + ⌈ |E|2 ⌉ ≤ 0.

Proof. In the following, we will denote the ringHG(Dp, IC) asR = e1, . . . , en, en+1, and, for eachi ∈ [1..n + 1],
the ears ofei asεi , and, for eachi ∈ [1..n], the intersectionei ∩ ei+1 asγi , ande1 ∩ en+1 asγ0. Moreover, we will
denote asC = e1, . . . , en the chain obtained from ringR by removing the edgeen+1. We now prove the left-to-right
and right-to-left implications separately.

(⇒): We first show that, ifDp |= IC andHG(Dp,IC) is a ring, then both Condition 1. and 2. hold. Condition 1.
trivially follows from the fact that the proof of the left-to-right implication of Theorem 2 holds for general conflict
hypergraphs.

We now focus on Condition 2. As Dp is consistent w.r.t.R, the presence of hyperedgeen+1 in HG(Dp,IC) implies
that the minimum probability that the tuples inen+1 co-exist is equal to 0. That is,pmin

R
((γ0 ∪ γn) ∪ εn+1) = 0. On the

other hand,pmin
C

((γ0 ∪ γn) ∪ εn+1) ≤ pmin
R

((γ0 ∪ γn) ∪ εn+1), thus it must hold thatpmin
C

((γ0 ∪ γn) ∪ εn+1) = 0. Since,
according to the conflict hypergraphC, no correlation is imposed between the events (γ0 ∪ γn) andεn+1, we also have
thatpmin

C
((γ0∪ γn)∪ εn+1) = max{0, pmin

C
(γ0 ∪ γn)+ pmin

∅
(εn+1)− 1} (see Fact 2). Hence, the following inequality must

hold:
pmin
C (γ0 ∪ γn) + pmin

∅ (εn+1) − 1 ≤ 0. (A.1)

We now show that inequality (A.1) entails that Condition 2. holds. First, observe thatγ0 andγn are subsets of the
ears ofe1 anden, respectively, w.r.t. the hypergraphC. Hence, sinceC is a chain, we can apply Lemma 3 to obtain
pmin
C

(γ0 ∪ γn) in function of pmin
sub(C)(γ1 ∪ γn−1). Thus, by recursively applying (⌊ n

2⌋ times) Lemma 3, we obtain the
following expression forpmin

C
(γ0 ∪ γn) (wherex = ⌊ n

2⌋ − 1 andy = ⌈ n
2⌉ + 1):

max
{
0,max

{
0,
∑

t∈γ0
p(t) − |γ0| + 1

}
+max

{
0,
∑

t∈γn
p(t) − |γn| + 1

}
− 1+

max
{
0,max

{
0,max

{
0,
∑

t∈γ1
p(t) − |γ1| + 1

}
+max

{
0,
∑

t∈γn−1
p(t) − |γn−1| + 1

}
− 1+

. . .

max
{
0,max

{
0,
∑

t∈γx
p(t) − |γx| + 1

}
+max

{
0,
∑

t∈γy
p(t) − |γy| + 1

}
− 1+ P

}
+

. . .

max
{
0,
∑

t∈(ε2∪εn−1) p(t)−|ε2 ∪ εn−1|+ 1
}
− 1

}+

max
{
0,
∑

t∈(ε1∪εn) p(t) − |ε1 ∪ εn|+ 1
}
− 1

}

where:

P =

{
pmin
∅

(γx+1) if n is even;
pmin

ey−1
(γx+1 ∪ γy−1) otherwise.

In this formula,pmin
∅

(γx+1) = max{0,
∑

t∈γx+1
p(t) − |γx+1| + 1}, andpmin

ey−1
(γx+1 ∪ γy−1) = max{0,∑

t∈(γx+1∪γy−1) p(t) − |(γx+1 ∪ γy−1)| + 1} (the latter follows from applying Lemma 1).
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The value ofpmin
C

(γ0 ∪ γn) is greater than or equal to the sumS of the non-zero terms that occur in the expression
obtained so far, that is:

S =



∑
t∈(N\εn+1) p(t) − (|N| − |εn+1|) + n

2 + 1,
if the lengthn of the chainC is even;

∑
t∈(N\εn+1) p(t) − (|N|−|εn+1|−|εx+2|)+⌊ n

2⌋+ 1,
if the lengthn of C is odd.

The fact thatpmin
C

(γ0 ∪ γn) ≥ S straightforwardly follows from thatS is obtained by summing also possibly
negative contributions of terms of the formpmin

∅
(Z) =

∑
t∈Z p(t) − |Z| + 1, which are not considered when evaluating

pmin
C

(γ0 ∪ γn), since invocations of the max function return non-negative values only.
As the number of edges in the ringR is |E| = n+ 1, the value ofS is in every case greater than or equal to

S′ =
∑

t∈(N\εn+1)

p(t) − (|N| − |εn+1|) +

⌈
|E|
2

⌉

In brief, we have obtainedS′ ≤ S ≤ pmin
C

(γ0 ∪ γn).
SinceDp |= IC implies thatpmin

C
(γ0∪γn)+ pmin

∅
(εn+1)−1 ≤ 0 (equation (A.1)), we obtainS′ + pmin

∅
(εn+1)−1 ≤ 0.

By replacingS′ andpmin
∅

(εn+1) with the corresponding formulas, we obtain

∑

t∈(N\εn+1)

p(t) − (|N| − |εn+1|) + ⌈
|E|
2
⌉ +
∑

t∈εn+1

p(t) − |εn+1| ≤ 0

that is,
∑

t∈N p(t) − |N| +
⌈
|E|
2

⌉
≤ 0.

(⇐): We now prove the right-to-left implication, reasoning bycontradiction. Assume that both Condition 1. and 2.
hold, butDp is not consistent w.r.t. the conflict hypergraphR. However, sinceC is a hypertree and Condition 1. holds,
from Theorem 2 we have thatDp is consistent w.r.t. the conflict hypergraphC. In particular, it must be the case that
pmin
C

(en+1) = pmin
C

((γ0 ∪ γn) ∪ εn+1) > 0: otherwise, any model ofDp w.r.t. C assigning probability 0 to the event
(γ0 ∪ γn) ∪ εn+1 would be also a model forDp w.r.t. R, which is in contrast with the contradiction hypothesis.

Since, according to the conflict hypergraphC, no correlation is imposed between the events (γ0 ∪ γn) andεn+1,
we also have thatpmin

C
((γ0 ∪ γn) ∪ εn+1) = max{0, pmin

C
(γ0 ∪ γn) + pmin

∅
(εn+1) − 1} (see Fact 2). Hence, the following

inequality must hold:
pmin
C (γ0 ∪ γn) + pmin

∅ (εn+1) − 1 > 0 (A.2)

which also implies bothpmin
C

(γ0 ∪ γn) > 0 andpmin
∅

(εn+1) > 0 (as probabilities values are bounded by 1).
By applying Lemma 4, we obtain thatpmin

C
(γ0 ∪ γn) is equal to

max{0, pmin
∅

(γ0) + pmin
∅

(γn) − 1+max{0, pmin
sub(C)(γ1 ∪ γn−1) + pmin

∅
(ε1 ∪ εn) − 1}}

As shown above,pmin
C

(γ0 ∪ γn) > 0, thus the expression forpmin
C

(γ0 ∪ γn) can be simplified into:

pmin
∅

(γ0) + pmin
∅

(γn) − 1+max{0, pmin
sub(C)(γ1 ∪ γn−1) + pmin

∅
(ε1 ∪ εn) − 1}

By replacingpmin
C

(γ0 ∪ γn) with this formula in equation (A.2), we obtain

pmin
∅

(γ0) + pmin
∅

(γn) + pmin
∅

(εn+1) − 2+max{0, pmin
sub(C)(γ1 ∪ γn−1) + pmin

∅
(ε1 ∪ εn) − 1} > 0 (A.3)

Sincepmin
∅

(γ0) + pmin
∅

(γn) + pmin
∅

(εn+1) − 2 ≤ pmin
∅

(γ0 ∪ γn ∪ εn+1) (which follows from applying twice Fact 2), and
pmin
∅

(γ0∪γn∪εn+1) = max{0,
∑

t∈(γ0∪γn∪εn+1) p(t)−|(γ0∪γn∪εn+1)|+1}, and
∑

t∈(γ0∪γn∪εn+1) p(t)−|(γ0∪γn∪εn+1)|+1 ≤ 0
(Condition 1. over hyperedgeen+1), we obtain thatpmin

∅
(γ0)+pmin

∅
(γn)+pmin

∅
(εn+1)−2 ≤ 0. Hence, the second argument

of max in equation (A.3) must be strictly positive, thus equation (A.3) can be rewritten as:

pmin
∅

(γ0) + pmin
∅

(γn) + pmin
∅

(εn+1) − 2+ pmin
sub(C)(γ1 ∪ γn−1) + pmin

∅
(ε1 ∪ εn) − 1 > 0 (A.4)
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wherepmin
sub(C)(γ1 ∪ γn−1) > 0 andpmin

∅
(ε1 ∪ εn) > 0 (otherwise, the second argument of max in equation (A.3) could

not be strictly positive, being probability values boundedby 1).
Observe that all the terms of the formpmin occurring in (A.4) are strictly positive. In fact, we have already shown

that this holds forpmin
∅

(εn+1), pmin
sub(C)(γ1 ∪ γn−1), and pmin

∅
(ε1 ∪ εn). As regardspmin

∅
(γ0), the fact that it is strictly

greater than 0 derives from thepmin
∅

(γ0) = pmin
C

(γ0) (which is due to Lemma 1, asγ0 is a matryoshka w.r.t.C), and
pmin
C

(γ0) ≥ pmin
C

(γ0 ∪ γn), wherepmin
C

(γ0 ∪ γn) > 0, as shown before. The same reasoning suffices to prove that
pmin
∅

(γn) > 0.
The fact that all the terms of the formpmin

∅
in (A.4) are strictly positive implies that we can replace them with the

corresponding formulas given in Lemma 1, simplified by eliminating the max operator. Therefore, we obtain:
(∑

t∈γ0
p(t) − |γ0| + 1

)
+
(∑

t∈γn
p(t) − |γn| + 1

)
+
(∑

t∈εn+1
p(t) − |εn+1| + 1

)
+ pmin

sub(C)(γ1 ∪ γn−1)+

+
(∑

t∈ε1 p(t) − |ε1| + 1
)
+
(∑

t∈εn p(t) − |εn| + 1
)
− 1− 3 > 0

(A.5)

By recursively applying the same reasoning onpmin
sub(C)(γ1 ∪ γn−1) a number of times equal to⌊ n

2⌋, the term on the

left-hand side of equation (A.5) can be shown to be less than or equal to
∑

t∈N p(t)− |N|+
⌈
|E|
2

⌉
(depending on whether

n is even or not, analogously to the proof of the inverse implication). Thus, we obtain
∑

t∈N p(t) − |N| +
⌈
|E|
2

⌉
> 0,

which contradicts Condition 2.

Appendix A.3. Proofs of theorems 4, 5, 6, 7, and 8

Theorem 4. If IC consists of a join-free denial constraint, thencc is in PTIME. In particular, Dp |= IC iff, for each
hyperedge e of HG(Dp,IC), it holds that

∑
t∈ep(t)≤|e|−1.

Proof. LetIC consist of the denial constraintic having the form:¬[R1(~x1)∧· · ·∧Rm(~xm)∧φ1(~x1)∧· · ·∧φm(~xm)], where
no variable occurs in two distinct relation atoms ofic, and, for each built-in predicate occurring inφ1(~x1)∧· · ·∧φm(~xm)
at least one term is a constant. Given an instanceDp of Dp, we show thatDp |= IC iff for each hyperedgee of
HG(Dp,IC), it holds that

∑
t∈ep(t)≤|e|−1.

(⇒): It straightforwardly follows for the fact that, as pointed out in the core of the paper after Theorem 2, the
condition that, for each hyperedgee of HG(Dp,IC),

∑
t∈ep(t)≤ |e|−1 is a necessary condition for the consistency in

the presence of any conflict hypergraph.
(⇐): For eachi ∈ [1..m], let Rφi be the maximal set of tuples in the instance ofRi such that every tupleti ∈ Rφi

satisfiesRi(~xi) ∧ φi(~xi).
It is easy to see thatHG(Dp,IC) consists of the set of hyperedges

{
{t1, . . . , tm} | ∀i ∈ [1..m] ti ∈ Rφi

}
. Observe that

not all the hyperdeges inHG(Dp,IC) have sizem, as the same relation scheme may appear several times inic. That
is, in the case that there arei, j ∈ [1..m] with i < j such thatRφi ∩ Rφ j , ∅, the tuplesti andt j occurring in the same
hyperedge{t1, . . . , ti , . . . , t j , . . . , tm} may coincide, thus this hyperedge has size less thanm.

From the hypothesis, it holds that, for every hyperedgeeof HG(Dp,IC), it must be the case that
∑

t∈e p(t) ≤ |e|−1.
Let e∗ be the hyperedge inHG(Dp,IC) such that|e| − 1−

∑
t∈e p(t) is the minimum, that is,

e∗ = argmine∈HG(Dp,IC)

|e| − 1−
∑

t∈e

p(t)

 .

For the sake of simplicity of presentation we consider the case thate∗ has sizem, and denote its tuples ast1, . . . , tm.
The generalization to the case that the size ofe∗ is less thanm is straightforward.

Let S be a subset ofDp. We denote withDp
S the subset ofDp containing only the tuples inS. Let Pre∗ be a model

inM(Dp
e∗ ,IC). Moreover, lett′1, . . . , t

′
n be the tuples inDp/e∗.

In the following, we will define a sequence of interpretationsPr0,Pr1, . . . ,Prn such that, for eachi ∈ [0..n], Pri is
a model inM(Dp

e∗∪{t′j | j≤i},IC).

We start by takingPr0 equal toPre∗ . At the ith step we consider tuplet′i and definePri as follows:

1. In the case that, for eachj ∈ [1..m], it holds thatt′i < Rφ j , we define, for each possible worldw in pwd(e∗∪{t′j | j ≤
i}), Pri(w) = Pri−1(w \ {t′i }) · p(t′i ), if t′i ∈ w, andPri(w) = Pri−1(w \ {t′i }) · (1− p(t′i )), otherwise.
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2. Otherwise, if there isj ∈ [1..m] such thatt′i ∈ Rφ j , we consider the setJ of all the indexesj ∈ [1..m] such that
t′i ∈ Rφ j . Moreover, we denote withpJ the sum of the probabilities (computed according toPri−1) of all the
possible worldsw ∈ pwd(e∗ ∪ {t′j | j ≤ i − 1}) such that, for eachj ∈ J, the corresponding tuplet j appearing ine∗

belongs also tow, i.e., pJ =
∑

w∈pwd(e∗∪{t′j | j≤i−1}),s.t.∀ j∈J tj∈w Pri−1(w).
Then, for each possible worldw in pwd(e∗ ∪ {t′j | j ≤ i}), we definePri as follows:

• Pri(w) = Pri−1(w− {t′i }) ·
p(t′i )
pJ

, if t′i ∈ w and for eachj ∈ J it holds thatt j ∈ w,

• Pri(w) = Pri−1(w− {t′i }) ·
max(0,pJ−p(t′i ))

pJ
, if t′i < w and for eachj ∈ J it holds thatt j ∈ w,

• Pri(w) = Pri−1(w), if t′i < w and there is aj ∈ J such thatt j < w,

• Pri(w) = 0, otherwise.

We prove that for eachi ∈ [0..n] it holds thatPri is a model inM(Dp
e∗∪{t′j | j≤i},IC) reasoning by induction oni.

The proof is straightforward fori = 0. We now prove the induction step, that is, we assume thatPri−1 is a model in
M(Dp

e∗∪{t′j | j≤i−1},IC) and prove thatPri is a model inM(Dp
e∗∪{t′j | j≤i},IC).

As regards the first case of the definition ofPri from Pri−1, it is easy to see thatPri is a model inM(Dp
e∗∪{t′j | j≤i},IC)

sincePri consists in a trivial extension ofPri−1 which takes into account a tuple not correlated with the other tuples
in the database.

As regards the second case of the definition ofPri from Pri−1, it is easy to see that, ifpJ ≥ p(t′i ) thanPri guarantees
that the condition about the marginal probabilities of all the tuples ine∗ ∪ {t′j | j ≤ i} holds. Moreover,Pr j assigns zero
probability to each possible worldw such thatw 6|= IC, since, for each possible worldw in pwd(e∗ ∪ {t′j | j ≤ i}), there
is no subsetS of w such that for eachi ∈ [1..m] there is a tuplet ∈ S such thatt ∈ Rφi . The latter follows from the
induction hypothesis, which ensures thatPri−1 is a model inM(Dp

e∗∪{t′j | j≤i−1},IC), and from the fact thatPri assigns

non-zero probability to a possible worldw in pwd(e∗ ∪ {t′j | j ≤ i}) containingt′i iff for each j ∈ J it holds thatt j ∈ w.
Specifically, it can not be the case thatw contains, for eachx ∈ [1..m] such thatx < J a tupletx ∈ Rφi , as otherwise
w−{t′i } would satisfy all the conditions expressed inic, andw−{t′i } would be assigned a non-zero probability byPri−1,
thus contradicting the induction hypothesis thatPri−1 is a model inM(Dp

e∗∪{t′j | j≤i−1},IC).

We now prove thatpJ ≥ p(t′i ). Reasoning by contradiction, assume thatpJ < p(t′i ). From the definition ofpJ

it follows that pJ ≥ pmin(∧ j∈Jt j). Therefore, sincepmin(∧ j∈Jt j) is equal to max
{
0,
∑

j∈J p(t j) − |J| + 1
}

it follows that
p(t′i ) >

∑
j∈J p(t j) − |J| + 1. Consider the hyperdegee= {tx|tx ∈ e∗ ∧ x < J} ∪ {t′i }. From the definition ofe∗ it follows

that |e| − 1−
∑

t∈e p(t) ≥ |e∗| − 1−
∑

t∈e∗ p(t). The latter implies that 1− p(t′i ) ≥ |J| −
∑

j∈J p(t j), from which it follows
that
∑

j∈J p(t j) − |J| + 1 ≥ p(t′i ) which is a contradiction. Hence, we can conclude that, in this casePri is a model in
M(Dp

e∗∪{t′j | j≤i},IC).

This conclude the proof, asPrn is a model inM(Dp,IC) and thenDp |= IC.

Theorem 5. There is anIC consisting of a non-join-free denial constraint of arity3 such thatcc is NP-hard.

Proof. The reader is kindly requested to read this proof after that of Theorem 7, as the construction used there will be
exploited in the reasoning used below.

We show that the reduction from 3-coloring to cc presented in the hardness proof of Theorem 7 can be rewritten
to obtain an instance ofcc whereIC contains only a denial constraints having arity equal to 3.

Let G = 〈N,E〉 be a 3-coloring instance. We construct an equivalent instance〈Dp,IC,Dp〉 of cc as follows:

– Dp consists of the probabilistic relation schemasRp
1(Node, Color, P) andRp

2(Node1, Node2, Color1, Color2, P);

– Dp is the instance ofDp consisting of the instancesr p
1 of Rp

1, andr p
2 of Rp

2, defined as follows:

• for each noden ∈ N, and for each colorc ∈ {Red, Green, Blue}, r p
1 contains the tuple (n, c, 1

3);

• for each edge{n1, n2} ∈ E, and for each colorc ∈ {Red, Green, Blue}, r p
2 contains the tuple (n1, n2, c, c, 1);

moreover, for each noden ∈ N, and for each pair of distinct colorsc1, c2 ∈ {Red, Green, Blue}, r p
2 contains the

tuple (n, n, c1, c2, 1);
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– IC is the set of denial constraints overDp consisting of the constraint:¬[R1(x1, x2)∧R1(x3, x4)∧R2(x1, x3, x2, x4)].

Basically, the constraint inIC imposes that adjacent nodes can not be assigned the same color, and the same node
can not be assigned more than one color.

Let 〈D
p
,IC,D

p
〉 be the instance ofcc defined in the hardness proof of Theorem 1, where it was shown that an

instanceG of 3-coloring is 3-colorable iff D
p
|= IC. It is easy to see thatDp |= IC iff D

p
|= IC, which completes

the proof.

Theorem 6.If IC consists of a BEGD, thencc is in PTIME.

Proof. Let the BEGD inIC be:
ic = ¬[R1(~x, ~y1) ∧ R2(~x, ~y2) ∧ z1 , z2],

where eachzi (with i ∈ {1, 2}) is a variable in~y1 or ~y2. That is, for the sake of presentation, we assume that the
conjunction of built-in predicates inic consists of one conjunct only (this yields no loss of generality, as it is easy
to see that the reasoning used in the proof is still valid in the presence of more conjuncts). We consider two cases
separately.

Case 1: R1 = R2, that is, only one relation name occurs inic. Let X be the set of attributes inAttr(R1) corresponding to
the variables in~x, and letZ1 andZ2 be the attributes inAttr(R1) corresponding to the variablesz1 andz2, respectively.
Let r be an instance ofR1.

It is easy to see that the conflict hypergraphHG(r,IC) is a graph having the following structure: for any pair of
tuplest1, t2, there is the edge (t1, t2) in HG(r, ic) iff: 1) ∀X ∈ X, t1[X] = t2[X], and 2)t1[Z1] , t2[Z2].

This structure of the conflict hypergraph implies a partition of the tuples ofr, where the tuples in each set of
the partition share the same values of the attributes inX. Obviously,cc can be decided by considering these sets
separately.

For each setG of this partition, we reason as follows. LetPG be the set of pairs of values〈c1, c2〉 occurring as
values of attributesZ1 andZ2 in at least one tuple ofr (that is,PG is the projection ofr overZ1 andZ2). For each
pair 〈c1, c2〉 ∈ PG, let T[c1, c2] be the set of tuples inG such that,∀t ∈ T[c1, c2], t[Z1] = c1 andt[Z2] = c2. A first
necessary condition for consistency is that there is no pair〈c1, c2〉 ∈ PG such thatc1 , c2: otherwise, any tuple in
T[c1, c2] would not satisfy the constraint, thus it would not be possible to put it in any possible world with non-zero
probability2. Straightforwardly, this condition is also sufficient if z1 andz2 belong to the same relation atom. Thus, in
this case, the proof ends, as checking this condition can be done in polynomial time.

Otherwise, ifz1 andz2 belong to different relation atoms and if the above-introduced necessarycondition holds,
we proceed as follows. From what said above, it must be the case thatPG contains only pairs of the form〈c, c〉,
and, correspondingly, all the setsT[c1, c2] are of the formT[c, c]. For eachT[c, c], let p̃(T[c, c]) be the maximum
probability of the tuples inT[c, c] (i.e., p̃(T[c, c]) = maxt∈T[c,c]{p(t)}. Moreover, for each〈c, c〉 ∈ PG, take the tuple
tc in G such thatp(tc) = p̃(T[c, c]), and letTG be the set of these tuples. We show thatcc is true iff, for eachG, the
following inequality (which can be checked in polynomial time) holds:

∑

〈c,c〉∈PG

p̃(T[c, c]) ≤ 1 (A.6)

(⇒): Reasoning by contradiction, assume that, for a groupG, inequality (A.6) does not hold, but there is a model
for the PDB w.r.t.IC.

The constraint entails that, for each pair of distinct tuples t1, t2 ∈ TG, there is the edge (t1, t2) in HG(r,IC). Hence,
there is a clique inHG(r, ic) consisting of the tuples inTG. Since the sum of the probabilities of the tuples inTG is
greater than 1 (by contradiction hypothesis), and sincecc is trueonly if, for each clique in the conflict hypergraph, the
sum of the probabilities in the clique does not exceed 1, it follows thatcc is false.

(⇐): It is straightforward to see that there is model forTG w.r.t. ic, since the sum of the probabilities of the tuples
in TG is less than or equal to 1, and since the tuples inTG describe a clique inHG(TG, ic). Since, for each〈c, c〉 ∈ PG,

2Obviously, we assume that there is no tuple with zero probability, as tuples with zero probability can be discarded from the database instance.
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the tupletc in TG is such that its probability is not less than the probabilityof every other tuple inT[c, c], it is easy to
see that a modelM for G w.r.t. ic can be obtained by putting the tuples inT[c, c] other thantc in the portion of the
probability space occupied by the worlds containingtc.

Case 2: R1 , R2. We assume thatz1 ∈ ~y1 andz2 ∈ ~y2, that is, two distinct relation names occur inic, and the variables
of the inequality predicate belongs to different relation atoms. In fact, the case thatz1 andz2 belong to the same
relation atom can be proved by reasoning analogously.

Let X1 andX2 be, respectively, the set of attributes inAttr(R1) andAttr(R2) corresponding to the variables in~x,
and letZ1 andZ2 be the attributes inAttr(R1) andAttr(R2) corresponding to the variablesz1 andz2, respectively. Let
r1 be the instance ofR1, andr2 be the instance ofR2.

Observe thatic does not impose any condition between pairs of tuplest1 ∈ r1 and t2 ∈ r2 such that there are
attributesX1 ∈ X1 andX2 ∈ X2 such thatt1[X1] , t2[X2]. This entails thatcc can be decided by considering the
consistency of the tuples ofr1 andr2 sharing the same combination of values for the attributes corresponding to the
variables in~x separately from the tuples sharing different combinations of values for the same attributes. For each
combination~v = v1, . . . , vk of values for these attributes (i.e.,∀~v ∈ ΠX1

(r1) ∩ ΠX2
(r2)), let G1(~v) andG2(~v) be the sets

of tuples ofr1 andr2, respectively, where the attributes corresponding to the variables in~x have valuesv1, . . . , vk. Let
V(G1(~v)) = {t[Z1] | t ∈ G1(~v)} andV(G2(~v)) = {t[Z2] | t ∈ G2(~v)}. For eachc1 ∈ V(G1(~v)) (resp.,c2 ∈ V(G2(~v))), let
T1[c1] (resp.,T2[c2]) be the set of tuplest of G1(~v) (resp.,G2(~v)) such thatt[Z1] = c1 (resp.,t[Z2] = c2). Moreover, for
eachc1 ∈ V(G1(~v)) (resp.,c2 ∈ V(G2(~v))), let p̃(T1[c1]) (resp.,p̃(T2[c2])) be the maximum probability of the tuples
in T1[c1] (resp.,T2[c2]).

We show thatcc is true iff, ∀~v ∈ ΠX1
(r1) ∩ ΠX2

(r2), it is the case that:

∀c1 ∈ V(G1(~v)) ∀c2 ∈ V(G2(~v)) s.t. c1 , c2, it holds that̃p(T1[c1]) + p̃(T2[c2]) ≤ 1 (A.7)

(⇒): Reasoning by contradiction, assume that the database is consistent but there arec1 ∈ V(G1(~v)) andc2 ∈

V(G2(~v)), with c1 , c2, such that̃p(T1[c1]) + p̃(T2[c2]) > 1. Hence, there are tuplest1 ∈ T1[c1] and t2 ∈ T2[c2] such
that p(t1) + p(t2) > 1. As these tuples form a conflicting set, the conflict hypergraphHG(Dp,IC) contains the edge
(t1, t2). It follows that the condition of Theorem 2, that is a necessary condition for the consistency in the presence
of any hypergraph (as pointed out in the core of the paper after Theorem 2), is not satisfied, thus contradicting the
hypothesis.

(⇐): It suffices to separately consider each~v ∈ ΠX1
(r1) ∩ ΠX2

(r2), and to show that the fact that (A.7) holds for
this~v implies the consistency of the tuples inG1(~v) ∪G2(~v) (as explained above, the consistency can be checked by
separately considering the various combinations inΠX1

(r1) ∩ΠX2
(r2)).

Let t̃1 ∈ G1(~v) andt̃2 ∈ G2(~v) be such that

(i) t̃1 ∈ T1[c1] and t̃2 ∈ T2[c2], with c1 , c2; and

(ii) among the pair of tuples satisfying the above conditions, t̃1 and t̃2 have maximum probability w.r.t. the tuples
in G1(~v) andG2(~v), respectively.

If these two tuples do not exist, it means that the set of tuples G1(~v) ∪G2(~v) is consistent, as there are no tuples
coinciding in the values of the attributes corresponding to~x, but not in the attributes corresponding toz1 andz2. It
remains to be proved that, if these two tuples exist, then thetuples inG1(~v) ∪G2(~v) are consistent w.r.t.IC. In fact,
equation (A.7) ensures thatp(t̃1) + p(t̃2) ≤ 1, which in turn entails that a model for{̃t1, t̃2} w.r.t. IC exists. Starting
from this model, a modelM for G1(~v) ∪G2(~v) w.r.t. IC can be obtained as follows. The tuples inG1(~v) other than
t̃1 which are conflicting with at least one tupleG2(~v) are put in the portion of the probability space occupied by the
worlds containing̃t1. This can be done since the fact thatt̃1 has maximum probability among the tuples inG1(~v)
conflicting with at least one tuple inG2(~v) makes any other tuple inG1(~v) conflicting with at least one tuple inG2(~v)
have a probability which fits the portion of the probability space occupied bỹt1. Similarly, the tuples inG2(~v) other
thant̃2 which are conflicting with at least one tupleG1(~v) are put in the portion of the probability space occupied by
the worlds containing̃t2. Also in this case, this can be done sincet̃2 has maximum probability among the tuples in
G2(~v) conflicting with at least one tuple inG1(~v). Finally, any tuple inG1(~v) (resp.,G2(~v)) which is conflicting with
no tuple inG2(~v) (resp.,G1(~v)) can be put in any portion of the probability space, since its co-occurrence with any
other tuple makes no constraint violated.
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Theorem 7. There is anIC consisting of2 FDs over the same relation scheme such thatcc is NP-hard.

Proof. We show a LOGSPACE reduction from 3-coloring to cc which yieldscc instances whereIC contains only
functional dependencies. The rationale of the proof is similar to the proof in [22] of theNP-hardness of PSAT.

We briefly recall the definition of 3-coloring. An instance of 3-coloring consists of a graphG = 〈N,E〉, whereN
is a set of node identifiers andE is a set of edges (pairs of node identifiers). The answer of a 3-coloring instance is
true iff there is a total functionf : N → {Red, Green, Blue} such thatf (ni) , f (n j) whenever{ni , n j} ∈ E ( f is said to
be a 3-coloring function overG).

Let G = 〈N,E〉 be a 3-coloring instance. We construct an equivalent instance〈Dp,IC,Dp〉 of cc as follows:

– Dp consists of the probabilistic relation schemaRp(Node, Color, IdEdge, P);

– Dp is the instance ofDp consisting of the instancer p of Rp defined as follows: for each noden ∈ N, for each edge
e ∈ E such thatn ∈ e, and for each colorc ∈ {Red,Green,Blue}, r p contains the tuple (n, c, e, 1

3).

– IC is the set of denial constraints overDp consisting of the following two functional dependencies:

ic1 : ¬[R(x1, x2, x3) ∧ R(x1, x4, x5) ∧ x2 , x4]

ic2 : ¬[R(x1, x2, x3) ∧ R(x4, x2, x3) ∧ x1 , x4]

We first show that, ifG is 3-colorable, thenDp |= IC. In fact, given a 3-coloring functionf overG, the interpre-
tationPr defined below is a model ofDp w.r.t. IC. Pr assigns non zero probability to the following three possible
worlds only:
w1 = {R(n, f (n), e) | n ∈ N, e ∈ E ∧ n ∈ e};
w2 = {R(n, Next( f (n)), e) | n ∈ N, e ∈ E ∧ n ∈ e};
w3 = {R(n, Next(Next( f (n))), e) | n ∈ N, e ∈ E ∧ n ∈ e},
whereNextis a function which receives a colorc ∈ {Red, Green, Blue} and returns the next color in the sequence [Red,
Green, Blue] (whereNext(Blue) returnsRed). Specifically,Pr assigns probability13 to all the three possible worlds
w1,w2, w3. It is easy to see that each possible worldw1,w2,w3 satisfiesIC and that every tuple inDp appears exactly
in one possible world in{w1,w2,w3}. ThereforePr is a model ofDp.

We now show that, ifDp |= IC, thenG is 3-colorable. It is easy to see thatG is 3-colorable if there is a modelPr
for Dp w.r.t. IC having the following propertyΠ: Pr assigns non-zero probability only to 3-coloring possible worlds,
i.e., possible worlds containing, for each edgee = (ni , n j) ∈ E, two tuplestei = R(ni , ci, e) andtej = R(n j, c j , e), where
ci , c j . In fact, starting fromPr and a 3-coloring possible worldw with Pr(w) > 0, a functionf w can be defined which
assigns to each noden ∈ N the colorc if there is a tupleR(n, c, e) ∈ w ( f w is a function since it is injective, asw cannot
contain tuples assigning different colors to the same node). Clearly,f w is a 3-coloring function, as it associates every
noden with a unique color and assigns different colors to pairs of nodes connected by an edge. Hence, itremains
to be shown that at least one model satisfyingΠ exists. In fact, we prove that any model forDp w.r.t. IC satisfies
Π. Reasoning by contradiction, assume that, for a modelPr, there is a non-3-coloring possible worldw∗ such that
Pr(w∗) = ǫ > 0. That is, there is at least a pairn, e, with n ∈ N ande ∈ E such that for eachc ∈ {Red,Green,Blue},
R(n, c, e) < w∗. Now, consider the tuplest1 = R(n,Red, e), t2 = R(n,Green, e), t3 = R(n,Blue, e) and the sets
S1 = {w ∈ pwd(Dp) | t1 ∈ w∧ Pr(w) > 0},
S2 = {w ∈ pwd(Dp) | t2 ∈ w∧ Pr(w) > 0},
S3 = {w ∈ pwd(Dp) | t3 ∈ w∧ Pr(w) > 0}.
Sinceic1 is satisfied by every possible worldw ∈ pwd(Dp) such thatPr(w) > 0, this means that for each possible
world w there is at most one colorc ∈ {Red,Green,Blue} such that the tupleR(n, c, e) belongs tow. Therefore, it must
be the case that,∀i, j ∈ {1, 2, 3}, i , j, Si ∩ S j = ∅. SincePr is an interpretation, the following equalities must hold:

• 1
3 = p(t1) =

∑
w∈S1

Pr(w);

• 1
3 = p(t2) =

∑
w∈S2

Pr(w);

• 1
3 = p(t3) =

∑
w∈S3

Pr(w).
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This implies that ∑

w∈S1

Pr(w) +
∑

w∈S2

Pr(w) +
∑

w∈S3

Pr(w) = 1

However, sincePr(w∗) = ǫ > 0 andPr is an interpretation,
∑

w∈pwd(Dp)\{w∗} Pr(w) < 1. The latter, sincew∗ < Si

for eachi ∈ {1, 2, 3}, implies thatpwd(Dp) \ {w∗} ⊇ S1 ∪ S2 ∪ S3, and then
∑

w∈(S1∪S2∪S3) Pr(w) < 1 which is a
contradiction.

Theorem 8. Let each denial constraint inIC be join-free or a BEGD. If, for each pair of distinct constraints ic1,ic2

in IC, the relation names occurring in ic1 are distinct from those in ic2, thencc is in PTIME.

Proof. Trivially follows from theorems 6, 4, and from the fact that the consistency can be checked by considering the
maximal connected components of the conflict hypergraph separately.

Theorem 9. If IC consists of one FD per relation, then HG(Dp,IC) is a graph where each connected component is
either a singleton or a complete multipartite graph. Moreover, Dp is consistent w.r.t.IC iff the following property
holds: for each connected component C of HG(Dp,IC), denoting the maximal independent sets of C as S1, . . . ,Sk, it
is the case that

∑
i∈[1..k] p̃i ≤ 1, wherep̃i = maxt∈Si p(t).

Proof. It is easy to see that multiple FDs over distinct relations involve disjoint sets of tuples. Thus, it is straightfor-
ward to see that the conflict hypergraph has the structural property described in the statement iff, for each relation,
the conflict hypergraph over the set of tuples of this relation is a graph having the same structural property. More-
over, as observed in the proof of Theorem 8, the consistency can be checked by considering the maximal connected
components of the conflict hypergraph separately.

This implies that, in order to prove the statement, it suffices to consider the case that thatIC consists of a unique
FD ic over a relationR, andDp consists of an instancer of R. In particular, we assume thatic is of the form:

¬[R(~x, ~y1) ∧ R(~x, ~y2) ∧ z1 , z2],

wherez1 andz2 are variables in~y1 and~y2, respectively, corresponding to the same attributeZ of R. That is, we are
assuming that the FDic is in canonical form (i.e., its right-hand side consists of aunique attribute). This yields no
loss of generality, as it is easy to see that the reasoning used in the proof is still valid in the presence of FDs whose
right-hand sides contain more than one attribute.

The relation instancer can be partitioned into the two relationsr ′, r ′′, containing the tuples connected to at least
another tuple inHG(Dp,IC) (that is, tuples belonging to some conflicting set) and the isolated tuples (that is, tuples
belonging to no conflicting set), respectively. Obviously,the subgraph ofHG(Dp,IC) containing only the tuples in
r ′′ contains no edge, and it is such that each of its connected component is a singleton. Therefore, in order to complete
the proof of the first part of the statement, it remains to be proved that the subgraphG of HG(Dp,IC) containing only
the tuples inr ′ is such that each of its connected component is a complete multipartite graph.

Let X be the set of attributes inAttr(R) corresponding to the variables in~x. The form ofic implies thatG is a graph
having the following structural propertyS: for any pair of tuplest1, t2, there is the edge (t1, t2) in G iff: 1) ∀X ∈ X,
t1[X] = t2[X], and 2)t1[Z] , t2[Z].

This implies thatG has as many connected components as the cardinality ofΠXr ′. Specifically, each connected
component ofG corresponds to a tuple~v in ΠXr ′, as it contains every tuple ofr ′ whose projection overX coincides
with ~v. In fact, propertyS implies that:

A. there is no path inG between tuples differing in at least one attribute inX;
B. any two tuplest′, t′′ coinciding in all the attributes inX are either directly connected to one another (in the

case that they do not coincide in attributeZ), or there is a third tuplet′′′ to which they are both connected. In
fact, t′ andt′′ are not isolated (otherwise they would not belong tor ′), and any tuple conflicting witht′ is also
conflicting witht′′, as we are in the case thatt′ andt′′ coincide inZ.

To complete the proof of the first part of the statement, we nowshow that, taken any connected componentC of
G, C is a complete multipartite graph. This straightforwardly follows from the following facts:
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a. the nodes ofC can be partitioned into the maximal independent setsS1, . . . ,Sk, wherek is the number of distinct
values of attributeZ occurring in the tuples inC. In particular, eachSi corresponds to one of these valuesv of Z,
and contains all the tuples ofC havingv as value of attributeZ. The fact that everySi is a maximal independent
set trivially follows from propertyS.

b. for every pair of tuplesti andt j belonging toSi andS j (with i, j ∈ [1..k] andi , j), there is an edge connecting
ti to t j (this also trivially follows from propertyS).

We now prove the second part of the statement.
(⇒): Reasoning by contradiction, assume thatDp is consistent w.r.t.IC but, for some connected componentC of

HG(Dp,IC), it does not hold that
∑

i∈[1..k] p̃i ≤ 1, where ˜pi = maxt∈Si p(t) andS1, . . . ,Sk are the maximal independent
sets ofC. Obviously,C can not be a singleton (otherwise the inequality would hold), thus it must be the case thatC is
a complete multipartite graph.

For eachi ∈ [1..k], let t̃i be a tuple ofSi such thatp(t̃i) = p̃i . SinceC is a complete multipartite graph, and since
the so obtained tuples̃t1, . . . , t̃k belong to distinct independent sets, it must be the case that, for eachi, j ∈ [1..k] with
i , j, there is an edge inC betweeñti andt̃ j . This means that, in every modelM for Dp w.r.t. IC, for eachi, j ∈ [1..k]
with i , j, the tuples̃ti , t̃ j can not co-exist in a non-zero probability possible world. That is, every non-zero probability
possible world contains at most one tuple among those in{t̃1, . . . , t̃k}. This entails that the sum of the probabilities of
the possible worlds containing the tuples in{t̃1, . . . , t̃k} is equal to the sum of the marginal probabilities of the tuples
in {t̃1, . . . , t̃k}, which, by contradiction hypothesis, is greater than 1. This contradicts the fact thatM is a model.

(⇐): We now show thatDp is consistent w.r.t.IC if the inequality
∑

i∈[1..k] p̃i ≤ 1 holds, where ˜pi = maxt∈Si p(t)
andS1, . . . ,Sk are the maximal independent sets ofC. Consider the database instanceD̃p consisting of the tuples
t̃1, . . . , t̃k wheret̃i (with i ∈ [1..k]) is a tuple ofSi such thatp(t̃i) = p̃i . It is easy to see that there is a model forD̃p

w.r.t. IC: sinceC is a complete multipartite graph, andt̃1, . . . , t̃k belong to distinct independent sets ofC, it follows
that, for eachi, j ∈ [1..k] with i , j, there is exactly one edge inC betweeñti and t̃ j . That is, the conflict graph of
D̃p w.r.t. IC is a clique. Hence, the fact that inequality

∑
i∈[1..k] p̃i ≤ 1 holds is sufficient to ensure the existence of a

modelM̃ for D̃p w.r.t. IC. Starting fromM̃, a model forDp w.r.t. IC can be obtained by reasoning as follows. Since,
for each maximal independent setSi of C (with i ∈ [1..k]), the tuples inSi other thañti are such that their probability
is less than or equal top(t̃i), a modelM for Dp w.r.t. IC can be obtained by putting the tuples inSi other thañti in the
portion of the probability space corresponding to that occupied by the worlds containing̃ti according the model̃M.
The fact thatM is a model follows from the fact that, for eachi ∈ [1..k], the tuples inSi other thañti are conflicting
only with the same tuples which are conflicting witht̃i .

Appendix A.4. Proofs of Lemma 2 and Theorem 11

Lemma 2. Let Q be a conjunctive query overDp, Dp an instance ofDp, and~t an answer of Q having minimum
probability pmin and maximum probability pmax. Let m be the number of tuples in Dp plus3 and a be the maximum
among the numerators and denominators of the probabilitiesof the tuples in Dp. Then pmin and pmax are expressible
as fractions of the formη

δ
, with 0 ≤ η ≤ (ma)m and0 < δ ≤ (ma)m.

Proof. Consider the equivalent form of the linear programming problem LP(S∗) described in the proof of Proposi-
tion 2, where equalities (e1) of S∗(Dp,IC,Dp) are rewritten as:
∀t ∈ Dp, d(p(t)) ×

∑
i|wi∈pwd(Dp)∧t∈wi

vi = d(p(t)) × p(t),

wherep(t) = n(p(t))
d(p(t)) (i.e., n(p(t)) andd(p(t)) are the numerator and denominator ofp(t), respectively). This way,

we have that all the coefficients ofS∗(Dp,IC,Dp) are integers, where each coefficient can be either 0, or 1, or the
numerator or the denominator of the marginal probability ofa tuple ofDp.

In [42], it was shown that the solution of any instance of the linear programming problem with integer coefficients
is expressible as a fraction of the formη

δ
, where bothη andδ are naturals bounded by (ma)m, wherem is the number

of (in)equalities anda the greatest integer coefficient occurring in the instance. By applying this result toLP(S∗), we
get the statement: in fact, it is easy to see thati) S∗(Dp,IC,Dp) contains integer coefficients only,ii ) the numberm
of (in)equalities inS∗(Dp,IC,Dp) is equal to the number of tuples inDp plus 3, andiii ) the greatest integer constant
a in S∗(Dp,IC,Dp) is the maximum among the numerators and denominators of theprobabilities of the tuples in
Dp.
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Theorem 11.(Lower bound ofmp) There is at least one conjunctive query without projection for whichmp is coNP-
hard, even ifIC consists of binary constraints only.

Proof. We show a reduction from the planar 3-coloring problem to the complement of the membership problem (mp).
An instance of planar 3-coloring consists of a planar graphG = 〈N,E〉, whereN is a set of node identifiers andE is
a set of edges (pairs of node identifiers). The answer of a planar 3-coloring instanceG is true iff there is a 3-coloring
function overG, i.e., a total functionf : N → {R,G, B} such thatf (ni) , f (n j) whenever{ni , n j} ∈ E. Observe
that every planar graphG = 〈N,E〉 is 4-colorable, that is, there exists a functionf : N → {R,G, B,C} such that
f (ni) , f (n j) whenever{ni , n j} ∈ E (in this case,f is said to be a 4-coloring function).

Let G = 〈N,E〉 be a planar 3-coloring instance. We construct an equivalentmp instance〈Dp,IC,Dp,Q, t, k1, k2〉

as follows:

– Dp consists of the probabilistic relation schemasRp
G(Node, Color, IdEdge, P) andRp

φ(Tid,P).

– Dp is the instance ofDp consisting of the instancesr p
G of Rp

G andr p
φ of Rp

φ defined as follows:

– for each noden ∈ N and for each edgee ∈ E such thatn ∈ e, r p
G contains four tuples of the formRp

G(n, c, e, 1
8),

one for eachc ∈ {R,G, B,C};
– r p
φ consists of the tuplesRp

φ(1,
1
2) andRp

φ(2,
1
2) only;

– IC contains the following binary denial constraints:

ic1 : ¬[RG(x1, x2, x3) ∧ RG(x1, x4, x5) ∧ x2 , x4];
ic2 : ¬[RG(x1, x2, x3) ∧ RG(x4, x2, x3) ∧ x1 , x4];

ic3 : ¬[RG(x1, x2, x3) ∧ Rφ(2)];
ic4 : ¬[RG(x1, x2,C) ∧ Rφ(1)];

– Q(x, y) = Rφ(x) ∧ Rφ(y);

– t = (1, 2);

– k1 =
1
2;

– k2 = 1.

It is easy to see that the fact thatG is 4-colorable implies thatDp is consistent w.r.t.IC (it suffices to follow the
same reasoning as the proof of Theorem 1, using 4 colors instead of 3).

We first prove that, ifG is 3-colorable, then the corresponding instance ofmp is true. Letf be a 3-coloring function
overG. Consider an interpretationPr for Dp which assigns non-zero probability to the following possible worlds only:
w1 = {RG(n, f (n), e) | n ∈ N, e ∈ E ∧ n ∈ e} ∪ {Rφ(1)}
w2 = {RG(n, Next( f (n)), e) | n ∈ N, e ∈ E ∧ n ∈ e}
w3 = {RG(n, Next(Next( f (n))), e) | n ∈ N, e ∈ E ∧ n ∈ e}
w4 = {RG(n, Next(Next(Next( f (n)))), e) | n∈N, e∈E ∧ n∈e}
w5 = {Rφ(1),Rφ(2)}
w6 = {Rφ(2)}
whereNextis a function which receives a colorc ∈ {R,G, B,C} and returns the next color in the sequence [R,G, B,C]
(whereNext(C) returnsR). Furthermore,Pr assigns probability18 to the possible worldsw1,w2,w3,w4 andw5, and
probability 3

8 to the possible worldw6. It is easy to see thatPr is a model ofDp w.r.t. IC and the probability that the
tuplet = (1, 2) is an answer ofQ assigned byPr is 1

8. Hence, themp is true in this case (as18 < k1).
We now prove that ifG is not 3-colorable, then the corresponding instance ofmp is false. First observe that,

reasoning similarly to in the proof of Theorem 1, it is possible to show that, for each modelPr of Dp w.r.t. IC and for
each possible worldw such thatPr(w) > 0, if w contains at least a tuple ofrG, then for each noden ∈ N and for each
edgee ∈ E such thatn ∈ e, there existsc ∈ {R,G, B,C} such thatw contains the tupleRG(n, c, e). This is due to the
fact that every possible worldw such thatPr(w) > 0 can not contain two tuplesRG(n, c′, e),RG(n, c′′, e) and no tuple
in rG can belong to a possible world which contains the tupleRφ(2) too.
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SinceG is not 3-colorable, for each modelPr of Dp w.r.t. IC and for each possible worldw such thatPr(w) > 0
containing at least a tuple ofrG, it holds thatw contains a tupleRG(n,C, e). This implies that no possible world
containing a tuple ofrG can contain the tupleRφ(1), as otherwiseic4 would be violated. Sinceic1 and ic3 hold for
Pr, then the sum of the probability of the possible worlds containing at least a tuple ofrG is equal to1

2 . Since the
possible worlds containing at least a tuple ofrG cannot contain neitherRφ(1) norRφ(2) (asic4 holds) and bothRφ(1)
norRφ(2) has probability1

2 it holds that the probability that bothRφ(1) andRφ(2) are true is1
2. The latter implies that

the minimum probability thatt = (1, 2) is an answer ofQ is 1
2, which is equal tok1. Therefore themp is false ifG is

not 3-colorable.

Appendix A.5. Proof of Theorem 12

Theorem 12.(qa complexity)qa belongs to FPNP and is FPNP[log n]-hard.

Proof. The membership inFPNP follows from [35], where it was shown that a problem more general than ours (that is,
the entailment problem for probabilistic logic programs with conditional rules) belongs toFPNP (seeRelated Work).
We prove the hardness forFPNP[log n] by showing a reduction toqa from the well-knownFPNP[log n]-hard problem
clique size, that is the problem of determining the sizeK∗ of the largest clique of a given graph.

Let the graphG = 〈N,E〉 be an instance ofclique size, whereu1, . . . , un are the nodes ofG (wheren = |N|).
We construct an equivalent instance〈Dp,IC,Dp,Q〉 of qa as follows. Dp is the database schema consisting of the
following relation schemas:Nodep(Id, P), NoEdgep(nodeId1, nodeId2, P), Flagp(Id, P). The database instanceDp

consists of the following relation instances. Relationnodep contains a tupleti = Nodep(ui, 1/n) for each nodeui of G
(that is, every node ofG corresponds to a tuple ofnodep having probability1/n). RelationnoEdgep contains a tuple
NoEdgep(ui, u j, 1) for each pair of distinct nodes ofG which are not connected by means of any edge inE (thus,
noEdgep represents the complement ofE, and all of its tuples have probability 1). Finally, relation flagp contains the
unique tupleFlagp(1, n−1

n ).
LetIC consist of the following denial constraints overDp:

ic1 : ¬[Node(x1) ∧ Node(x2) ∧ NoEdge(x1, x2)]

ic2 : ¬[Node(x1) ∧ Node(x2) ∧ Flag(1) ∧ x1 , x2]

Basically, constraintic1 forbids that tuples representing distinct nodes co-exist if they are not connected by any
edge, whileic2 imposes that tupleFlag(1) can co-exist with at most one tuple representing a node.

To complete the definition of the instance ofqa, we define the (boolean) queryQ() =Flag(1)∧Node(x).
We will show that the size of the largest clique ofG is K∗ iff the empty tuplet∅ is an answer ofQ overDp with

minimum probabilityl∗ = n−K∗

n (i.e.,Ans(Q,Dp,IC) consists of the pair〈t∅, [pmin, pmax]〉, with pmin = n−K∗

n ).
We first show that ifG contains a clique of sizeK, thenpmin ≤ n−K

n . In fact, if K is the size of a cliqueC of G, then
we can construct the following modelM for Dp w.r.t. IC. Let wc = {Node(ui)|ui ∈ C}∪ noEdge, wf = { Flag(1)}∪
noEdge, and, for eachui ∈ N \C, wi = {Node(ui), Flag(1)}∪ noEdge. Then, denoting asw the generic possible world,
the modelM is defined as follows:

M(w) =



1/n if w = wc;
1/n if w = wi , for i s.t. ui ∈ N \C;
(K−1)/n if w = wf ;
0 otherwise

It is easy to see thatM is a model. First of all, it assigns non-zero probability only to possible worlds satisfying
the constraints. Moreover, for any tuplet in Dp, summing the probabilities of the possible worlds containing t results
in t[P]. In fact, considering only the possible worlds which have been assigned a non-zero probability byM, every
tupleNode(ui) representing a nodeui ∈ C belongs only towc, which is assigned byM the probability1/n (the same as
p(Node(ui))). Analogously, every tupleNode(ui) representing a nodeui < C belongs only towi , which is assigned by
M the probability1/n (the same asp(Node(ui))). Finally, tupleFlag(1) occurs only inwf and inn− K possible worlds
of the formwi , thus the sum of the probabilities of the possible worlds containingFlag(1) is M(wf ) + (n− K) · 1

n =
(n−1)

n = p(Flag(1)).
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It is easy to see that the probability of the answert∅ of Q over the modelM is the sum of the probabilities of the
possible worlds of the formwi , that is (n−K)

n . Hence, from definition of minimum probability, it holds that pmin ≤
(n−K)

n .
To complete the proof, it suffices to show that the following propertyP holds over any modelM′ for Dp w.r.t.

IC: “ the probability l of the answer t∅ of Q over M′ can not be strictly less than l∗ = (n−K∗)
n ”. Observe that, for

every modelM′, the possible worlds which have been assigned a non-zero probability by M′ can be of three types
(we do not considernoEdgetuples, as they have probability 1, thus they belong to everynon-zero-probability possible
world):

Type 1: world not containingFlag(1), and containing a non-empty set of tuples representing the nodes of a clique
(the non-emptiness of this set derives from the combinationof constraintic2 with the value of the marginal
probability assigned to tupleFlag(1));

Type 2: world containing the tupleFlag(1) and exactly onenodetuple;

Type 3: world containing the tupleFlag(1) only.

We will show that propertyP holds over any modelM′ by reasoning inductively on the numberx of possible worlds
of Type 1 which have been assigned a non-zero probability byM′.

The base case isx = 1, meaning thatM′ assigns probability1/n to a unique Type-1 worldwT1
1 , and probability 0 to

all the other possible worlds of the same type. It is easy to see that the sum of the probabilities assigned byM′ to the
Type-2 worlds (which coincides withl) is equal to1

n · (n− |C
T1
1 |), whereCT1

1 is the clique represented bywT1
1 . Hence,

if it were l < l∗, it would hold that1n · (n− |C
T1
1 |) <

(n−K∗)
n , which means that|CT1

1 | > K∗, thus contradicting thatK∗ is
the size of the maximum clique ofG.

We now prove the induction step. The induction hypothesis isthatP holds over any model assigning non-zero
probability to exactlyx− 1 Type-1 possible worlds (withx− 1 ≥ 1). We show that this implies thatP holds also over
any model assigning non-zero probability to exactlyx Type-1 possible worlds. Consider a modelM′ assigning non-
zero probability to exactlyx Type-1 possible worlds, namelywT1

1 , . . . ,w
T1
x . We assume that these worlds are ordered

by their cardinality (in descending order), and denote asCi the clique represented bywT1
i (with i ∈ [1..x]). We also

denote aswT2
1 , . . . ,w

T2
n the Type-2 possible worlds (wherewT2

i contains thenodetuple representingui). Moreover, let
l′ be the probability of the answert∅ of Q overM′. We show that, starting fromM′, a new modelM′′ for Dp w.r.t. IC
can be constructed such that:
i) M′′ assigns non-zero probability tox− 1 Type-1 possible worlds;
ii ) the probabilityl′′ of the answertrueof Q overM′′ satisfiesl′′ ≤ l′.
Specifically,M′′ is defined as follows.M′′ coincides withM′ on all the Type-1 worlds except for the probabilities
assigned towT1

1 andwT1
x . In particular,M′′(wT1

1 ) = M′(wT1
1 ) + M′(wT1

x ), while M′′(wT1
x ) = 0. Moreover, for each

Type-2 worldwT2
i such thatui ∈ C1 \Cx, M′′(wT2

i ) = M′(wT2
i ) − M′(wT1

x ), and, for each Type-2 worldwT2
i such that

ui ∈ Cx \ C1, M′′(wT2) = M′(wT2) + M′(wT1
x ). On the remaining Type-2 worlds,M′′ is set equal toM′. Finally,

denoting the type-3 world aswT3, M′′(wT3) = M′(wT3) − |Cx \ C1| · M′(Cx) + |C1 \ Cx| · M′(Cx). In brief, M′′ is
obtained fromM′ by moving the probability assigned towT1

x to wT1
1 , and re-assigning the probabilities of the Type-2

and Type-3 worlds accordingly. Hence, it is easy to see thatM′′ is still a model (as it can be easily checked that
it makes the sum of the probabilities of the possible worlds containing a tuple equal to the marginal probability of
the tuple). Moreover, propertyi) holds, asM′′ assigns probability 0 to the worldwT1

x , while the other worlds of
the formwT1

i (with i < x) are still assigned byM′′ a positive probability, and the remaining Type-1 worlds arestill
assigned probability 0. Also propertyii ) holds, since the probability oftrue as answer ofQ over M′′ is given by
l′′ = l′ + |Cx \C1| ·M′(Cx)− |C1 \Cx| ·M′(Cx). Since|C1| ≥ |Cx|, and thus|C1 \Cx| ≥ |Cx \C1|, l′′ is less than or equal
to l′. If it were l′ < l∗ (and thusl′′ < l∗) M′′ would be a model assigning non-zero probability tox− 1 Type-1 possible
worlds such that the answertrue of Q over M′′ has probability strictly less thanl∗, thus contradicting the induction
hypothesis.

Appendix A.6. Proof of Theorem 13
The proof of Theorem 13 is postponed to the end of this section, after introducing some preliminary lemmas.

Lemma 4. Let Dp be a PDB instance ofDp such that HG(Dp, IC) is a graph and Dp |= IC. Let t, t′ be two tuples
connected by exactly one path in HG(Dp,IC). Then, pmin(t ∧ t′) and pmax(t ∧ t′) can be computed in polynomial time
w.r.t. the size of Dp.
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Proof. Let π be the path connectingt andt′ in HG(Dp,IC). It is easy to see that the fact thatπ is unique implies that
pmin(t∧ t′) = pmin

π (t∧ t′) andpmax(t∧ t′) = pmax
π (t∧ t′) (in fact, any model forDp w.r.t. HG(Dp,IC) can be obtained by

refining a model forDp w.r.t. π without changing the probabilities assigned to the eventt ∧ t′, following a reasoning
analogous to that used in the proof of the right-to-left implication of Theorem 2).

Since the pathπ connectingt andt′ in the graphHG(Dp,IC) is unique, it does not contain cycles (otherwise there
would be at least two paths betweent andt′). Hence,π is a chain in a graph (the definition of chain for hypergraph
is introduced in Section Appendix A.2). Therefore,pmin

π (t ∧ t′) can be determined by exploiting Lemma 3, which
provides the formula for computing the minimum probabilitythat the ears at the endpoints of a chain co-exist. It
is trivial to see that, denoting aŝt and t̂′ the tuples connected tot and t′ in π, in our case the formula in Lemma 3
becomes:

pmin
π (t ∧ t′)=

{
0, if ( t, t′) is an edge ofπ

max{0, p(t)+p(t′)−[1−pmin
π (t̂∧ t̂′)]}, otherwise.

sinceπ is a chain in a graph, thus its intermediate edges are hyperedges of cardinality 2 with no ears.
As regardspmax

π (t ∧ t′), it can be evaluated as follows:

pmax
π (t ∧ t′)=



0, if ( t, t′) is an edge ofπ

min{p(t), p(t′), 1−[p(t̂)+p(t̂′)−pmax
π (t̂∧ t̂′)]},

otherwise.
In fact, it is easy to see that the maximum probability of the event t ∧ t′ is min{p(t), p(t′), pmax

π (¬t̂∧¬t̂′)}, where
pmax
π (¬t̂∧¬t̂′) is the maximum probability that both the tuplest̂ and t̂′ (which are mutually exclusive witht andt′,

respectively) are false. In turn,pmax
π (¬t̂ ∧¬t̂′) = 1 − pmin

π (t̂ ∨ t̂′) = 1 − [p(t̂)+ p(t̂′)− pmax
π (t̂ ∧ t̂′)], thus proving the

above-reported formula.
We complete the proof by observing thatpmin(t ∧ t′) andpmax(t ∧ t′) can be computed in polynomial time w.r.t.

the size ofDp by recursively applying the above-reported formulas forpmin andpmax starting fromt andt′, and going
further on towards the center of the unique path connectingt andt′.

Lemma 5. For projection-free queries,qa is in PT IME if HG(Dp,IC) is a clique.

Proof. It straightforwardly follows from the fact that, for each pair of tuplest, t′ in HG(Dp,IC), it holds thatpmin(t ∧
t′) = pmax(t ∧ t′) = 0.

Lemma 6. For projection-free queries,qa is in PT IME if HG(Dp,IC) is a tree.

Proof. Ans(Q,Dp,IC) can be determined by first evaluating the answerrq of Q w.r.t. det(Dp), and then computing,
for each~t ∈ rq, the minimum and maximum probabilitiespmin and pmax of ~t as answer ofQ. Obviously,rq can be
evaluated in polynomial time w.r.t. the size ofDp, and the number of tuples inrq is polynomially bounded by the size
of Dp.

Observe that, every ground tuple~t ∈ rq derives from the conjunction of a set of tuples{t1, . . . , tn} in det(Dp).
Thus, in order to prove the statement, it suffices to prove that, for each set{t1, . . . , tn} of tuples indet(Dp), computing
pmin(t1 ∧ · · · ∧ tn) andpmax(t1 ∧ · · · ∧ tn) is feasible in polynomial time w.r.t. the size ofDp.

For the sake of clarity of presentation, we assume thatHG(Dp,IC) coincides with its own minimal spanning tree
containing all the tuples in{t1, . . . , tn}. This means that eachti (with i ∈ [1..n]) is either a leaf node or occurs as
intermediate node in the path connecting two other tuples in{t1, . . . , tn}, and all the leaf nodes are in{t1, . . . , tn}. In
fact, if this were not the case, it is straightforward to see that nothing would change in evaluatingpmin(t1 ∧ · · · ∧ tn)
andpmax(t1 ∧ · · · ∧ tn) if we disregarded the nodes ofHG(Dp,IC) which are not in{t1, . . . , tn} and do not belong to
any path connecting some pair of nodes in{t1, . . . , tn}.

Before showing howpmin(t1 ∧ · · · ∧ tn) and pmax(t1 ∧ · · · ∧ tn) can be computed, we introduce some notations.
We say that a tuplet is abranching nodeof HG(Dp,IC) iff the degree oft is greater than two. Moreover, a pair of
tuples (ti , t j) is said to be anelementary pair of tuplesof HG(Dp,IC) if ( i) each ofti andt j is either in{t1, . . . , tn}
or a branching node, and (ii ) the path connectingti to t j contains neither branching nodes nor tuples in{t1, . . . , tn} as
intermediate nodes.

The set of the elementary pairs of tuples is denoted asEPHG(Dp,IC) (we also use the short notationEP, when
HG(Dp,IC) is understood). Moreover, we denote the branching nodes ofHG(Dp,IC) which are not in{t1, . . . , tn} as
tn+1, · · · , tn+m. Observe thatm< n, asn is also greater than or equal to the number of leaves ofHG(Dp,IC). Finally,
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we denote withB = {true, false} the boolean domain, withBn+m the set of all the tuples ofn+m boolean values, and
use the symbolα for tuples ofn+mboolean values and the notationα[i] to indicate the value of thei-th attribute ofα.

We will show thatpmin(t1 ∧ · · · ∧ tn) (resp.,pmax(t1 ∧ · · · ∧ tn)) is a solution of the following linear programming
problem instanceLP(t1 ∧ · · · ∧ tn,Dp,IC,Dp):

minimize(resp.,maximize)
∑

α∈Bn+m | ∀i∈[1..n] α[i]=true

xα

subject to S(t1 ∧ · · · ∧ tn,D
p,IC,Dp)

whereS(t1 ∧ · · · ∧ tn,Dp,IC,Dp) is the following system of linear inequalities:



∀(ti , t j)∈EP
∑

α ∈ Bn+m |

α[i] = true∧
α[ j] = true

xα = xti ,t j (A)

∀(ti , t j)∈EP pmin(ti ∧ t j) ≤ xti ,t j ≤ pmax(ti ∧ t j) (B)

∀i ∈ [1..n+m]
∑
α∈Bn+m |α[i]=true xα = p(ti) (C)
∑
α∈Bn+mxα = 1 (D)

Therein: (i) xti ,t j is a variable representing the probability thatti andt j coexist; and (ii ) ∀α ∈ Bn+m, xα is a variable
representing the probability that∀i ∈ [1..n+m] the truth value ofti is α[i]; that is, xα is the probability of the event∧

i|α[i]=true ti ∧
∧

i|α[i]=false¬ti .
SinceHG(Dp,IC) is a tree, Lemma 4 ensures that, for each (ti , t j) ∈ EP, pmin(ti ∧ t j) and pmax(ti ∧ t j) can be

computed in polynomial time w.r.t. the size ofDp. Therefore, we assume that they are precomputed constants in
LP(t1 ∧ · · · ∧ tn,Dp,IC,Dp).

It is easy to see thatLP(t1 ∧ · · · ∧ tn,Dp,IC,Dp) can be solved in polynomial time w.r.t. the size ofDP, as it
consists of at most 6n− 2 inequalities using 22n−1 + 2n− 1 variables, andn only depends on the number of relations
appearing inQ (we recall that we are addressing data complexity, thus queries are of constant arity).

We now show that, for each solution ofS(t1 ∧ · · · ∧ tn,Dp,IC, Dp), there is a modelPr of Dp w.r.t. IC such that
p(t1 ∧ · · · ∧ tn) w.r.t. Pr is equal to

∑
α ∈ Bn+m |

∀i ∈ [1..n] α[i] = true

xα, and vice versa.

Given a solutionσ of S(t1 ∧ · · · ∧ tn,Dp,IC,Dp), for eachα ∈ Bn+m we denote withσα the value assumed by the
variablexα in σ; moreover, for each (ti , t j) ∈ EPwe denote withσti ,t j the value assumed by the variablexti ,t j in σ.

For each (ti , t j) ∈ EP, we denote withDp
ti ,t j

the maximal subset ofDp which contains onlyti , t j , and the tuples
along the path connectingti andt j .

From Proposition 2, the fact that, for each (ti , t j) ∈ EP, the valueσti ,t j is such thatpmin(ti∧ t j) ≤ σti ,t j ≤ pmin(ti∧ t j),
implies that there is at least a modelPrti ,t j of Dp

ti ,t j
w.r.t. IC such thatp(ti ∧ t j) w.r.t. Prti ,t j is equal toσti ,t j . For each

(ti , t j) ∈ EP, we consider a modelPrti ,t j of Dp
ti ,t j

w.r.t. IC such thatp(ti ∧ t j) w.r.t. Prti ,t j is equal toσti ,t j . Moreover,
for each possible worldw ∈ pwd(Dp

ti ,t j
), we define the relative weight ofw (and denote it bywr(w)) as:

wr(w) =



Prti ,t j (w)∑
w′∈Dp

ti ,t j
∧ti∈w′∧t j∈w′ Prti ,t j (w

′) if ti ∈ w∧ t j ∈ w

Prti ,t j (w)∑
w′∈Dp

ti ,t j
∧,ti∈w′∧t j<w′ Prti ,t j (w

′) if ti ∈ w∧ t j < w

Prti ,t j (w)∑
w′∈Dp

ti ,t j
∧ti<w′∧t j∈w′ Prti ,t j (w

′) if ti < w∧ t j ∈ w

Prti ,t j (w)∑
w′∈Dp

ti ,t j
∧ti<w′∧t j<w′ Prti ,t j (w

′) if ti < w∧ t j < w
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It is easy to see that, for each possible worldw ∈ pwd(Dp), there is for each pair (ti , t j) ∈ EP a possible world
wti ,t j ∈ pwd(Dp

ti ,t j
) such thatw =

⋃
(ti ,t j )∈EP wti ,t j , and vice versa.

We consider the interpretationPr of Dp defined as follows. For each possible worldw ∈ pwd(Dp), we consider
the possible worldswti ,t j such thatw =

⋃
(ti ,t j)∈EP wti ,t j and define the interpretationPr of Dp as:

Pr(w) = σα
∏

(ti ,t j )∈EP

wr(wti ,t j ),

whereα is the tuple inBn+m which agrees withw on the presence/absence oft1, · · · , tn+m (i.e.,∀i ∈ [1..n+m] α[i] = true

(resp.false) iff ti ∈ w (resp.ti < w)). It is easy to see thatPr is a model forDp w.r.t. IC. Specifically, the following
conditions hold:

• Pr assigns probability 0 to every possible worldw not satisfyingIC. This can be proved reasoning by contra-
diction. Assume thatPr(w) > 0 andw does not satisfyIC. Consider the possible worldswti ,t j such that

w =
⋃

(ti ,t j)∈EP

wti ,t j .

SincePr(w) > 0, for each (ti , t j) ∈ EP it holds that

Prti ,t j (wti ,t j ) > 0.

Hence, sincePrti ,t j is a model ofDp
ti ,t j

, thenwti ,t j contains no pair of tuplest′, t′′ connected by an edge in
HG(Dp,IC). Therefore,w contains no pair of tuplest′, t′′ connected by an edge inHG(Dp,IC), thus contra-
dicting thatw does not satisfyIC.

• For each tuplet ∈ Dp, p(t) =
∑

w∈pwd(Dp)∧t∈w Pr(w). This follows from the fact that, given a tuplet ∈ Dp, and
such thatt belongs to a chain whose ends are the tuplesti , t j , the probability of a tuplet is given by

∑

wti ,t j ∈pwd(Dp
ti ,t j

) s.t. t∈wti ,t j

Prti ,t j (wti ,t j ).

The latter is equal to
∑

w∈pwd(Dp)s.t.t∈w Pr(w), since for eachwti ,t j ∈ pwd(Dp
ti ,t j

) it holds that
∑

w∈pwd(Dp) s.t.wti ,t j⊆w

Pr(w) = Prti ,t j (wti ,t j ).

Therefore, the interpretationPr is a model forDp w.r.t. IC, and the probability assigned tot1 ∧ · · · , tn by Pr is
equal to

∑
α ∈ Bn+m

∧∀i ∈ [1..n] α[i] = true
σα. Hence, it is easy to see thatpmin(t1 ∧ · · · ∧ tn) (resp. pmax(t1 ∧ · · · ∧ tn)) is the optimal

solution ofLP(t1∧· · ·∧tn,Dp,IC,Dp) and can be computed in polynomial time w.r.t. the size ofDp, which completes
the proof.

Theorem 13.For projection-free queries,qa is in PT IME if HG(Dp,IC) is a simple graph.

Proof. Let~t be an answer of the projection-free queryQ posed on the deterministic version ofDp. The minimum and
maximum probabilitiespmin andpmax of ~t as answer ofQ overDp can be determined as follows. LetT = {t1, . . . , tn}
be the set of tuples inDp such thatQ(~t) = t1 ∧ · · · ∧ tn. T can be partitioned into the setsT1, . . . ,Tk, such that:
1) k is the number of distinct (maximal) connected components ofHG(Dp,IC), each of which contains at least one
tuple inT;
2) for eachi ∈ [1..k], Ti contains the tuples ofT belonging to thei-th maximal connected component ofHG(Dp,IC)
among those mentioned in 1).
Let ~ti be the conjunction of the tuples belonging to the partitionTi of T. Since every maximal connected component
of HG(Dp,IC) is either a clique or a tree, lemmas 5 and 6 ensure thatpmin(~ti) and pmax(~ti) can be computed in
polynomial time w.r.t. the size ofDp. As distinct tuples~ti and~t j , with i, j ∈ [1..k], belong to distinct maximal
connected components ofHG(Dp,IC), they can be viewed as events among which no correlation is known. Hence,
pmin(~t) (resp.,pmax(~t)) can be determined by applying Fact 2 to the events~t1, . . .~tk, with the probability of~ti equal to
p(~ti) = pmin(~ti) (resp.,p(~ti) = pmax(~ti)), for eachi ∈ [1..k].
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Appendix A.7. Extending tractable cases of query evaluation

As discussed in the core of the paper (Section 6), our tractability result on query evaluation can be extended to the
cases that:i) tuples are associated with ranges of probabilities, instead of exact probability values;ii ) denial constraints
are probabilistic. We here give a hint on how the proof of Lemma 6 can be extended to these cases (Lemma 6 states
that projection-free queries can be evaluated inPTIME if the conflict hypergraph is a tree, and is the core of the proof
of Theorem 13).

As regards extensionii ), it is easy to see that, as shown forcc, any instanceI of the query evaluation problem in
the presence of probabilistic constraints is equivalent toan instanceI ′ of qa, where the conflict hypergraphH′ of I ′

is obtained by augmenting each hyperedge of the conflict hypergraphH of I with an ear. The point is that, even ifH
is a tree, this reduction makesH′ contain hyperedges with more than two nodes, thusH′ is no more a tree. However,
H′ is a hypertree of a particular form: for any pairs of intersecting edges, their intersection consists of a unique node,
which is a node inherited fromH (the new nodes ofH′ are all ears). This implies that the minimum and maximum
probabilitiespmin and pmax of an answer can be still computed as solutions of the two variants of the optimization
problemLP(t1 ∧ · · · ∧ tn,Dp,IC,Dp) introduced in the proof of Lemma 6. The fact thatLP(t1 ∧ · · · ∧ tn,Dp,IC,Dp)
can be still written and solved in polynomial time derives from the fact that the valuespmin(ti ∧ t j) and pmax(ti ∧ t j)
occurring in the inequalities (B) can be still evaluated in polynomial time, by observing that bothpmin(ti ∧ t j) and
pmax(ti ∧ t j) can be obtained by exploiting Lemma 3 for the minimum probability value, and an analogous result for
the maximum probability value. Observe that this reasoningdoes not work (as is) for general hypertrees, as in this
case we are not assured that the tuples composing the answer are in intersections between distinct pairs of hyperedges.

As regards extensioni), the minimum and maximum probabilitiespmin andpmax of an answer can be computed as
solutions of the two variants of the optimization problemLP(t1 ∧ · · · ∧ tn,Dp,IC,Dp) with the following changes:
1) equalities (C) are replaced with pairs of inequalities imposing that, for eachti , its probability ranges between the
minimum and maximum marginal probabilities of the range associated withti in the PDB;
2) the valuespmin(ti ∧ t j) andpmax(ti ∧ t j) occurring in the inequalities (B) are evaluated by considering the minimum
probabilities for the tuples along the path connectingti andt j in the conflict tree. Moreover, when evaluatingpmin(ti ∧
t j), the minimum marginal probabilities forti andt j are taken into account, while, forpmax(ti ∧ t j), we have to consider
their maximum probabilities. Therein, the maximum probability of a tuplet is the minimum between the upper bound
of the probability range oft, and the maximum probability value thatt can have according to the conflict tree (this
value is entailed by the tuples connected tot by direct edges: as implied by Theorem 2, the sum of the probabilities of
two tuples connected through an edge must be less than or equal to 1). Intuitively enough, we consider the minimum
probabilities for the intermediate tuples betweenti andt j as this allows the greatest degree of freedom in distributing
ti andt j in the probability space.
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