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1. Introduction

By a (multi-category) classifier on a set X, we mean a function mapping from
X to [C] = {1, 2, . . . , C} where C ≥ 2 is the number of possible categories.
Such a classifier indicates to which of the C different classes objects from X
belong and, in supervised machine learning, it is arrived at on the basis of
a sample, a set of objects from X together with their classifications in [C].
In [4], the notion of sample width for binary classifiers (C = 2) mapping from
the real line X = R was introduced and in [5], this was generalized to finite
metric spaces. In this paper, we consider how a similar approach might be
taken to the situation in which C could be larger than 2, and in which the
classifiers map not simply from the real line, but from some metric space
(which would not generally have the linear structure of the real line). The
results of this paper are applicable to machine learning, as has been shown
recently in [7] for learning case-based inference.

The definition of sample width is given below, but it is possible to indicate
the basic idea at this stage: we define sample width to be at least γ if the
classifier achieves the correct classifications on the sample and, furthermore,
for each sample point, the minimum distance to a point of the domain having
a different classification is at least γ.

A key issue that arises in machine learning is that of generalization error:
given that a classifier has been produced by some learning algorithm on the
basis of a (random) sample of a certain size, how can we quantify the accuracy
of that classifier, where by its accuracy we mean its likely performance in
classifying objects from X correctly? In this paper, we seek answers to this
question that involve not just the sample size, but the sample width.

2. Probabilistic modelling of learning

We work in a version of the popular ‘PAC’ framework of computational learn-
ing theory (see [16, 9]). This model assumes that the sample s consists of an
ordered set (xi, yi) of labeled examples, where xi ∈ X and yi ∈ Y = [C],
and that each (xi, yi) in the training sample s has been generated ran-
domly according to some fixed (but unknown) probability distribution P
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on Z = X × Y . (This includes, as a special case, the situation in which each
xi is drawn according to a fixed distribution on X and is then labeled de-
terministically by yi = t(xi) where t is some fixed function.) Thus, a sample
s of length m can be thought of as being drawn randomly according to the
product probability distribution Pm. An appropriate measure of how well
h : X → Y would perform on further randomly drawn points is its error,
erP (h), the probability that h(X) 6= Y for random (X,Y).

Given a function h ∈ H, we can assess how well h fits a training sample
through the sample error

ers(h) =
1

m
|{i : h(xi) 6= yi}|.

This is simply the fraction of sample points not classified correctly by h.
Much research in learning theory (see [9, 16], for instance) focused on relating
the error of a classifier to its sample error, obtaining bounds of the form:
for all δ ∈ (0, 1), with probability at least 1 − δ, for all h belonging to
some specified set of functions, erP (h) < ers(h) + ε(m, δ), where ε(m, δ)
(known as a generalization error bound) is decreasing in m and δ. Such
results can be obtained using uniform convergence theorems from probability
theory [17, 13, 10, 17, 9, 16, 2]. More recently, emphasis has been placed
on ‘large-margin’ learning (see, for instance [15, 2, 1, 14]) where the idea,
in the two-category case, is that if a binary classifier can be thought of
as a geometrical separator between points and if it achieves a ‘definitive’
separation between the points of different classes, then it is a good classifier,
and it is possible that a better generalization error bound can be obtained.
Margin-based results apply when the binary classifiers are derived from real-
valued function by ‘thresholding’ (taking their sign). Margin analysis has
been extended to multi-category classifiers in [11].

3. The width of a classifier

We now discuss the case where the underlying set of objects X forms a metric
space. Let X be a set on which is defined a metric d : X × X → R. For a
subset S of X, define the distance d(x, S) from x ∈ X to S as follows:

d (x, S) := inf
y∈S

d(x, y).

3



We define the diameter of X to be

diam(X) := sup
x,y∈X

d(x, y).

We will denote by H the set of all possible functions h from X to [C].

The paper [4] introduced the notion of the width of a binary classifier at
a point in the domain, in the case where the domain was the real line R.
Consider a set of points {x1, x2, . . . , xm} from R, which, together with their
true classifications yi ∈ {−1, 1}, yield a training sample

s = ((xj, yj))
m
j=1 = ((x1, y1), (x2, y2), . . . , (xm, ym)) .

We say that h : R→ {−1, 1} achieves sample margin at least γ on s if h(xi) =
yi for each i (so that h correctly classifies the sample) and, furthermore, h is
constant on each of the intervals (xi−γ, xi+γ). It was then possible to obtain
generalization error bounds in terms of the sample width. In this paper we
use an analogous notion of width to analyse multi-category classifiers defined
on a metric space.

For each k between 1 and C, let us denote by Shk the sets corresponding to
the function h : X → [C], defined as follows:

Shk := h−1(k) = {x ∈ X : h(x) = k} . (1)

We define the width wh(x) of h at a point x ∈ X as follows:

wh(x) := min
l 6=h(x)

d(x, Shl ).

In other words, it is the distance from x to the set of points that are labeled
differently from h(x). The term ‘width’ is appropriate since the functional
value is just the geometric distance between x and the complement of Shh(x).

Given h : X → [C], for each k between 1 and C, we define fhk : X → R by

fhk (x) = min
l 6=k

d(x, Shl )− d(x, Shk ),

and we define fh : X → RC by setting the kth component function of fh to
be fhk : that is, (fh)k = fhk .
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Note that if h(x) = k, then fhk (x) ≥ 0 and fhj (x) ≤ 0 for j 6= k. The function
f contains geometrical information encoding how ‘definitive’ the classification
of a point is: if fhk (x) is a large positive number, then the point x belongs
to category k and is a large distance from differently classified points. We
will regard h as being in error on (x, y) ∈ X × [C] if fhy (x) is negative.
Denoting by X, Y random variables on X and [C], respectively, with a joint
probability function P , the error erP (h) of h can then be expressed in terms
of the function fh:

erP (h) = P
(
fhY(X) < 0

)
. (2)

We define the class F of functions as

F :=
{
fh(x) : h ∈ H

}
. (3)

Note that fh is a mapping fromX to the bounded set [−diam(X), diam(X)]C ⊆
RC . Henceforth, we will use γ > 0 to denote a width parameter whose value
is in the range (0, diam(X)].

For a positive width parameter γ > 0 and a training sample s, the empirical
(sample) γ-width error is defined as

Eγ
s (h) := Eγ

s (fh) =
1

m

m∑
j=1

I
(
fhyj(xj) ≤ γ

)
. (4)

(Here, I(A) is the indicator function of the set, or event, A.) Note that

fhy (x) ≤ γ ⇐⇒ min
l 6=y

d(x, Shl )− d(x, Shy ) ≤ γ

⇐⇒ ∃l 6= y such that d(x, Shl ) ≤ d(x, Shy ) + γ.

So the empirical γ-width error on the sample is the proportion of points in the
sample which are either misclassified by h or which are classified correctly,
but lie within distance γ of the set of points classified differently. (We recall
that h(x) = y implies d(x, Shy ) = 0.) Our aim is to show that (with high
probability) the generalization error erP (h) is not much greater than Eγ

s (h).
(In particular, as a special case, we want to bound the generalization error
given that Eγ

s (h) = 0.) This will imply that if the learner finds a hypothesis
which, for a large value of γ, has a small γ-width error, then that hypothesis
is likely to have small error. What this indicates, then, is that if a hypothesis
has a large width on most points of a sample, then it will be likely to have
small error.
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4. Covering numbers

4.1. Covering numbers

A central idea in large-margin analysis is that of covering number and this will
also prove useful here. We will discuss different types of covering numbers,
so we introduce the idea in some generality to start with.

Suppose (A, d) is a (pseudo-)metric space and that α > 0. Then an α-cover
of A (with respect to d) is a finite set C (possibly a subset of A) such that,
for every a ∈ A, there is some c ∈ C such that d(a, c) ≤ α. If such a cover
exists, then the minimum cardinality of such a cover is the covering number
N (A,α, d).

We are working with the set F of vector-valued functions from X to RC , as
defined earlier. We define the sup-metric d∞ on F as follows: for f, g : X →
RC ,

d∞(f, g) = sup
x∈X

max
1≤k≤C

|fk(x)− gk(x)|,

where fk denotes the kth component function of f . (Note that each compo-
nent function is bounded, so the metric is well-defined.)

We can bound the covering numbers N (F , α, d∞) of F (with respect to the
sup-metric) in terms of the covering numbers of X with respect to its metric
d. The result is as follows.

Theorem 4.1. For α ∈ (0, diam(X)],

N (F , α, d∞) ≤
(

9 diam(X)

α

)CNα
,

where Nα = N (X,α/3, d).

4.2. Smoothness of the function class

As a first step towards establishing this result, we prove that the functions
in F satisfy a certain Lipschitz (or smoothness) property. A similar property
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was proved for the case of a binary classifier on a finite metric space in [5]:
this generalizes that result to the multi-category case, and deals with the
case in which the underlying metric space may be infinite.

Proposition 4.2. For every f ∈ F , and for all x, x′ ∈ X,

max
1≤k≤C

|fk(x)− fk(x′)| ≤ 2 d(x, x′). (5)

Proof: Let x, x′ ∈ X and fix k between 1 and C. We show that

|fk(x)− fk(x′)| ≤ 2 d(x, x′).

Recall that, since f ∈ F , there is some h : X → [C] such that, for all x,

fk(x) = min
l 6=k

d(x, Shl )− d(x, Shk )

where, for each i, Shi = h−1(i). We have

|fk(x)− fk(x′)| =

∣∣∣∣min
l 6=k

d(x, Shl )− d(x, Shk )−min
l 6=k

d(x′, Shl ) + d(x′, Shk )

∣∣∣∣
≤

∣∣∣∣min
l 6=k

d(x, Shl )−min
l 6=k

d(x′, Shl )

∣∣∣∣+
∣∣d(x, Shk )− d(x′, Shk )

∣∣
We consider in turn each of the two terms in this final expression. We start
with the second, by showing that, for any set S, |d(x, S)−d(x′, S)| ≤ d(x, x′).
From the fact that, for each s ∈ S, d(x, s) ≤ d(x, x′)+d(x′, s), it follows that

inf
s∈S

d(x, s) ≤ d(x, x′) + inf
s∈S

d(x′, s);

that is,
d(x, S) ≤ d(x, x′) + d(x′, S).

An analogous argument with x, x′ interchanged establishes

d(x′, S) ≤ d(x, x′) + d(x, S).

.
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Next we show ∣∣∣∣min
l 6=k

d(x, Shl )−min
l 6=k

d(x′, Shl )

∣∣∣∣ ≤ d(x, x′).

Suppose that mink 6=l d(x, Shl ) = d(x, Shp ) and that mink 6=l d(x′, Shl ) = d(x′, Shq ).
Then,

d(x, Shp ) ≤ d(x, Shq ) ≤ d(x, x′) + d(x′, Shq )

and
d(x′, Shq ) ≤ d(x′, Shp ) ≤ d(x, x′) + d(x, Shp ).

It follows that |d(x, Shp )− d(x′, Shq )| ≤ d(x, x′). �

Next, we exploit this ‘smoothness’ to construct a cover for F .

4.3. Covering F

Let the subset Cα ⊆ X be a minimal size α/3-cover for X with respect to the
metric d. So, for every x ∈ X there is some x̂ ∈ Cα such that d(x, x̂) ≤ α/3.
Denote by Nα the cardinality of Cα.

Let

Λα =

{
λi = iα : i = −

⌈
3 diam(X)

α

⌉
, . . . ,−1, 0, 1, 2, . . . ,

⌈
3 diam(X)

α

⌉}
(6)

and define the class F̂ to be all functions f̂ : Cα → (Λα)C . Then F̂ is of
a finite size equal to |Λα|C Nα . For any f̂ ∈ F̂ define the extension f̂ext :
X → RC of f̂ to the whole domain X as follows: given f̂ (which is well-
defined on the points x̂i of the cover) then for every point x in the ball
Bα/3(x̂i) = {x ∈ X : d(x, x̂i) ≤ α/3}, we let f̂ext(x) = f̂(x̂i), for all x̂i ∈ Cα
(where, if, for a point x there is more than one point x̂i such that x ∈
Bα/3(x̂i), we arbitrarily pick one of the points x̂i in order to assign the value

of f̂ext(x)). There is a one-to-one correspondence between the functions f̂

and the functions f̂ext. Hence the set F̂ext =
{
f̂ext : f̂ ∈ F̂

}
is of cardinality

equal to |Λα|C Nα .

8



We claim that for any f ∈ F there exists an f̂ext such that d∞(f, f̂ext) ≤ α. To
see this, first for every point x̂i ∈ Cα, consider f(x̂i) and find a corresponding
element in ΛC

α , (call it f̂(x̂i)) such that

max
1≤k≤C

|(f(x̂i))k − (f̂(x̂i))k| ≤ α/3. (7)

(That there exists such a value follows by design of Λα.) By the above
definition of extension, it follows that for all points x ∈ Bα/3(x̂i) we have

f̂ext(x) = f̂(x̂i). Now, from (5) we have for all f ∈ F ,

max
1≤i≤k

sup
x∈Bα/3(x̂i)

|(f(x))k − (f(x̂i))k| ≤ 2d(x, x̂i) ≤ 2α/3. (8)

Hence for any f ∈ F there exists a function f̂ ∈ F̂ with a corresponding
f̂ext ∈ F̂ext such that, given an x ∈ X, there exists x̂i ∈ Cα such that, for
each k between 1 and C, |(f(x))k − (f̂ext(x))k| = |(f(x))k − (f̂ext(x̂i))k|. The
right hand side can be expressed as

|(f(x))k − (f̂ext(x̂i))k| = |(f(x))k − (f̂(x̂i))k|
= |(f(x))k − (f(x̂i))k + (f(x̂i))k − (f̂(x̂i))k|
≤ |(f(x))k − (f(x̂i))k|+ |(f(x̂i))k − (f̂(x̂i))k|
≤ 2α/3 + α/3 (9)

= α.

where (9) follows from (7) and (8).

Hence the set F̂ext forms an α-covering of the class F in the sup-norm. Thus
we have the following covering number bound.

N (F , α, d∞) ≤ |Λα|C Nα =

(
2

⌈
3 diam(X)

α

⌉
+ 1

)C Nα
. (10)

Theorem 4.1 now follows because (for 0 < α ≤ diam(X))

2

⌈
3 diam(X)

α

⌉
+1 ≤ 2

(
3 diam(X)

α
+ 1

)
+1 =

6 diam(X)

α
+3 ≤ 9 diam(X)

α
.
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5. Generalization error bounds

We present two results. The first bounds the generalization error in terms
of a width parameter γ for which the γ-width error on the sample is zero;
the second (more general but looser in that special case) bounds the error in
terms of γ and the γ-width error on the sample (which could be non-zero).

Theorem 5.1. Suppose that X is a metric space of diameter diam(X). Sup-
pose P is any probability measure on Z = X× [C]. Let δ ∈ (0, 1). Then, with
probability at least 1 − δ, the following holds for s ∈ Zm: for any function
h : X → [C], and for any γ ∈ (0, diam(X)], if Eγ

s (h) = 0, then

erP (h) ≤ 2

m

(
CN (X, γ/12, d) log2

(
36 diam(X)

γ

)
+ log2

(
4 diam(X)

δγ

))
.

Theorem 5.2. Suppose that X is a metric space of diameter diam(X). Sup-
pose P is any probability measure on Z = X× [C]. Let δ ∈ (0, 1). Then, with
probability at least 1 − δ, the following holds for s ∈ Zm: for any function
h : X → [C], and for any γ ∈ (0, diam(X)],

erP (h) ≤ Eγ
s (h)+

√
2

m

(
CN (X, γ/12, d) ln

(
36 diam(X)

γ

)
+ ln

(
4 diam(X)

γδ

))
+

1

m
.

What we have in Theorem 5.2 is a high probability bound that takes the
following form: for all h and for all γ ∈ (0, diam(X)],

erP (hS) ≤ Eγ
s (h) + ε(m, γ, δ),

where ε tends to 0 as m→∞ and ε decreases as γ increases. The rationale
for seeking such a bound is that there is likely to be a trade-off between width
error on the sample and the value of ε: taking γ small so that the error term
Eγ

s (h) is zero might entail a large value of ε; and, conversely, choosing γ large
will make ε relatively small, but lead to a large sample error term. So, in
principle, since the value γ is free to be chosen, one could optimize the choice
of γ on the right-hand side of the bound to minimize it.
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The bound of Theorem 5.2 compares well with the margin-based bound from
[11]. It varies as 1/

√
m, while that of [11] has an additional

√
lnm factor. The

dependence on C is, however,
√
C whereas in [11] it is

√
ln2C. The bounds

are not directly comparable because ours concerns width and that of [11]
involves margin, but, for fixed C, it is notable that the m-dependence of our
bound is better. The dependence of Theorem 5.2 on the width parameter γ
is, in general, similar to the dependence of [11] on the margin parameter γ as
both grow like

√
N γ where Nγ is the covering number of the underlying real-

valued discriminant function class. The advantage of the bound of Theorem
5.2 is that it is expressed in terms of the covering number of the actual metric
space which, in some problems, such as when the metric space is finite [5],
can be efficiently estimated.

Proof of Theorem 5.1

The proof uses techniques similar to those first used in [17, 16, 10, 13] and
in subsequent work extending those techniques to learning with real-valued
functions, such as [12, 3, 1, 8, 6]. The first observation is that if

Q = {s ∈ Zm : ∃h ∈ H with Eγ
s (h) = 0, erP (h) ≥ ε}

and

T = {(s, s′) ∈ Zm × Zm : ∃h ∈ H with Eγ
s (h) = 0, E0

s′(h) ≥ ε/2},

then, for m ≥ 8/ε,
Pm(Q) ≤ 2P 2m(T ).

This follows from the proof of Lemma 10.2 in [1]; instead of the γ-margin error
event defined there as Yf(X) < γ based on any real-valued function f on X
(the empirical γ-error of f is denoted by êrγs (f)), the current paper considers
the γ-width error event which is defined as fhY(X) < γ and is based on the
specific real valued function, the width function, fh. In the proof of that
lemma, substitute for f the width function fh, set the value of êrγr (f

h) = 0
and apply Chebyshev’s inequality to show that if erP (fh) ≥ ε, then for
m ≥ 8/ε, Pm(êrs(f

h) ≥ ε/2) ≥ 1/2, for any h.

LetG be the permutation group (the ‘swapping group’) on the set {1, 2, . . . , 2m}
generated by the transpositions (i,m + i) for i = 1, 2, . . . ,m. Then G acts
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on Z2m by permuting the coordinates: for σ ∈ G,

σ(z1, z2, . . . , z2m) = (zσ(1), . . . , zσ(2m)).

From the proof of Lemma 10.2 in [1], by invariance of P 2m under the action
of G, we have

P 2m(T ) ≤ max{P(σz ∈ T ) : z ∈ Z2m},

where P denotes the probability over uniform choice of σ from G.

Let F = {fh : h ∈ H} be the set of vector-valued functions derived fromH as
before, and let F̂ be a minimal γ/2-cover of F in the d∞-metric. Theorem 4.1
tells us that the size of F̂ is no more than(

18 diam(X)

γ

)CN
,

where N = N (X, γ/6, d).

The next part of the argument is similar to that of Theorem 2.2 in [6], which
follows earlier ‘symmetrization’ proofs. We omit most of the details. It can
be shown that, for any z,

P(σz ∈ T ) ≤
∑
f̂∈F̂

P(σz ∈ T (f̂)) ≤ |F̂| 2−εm/2,

where, for f̂ ∈ F̂ ,

T (f̂) := {(s, s′) ∈ Zm × Zm : Eγ/2
s (f̂) = 0, E

γ/2
s′ (f̂) ≥ ε/2}.

So,

Pm(Q) ≤ 2P 2m(T ) ≤ 2 |F̂ | 2−εm/2 ≤ 2

(
18 diam(X)

γ

)CN
,

where N = N (X, γ/6, d). This is at most δ when

ε =
2

m

(
CN log2

(
18 diam(X)

γ

)
+ log2

(
2

δ

))
.
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Next, we use this to obtain a result in which γ is not prescribed in advance.
For α1, α2, δ ∈ (0, 1), let E(α1, α2, δ) be the set of z ∈ Zm for which there
exists some h ∈ H with Eα2

z (h) = 0 and erP (h) ≥ ε1(m,α1, δ), where

ε1(m,α1, δ) =
2

m

(
CN (X,α1/6, d) log2

(
18 diam(X)

α1

)
+ log2

(
2

δ

))
.

Then the result just obtained tells us that Pm(E(α, α, δ)) ≤ δ. It is also
clear that if α1 ≤ α ≤ α2 and δ1 ≤ δ, then E(α1, α2, δ1) ⊆ E(α, α, δ). Let D
denote diam(X). Then, following an argument from [8],

E (γ/2, γ, δγ/2D) ⊆ E

(
D

2l+1
,
D

2l+1
,
δ

2l+1

)
,

for all γ satisfying
D

2l+1
≤ γ ≤ D

2l
,

and therefore

Pm

 ⋃
γ∈(0,D]

E (γ/2, γ, δγ/2D)


= Pm

∞⋃
l=0

⋃
D/2l+1≤γ≤D/2l

E

(
D

2l+1
,
D

2l+1
,
δ

2l+1

)
≤

∞∑
l=0

Pm

(
E

(
D

2l+1
,
D

2l+1
,
δ

2l+1

))
≤ δ

∞∑
l=0

(1/2l)

≤ δ

In other words, with probability at least 1− δ, for all γ ∈ (0, diam(X)]], we
have that if h ∈ H satisfies Eγ

s (h) = 0, then erP (h) < ε2(m, γ, δ), where

ε2(m, γ, δ) =
2

m

(
CN (X, γ/12, d) log2

(
36 diam(X)

γ

)
+ log2

(
4 diam(X)

δγ

))
.

Note that γ now need not be prescribed in advance.
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Proof of Theorem 5.2

Guermeur [11] has developed a framework in which to analyse multi-category
classification, and we can apply one of his results to obtain the bound of
Theorem 5.2, a generalization error bound applicable to the case in which
the γ-width sample error is not zero. In that framework, there is a set G
of functions from X into RC , and a typical g ∈ G is represented by its
component functions gk for k = 1 to C. Each g ∈ G satisfies the constraint

C∑
k=1

gk(x) = 0, ∀x ∈ X.

The risk R(g) of g ∈ G, when the underlying probability measure on X × Y
is P , is defined to be the P -probability that for (X,Y) ∈ X × [C], we have
gY(X) ≤ maxk 6=Y gk(X). For g ∈ G, ∆g is defined to be the function X → RC

given by

(∆g)k(x) =
1

2

(
gk(x)−max

l 6=k
gl(x)

)
, 1 ≤ k ≤ C.

We define the class of such functions by

∆G := {∆g : g ∈ G} . (11)

Given a sample s ∈ (X × [C])m , let

Rγ,s(g) =
1

m

m∑
i=1

I {∆gyi(xi) < γ} .

Then a result following from [11] is (in the above notation) as follows:

Let δ ∈ (0, 1) and suppose P is a probability measure on Z = X× [C]. With
Pm-probability at least 1−δ, s ∈ Zm will be such that we have the following:
(for any fixed d > 0) for all γ ∈ (0, d] and for all g ∈ G,

R(g) ≤ Rγ,s(g) +

√
2

m

(
lnN (∆G, γ/4, d∞) + ln

(
2d

γδ

))
+

1

m
.
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(In fact, the result from [11] involves empirical covering numbers rather than
d∞-covering numbers. The latter are at least as large as the empirical cover-
ing numbers, but we use these because we have bounded them earlier in this
paper.)

We can (as in [6]) formulate our problem in Guermeur’s framework and
involve the functions fh from earlier. For each function h : X → [C], let

gh : X → RC

be given by

ghk (x) =
1

C

C∑
i=1

d(x, Shi )− d(x, Shk ),

where, as before, Shj = h−1(j). Let

G = {gh : h ∈ H}

be the set of all such g and take ∆G as in (11). Then these functions satisfy
the constraint that their coordinate functions sum to the zero function, since

C∑
k=1

ghk (x) =
C∑
k=1

1

C

C∑
i=1

d(x, Shi )−
C∑
k=1

d(x, Shk ) =
C∑
k=1

d(x, Shk )−
C∑
k=1

d(x, Shk ) = 0.

Furthermore, for each k,

∆ghk (x) =
1

2

(
ghk (x)−max

l 6=k
ghl (x)

)
=

1

2

(
1

C

C∑
i=1

d(x, Shi )− d(x, Shk )−max
l 6=k

(
1

C

C∑
i=1

d(x, Shi )− d(x, Shl )

))
,

which is easily seen to be

1

2

(
min
l 6=k

d(x, Shl )− d(x, Shk )

)
=

1

2
fhk (x).

From the definition of gh, the event that ghY(X) ≤ maxk 6=Y g
h
k (X) (the proba-

bility of which is, by definition, R(gh)) is equivalent to the event that

1

C

C∑
i=1

d(X, Shi )− d(X, ShY) ≤ max
k 6=Y

(
1

C

C∑
i=1

d(X, Shi )− d(X, Shk )

)
,
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which is equivalent to mink 6=Y d(X, Shk ) ≤ d(X, ShY). It can therefore be seen
that R(gh) = erP (h). Similarly, Rγ,s(g

h) = E2γ
s (h).

Noting that ∆G = (1/2)F , so that an α/2 cover of F will provide an α/4
cover of ∆G, we can therefore apply Guermeur’s result to see that with
probability at least 1− δ, for all h and for all γ ∈ (0, diam(X)],

erP (h) ≤ E2γ
s (h) +

√
2

m

(
lnN (F , γ/2, d∞) + ln

(
2 diam(X)

γδ

))
+

1

m

= Eγ
s (h) +

√
2

m

(
lnN (F , γ/4, d∞) + ln

(
4 diam(X)

γδ

))
+

1

m

≤ Eγ
s (h) +

√
2

m

(
CN (X, γ/12, d) ln

(
36 diam(X)

γ

)
+ ln

(
4 diam(X)

γδ

))
+

1

m
.

6. Conclusions

This paper generalizes considerably the initial notion of sample width intro-
duced in [4], where the focus was on binary-valued functions defined on the
real line. It also extends results from [5], in which binary classification on a
finite metric space was studied. (The focus there was on a finite domain so
that the covering numbers, and hence generalization error bounds, could be
bounded by certain graph-theoretical parameters associated with the under-
lying metric space.) This paper provides generalization error bounds for any
multi-category classifiers on a metric space, and the bounds involve both the
covering numbers of the underlying metric space and the extent to which a
classifier achieves a large sample width on the training sample. The results
of this paper are directly applicable to machine learning, as for instance, to
learning case base inference [7].
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