
Research Archive

Citation for published version:
Gábor Horváth, and Chrystopher L. Nehaniv, ‘Length of
polynomials over finite groups’, Journal of Computer and
System Sicences, Vol. 81(8): 1614-1622, December 2015.

DOI:
https://doi.org/10.1016/j.jcss.2015.05.002

Document Version:
This is the Accepted Manuscript version.
The version in the University of Hertfordshire Research Archive
may differ from the final published version.

Copyright and Reuse:
© 2015 Elsevier Inc.
This manuscript version is made available under the terms of
the Creative Commons Attribution-NonCommercial-
NoDerivatives License CC BY NC-ND 4.0
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which
permits non-commercial re-use, distribution, and reproduction
in any medium, provided the original work is properly cited,
and is not altered, transformed, or built upon in any way.

Enquiries
If you believe this document infringes copyright, please contact Research &
Scholarly Communications at rsc@herts.ac.uk

https://doi.org/10.1016/j.jcss.2015.05.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rsc@herts.ac.uk

LENGTH OF POLYNOMIALS OVER FINITE GROUPS

GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

Abstract. We study the length of polynomials over �nite simple
non-Abelian groups needed to realize Boolean functions. We ap-
ply the results for bounding the length of 5-permutation branch-
ing programs recognizing a Boolean set. Moreover, for Boolean
and general functions on these groups, we present upper bounds
on the length of shortest polynomials computing an arbitrary n-
ary Boolean or general function, or a function given by another
polynomial.

1. Introduction

Computational models are based on functionally complete algebras,
that is, algebras over which every function can be built up from vari-
ables, constants and the basic operations of the algebra. The most
well-known functionally complete algebra is the two-element Boolean
algebra, which is used as a basis for contemporary computers. Never-
theless, other functionally complete algebras exist. Maurer and Rhodes
[14] proved that a �nite group is functionally complete if and only if it is
simple and non-Abelian. Then Krohn, Maurer and Rhodes [11] proved
that any Boolean function can be realized by a �nite state sequential
machine based on a �nite simple non-Abelian group. At the end of
their paper they suggest to write some forthcoming paper on the algo-
rithmic aspects of such realizations which, unfortunately, never came
to exist. The present paper was motivated by trying to �ll some of the
gaps left by them by estimating the length of a polynomial realizing a
given function over a given �nite simple non-Abelian group.
The length of polynomials needed to realize a given (Boolean or more

general) function has been investigated for several di�erent algebras.
Not surprisingly, most of these results concern the two-element Boolean

2010 Mathematics Subject Classi�cation. 20F10, 20D06, 20D15, 68Q05, 68Q70.
Key words and phrases. length of polynomial functions, simple non-Abelian

groups, nilpotent groups, branching program, permutation branching program.
The �rst author was partially supported by the János Bolyai Research Schol-

arship of the Hungarian Academy of Sciences, by the European Union and the
European Social Fund through project Supercomputer, the national virtual lab
(grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010), and by the Hungarian Sci-
enti�c Research Fund (OTKA) grant no. K109185. The research by both authors
leading to these results has received funding from the European Union's Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 318202.

1

2 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

algebra (see e.g. [21]). There are some sporadic results for rings, e.g.
short representing polynomials were given for the squareroot function
in [1]. There exist some results on the length of unary polynomials
over �nite groups as well [16], but no estimates can be found in the
literature for the n-ary case. Just recently, some particular polyno-
mials for certain special functions were computed in [19] for certain
functionally complete algebras. The authors of that paper used a com-
putational search method (genetic programming) to search for discrim-
inator polynomials, Mal'cev polynomials and majority polynomials for
particular three- and four-element functionally complete algebras. It
turns out that even for such small algebras it is quite di�cult to �nd
these polynomials. For example, the exhaustive search to compute a
short discriminator polynomial over a particular four-element function-
ally complete algebra would take about 1038 years by their estimation.
After a week of running time, their genetic programming method was
not able to provide a discriminator polynomial for the algebra either
(see [19] for further details).
In our paper we consider two types of functions over a �nite simple

non-Abelian group G in Section 3. A Boolean function can easily be
represented over G by a function f : { 1, g }n → { 1, g } for some non-
trivial g ∈ G, where 1 corresponds to false and g to true. In Theorem 7
we provide an upper bound for a shortest polynomial realizing an ar-
bitrary such f . The proof is based on a recent result of Wilson [22],
which uses some parts of the classi�cation of �nite simple groups. Then
in Theorem 9 we prove an upper bound on the length of an arbitrary
function f : Gn → G. Finally, Theorem 10 gives a lower bound on the
length of a `longest' n-ary function based on an elementary counting
argument. This puts the upper bounds obtained in Theorems 7 and 9
into perspective.
Sections 4 and 5 are devoted to two applications of the results of

Section 3. In Section 4 we consider branching programs. Branching
programs were �rst de�ned by Lee [12] as an alternative to Boolean
circuits. Since then branching programs have been thoroughly investi-
gated (see e.g. [2, 5, 6, 8, 18] from the past few years). Krohn, Maurer
and Rhodes proved in [11] that a �nite state sequential machine can
compute an arbitrary Boolean function if it is based on a �nite sim-
ple non-Abelian group. A direct consequence of this result, but which
was proven independently by Barrington [4], is that a language can
be recognized by an O (log n) depth, polynomial size Boolean circuit if
and only if it can be recognized by a polynomial length branching pro-
gram over a �nite simple non-Abelian group. (Here, by polynomial we
mean polynomial in n, which is the arity of the Boolean function.) In
fact, Barrington gives an upper bound on the length of the branching
program required, depending on the depth of a Boolean circuit which
recognizes the particular language. Using the results of Theorem 7, in

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 3

Corollary 11 we give a di�erent upper bound on the length of a branch-
ing program required, and compare it to Barrington's bound. We �nd
that our bound is better for almost all functions than the one provided
by Barrington's construction.
In Section 5 we consider function realization for other �nite, but

not necessarily non-Abelian or simple, groups. Of course, if a group is
not functionally complete, then not every function can be represented
as a polynomial. Nevertheless, it would be interesting to know the
length of a shortest representing polynomial for a given function that
can be represented. In Theorem 12 we show that for groups with
nilpotency class d the length of a minimal realizing polynomial for a
representable n-ary function f : Gn → G is at most c · nd for some c
depending on the group, and this bound is almost the best possible.
Corollary 13 is a direct consequence of Theorem 9 which provides a
bound for �nite simple non-Abelian groups. We suspect that similar
upper bounds could be given for arbitrary groups, provided that the
length of polynomials over a group G can be estimated by the length
of polynomials over N and over G/N for some normal subgroup N.
Finally, we close the paper with some open problems in Section 6.

2. Preliminaries

Let G be a �nite group. A polynomial (or word) over G is a product
of variables, inverses of variables, and constants from G. For example,
xgy−1x is a polynomial over G for some g ∈ G and variables x, y . Let
p be a polynomial over G. The length of p (denoted by ‖p‖) is de�ned
recursively:

(1) the length of a variable, of an inverse of a variable or of a con-
stant is 1: ‖xi‖ =

∥∥x−1i

∥∥ = ‖g‖ = 1 (1 ≤ i ≤ n, g ∈ G);
(2) the length of a product is the sum of the lengths of the factors:
‖p1p2‖ = ‖p1‖+ ‖p2‖.

For example, the length of the polynomial xgy−1x is∥∥xgy−1x∥∥ = ‖xg‖+
∥∥y−1x∥∥ = ‖x‖+ ‖g‖+

∥∥y−1∥∥+ ‖x‖ = 4.

The number of variable occurrences of p (denoted by v (p)) is the
number of occurring variables in p, counting multiplicities. The precise
de�nition is the same as for the length, except v (g) = 0 for any g ∈ G.
For example, the number of variable occurrences of xgy−1x is

v
(
xgy−1x

)
= v (xg) + v

(
y−1x

)
= v (x) + v (g) + v

(
y−1
)
+ v (x) = 3.

A polynomial p realizes a function f : Gn → G if for all (a1, . . . , an) ∈
Gn we have f (a1, . . . , an) = p (a1, . . . , an). We say that f : Gn → G
is a polynomial function if f can be realized by a polynomial. The
group G is functionally complete if every function f : Gn → G can be
realized by a polynomial. A �nite G is functionally complete if and

4 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

only if G is simple and non-Abelian [14]. The length of a polynomial
function f over G is the length of a shortest polynomial realizing f :

‖f‖ = min { ‖p‖ : p realizes f } .

Similarly, for the minimal number of variable occurrences:

v (f) = min { v (p) : p realizes f } .

If f is a non-realizable function over G, then let ‖f‖ = v (f) =∞.
The �rst lemma lists some basic observations. It connects the num-

ber of necessary variable occurrences with composition of functions and
the length of a function with the number of variable occurrences.

Lemma 1. For polynomial functions f, g1, . . . , gn over G we have

v (f) ≤ ‖f‖ ≤ 2v (f) + 1,(1)

v (f (g1, . . . , gn)) ≤ v (f) · max
1≤i≤n

v (gi) .(2)

Proof. Let p be a polynomial realizing f for which v (p) = v (f). Let
p′ be the polynomial which we obtain from p by collecting the neigh-
bouring constants into one constant. Then between two variables at
most one constant can occur, thus ‖p′‖ ≤ 2v (p′) + 1 = 2v (f) + 1. As
p′ realizes f , (1) follows.
For proving (2), let v1, . . . , vn be the number of occurrences of the

variables x1, . . . , xn in p realizing f , where v(p) = v(f). Then

v (f (g1, . . . , gn)) ≤
n∑

i=1

viv (gi)

≤
n∑

i=1

vi · max
1≤i≤n

v (gi) = v (f) · max
1≤i≤n

v (gi) .

�

Example 1. Take G = A5, the alternating group on 5 points, and
let f(x, y) = (123)x(123)(123)y(123). Now, v(f) = 2, as f depends
on both its variables. Therefore it has an at most length 5 realiza-
tion by multiplying the constants between x and y: (123)x(132)y(123).
Furthermore, if g1(x, y) = xyx−1y−1 and g2(x, y) = x(234)y−1x, then
f (g1(x, y), g2(x, y)) can be realized by

(123) xyx−1y−1 (132) x(234)y−1x (123),

which has 4 + 3 ≤ 2 · 4 variable occurrences.

In the following lemma we create a `short' polynomial for an n-ary
version of a binary polynomial using logarithmic depth iteration. The
idea is similar as how one constructs the n-ary AND function from the
binary one. From now on, by log we always mean log2.

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 5

Lemma 2. Let p be a binary polynomial over G. De�ne the follow-
ing polynomials: p(1) (x1) = x1, p

(2) (x1, x2) = p (x1, x2) and for every
integer n > 2 let

(3) p(n) (x1, . . . , xn)

= p
(
p(bn/2c)

(
x1, . . . , xbn/2c

)
, p(dn/2e)

(
xbn/2c+1, . . . , xn

))
.

Let V = v (p). If V ≥ 2, then v
(
p(n)
)
< V · nlog V . If both x1 and x2

each occur exactly twice in p, then v
(
p(n)
)
≤ 3

2
n2 − 3

2
n+ 1.

Proof. By induction on n (considering the cases where n is odd and
where n is even), it is straightforward to prove that v

(
p(n)
)
is increasing

in n. If n is a power of 2, then v
(
p(n)
)
= V logn. Thus for arbitrary n

we have v
(
p(n)
)
≤ V dlogne < V 1+logn = V · nlog V . The other inequality

can be proved by induction, as well. �

Example 2. Take p(x1, x2) to be the commutator of x1 and x2, that
is p(x1, x2) = [x1, x2] = x1x2x

−1
1 x−12 . Then

p(3)(x, y, z) = [x, [y, z]] = xyzy−1z−1x−1zyz−1y−1,

p(4)(x, y, z, w) = [[x, y] , [z, w]] = [x, y] [z, w] [x, y]−1 [z, w]−1

= xyx−1y−1zwz−1w−1yxy−1x−1wzw−1z−1.

Thus,

v
(
p(2)
)
= 4 = 4log 2 =

3

2
· 22 − 3

2
· 2 + 1,

v
(
p(3)
)
= 10 =

3

2
· 32 − 3

2
· 3 + 1,

v
(
p(4)
)
= 16 = 4log 4 ≤ 19 =

3

2
· 42 − 3

2
· 4 + 1.

We need some results from group theory. Throughout the paper, the
commutator of a and b is [a, b] = aba−1b−1, and the conjugate of a by
b is ab = bab−1, and multiplication of permutations is carried out from
right to left. For general background for group theory we refer to [17].
In the proofs of Theorems 7 and 9 in Section 3 the following recent

result of Wilson is crucial.

Theorem 3 ([22, Theorem 1]). Let G be a �nite group. Then the
following are equivalent:

(1) G is solvable;
(2) no non-trivial element g is the product of 56 commutators of

the form [gh, gk] (with h, k ∈ G).

That is, for �nite simple non-Abelian groups there exist elements
g (6= 1), h1, k1, . . . , h56, k56 such that g =

∏56
i=1

[
ghi , gki

]
. This fact

combined with Lemma 2 will provide us a short n-ary version of the
Boolean AND function.

6 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

Finally, in the special case of alternating groups we need the follow-
ing.

Lemma 4. Let u ∈ Am (for some m ≥ 5) be nontrivial and let Cu

denote the conjugacy class of u in Am. Let Du = Cu ∪ Cu−1 and let
D2

u denote the set {u1 · u2 | u1, u2 ∈ Du }. If u is a product of disjoint
2-cycles and moves every point, then D2

u contains a product of two
disjoint 3-cycles. Otherwise, D2

u contains a 3-cycle.

Proof. It is well-known (see e.g. [17, p. 299, 11.1.5]) that if u is not the
product of disjoint odd cycles of pairwise di�erent lengths (considering
1-cycles as well) then any v ∈ Am having the same cycle structure as
u lies in the same conjugacy class of u. Moreover, if u is the product
of odd cycles of pairwise di�erent lengths (considering 1-cycles as well)
then the set of elements of Am having the same cycle structure as u is
the disjoint union of two conjugacy classes.
We choose a cycle of maximal length in u. Let k be its length.

Without loss of generality we can assume that this cycle is the ck =
(1, . . . , k) cycle in u. Note that by [17, p. 299, 11.1.5] if k ≤ 4, then
the conjugacy class Cu contains every element of Am with the same
cycle-structure as u. We distinguish �ve cases.

(1) k ≥ 5. Let v = c−1k u, v′ = v−1 = (1 3)(2 4) · v−1 · (1 3)(2 4),
c′k = (2, 1, 4, 3, k, k − 1, . . . , 5) = (1 3)(2 4) · c−1k · (1 3)(2 4), and
let u′ = c′k · v′. Then u′ ∈ Cu−1 ⊆ Du and (multiplying from
right to left)

u′ · u = c′kv
′ · ckv = c′kck · v′v = c′k · ck = (2 k 4) .

(2) k = 4. Let v = c−1k u, c′k = (1 2 4 3) and let u′ = c′kv
−1. Then

u′ ∈ Cu ⊆ Du (since u and u′ have the same cycle-structure and
k ≤ 4) and (multiplying from right to left) u′ · u = (1 4 2).

(3) k = 3. Let v = c−1k u and let u′ = ck · v−1. Now u′ ∈ Cu ⊆ Du

(since u and u′ have the same cycle-structure and k ≤ 4) and
(multiplying from right to left) u′ · u = (1 3 2).

(4) k = 2 and u stabilizes an element from { 1, . . . ,m }. Without
loss of generality we can assume that u = (1 2) v stabilizes 3,
then let u′ = (1 3) v−1. Now u′ ∈ Cu ⊆ Du (since u and u′ have
the same cycle-structure and k ≤ 4) and (multiplying from right
to left) u′ · u = (1 2 3).

(5) k = 2 and u moves all the elements from { 1, . . . ,m }. Then u
is the product of 2-cycles. Without loss of generality we can
assume that u = (1 2) (3 4) (5 6) · v. Let u′ = (1 6) (2 3) (4 5) ·
v−1. Then u′ ∈ Cu ⊆ Du (since u and u′ have the same cycle-
structure and k ≤ 4) and (multiplying from right to left) u′ ·u =
(1 3 5) · (2 6 4).

�

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 7

Corollary 5. Let u ∈ Am (for some m ≥ 5) be nontrivial and let
t ∈ Am be a 3-cycle. Then

(1) t can be generated as a product of at most 4 conjugates of u and
u−1,

(2) u is the product of at most bm/2c conjugates of t and t−1.

Proof. (1) follows easily from Lemma 4 if u is not the product of disjoint
2-cycles moving every point. Otherwise one can obtain some w, a
product of two disjoint 3-cycles, as the product of two conjugates of u
and u−1. Then applying Lemma 4 to w provides the result. For (2) see
e.g. [3, Chapter 3]. �

Finally, we will need the following:

Theorem 6 ([13, Theorem 1.1]). There exists a positive c0 such that
the following holds: for all �nite simple non-Abelian groups G, for
every subset S ⊆ G, S 6⊆ { 1 } closed under conjugation, and for every
m ≥ c0 log |G| / log |S| we have Sm = G.

3. Length of functions over finite simple groups

First, we provide an upper bound on the length of polynomials re-
alizing Boolean-type functions. Let expG denote the exponent of G,
i.e. the least n > 0 for which gn is the identity for all g ∈ G.

Theorem 7. Let G be a functionally complete group. Then there exists
g (6=1) ∈ G such that for every n-ary function f : { 1, g }n → { 1, g }
over G, we have

‖f‖ ≤ 448 · n8 · e,
where e = |f−1(g)|, (e ≤ 2n).
If G = Am for some m ≥ 5, then

‖f‖ ≤
(
3n2 − 3n+ 2

)
· e+ 1.

Remark 8. Note, that a Boolean function in disjunctive normal form
has essentially length n · e.

Proof of Theorem 7. We apply Wilson's result: by Theorem 3 there ex-
ist elements g (6=1), h1, k1, . . . , h56, k56 ∈ G such that g =

∏56
i=1

[
ghi , gki

]
.

Let p (x1, x2) =
∏56

i=1

[
xhi
1 , x

ki
2

]
and for every n ≥ 3 let p(n) be the poly-

nomial de�ned by (3) of Lemma 2. Note that p(n) (g, . . . , g) = g, and
p(n) attains 1 if any of the variables is 1. Now, we have v

(
p(n)
)
<

v (p) · nlog v(p) < 224 · n8 by Lemma 2.
Let f : { 1, g }n → { 1, g } be arbitrary taking non-identity values

e times. Let A = { (a1, . . . , an) ∈ { 1, g }n : f (a1, . . . , an) = g }, then
|A| = e. Let q1 (x) = x−1g and qg (x) = x. For every (a1, . . . , an) ∈ A
let pa1,...,an (x1, . . . , xn) = p(n) (qa1 (x1) , . . . , qan (xn)), then v (pa1,...,an) ≤

8 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

v
(
p(n)
)
by (2) of Lemma 1. Now,

∏
(a1,...,an)∈A pa1,...,an realizes f , hence

applying (1) of Lemma 1 we obtain

‖f‖ ≤ 1 + 2 ·
∑

(a1,...,an)∈A

(
224n8 − 1

)
≤ 448 · n8 · e.

If G = Am (m ≥ 5), then by choosing g = (12345), h = (24) (35),
k = (235), we have

g = (12345) = [(13542) , (14523)] =
[
gk, gh

]
.

Now, we choose p (x1, x2) =
[
xk1, x

h
2

]
= kx1k

−1hx2h
−1kx−11 k−1hx−12 h−1.

Then both x1 and x2 occur twice in p. As before, applying Lem-
mas 2 and 1 �nishes the proof. �

One wonders if a similar bound could be obtained by not using Wil-
son's result but only elementary methods. It is not too hard to prove a
bound of O (nc · e), where c is a constant depending on the group. Fur-
thermore, bounding c by a universal constant is equivalent to �nding
some constant in (2) of Theorem 3 for �nite simple non-Abelian groups
where the constant 56 appears. Considering that the proof of Theo-
rem 3 in [22] uses Thompson's classi�cation of minimal simple groups
[20], an elementary proof to bound c in a universal manner is unlikely.

Theorem 9. Let G be a functionally complete group, N = |G|. Let
f be an n-ary function over G taking non-identity values e times (e ≤
Nn). Then the following inequality holds:

‖f‖ ≤ 100352 ·K2 ·N8 · n8 · e,

where K ≤ min (c0 logN, number of conjugacy classes of G) with c0
the universal constant from Theorem 6. If G = Am for some m ≥ 5,
then

‖f‖ ≤ 9 ·m ·N2 · n2 · e.

Proof. We begin the same way as in the proof of Theorem 7. By The-
orem 3 there exists elements g (6=1), h1, k1, . . . , h56, k56 ∈ G such that
g =

∏56
i=1

[
ghi , gki

]
. Let p (x1, x2) =

∏56
i=1

[
xhi
1 , x

ki
2

]
and for every n ≥ 3

let p(n) be the polynomial de�ned by (3) of Lemma 2. By Lemma 2 we
have v

(
p(n)
)
< v (p) · nlog v(p) < 224 · n8, moreover p(n) (g, . . . , g) = g,

and p(n) attains 1 if any of the variables is 1.
We claim that for every 1 6= u ∈ G there exists a unary polynomial

ru (x) such that ru (1) = 1, ru (u) = g−1 and v (ru) ≤ c0 logN . Indeed,
by Theorem 6 there exists a universal constant c0 (i.e. not depending
on G or on f) such that the conjugacy class of u generates G in at
most c0 logN steps. That is, there exist elements s1, . . . , sKu (for some
Ku ≤ c0 logN) such that g−1 = us1 . . . usKu . Then the polynomial
ru (x) = xs1 . . . xsKu has the required properties. Note, that Ku can be
chosen to be less than the number of conjugacy classes of G, as well.

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 9

(The set {uy1 . . . uyk : y1, . . . , yt ∈ G } is closed under conjugation, thus
increases by at least one conjugacy class if t increases by 1.)
Similarly, for every u ∈ G \ { 1 } there exists a unary polynomial

r′u (x) such that r′u (1) = 1, r′u (g) = u and v (r′u) ≤ K ′u, where K
′
u ≤

c0 logN and K ′u can be chosen to be less than the number of conjugacy
classes of G, as well. Let K = maxu∈G\{ 1 } {Ku, K

′
u }. Then K is less

than the number of conjugacy classes of G, and K ≤ c0 logN .
Let u1, . . . , uN−1 be the non-identity elements of G. Let

χ (x) = p(N−1)
(
gru1 (x) , . . . , gruN−1

(x)
)
,

χa1,...,an (x1, . . . , xn) = p(n)
(
χ
(
x1a

−1
1

)
, . . . , χ

(
xna

−1
n

))
, (ai ∈ G)

q (x1, . . . , xn) =
∏

(a1,...,an)∈Gn

16=u=f(a1...,an)

r′u (χa1,...,an (x1, . . . , xn)) .

Then χ is the characteristic function of 1, that is χ(1) = g, and χ
attains 1 at any other substitution. Similarly, χa1,...,an is the charac-
teristic function of the tuple (a1, . . . , an), i.e. χa1,...,an (a1, . . . , an) = g
and χa1,...,an attains 1 on every other n-tuple. Thus q (a1, . . . , an) =
f (a1, . . . , an) for every a1, . . . , an ∈ G. By (2) of Lemma 1 we have

v (q) ≤ max
u∈G\{ 1 }

v (ru) · v
(
p(N−1)

)
· v
(
p(n)
)
· max
u∈G\{ 1 }

v (r′u) · e

< 50176 ·K2 ·N8 · n8 · e.
Applying (1) of Lemma 1 we obtain the desired bound.
If G = Am, then we can give better estimates. By choosing g =

(123), h = (243), k = (154), we have

g = (123) = [(235) , (142)] =
[
gk, gh

]
.

Now, we choose p (x1, x2) =
[
xk1, x

h
2

]
= kx1k

−1hx2h
−1kx−11 k−1hx−12 h−1.

Then both x1 and x2 occur twice in p. Lemma 2 yields v
(
p(n)
)
< 3

2
n2.

Note that v (ru) ≤ 4 by (1) of Corollary 5, and v (r′u) ≤ bm/2c by (2)
of Corollary 5. Then by (2) of Lemma 1 we have

v (q) ≤ max
u∈G\{ 1 }

v (ru) · v
(
p(N−1)

)
· v
(
p(n)
)
· max
u∈G\{ 1 }

v (r′u) · e

< 9 bm/2c ·N2 · n2 · e.
Applying (1) of Lemma 1 we obtain the desired bound. �

Finally, to put these upper bounds into context, we give a lower
bound on the length of a `longest' n-ary function.

Theorem 10. Let G be a functionally complete group and let N = |G|.
For every ε > 0 and for su�ciently large n (depending on ε) there exists
an n-ary function f over G, such that

‖f‖ ≥ logN

1 + ε
· N

n

log n
.

10 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

Proof. We use a simple counting argument. The number of polynomials
of length at most l is at most (2n+N + 1)l, since at every position of a
polynomial there is either a constant, a variable, an inverse of a variable,
or nothing at all. Let f be a longest n-ary function, let L = ‖f‖. As the
number of n-ary functions is NNn

, we obtain NNn ≤ (2n+N + 1)L,
and thus

Nn · logN ≤ L · log (2n+N + 1) .

Let us �x ε > 0. For n ≥ max
(
31/ε, N + 1

)
we have

Nn · logN ≤ L · log 3n ≤ L · (1 + ε) · log n.
�

4. Bounded-width branching programs

An n-input branching program of length s over a monoid M is a
sequence B = 〈i1, f1, g1〉 . . . 〈is, fs, gs〉 with 1 ≤ ij ≤ n and fi, gi ∈M.
On the input (a1, . . . , an) ∈ { 0, 1 }n the instruction 〈i, f, g〉 is evaluated
to f if ai = 1 and to g if ai = 0. The program is evaluated as the
product of the evaluated instructions. This assigns to a program B a
function B∗ : { 0, 1 }n →M:

B∗ (a1, . . . , an) = hi1 . . . his , where hij =

{
fj, if aij = 1,

gj, if aij = 0.

Let us �x a subset F ⊆M. We say that a set A ⊆ { 0, 1 }n is recognized
by the branching program B if

B∗ (a1, . . . , an) ∈ F ⇐⇒ (a1, . . . , an) ∈ A.
If M is a permutation group over w elements, then we use the term
permutation branching program of width w, or shortly w-PBP. We say
that a 5-PBP B �ve-cycle recognizes A ⊆ { 0, 1 }n if there exists a
�ve-cycle g ∈ S5 such that B∗ (a1, . . . , an) = g if (a1, . . . , an) ∈ A and
B∗ (a1, . . . , an) = 1 if (a1, . . . , an) /∈ A.
Barrington [4] proved that if a subset A ⊆ { 0, 1 }n can be recognized

by a Boolean circuit of depth d, then it can be 5-cycle recognized by
a 5-PBP of length at most 4d. Note that putting together the proof
from [4] and Theorem 3, one can have Barrington's result for arbitrary

nonsolvable groups with branching program length at most (4 · 56)d.
However, we can prove another upper bound (not depending on d but
only on n) using Theorem 7:

Corollary 11. Let A ⊆ { 0, 1 }n. Then A is �ve-cycle recognized by a
5-PBP of length at most 3

2
n2 ·min { |A| , 2n − |A| }.

Proof. The proof of Theorem 7 provides a 5-cycle element g ∈ A5 and
a polynomial q for which v (q) ≤ 3

2
n2 |A| and q (ga1 , . . . , gan) = g if

(a1, . . . , an) ∈ A and q (ga1 , . . . , gan) = 1, otherwise. Let k = v (q) and
q (x1, . . . , xn) = c1y1c2y2 . . . ckykck+1, where cj ∈ A5 for 1 ≤ j ≤ k + 1

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 11

and each yj is either xi or x
−1
i for some 1 ≤ i ≤ n. Let B be the

following 5-PBP: the jth instruction of B is (for 1 ≤ j ≤ k − 1)

• 〈i, cjg, cj〉, if yj = xi;
• 〈i, cjg−1, cj〉, if yj = x−1i ;

and the kth instruction is

• 〈i, ckgck+1, ckck+1〉, if yk = xi;
• 〈i, ckg−1ck+1, ckck+1〉, if yk = x−1i .

Then B recognizes the set A.
Let Ac denote the complement of A. If |A| > 2n−|A| = |Ac|, then in-

stead of q we consider the polynomial g ·(q′)−1, where q′ is a polynomial
for which v (q′) ≤ 3

2
n2 |Ac|, q′ (ga1 , . . . , gan) = g if (a1, . . . , an) ∈ Ac and

q′ (ga1, . . . , g
an) = 1, otherwise. The construction of B is similar as in

the other case. �

Almost every n-ary function is recognized by a circuit of depth at
least n − log log n [21, Theorem 4.1, p. 97]. (A property P holds for
almost all functions if the ratio of the number of n-ary functions for
which P holds to the total number of n-ary functions tend to 1 as
n→∞.) In particular, Barrington's construction [4] provides an upper
bound of at least 4n/ log2 n on the length needed to �ve-cycle recognize
almost every n-ary function. By Corollary 11 any n-ary function can
be �ve-cycle recognized by a 5-PBP of length at most 3

4
· n2 · 2n.

5. Length of polynomial functions over finite groups

Finally, we consider the length of polynomial functions over �nite
groups. In particular, if a function can be represented by a polyno-
mial, then it can be represented by a short polynomial, as well. For
example, if G is a commutative (i.e., Abelian) group and p is an n-
ary polynomial over G, then there exists an n-ary polynomial p′ such
that p′ (a1, . . . , an) = p (a1, . . . , an) for every (a1, . . . , an) ∈ Gn and
‖p′‖ ≤ 1 + n · (expG− 1). Moreover, one can �nd p′ from p using
O (‖p‖) time and O (n) space. A similar result for nilpotent groups
can be obtained using commutator calculus [15, Chapter 3]:

Theorem 12. Let G be a �nite nilpotent group with nilpotency class
d. Let p be an n-ary polynomial over G. Then there exists an n-
ary polynomial p′ such that p (a1, . . . , an) = p′ (a1, . . . , an) for every
(a1, . . . , an) ∈ Gn and

‖p′‖ ≤ c · nd,

where c depends only on G. Moreover, for every ε > 0 and for su�-
ciently large n (depending on ε) there exists an n-ary polynomial func-
tion f over G such that

‖f‖ ≥ 1

dd (1 + ε)
· nd

log n
.

12 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

Proof. Let N = |G|. We use the de�nition of the weight of a basic
commutator from [15, 31.51]: Let T = G ∪ { x1, . . . , xn } and assume
any (�xed) linear order � on T . Then the elements of T are basic
commutators of weight 1. If basic commutators of weight < k are
de�ned and ordered extending �, then de�ne basic commutators of
weight k as [ci, cj], where the sum of weights of ci and cj is k. Then
we extend the order � by ci ≺ cj if the weight of ci is strictly smaller
than the weight of cj, and use any ordering among basic commutators
of the same weight.
By [15, 31.52] every n-ary polynomial over G with nilpotency class

d is equivalent to a product of basic commutators of the form

· · ·
∏

s,t,u∈T

[[s, t] , u]ks,t,u
∏
s,t∈T

[s, t]ks,t xknn . . . xk11 g,

where every basic commutator has weight at most d, and the occurring
basic commutators appear in the order of �.
We count the number of basic commutators of weight l. First, one

chooses the l elements of the basic commutator in at most (n+N)l-
many ways. One can put in brackets into each such basic commutator
in 1

l+1

(
2l
l

)
-many ways (this is exactly the Catalan-number, see e.g. [7,

Chapter 4]). Then, each basic commutator of weight l can be expanded
to a group polynomial of length at most 4l−1. This can be proved by
induction on l: for basic commutator expressions p and q of weight t
and l − t, [p, q] can be expanded to a polynomial of length at most

2 ·
(
4t−1 + 4l−t−1

)
≤ 2 ·

(
4l−2 + 4l−2

)
= 4l−1.

Thus every polynomial has length at most

1 + expG ·
d∑

l=1

4l−1 · (n+N)l · 1

l + 1

(
2l

l

)
≤

expG ·
d∑

l=1

(16n+ 16N)l ≤ d · expG · (16n+ 16N)d ≤ c · nd,

for c ≤ d·expG·16d (N + 1)d and for all n ≥ 1. (For the �rst inequality
we used 1

l+1

(
2l
l

)
≤ 22l = 4l, and applied another factor of 4 to get rid

of the additional 1 at the beginning.)
For proving the lower bound, we use a simple counting argument

similar to the proof of Theorem 10. The number of polynomials of
length at most l is at most (2n+N + 1)l, since at every position of a
polynomial there is either a constant, a variable, an inverse of a variable,
or nothing at all. Let f be a longest n-ary polynomial function, let
L = ‖f‖. As the number of n-ary functions realized by polynomials

is more than 2(
n
d)

d

[9, Section 1.3], we obtain 2(
n
d)

d

≤ (2n+N + 1)L,

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 13

and thus
1

dd
· nd ≤ L · log (2n+N + 1) .

Let us �x ε > 0. For n ≥ max
(
31/ε, N + 1

)
we have

1

dd
· nd ≤ L · log 3n ≤ L · (1 + ε) · log n.

�

Theorem 9 immediately gives an estimate on the length of polyno-
mials for �nite simple non-Abelian groups.

Corollary 13. Let G be a �nite simple non-Abelian group. Let p be
an n-ary polynomial over G, and let e denote the number of n-tuples
where p attains a non-identity element. Then there exists an n-ary
polynomial p′ such that p (a1, . . . , an) = p′ (a1, . . . , an) and

‖p′‖ ≤ c · n8 · e,
where c depends only on G.

6. Open problems

A natural problem arises immediately after one de�nes the length
and variable occurrence for a function as a minimum length and vari-
able occurrence of its realizing polynomials. Namely, whether these two
minima can attain their value on the same polynomial. We conjecture
that it is not always the case, we have no counterexample, though.

Problem 1. Is it true that for every function f there exists p such
that ‖f‖ = ‖p‖ and v (f) = v (p)?

Comparing the results of Theorems 9 and 10, one wonders what
the best possible estimate on the length of functions for �nite simple
non-Abelian groups could be.

Problem 2. Let G be a �nite simple non-Abelian group, and let
f : Gn → G be an arbitrary function. Determine the length of a short-
est polynomial realizing f .

In Section 5 we presented some upper bounds on the length of a
polynomial realizing an arbitrary polynomial function. It would be
interesting to know whether similar bounds can be applied for arbitrary
�nite groups.

Problem 3. Let G be a �nite group, and let f : Gn → G be a polyno-
mial function. Determine the length of a shortest polynomial realizing
f .

In particular, we believe that f : Gn → G can be represented by
a polynomial built up from polynomials over N and G/N for some
normal subgroup N of G. This has been proven (in a more general

14 GÁBOR HORVÁTH AND CHRYSTOPHER L. NEHANIV

setting) forG ' N×K, where (|N| , |K|) = 1 [10, Corollary 2], or when
N is a non-Abelian minimal normal subgroup of G [10, Corollary 14].

Problem 4. LetG be a �nite group, N be one of its normal subgroups.
Assume that an arbitrary n-ary function over N has length at most
s(n), and an arbitrary function over G/N has at most length t(n).
Determine the length of a shortest polynomial realizing an arbitrary
n-ary function over G.

The algorithmic aspect of �nding a short polynomial realizing a poly-
nomial function is interesting, as well.

Problem 5. Let G be a �nite group, and let p : Gn → G be a poly-
nomial. Is there a polynomial algorithm in ‖p‖ to �nd a shortest poly-
nomial realizing p?

References

[1] S. J. Agou, M. Deléglise, and J.-L. Nicolas. Short polynomial representations
for square roots modulo p. Des. Codes Cryptogr., 28(1):33�44, 2003.

[2] M. Ajtai. A non-linear time lower bound for Boolean branching programs.
Theory Comput., 1:149�176, 2005.

[3] Z. Arad, J. Stavi, and M. Herzog. Products of conjugacy classes in groups,
volume 1112 of Lecture Notes in Mathematics. Springer, 1985.

[4] D. A. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. System Sci., 38(1):150�164,
1989. 18th Annual ACM Symposium on Theory of Computing (Berkeley, CA,
1986).

[5] B. Bollig. Property testing and the branching program size of Boolean functions
(extended abstract). In Fundamentals of Computation Theory, volume 3623 of
Lecture Notes in Comput. Sci., pages 258�269. Springer, Berlin, 2005.

[6] M. Braverman, S. Cook, P. McKenzie, R. Santhanam, and D. Wehr. Branching
programs for tree evaluation. In Mathematical foundations of computer science
2009, volume 5734 of Lecture Notes in Comput. Sci., pages 175�186. Springer,
Berlin, 2009.

[7] J. H. Conway and R. K. Guy. The Book of Numbers. Copernicus, New York,
1996.

[8] K. A. Hansen. Constant width planar branching programs characterize ACC0

in quasipolynomial size. In Twenty-Third Annual IEEE Conference on Com-
putational Complexity, pages 92�99. IEEE Computer Soc., Los Alamitos, CA,
2008.

[9] G. Higman. The orders of relatively free groups. In Proc. Internat. Conf. The-
ory of Groups (Canberra, 1965), pages 153�165. Gordon and Breach, New
York, 1967.

[10] K. Kaarli and P. Mayr. Polynomial functions on subdirect products. Monatsh.
Math., 159(4):341�359, 2010.

[11] K. Krohn, W. D. Maurer, and J. Rhodes. Realizing complex boolean functions
with simple groups. Information and Control, 9(2):190�195, 1966.

[12] C. Y. Lee. Representation of switching circuits by binary-decision programs.
Bell System Tech. J., 38:985�999, 1959.

[13] M. W. Liebeck and A. Shalev. Diameters of �nite simple groups: sharp bounds
and applications. Ann. of Math. (2), 154(2):383�406, 2001.

LENGTH OF POLYNOMIALS OVER FINITE GROUPS 15

[14] W. D. Maurer and J. L. Rhodes. A property of �nite simple non-abelian groups.
Proc. Amer. Math. Soci., 16:552�554, 1965.

[15] H. Neumann. Varieties of Groups. Springer-Verlag, Berlin, 1967.
[16] S. D. Scott. The arithmetic of polynomial maps over a group and the structure

of certain permutational polynomial groups. I. Monatsh. Math., 73:250�267,
1969.

[17] W. R. Scott. Group Theory. Dover Publications Inc., New York, second edition,
1987.

[18] J. �íma and S. �ák. A polynomial time constructible hitting set for restricted
1-branching programs of width 3. In SOFSEM 2007: Theory and practice of
computer science, volume 4362 of Lecture Notes in Comput. Sci., pages 522�
531. Springer, Berlin, 2007.

[19] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein. Genetic program-
ming for �nite algebras. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2008). ACM Press, 2011. in press.

[20] J. G. Thompson. Nonsolvable �nite groups all of whose local subgroups are
solvable. Bull. Amer. Math. Soc., 74:383�437, 1968.

[21] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd,
B. G. Teubner, Stuttgart, 1987.

[22] J. S. Wilson. Finite axiomatization of �nite soluble groups. J. London Math.
Soc., 74(3):566�582, 2006.

Institute of Mathematics, University of Debrecen, Pf. 12, Debre-

cen, 4010, Hungary

E-mail address: ghorvath@science.unideb.hu

Centre for Computer Science & Informatics Research, University

of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB,

United Kingdom

E-mail address: C.L.Nehaniv@herts.ac.uk

	UHRA full text deposit cover AAM version TEMPLATE.pdf
	pollength.pdf

