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Abstract

Establishing arc consistency on two relational structures is one of the most
popular heuristics for the constraint satisfaction problem. We aim at deter-
mining the time complexity of arc consistency testing. The input structures
G and H can be supposed to be connected colored graphs, as the general
problem reduces to this particular case. We first observe the upper bound
O(e(G)v(H) + v(G)e(H)), which implies the bound O(e(G)e(H)) in terms of
the number of edges and the bound O((v(G)+v(H))3) in terms of the number
of vertices. We then show that both bounds are tight up to a constant factor
as long as an arc consistency algorithm is based on constraint propagation
(like any algorithm currently known).

Our argument for the lower bounds is based on examples of slow constraint
propagation. We measure the speed of constraint propagation observed on a
pair G,H by the size of a proof, in a natural combinatorial proof system,
that Spoiler wins the existential 2-pebble game on G,H. The proof size is
bounded from below by the game length D(G,H), and a crucial ingredient
of our analysis is the existence of G,H with D(G,H) = Ω(v(G)v(H)). We
find one such example among old benchmark instances for the arc consistency
problem and also suggest a new, different construction.

1 Introduction

According to the framework of [1], the constraint satisfaction problem (CSP) takes
two finite relational structures as input and asks whether there is a homomorphism
between these structures. In this paper we consider structures with unary and
binary relations and refer to unary relations as colors and to binary relations as
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directed edges. In fact, most of the time we deal with structures having only one
binary, symmetric and irreflexive relation E, i.e., with vertex-colored graphs. This
is justified by a linear time reduction from the CSP on binary structures to its
restriction on colored graphs; see Section 5.1. Note that the CSP restricted to colored
graphs and digraphs has also been studied under the name “List Homomorphism”
from an algebraic point of view.

Let G and H be an input of the CSP. It is customary to call the vertices of G
variables and the vertices of H values. A mapping from V (G) to V (H) then corre-
sponds to an assignment of values to the variables, and the assignment is satisfying
if the mapping defines a homomorphism. Let a domain Dx ⊆ V (H) of a variable
x ∈ V (G) be a set of admissible assignments to this variable. Formally, Dx is a
domain if for every homomorphism h : G→ H it holds that h(x) ∈ Dx. The aim of
the arc consistency heuristic is to find small domains in order to shrink the search
space. The first step of the arc consistency approach is to ensure node consistency,
that is, Dx is initialized to the set of vertices in H that are colored with the same
color as x. The second step is to iteratively shrink the domains according to the
following rule:

If there exists an a ∈ Dx and a variable y ∈ V (G) such that {x, y} ∈
E(G) and {a, b} /∈ E(H) for all b ∈ Dy, then delete a from Dx.

A pair of graphs augmented with a set of domains is arc consistent if the above
rule cannot be applied and all domains are nonempty. We say that arc consistency
can be established for G and H , if there exists a set of domains such that G and
H augmented with these domains is arc consistent. Our aim is to estimate the
complexity of the following decision problem.

AC-Problem

Input : Two colored graphs G and H .
Question: Can arc consistency be established on G and H?

Using known techniques for designing arc consistency algorithms, we observe that
the AC-Problem can be solved in time O(v(G)e(H) + e(G)v(H)), where v(G) and
e(G) denote the number of vertices and the number of edges respectively. Since
this gives us only a quadratic upper bound in terms of the overall input size, there
could be a chance for improvement: Is it possible to solve the AC-Problem in
sub-quadratic or even linear time? In fact, we cannot rule out this possibility com-
pletely. The first author [2] recently obtained lower bounds for higher levels of k-
consistency (note that arc consistency is equivalent to 2-consistency). In particular,
15-consistency cannot be established in linear time and establishing 27-consistency
requires more than quadratic time on multi-tape Turing machines. The lower bounds
are obtained in [2] via the deterministic time hierarchy theorem and, unfortunately,
these methods are not applicable to arc consistency because of the blow-up in the
reduction.
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However, we show lower bounds for every algorithm that is based on constraint
propagation. A propagation-based arc consistency algorithm is an algorithm that
solves the AC-Problem by iteratively shrinking the domains via the arc consistency
rule above. Note that all currently known arc consistency algorithms (as e.g. AC-1,
AC-3 [3]; AC-3.1/AC-2001 [4]; AC-3.2, AC-3.3 [5]; AC-3d [6]; AC-4 [7]; AC-5 [8]; AC-
6 [9]; AC-7 [10]; AC-8 [11], AC-∗ [12]) are propagation-based in this sense. Different
AC algorithms differ in the principle of ordering propagation steps; for a general
overview we refer the reader to [4]. The upper bound O(v(G)e(H) + e(G)v(H))
implies O(e(G)e(H)) in terms of the number of edges and O(n3) in terms of the
number of vertices n = v(G) + v(H). Our main result, Theorem 5.3 in Section 5,
states that both bounds are tight up to a constant factor for any propagation-based
algorithm.

We obtain the lower bounds by exploring a connection between the existential
2-pebble game and propagation-based arc consistency algorithms. In its general
form the existential k-pebble game is an Ehrenfeucht-Fräıssé like game that deter-
mines whether two finite structures can be distinguished in the existential-positive
k-variable fragment of first order logic. It has found applications also outside of
finite model theory: to study the complexity and expressive power of Datalog [13],
k-consistency tests [14, 15, 16, 2] and bounded-width resolution [17, 18]. It turns out
that the existential 2-pebble game exactly characterizes the power of arc consistency
[14], i.e., Spoiler wins the existential 2-pebble game on two colored graphs G and H
iff arc consistency cannot be established.

The connection between the existential 2-pebble game and arc consistency algo-
rithms is deeper than just a reformulation of the AC-Problem. We show that every
constraint propagation-based arc consistency algorithm computes in by-passing a
proof of Spoiler’s win on instances where arc consistency cannot be established. On
the one hand these proofs of Spoiler’s win naturally correspond to a winning strat-
egy for Spoiler in the game. On the other hand they reflect the propagation steps
performed by an algorithm. We consider three parameters to estimate the complex-
ity of such proofs: length, size and depth. The length corresponds to the number
of propagation steps, whereas size also takes the cost of propagation into account.
The depth corresponds to the number of “nested” propagation steps and precisely
matches the number of rounds D(G,H) Spoiler needs to win the game. We observe
that the minimum size of a proof of Spoiler’s win on G and H bounds from below
the running time of sequential propagation-based algorithms, whereas the minimal
depth matches the running time of parallel algorithms.

We exhibit pairs of colored graphs G,H where D(G,H) = Ω(v(G)v(H)) and
hence many nested propagation steps are required to detect arc-inconsistency. Be-
cause these graphs have a linear number of edges this implies that there is no sub-
quadratic propagation-based arc consistency algorithm. It should be noted that
CSP instances that are hard for sequential and parallel arc consistency algorithms,
in the sense that they require many propagation steps, have been explored very
early in the AI-community [19, 20]. Such examples were also proposed to serve as
benchmark instances to compare different arc consistency algorithms [21]. Graphs G
and H with large D(G,H) can be derived from the old Domino example, consisting
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of structures with two binary relations. We also provide a new example, which we
call Co-Wheels, that shows the same phenomenon of slow constraint propagation
for a more restricted class of rooted loopless digraphs.

The rest of the paper is organized as follows. In Section 2 we give the necessary
information on the existential 2-pebble game and use it to analyze the Domino

pattern. Our Co-Wheels pattern is introduced and analyzed in Section 3. Section
4 is devoted to the winner proof system for the existential 2-pebble game. The facts
obtained here are used in Section 5 to prove our main results on the complexity of
propagation-based algorithms for the AC-Problem.

2 Preliminaries

A binary structure A is a relational structure over vocabulary σ = {E1, E2, . . . , U1,
U2, . . .} consisting of binary relations Ei, i ≥ 1, and unary relations Uj , j ≥ 1. Each
binary relation EA

i between elements of A can be regarded as a directed graph with
arrows (x, y) ∈ EA

i colored in color i. Similarly, the unary relations UA
j can be

thought of as colors of elements of A. In this way, we can consider A an edge- and
vertex-colored directed graph. The elements of A will be then called vertices. The
set of the elements of A will be denoted by V (A) and their number by v(A).

In colored graphs we additionally have unary relations of vertex colors, i.e., σ =
(E1, U1, U2, . . .). Moreover, it is supposed that any two color classes UA

j and UA
j′ are

disjoint. The number of edges in a colored graph A is denoted by e(A).
The existential 2-pebble game on binary structures A and B is played by two

players, Spoiler and Duplicator, to whom we will refer as he and she respectively.
The players have equal sets of two pairwise different pebbles, p and q. A round
consists of a move of Spoiler followed by a move of Duplicator. Spoiler takes a
pebble, p or q, and puts it on a vertex in A. Then Duplicator has to put her copy of
this pebble on a vertex of B. Duplicator’s objective is to keep the following condition
true after each round: the pebbling should determine a partial homomorphism from
A to B.

Let x ∈ V (A) and u ∈ V (B) denote the vertices pebbled by p and y ∈ V (A)
and v ∈ V (B) denote the vertices pebbled by q. Thus, Duplicator loses as soon as
x ∈ UA

j while u /∈ UB
j for some j, or (x, y) ∈ EA

i while (u, v) /∈ EB
i , or (y, x) ∈ EA

i

while (v, u) /∈ EB
i for some i, or x = y while u 6= v.

For each positive integer r, the r-round 2-pebble existential game on A and B
is a two-person game of perfect information with a finite number of positions. By
Zermelo’s theorem, either Spoiler or Duplicator has a winning strategy in this game,
that is, a strategy winning against every strategy of the opponent. Let D(A,B)
denote the minimum r for which Spoiler has a winning strategy. If such r does
not exist, we will write D(A,B) = ∞. As it is well known [13], D(A,B) ≤ r if
and only if A can be distinguished from B by a sentence of quantifier rank r in
the existential-positive two-variable logic. The existential-positive fragment of first-
order logic consists of formulas containing only monotone Boolean connectives and
only existential quantifiers (thus, negation and universal quantification is forbidden).
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Suppose that D(A,B) < ∞. We say that Spoiler plays optimally if he never
loses an opportunity to win as soon as possible. More specifically, after a round
is ended in a position P (determined by the pebbled vertices), Spoiler makes the
next move according a strategy that allows him to win from the position P in the
smallest possible number of rounds.

Lemma 2.1 If Spoiler plays optimally, then the following conditions are true.

1. Spoiler uses the pebbles alternatingly, say, p in odd and q in even rounds.

2. Whenever Spoiler moves a pebble, he moves it to a new position. That is,
if xi ∈ V (A) denotes the vertex pebbled in the i-th round, then xi+2 6= xi.
Moreover, if xi+1 = xi, then xi+2 6= xi−1.

3. (xi, xi+1) or (xi+1, xi) satisfies at least one binary relation.

Proof. Recall that a position P in the game is a tuple in V (A)2 × V (B)2 or in
V (A) × V (B) consisting of the currently pebbled vertices. By assumption, Spoiler
has a strategy allowing him to win the game within some number of rounds. Then,
for every P there is an r such that Spoiler has a winning strategy in the r-round
game with the initial position P . Denote the smallest such r by R(P ). We will
denote the vertex of B pebbled by Duplicator in the i-th round by ui.

1. We first show this for the first two rounds. Let R denote the minimum number
r such that Spoiler has a winning strategy in the r-round game. It is clear that in
the first round Spoiler pebbles a vertex x1 ∈ V (A) such that maxu∈V (B) R(x1, u) is
equal to the minimum possible value R−1. If in the second round Spoiler just moves
the pebble from x1 to another vertex x2, then Duplicator can pebble a vertex u2

attaining maxu∈V (B) R(x2, u) ≥ R−1. This allows her to win the next r−2 rounds,
contradictory to the fact that the optimal strategy used by Spoiler is winning in the
R-round game.

Assume now that Spoiler has used the pebble p in the (i− 1)-th round and the
pebble q in the i-th round, and the game is not over yet. By the definition of an opti-
mal strategy, the value R′ = maxuR(xi−1, xi, ui−1, u) is minimum possible among all
choices of xi. From now on Spoiler has to win the game in at most r′ rounds. If, how-
ever, in the (i+1)-th round Spoiler uses the pebble q again moving it from xi to xi+1,
then Duplicator can pebble a vertex ui+1 attaining maxuR(xi−1, xi+1, ui−1, u) ≥ R′.
This allows her to win the further R′− 1 rounds, contradicting Spoiler’s optimality.

2. The definition of an optimal strategy implies that, after the i-th round is
played, Spoiler wins in at most R(xi−1, xi, ui−1, ui) rounds. Assume that in the
(i + 1)-th round Spoiler pebbles xi+1 = xi−1. Not to lose immediately, Duplicator
pebbles ui+1 = ui−1. Starting from the next round, Duplicator is able to stand up in
R(xi, xi−1, ui, ui−1)−1 = R(xi−1, xi, ui−1, ui)−1 rounds, which gives a contradiction.

If xi+1 = xi, the inequality xi+2 6= xi−1 follows by a similar argument.
3. Part 1 of the lemma shows that after the i-th round the players actually play

the game with the initial position (xi, ui) (that is, Spoiler’s optimal strategy can
be supposed to be independent of the pair (xi−1, ui−1)). In particular, Spoiler has

5



A5 B7

Figure 1: The Domino example.

a strategy allowing him to win the rest of the game in R(xi, ui) ≤ R − i rounds,
where R is as defined above. Assume that the vertices xi and xi+1 satisfy no binary
relation in A. Then every choice of ui+1 ∈ V (B) is non-losing for Duplicator in the
(i + 1)-th round. If she chooses ui+1 attaining maxu∈V (B) R(xi+1, u) ≥ R − 1, then
she has a strategy allowing her to survive at least R − 1 further rounds after the
i-th round, a contradiction.

Lemma 2.1 has several useful consequences. The first of them implies that,
without loss of generality, we can restrict our attention to connected structures.
Two distinct vertices of a binary structure A are adjacent in its underlying graph
GA if they satisfy at least one binary relation of A. Connected components of A are
considered with respect to GA. Let A consist of connected components A1, . . . , Ak

and B consist of connected components B1, . . . , Bl. Then it easily follows from part
3 of Lemma 2.1 that D(A,B) = mini maxj D(Ai, Bj). Another consequence follows
from parts 2 and 3.

Corollary 2.2 Suppose that the underlying graph GA of A is a tree. If D(A,B) <
∞, then D(A,B) < 2 v(A).

Proof. Consider the existential 2-pebble game on A and B and assume that
Spoiler follows an optimal strategy. By part 3 of Lemma 2.1, he all the time moves
the pebbles along a path in GA. By part 2 of the lemma, he never turns back. Since
GA is a tree, the game lasts at most 2 d(GA) + 1 < 2 v(A) rounds, where d(GA)
denotes the diameter of GA.

Furhtermore, we now can state a general upper bound for D(A,B).

Corollary 2.3 If D(A,B) <∞, then D(A,B) ≤ v(A)v(B) + 1.

Proof. Assume that Spoiler plays optimally. Let xi ∈ V (A) and ui ∈ V (B) denote
the vertices pebbled in the i-th round. By part 1 of Lemma 2.1, we can further as-
sume that Spoiler’s move in the (i+1)-th round depends only on the (xi, ui). It read-
ily follows that, if the game lasts r rounds, then the pairs (x1, u1), . . . , (xr−1, ur−1)
are pairwise different, and hence r − 1 ≤ v(A)v(B).

The bound of Corollary 2.3 is tight, at least, up to a factor of 1/2. A suitable
lower bound can be obtained from the CSP instances that appeared in [19, 21] under
the name of DOMINO problem and were used for benchmarking the arc consistency
algorithms. A Domino instance consists of two digraphs Am and Bn whose arrows
are colored in red and blue; see Fig. 1. Am is a directed cycle of length m with
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x0
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a0

Figure 2: An example of Co-Wheels .

one blue and the other red arrows. Bn is a blue directed path where red loops are
attached to all its n vertices. Spoiler can win the existential 2-pebble game on Am

and Bn by moving the pebbles along the cycle Am, always in the same direction.
By Lemma 2.1, this is the only way for him to win in the minimum number of
rounds. When Spoiler passes red edges, Duplicator stays with both pebbles at the
same vertex of Bn. Only when Spoiler passes the blue edge, Duplicator passes one
(blue) edge forward in Bn. Thus, if Duplicator starts playing in the middle of Bn,
she survives in at least 1

2
m(n− 1) rounds.

3 More examples of slow constraint propagation

The Domino pairs are remarkable examples of binary structures on which constraint
propagation is as slow as possible, up to a constant factor of 1/2. An important
role in the Domino example is played by the fact that we have two different edge
colors. We now show that essentially the same lower bound holds true over a rather
restricted class of structures, namely rooted loopless digraphs, where edges are un-
colored, there is a single color for vertices, and only a single root vertex is colored
in it. It is also supposed that every vertex of a rooted digraph is reachable from the
root along a directed path.

By the wheel Wn we mean the rooted digraph with n+1 vertices where there are
arrows from the root to all the other n vertices and these vertices form a directed
cycle. We call a pair of rooted digraphs Gm and Hn co-wheels if Gm is obtained
from Wm by removal of all but one arrows from the root and Hn is obtained from
Wn by removal of one arrow from the root; see an example in Fig. 2.

Lemma 3.1 Let Gm and Hn be co-wheels. If m and n are coprime, then D(Gm,
Hn) <∞ and D(Gm, Hn) >

1
2
m(n− 3).

Proof. Let V (Gm) = {x0, . . . , xm−1} and V (Hn) = {a0, . . . , an−1}. Assume that x0

is adjacent to the root of Gm, a0 is non-adjacent to the root of Hn, and the indices
increase in the direction of arrows. We first argue that Spoiler has a winning strategy
in the existential 2-pebble game on Gm and Hn. Let Spoiler pebble x0 in the first
round and assume that Duplicator responds with at. If t = 0, Spoiler wins by putting
the other pebble on the root. If t > 0, Spoiler is able to force pebbling the pair
(x0, a0) in a number of rounds. Indeed, if Spoiler moves the pebbles alternatingly
along the cycle so that the pebbled vertices are always adjacent, then after ℓm
rounds Spoiler passes the cycle ℓ times and arrives again at x0, while Duplicator
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is forced to come to at+ℓm, where the index is computed modulo n. Since m and
n are coprime, m mod n is a generator of the cyclic group Zn. It follows that the
parameter ℓ can be chosen so that t+ ℓm = 0 (mod n), and then at+ℓm = a0.

We now have to show that Duplicator is able to stand up in at least 1
2
m(n −

3) rounds. Estimating the length of the game, we can assume that Spoiler plays
according to an optimal strategy. It readily follows by Lemma 2.1 that Spoiler begins
playing in a non-root vertex xs and forces pebbling the pair (x0, a0) as explained
above, by moving along the cycle always in the same direction. Let D(xs, at) denote
the minimum number of moves needed for Spoiler to reach this configuration if
Duplicator’s move in the first round is at.

Suppose first that s = 0 and also that Spoiler moves in the direction of arrows.
Then he can force pebbling (x0, a0) only in ℓm moves with ℓ satisfying t + ℓm = 0
(mod n). Denote l = ⌊n/2⌋ and let Duplicator choose t = (−lm) mod n. Then
the smallest possible positive value of ℓ is equal to l. If Spoiler decides to move in
the opposite direction, we have the relation t − ℓm = 0 (mod n), which gives us
ℓ ≥ ⌈n/2⌉. In both cases D(x0, at) ≥

1
2
m(n− 1).

Suppose now that s > 0. Let Duplicator pebble at′ in the first round with t′ =
(t+ s) mod n, where t is fixed as above. Note that Spoiler from the position (x0, at)
is able to force the position (xs, at′) in s moves. Therefore, D(x0, at) ≤ s+D(xs, at′),
which implies that D(xs, at′) ≥ D(x0, at)− (m− 1) > 1

2
m(n− 3), as claimed.

Theorem 3.2 For every pair of numbers M ≥ 5 and N ≥ 5, there is a pair of rooted
loopless digraphs G and H with v(G) = M and v(H) = N such that D(G,H) <∞
and D(G,H) ≥ (1

2
− o(1))MN . Here the o(1)-term is a function of max(M,N).

Proof. Given co-wheels Gm and Hn, add k new vertices to Gn and l new vertices
to Hn (and arrows to these vertices from the roots) and denote the resulting rooted
digraphs by Gk

n by H l
n. Since the new vertices are useless for both Spoiler and

Duplicator, we have D(Gk
m, H

l
n) = D(Gm, Hn) for any k, l ≥ 0.

Denote m = M − 1 and n = N − 1. If m and n are coprime, then we can take
G = Gm, H = Hn, and Lemma 3.1 does the job. Consider now the case that m
and n are not coprime. If m is a prime divisor of n, then m and n− 1 are coprime,
and we can take G = Gm and H = H1

n−1 in this case. The case that n is prime is
similar. If none of m and n is prime, let p < n be the prime closest to n. By [22],
we have p > n− n0.525 for a large enough n. Assume first that p does not divide m.
Since these two numbers are coprime, we can take G = Gm and H = Hn−p

p getting

D(G,H) = D(Gm, Hp) >
1

2
m(p− 3) >

1

2
m(n− n0.525 − 3).

If p divides m, the numbers m − 1 and p are coprime, and we take G = G1
m−1 and

H = Hn−p
p .

Using a simple gadget, in the Co-Wheels pattern we can make edges undirected
simulating directions by vertex colors. In this way, we can construct examples of
pairs with large D(G,H) also for colored graphs; see Fig. 3.
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Figure 3: Co-Wheels as colored graphs.

Figure 4: The colored graphs obtained from the Domino example in Fig. 1.

Corollary 3.3 Theorem 3.2 holds true also for colored graphs with bound D(G,H) ≥
(1
6
− o(1))MN .

Corollary 3.3 can be obtained also from the Domino pattern, though with a
smaller factor 1

8
− o(1); see Fig. 4. It is worth noting that G will be a unicyclic

graph while H will be a tree (more exactly, H will be a caterpillar and can be made
even a path at he cost of further decreasing the constant factor to 1

10
− o(1)). Note

that this result is best possible in the sense that, by Corollary 2.2, G cannot be a
acyclic.

Corollary 3.4 For every M ≥ 2 there is a unicyclic colored graph GM with M ver-
tices and for every N ≥ 1 there is a tree HN with N vertices such that D(GM , HN) <
∞ and D(GM , HN) >

1
8
(M − 1)(N − 5).

Remark 3.5 Feder and Vardi [1] showed that a general CSP is equivalent to the
homomorphism problem restricted to directed acyclic graphs (dags). In view of this
result, it is natural that Corollary 3.3 is true also for uncolored dags. Indeed, the
directed cycles in Co-Wheels can be broken by subdividing each arrow in the cycle
into three arrows oriented in different directions. The root nodes can be designated
by attaching additional arrows; see Fig. 5. In fact, any distinguishable uncolored
digraphs G and H with large D(G,H) must be acyclic: The existence of a directed
cycle or a loop in G or H implies that either D(G,H) =∞ or D(G,H) ≤ v(H)+1.

4 Winner proof systems

Inspired by [23], we now introduce a notion that allows us to define a few useful
parameters measuring the speed of constraint propagation. In the next section it
will serve as a link between the length of the existential 2-pebble game on (A,B)
and the running time of an AC algorithm on input (A,B).
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Figure 5: Co-Wheels as dags.

Let G and H be connected colored graphs, both with at least 2 vertices. A proof
system of Spoiler’s win on (G,H) consists of axioms, that are pairs (y, b) ∈ V (G)×
V (H) with y and b colored differently, and derivations of pairs (x, a) ∈ V (G)×V (H)
and a special symbol ⊥ by the following rules :

• (x, a) is derivable from a set {(y, b1), . . . , (y, bs)} such that y ∈ N(x) and
{b1, . . . , bs} = N(a);

• ⊥ is derivable from a set {y} × V (H).

A proof is a sequence P = p1, . . . , pℓ+1 such that if i ≤ ℓ, then pi ∈ V (G) × V (H)
and it is either an axiom or is derived from a set {pi1 , . . . , pis} of preceding pairs pij ;
also, pℓ+1 = ⊥ is derived from a set of preceding elements of P . More precisely, we
regard P as a dag on ℓ + 1 nodes where a derived pi sends arrows to each pij used
in its derivation. Moreover, we always assume that P contains a directed path from
⊥ to each node, that is, every element of P is used while deriving ⊥.

We define the length and the size of the proof P as length(P ) = v(P )− 1 and
size(P ) = e(P ) respectively. Note that length(P ) is equal to ℓ, the total number
of axioms and intermediate derivations in the proof. Since it is supposed that the
underlying graph of P is connected, we have length(P ) ≤ size(P ), where equality
is true exactly when P is a tree. The depth of P will be denoted by depth(P ) and
defined to be the length of a longest directed path in P . Obviously, depth(P ) ≤
length(P ).

It is easy to show that a proof P exists iff D(G,H) <∞ (cf. part 1 of Theorem
4.1 below). Given such G and H , define the (proof) depth of (G,H) to be the
minimum depth of a proof for Spoiler’s win on (G,H). The (proof) length and the
(proof) size of (G,H) are defined similarly. We denote the three parameters by
depth(G,H), length(G,H), and size(G,H), respectively. Note that depth(G,H) ≤
length(G,H) ≤ size(G,H).

Theorem 4.1 Let G and H be connected colored graphs, both with at least 2 verices,
such that D(G,H) <∞.

1. depth(G,H) = D(G,H).

2. depth(G,H) ≤ length(G,H) ≤ v(G)v(H) and this is tight up to a constant
factor: for every pair of integers M,N ≥ 2 there is a pair of colored graphs
G,H with v(G) = M and v(H) = N such that depth(G,H) ≥ (1

6
− o(1))MN .

10



3. size(G,H) < 2 v(G)e(H) + v(H).

4. For every N there is a pair of colored graphs GN and HN both with N vertices
such that size(GN , HN) >

1
128

N3 for all large enough N .

Note that part 3 implies that size(G,H) < N3 if both G and H have N vertices.
Therefore, part 4 shows that the upper bound of part 3 is tight up to a constant
factor.

Proof. 1. It suffices to prove that, for every r ≥ 0, Spoiler has a strategy allowing
him to win in r rounds starting from the position (x, a) if and only if the pair (x, a)
is derivable with depth r. This equivalence follows by a simple inductive argument
on r.

2. The upper bound follows from a simple observation that any proof can be
rewritten so that every axiom used and every derived pair apears in it exactly once.
The lower bound follows by part 1 from Corollary 3.3.

3. Consider a proof P where each pair (x, a) appears at most once. Since the
derivation of (x, a) contributes deg a arrows in P , and the derivation of⊥ contributes
v(H) arrows, we have

size(P ) <
∑

(x,a)

deg a + v(H) = v(G)
∑

a

deg a+ v(H) = 2 v(G)e(H) + v(H).

The inequality is strict because there must be at least one axiom node, which has
out-degree 0.

4. Note that size(G,H) ≥ depth(G,H)δ(H), where δ(H) denotes the minimum
vertex degree of H . Therefore, we can take graphs G and H with almost the same
number of vertices and with quadratic depth(G,H), and make δ(H) large by adding
linearly many universal vertices of a new color to each of the graphs. A universal
vertex is adjacent to all other vertices in the graph. If each of the graphs receives
at least two new vertices, they make no influence on the duration of the existential
2-pebble game.

More specifically, we use the co-wheels from Lemma 3.1 with coprime parameters
m = n − 1 converted to colored graphs as in Corollary 3.3; see Fig. 3. Thus, we
have colored graphs G and H with v(G) = 3n − 2 and v(H) = 3n + 1 such that
D(G,H) > 1

2
(n − 1)(n − 3). Add green universal vertices so that the number of

vertices in each graph becomes N = ⌊9
2
n⌋. For the new graphs GN and HN we still

have D(GN , HN) >
1
2
(n− 1)(n− 3) while now δ(HN) ≥

3
2
n.

Remark 4.2 In general, the proof depth can be much smaller than the proof length.
In fact, for every n there are two colored graphs G and H with v(G) = n + 1 and
v(H) = 2n such that depth(G,H) = 2 and length(G,H) = n2. For example, let
G be the star K1,n with all vertices colored differently. Let the central vertex be
colored in red. In order to construct H , begin with the complete bipartite graph
Kn,n where one part of vertices is colored completely in red and the other part is
colored as the set of leaves in G. To obtain G, we remove a matching (n pairwise
non-adjacent edges) from this graph. Here we use n+1 colors. This number can be
made fixed similarly to [2, Section III.F].
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5 Time complexity of Arc Consistency

5.1 Reduction to colored graphs

In this subsection we justify our focusing on colored graphs by showing a linear
time reduction from the AC-Problem to its restriction on colored simple connected
graphs (that also preserves the parameter D(A,B)). The size of a binary structure
A with binary relations E1, E2, . . . and unary relations U1, U2, . . . is defined to be
||A|| =

∑
i |E

A
i |+

∑
j |U

A
j |.

Lemma 5.1 There is a linear time reduction that takes two relational structures A
and B with arbitrary unary and binary relations and computes two colored simple
connected graphs G and H such that

• A and B pass the arc consistency test iff so do G and H,

• D(G,H) = Θ(D(A,B)),

• v(G) = O(‖A‖), e(G) = O(‖A‖),

• v(H) = O(‖B‖), e(H) = O(‖B‖).

Proof. For every binary relation R we introduce two new vertex colors light-R and
dark-R and replace every pair (x, y) ∈ R in A or B by an undirected path (x, r, r′, y)
where r is colored light-R and r′ is colored dark-R. Each triple x, y, R is handled
by its own pair r, r′. Note that a loop (x, x) ∈ R gives rise to a cycle (x, r, r′) of
length 3.

We also have to ensure that the vertex colors in G and H are disjoint even if the
unary relations in A and B overlap. To this end, for every unary relation U and
vertex x ∈ U in A or B we remove x from U but create a new vertex s ∈ U adjacent
to x.

In order to get the graphs connected, add a single vertex with a new color to
both graphs and connect it with all other vertices.

5.2 An upper bound

We now establish an upper bound of O(v(G)e(H) + e(G)v(H)) for the time com-
plexity of the AC-Problem. One way to obtain this result is to use the linear-time
reduction from arc consistency to the satisfiability problem for propositional Horn
clauses (Horn-Sat) presented in [24]. The reduction transforms the input graphs
G and H into a propositional Horn formula of size v(G)e(H) + e(G)v(H) that is
satisfiable iff arc consistency can be established on G and H . The upper bound then
follows by applying any linear time Horn-Sat algorithm. Going a different way, we
here show that the same bound can be achieved by a propagation-based algorithm,
that we call AC’13. On the one hand, AC’13 does much the same of what a linear
time Horn-Sat solver would do (after applying Kasif’s reduction). On the other
hand, it can be seen as a slightly accelerated version of the algorithm AC-4 [7].
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Algorithm 1 AC’13

Input: Two colored connected graphs G and H .
/*INITIALIZATION*/
for all x ∈ V (G) do

Dx ← {a ∈ V (H) | a has the same color as x};
if Dx = ∅ then return reject;

for all x ∈ V (G), a ∈ V (H) do
counter[x,a] ← |N(a)|;
if a /∈ Dx then add (x, a) to Q;

/*PROPAGATION*/
while Q not empty do

Select and remove (x, a) from Q;
for all b ∈ N(a) do

counter[x,b] ← counter[x,b]−1;
if counter[x,b]= 0 then

for all y ∈ N(x) do
if b ∈ Dy then

Delete b from Dy;
Add (y, b) to Q;
if Dy = ∅ then return reject;

end while

return accept;

Theorem 5.2 AC’13 solves the AC-Problem in time O(v(G)e(H) + e(G)v(H)).

Proof. We first analyze the running time. The initialization phase requires
O(v(G)v(H)). The propagation phase takes |N(a)| steps for every (x, a) ∈ Q and
|N(x)| steps for every (x, b) such that counter[x,b] gets 0. Since every pair is
only put once on the queue and every counter voids out only once the total run-
ning time of the propagation phase bound by

∑
(x,a)∈V (G)×V (H)(|N(x)| + |N(a)|) =

v(G)e(H) + e(G)v(H).
The rest is devoted to the proof of the algorithm’s correctness. Translated into

the language of the existential 2-pebble game, the problem is to decide for a given
pair of colored graphs G and H which of two cases occurs: Spoiler has a winning
strategy for some number of rounds or Duplicator has a winning strategy for any
number of rounds. Simplifying the terminology, we will say that Spoiler wins in the
former case and Duplicator wins in the latter case. We begin with auxiliary notions
and claims, then show that a modified version of the algorithm is correct, and finally
come back to the original version.

Given a pair (x, a) ∈ V (G) × V (H), we denote the existential 2-pebble game
with the initial position (x, a) by Game(x, a). Suppose that S ( V (G)× V (H) is
a set of pairs (x, a) such that Spoiler wins the game Game(x, a). We will assume
that S contains all pairs of differently colored vertices.
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Let (y, b) /∈ S. Given x ∈ V (G) and a ∈ V (H), we call a a partial x-certificate for
(y, b) if y ∈ N(x), b ∈ N(a), and (x, a) ∈ S. Assuming y ∈ N(x), we denote the set of
all partial x-certificates for (y, b) by Certy(x, b). Note that Certy(x, b) = S|x∩N(b),
where S|x = {a ∈ V (H) : (x, a) ∈ S} is the x-slice of S. It follows that

Certy(x, b) = Certy′(x, b) for any two y, y′ ∈ N(x), (1)

that is, Certy(x, b) actually does not depend on y.
Furthermore, call x a complete certificate for (y, b) if Certy(x, b) = N(b). The

first of two following claims is straightforward.

Claim A. If (y, b) has a complete certificate, then Spoiler wins Game(y, b).

Claim B. Let G be connected. If Spoiler wins the existential 2-pebble game on G
and H , then there exists a pair (y, b) /∈ S having a complete certificate.

Proof of Claim B. Assume that no (y, b) /∈ S has a complete certificate and show
that then Duplicator wins the game on G and H .

Call a vertex x ∈ V (G) complete if S|x = V (H). Under the assumption made,
no vertex of G is complete. Indeed, if x is complete, then any adjacent to it vertex y
must be complete too because otherwise we would have (y, b) /∈ S for some b ∈ V (H)
and then x would be a complete certificate for (y, b), contradictory to the assumption.
It follows by connectedness of G, that S = V (G)× V (H) while S is supposed to be
a proper subset.

The absence of complete vertices leads to the following winning strategy for
Duplicator. Assume that Spoiler pebbles a vertex y in the first round. Duplicator
responds with a vertex b such that (y, b) /∈ S. Such b exists since b is not complete.
Let Spoiler pebble a vertex x in the next round. If x and y are non-adjacent,
Duplicator reponds similarly (with a vertex a such that (x, a) /∈ S). If x and y are
adjacent, then Duplicator reponds with a vertex a adjacent to b such that (x, a) /∈ S.
Such a exists because otherwise x would be a complete certificate for (y, b). Each
subsequent round is played similarly. ⊳

We are now ready to describe an algorithm solving the existential 2-pebble game
on connected colored graphs G and H . We will maintain a set S ⊂ V (G)×V (H) of
pairs (x, a) for which it is for sure known (certified) that Spoiler wins Game(x, a).
Initially, S cosists of those (x, a) with x and a colored differently. Our algorithm will
try step by step to extend S. If no extention is possible any more, the algorithm
decides that Spoiler wins if S reaches the full product V (G) × V (H) and that
Duplicator wins if S stays its proper subset.

Each time S will be extended with a pair (y, b) /∈ S having a complete certificate.
Note that the correctness of this procedure is ensured by Claims A and B. By
Claim B, an extension is always possible if Spoiler wins. Thus, if Spoiler wins, the
algorithm’s decision will be correct because then eventually S = V (G)× V (H). On
the other hand, Claim A implies that S consists of positions winning for Spoiler.
Therefore, if S = V (G) × V (H), then Spoiler really has a winning strategy in the
game on G and H .
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We now explain how our algorithms finds a pair (y, b) /∈ S with a complete
certificate. For this purpose, another set Q ⊂ S is maintained. This set consists
of influential pairs (x, a) ∈ S producing a partial x-certificate for at least one pair
(y, b) /∈ S. Initially, Q = S is the set of pairs of differently colored vertices. For each
(y, b) /∈ S and x ∈ V (G), we also have a counter cy(x, b) for the number of vertices
a ∈ N(b) that are still not accepted as a partial x-certificate for (y, b). Initially,
cy(x, b) = deg b. The algorithm updates S as follows. It takes an arbitrary pair
(x, a) ∈ Q and accepts a as a partial x-certificate for all (y, b) such that y ∈ N(x)
and b ∈ N(a) by decreasing the value of cy(x, b) in 1. After this is done, the pair
(x, a) is not influential any more and is removed from Q. Once cy(x, b) = 0 for some
(x, b), this pair receives a complete certificate, namely x, and is added to both S
and Q. This completes description of our algorithms.

The algorithm AC’13 is pretty close to the slightly simplified version we just
described. Instead of S, AC’13 maintains the set Dx = V (H)\S|x for each x ∈ V (G)
and terminates as soon as Dx = ∅ for some x. Moreover, the counter cy(x, b) is
parametrized only by x and b, which is justified by the equality (1).

5.3 Lower bounds

Recall that by a propagation-based arc consistency algorithm we mean an algorithm
that solves the AC-Problem by iteratively deleting possible assignments a to a
variable x from the domain Dx according to the arc consistency rule and rejects
iff one domain gets empty. Let us maintain a list L of deleted variable-value pairs
by putting a pair (x, a) there once a is deleted from Dx. If the algorithm detects
arc-inconsistency, then it is evident that L, prepended with axioms and appended
with ⊥, forms a proof of Spoiler’s win. Thus, a propagation-based arc consistency
algorithm can be viewed as a proof search algorithm that produces (in by-passing)
a proof P of Spoiler’s win. This situation is related to the concept of a certify-
ing algorithm [25]: Propagation-based algorithms not just detect Spoiler’s win but
also produce its certificate. For every derived element of P an algorithm has to
recognize its already derived parents. This allows us to relate the running time to
the proof size. Specifically, given an arbitrary propagation-based algorithm for the
AC-Problem, let time(G,H) denote the time it takes on input (G,H). If the input
(G,H) is arc-inconsistent, then it holds

time(G,H) ≥ size(G,H). (2)

Theorem 5.3 Fix an arbitrary propagation-based algorithm.

1. Let T1(k, l) denote the worst working time of this algorithm over colored graphs
G and H with e(G) = k and e(H) = l. Then T1(k, l) >

1
8
(k − 1)(l− 4) for all

k and l.

2. Let T2(n) denote the worst working time of the algorithm on inputs (G,H)
with v(G) + v(H) = n. Then T2(n) >

1
16
n3 for all large enough n.
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Proof. By Corollary 3.4, there are colored graphs Gk with e(Gk) = v(Gk) = k and
Hl with e(Hl) = v(Hl) − 1 = l for which D(Gk, Hl) is finite but large, specifically,
D(Gk, Hl) >

1
8
(k − 1)(l − 4). By the relation (2), on input (Gk, Hl) the algorithm

takes time at least size(Gk, Hl), for which we have size(Gk, Hl) ≥ depth(Gk, Hl) =
D(Gk, Hl) by part 1 of Theorem 4.1.

Part 2 follows from part 4 of Theorem 4.1.

Corollary 5.4 In terms of the parameters e(G) and e(H), the time bound O(e(G)
· e(H)) is optimal up to a constant factor among propagation-based algorithms.

Note that O(e(G)v(H) + v(G)e(H)) = O((v(G) + v(H))3).

Corollary 5.5 In terms of the parameter n = v(G) + v(H), the time bound O(n3)
is best possible for a propagation-based algorithm.

5.4 Parallel complexity

It is known that the AC-Problem is PTIME-complete under logspace-reductions
[24, 15]. Under the assumption that PTIME 6= NC, it follows that the AC-Problem

cannot be parallelized. However, several parallel algorithms with a polynomial num-
ber of processors appear in the literature (e.g., [20]). We are able to show a tight
connection between the running time of a parallel algorithm and the round com-
plexity of the existential 2-pebble game. The following result is worth noting since
D(G,H) = depth(G,H) can be much smaller that size(G,H) (cf. Remark 4.2), and
then a parallel propagation-based algorithm can be much faster than any sequential
propagation-based algorithm.

Theorem 5.6

1. AC-Problem can be solved in time O(D(G,H)) on a CRCW-PRAM with
polynomially many processors.

2. Any parallel propagation-based arc consistency algorithm needs time D(G,H)
on arc-inconsistent instances (G,H).

Proof. First apply the reduction from Lemma 5.1 to colored simple graphs in
constant parallel time. Consider the parallelized version of AC-graph and assume
that Spoiler wins the existential 2-pebble game on G and H . The initialization phase
can be implemented in constant time. For every element (x, a) ∈ Q the propagation
phase can also be processed in constant time. The algorithm iteratively processes
the whole set Q in parallel constant time and computes a new set Q′. Let Qi be the
queue Q after the ith iteration of the propagation phase and Q≤i :=

⋃
j≤iQj . An

easy induction shows that Q≤i (for i < D(G,H)) is the set of all positions (x, a) ∈
V (G)× V (H) such that Spoiler wins in at most i steps. Hence, for l = D(G,H)-1
it holds that {x}×V (H) ⊆ Q≤l where x is the first vertex Spoiler puts a pebble on.
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But this means that in iteration l all values from Dx are already deleted and hence
the algorithm rejects.

A parallel propagation-based algorithm produces proofs of Spoiler’s win. Hence,
the algorithm can derive (x, a) only if the parents in the underlying proof have
been derived. It follows that the parallel running time has to be lower bounded by
depth(G,H) = D(G,H).

6 Conclusion and further questions

We investigated the round complexity D(G,H) = D2(G,H) of the existential 2-
pebble game on colored graphs and established lower bounds of the form Ω(v(G)v(H)),
which translate to lower bounds on the nested propagation steps in arc consistency
algorithms. The next step in this line of research is to investigate the number of
rounds D3(G,H) in the existential 3-pebble game that interacts with path consis-
tency algorithms in the same way as the 2-pebble game with arc consistency. Note
that, similarly to Corollary 2.3, D3(G,H) = O(v(G)2v(H)2). Ladkin and Mad-
dux [26] showed that D3(G,H) = Ω(v(G)2) using algebraic methods (where H is
a graph of constant size). Using methods from [2] one can construct examples
of graphs with D3(G,H) = Ω(v(H)2) (where G is a graph of constant size). It
remains for future work to exhibit graphs Gn, Hn, both on n vertices, such that
D3(Gn, Hn) = Ω(v(G)2v(H)2). This would translate to an Ω(n4) lower bound for
sequential and parallel path consistency algorithms.

By Corollary 2.3, D(A,B) ≤ v(A)v(B)+1 for arbitrary binary structures A and
B with D(A,B) < ∞. On the other hand, for the Domino example Am, Bn with
even n we have D(Am, Bn) >

1
2
v(Am)v(Bn). An interesting problem is to close the

gap between these bounds. We conjecture that the lower bound of 1
2
v(A)v(B) is

sharp.
Finally, we want to stress that our lower bounds for the time complexity of arc

consistency hold only for constraint propagation-based algorithms. Is there a faster
way to solve the AC-Problem using a different approach?
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