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Abstract

Persistent homology provides information about the lifetime of homology
classes along a filtration of cell complexes. Persistence barcode is a graphi-
cal representation of such information. A filtration might be determined by
time in a set of spatiotemporal data, but classical methods for computing
persistent homology do not respect the fact that we can not move back-
wards in time. In this paper, taking as input a time-varying sequence of
two-dimensional (2D) binary digital images, we develop an algorithm for en-
coding, in the so-called spatiotemporal barcode, lifetime of connected compo-
nents (of either the foreground or background) that are moving in the image
sequence over time (this information may not coincide with the one provided
by the persistence barcode). This way, given a connected component at a
specific time in the sequence, we can track the component backwards in time
until the moment it was born, by what we call a spatiotemporal path. The
main contribution of this paper with respect to our previous works lies in a
new algorithm that computes spatiotemporal paths directly, valid for both
foreground and background and developed in a general context, setting the
ground for a future extension for tracking higher dimensional topological
features in nD binary digital image sequences.
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1. Introduction

Persistent homology [3, 15] and zigzag persistence [2] provide information
about lifetime of homology classes along a filtration of cell complexes. Such a
filtration might be determined by time in a set of spatiotemporal data. Our
general aim is to compute the “spatiotemporal” topological information of
such filtration, taking into account that it is not possible to move backwards
in time. This is not obvious if we use the known algorithms for computing
(zigzag) persistent homology using time as filter function.

In the context of mobile sensor networks, [4] is devoted to the problem
of finding an evasion path that describes a moving intruder avoiding being
detected by the sensors. In [4], the region covered by sensors at time t is
encoded using a Rips complex R(t). A single cell complex SR is computed
by stacking the complexes R(t) for all t. Th. 7 of [4] proves that there is
no evasion path under a “homological” criterion. Using zig-zag persistent
homology, an equivalent condition is provided in [1]. A necessary and suf-
ficient positive cohomological criterion for evasion in a general case is given
in [8]. Finally, in [6], the authors analyze time-varying coverage properties
in dynamic sensor networks by means of zigzag persistent homology. In
all the mentioned papers, vertices represent sensors and edges are provided
whenever two sensors can detect each other but their specific locations are
unknown.

We are concerned with the treatment of time-varying sequences of nD
binary digital images and the tracking of homology classes over time inspired
by persistent homology methods. We deal with vertices at exact positions
in each nD image and adjacency relations between consecutive images are
provided whenever there are cells in homologous positions (that is, the cells
are in the same spatial position but at different times). Our general goal is to
compute a spatiotemporal barcode storing the evolution of homology classes
over time. In this paper, we concentrate our effort in 2D images and track
connected components of both the background and the foreground over time.
Roughly speaking, a spatiotemporal path will track a connected component
over time and a spatiotemporal barcode will encode the evolution of homology
classes over time. For example, the spatiotemporal barcode of the sequence of
the four 2D binary digital images given in Fig.1(a)(a)-(d) reflects the fact that
a connected component is born in the first image and dies in the third one,
and another connected component is born in the second image and dies in
the fourth one. This paper is an extension of our previous work [11] in which
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we also focused on computing a spatiotemporal barcode for a time-varying
sequence of 2D binary digital images. There, we used the construction of
an algebraic-topological model (AT-model) [10] to compute spatiotemporal
paths. In the present paper, though, we compute the spatiotemporal paths
and barcode directly (without computing AT-models).

We also extend the definition of spatiotemporal filtration and spatiotem-
poral path to any dimension, what facilitates future extensions of our work
to compute spatiotemporal d-barcodes in any dimension d.

Basics of persistent homology and AT-models are given in Section 2. We
introduce the problem of computing the “correct” topological information
of spatiotemporal data through two simple examples in Section 3. Formal
definitions to deal with a temporal sequence of cubical complexes are set in
Section 4. Our method to solve the problem is then introduced in Section
5. In Section 6, we extend the definition of spatiotemporal path to any
dimension. We conclude in Section 7 and describe possible directions for
future work.

2. Persistent Homology through AT-models

Consider Z/2 as the ground ring throughout the paper ( i.e. 1 + 1 = 0).
Roughly speaking, a cell complex K is a general topological structure by
which a space is decomposed into basic elements (cells) of different dimensions
that are glued together by their boundaries (see the definition of CW-complex
in [12]). The dimension of a cell σ ∈ K is denoted by dim(σ). A cell µ ∈ K
is a d-face of a cell σ ∈ K if µ lies in the boundary of σ and d = dim(µ) <
dim(σ). The cell complex ∂K is built as follows: add a d-cell σ of K to ∂K
together with all its faces if σ is face of exactly one (d+ 1)-cell in K.

If the cells in K are d-dimensional cubes then K is a cubical complex. A
d-dimensional cube (d-cube) is a product of d elementary intervals

∏d

i=1
Ii.

An elementary interval is defined as a unit interval I = [k, k+1], with k ∈ Z

or a degenerate interval [k, k]. The number of non-degenerate intervals in
such product is the dimension of the cube. 0-cubes, 1-cubes, 2-cubes and
3-cubes are vertices, edges, squares and 3D cubes (voxels) respectively. A
cube c1 is a face of a given cube c2 if c1 ⊂ c2. Given two cubes, all the faces
of a cube must also be a cube, as well as the intersection of any two cubes.
A cubical complex has dimension D if the cubes are all of dimension at most
D. The barycentric coordinates of a cube c will be denoted by rc.
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A d-chain is a formal sum of d-cells in K. Since coefficients are either 0 or
1, we can think of a d-chain as a set of d-cells, namely those with coefficients
equal to 1. In set notation, the sum of two d-chains is their symmetric
difference. The d-chains together with the addition operation form a group
denoted as Cd(K). Besides, the set {Cd(K)}0≤d≤D, is denoted by C(K). A
set of homomorphisms {fd : Cd(K) → Cd(K

′)}0≤d≤D, is called a chain map
and denoted by f : C(K) → C(K ′). Given two d-cells σ ∈ K and σ′ ∈ K ′,
we say that σ′ ∈ f(σ) if σ′ belongs to the d-chain fd(σ) (in set notation).
The boundary map ∂ : C(K) → C(K) is defined on a d-cell σ as the sum of
its (d−1)-faces. The d-chains with zero boundary form a subspace Zd(K) of
Cd(K). The d-chains that are the boundary of (d+1)-chains form a subspace
Bd(K) of Zd(K). The quotient group Hd(K) = Zd(K)/Bd(K) is the d-th
homology group of K (with Z/2 coefficients). The rank of Hd(K), denoted
by βd(K), is the d-th Betti number of K. For a deeper introduction of these
concepts, see [14, 13, 12].

A filtration of K is an increasing sequence of cell complexes: ∅ = K0 ⊂
K1 ⊂ · · · ⊂ Kℓ = K. The partial ordering given by such a filtration can be
extended to a total ordering of the cells ofK: {σ1, . . . , σm}, satisfying that for
each i, 1 ≤ i ≤ m, the faces of σi lie on the set {σ1, . . . , σi}. The map index :
K → Z is defined by index(σi) := i. Informally, the d-th persistent homology
group [3, 15] can be seen as a collection of d-homology classes (representing
connected components when d = 0, tunnels when d = 1, cavities when d = 2,
...) that are born at or before we go from Ki−1 to Ki and die after we go from
Ki to Ki+1. A persistence d-barcode [7] is a graphical representation of the
d-th persistent homology groups as a collection of horizontal line segments
(bars) in a plane. Axis correspond to the indices of the cells in K. For
example, if a d-homology class is born at time i (i.e. when σi is added) and
dies at time j (1 ≤ i < j ≤ m), then a bar b = ((i, i), (j, i)) with endpoints
(i, i) and (j, i) is added to the d-barcode.

In [9] the authors establish a correspondence between the incremental
algorithm for computing AT-models [10] and the one for computing persistent
homology [3]. More precisely, an AT-model for a cell complexK is a quintuple
(f, g, φ,K,H), where:

• K is the cell complex.

• H is a set of cells of K that describes the homology of K, in the sense
that it contains a distinct d-cell for each d-homology class of a basis
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(see next item), for all d. The cells in H are called surviving cells.
For all d, the set of all the surviving d-cells together with the addition
operation form the group Cd(H) which is isomorphic to Hd(K).

• g : C(H) → C(K) is a chain map that maps each d-cell h in H to one
representative cycle gd(h) of the corresponding homology class [gd(h)].
By a classical chain contraction property, it is true that {[gd(h)] : h is
a d-cell of H} is a basis for Hd(K).

• f : C(K) → C(H) is a chain map that maps each d-cell in K to a sum
of surviving cells, satisfying that if a, b ∈ Cd(K) are two homologous
d-cycles then fd(a) = fd(b).

• φ : C(K) → C(K) is a chain homotopy (see [14]). Intuitively, for a
d-cell σ, φd(σ) returns a set of (d+ 1)-cells needed to be contracted to
“bring” σ to a surviving d-cell contained in fd(σ).

3. Stating the Problem

Our general goal is to compute, for a time-varying sequence of nD bi-
nary digital images, some kind of barcode that represents the evolution of
homology classes over time.

Consider Zn as the set of points with integer coordinates in nD space Rn.
An nD digital binary image is a set I = (Zn, α, β, B), where B ⊂ Z

n is the
foreground, Bc = Z

n\B the background, and (α, β) is the adjacency relation
for the foreground and background, respectively. In this paper we will deal
with points with integer coordinates in 2D space R2, that is, 2D digital binary
images (or 2D images, for short), I = (Z2, 8, 4, B) (or I = (Z2, B), for short),
where (8, 4) is the adjacency relation for the foreground and background,
respectively. All the 2D images considered here are finite, i.e., I = (D, B),
where D ⊂ Z

2 is a finite domain, so B ⊆ D and Bc = D\B are both finite.
In order to give some intuition about the problem we want to state, let

us consider the simple examples given in Fig. 1, in which two sequences of a
few 4-connected pixels appearing and disappearing over time, are shown.

To encode the spatiotemporal information of the two sequences, we con-
struct two associated complexes (in fact, they are graphs) by replacing each
pixel by a vertex and adding an edge between two vertices if:

• The corresponding pixels are 4-connected (in the same frame).
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1: Two different sequences of 2D images with pixels appearing and disappearing
over time. The reader is referred to the online version for color version of this figure.

(a) Complex K ′. (b) Complex K ′′.

Figure 2: Complexes K ′ and K ′′ obtained, respectively, from the sequence shown in Fig.
1(a)-(d) and Fig. 1(e)-(h).

• The vertices correspond to the same pixel (homologous coordinates) at
consecutive frames.

The resulting complexes K ′ and K ′′ are shown in Fig. 2.
Now, to compute persistent homology on these two complexes K ′ and

K ′′, we should select an appropriate filtration. Since we want to capture the
variation of homology classes over time, we first classify the cells of K ′ and
K ′′ into spatial and temporal cells:

• All vertices are spatial (since vertices represent pixels).

• An edge is spatial if its endpoints (vertices) represent pixels of the same
frame.

• If an edge is not spatial then it is temporal.

6



Therefore, we have the following spatial subcomplexes of K ′: G1 = {1}, G2 =
{2, 3, 4, 5, 6, 7}, G3 = {9, 10, 11, 12, 13, 14}, G4 = {18}. And the following
sets of temporal cells: G1,2 = {8}, G2,3 = {15, 16, 17}, G3,4 = {19}, where
numbers correspond to the labels of cells shown in Fig 2(a). The filtration
∅ = K ′

0 ⊂ K ′
1 ⊂ · · · ⊂ K ′

7 = K ′ is obtained by interleaving the temporal
cells after the correspondent spatial subcomplexes. That is, K ′

1 = G1, K
′
2 =

K ′
1 ∪G2, K

′
3 = K ′

2 ∪G1,2, K
′
4 = K ′

3 ∪G3, K
′
5 = K ′

4 ∪G2,3, K
′
6 = K ′

5 ∪G4 and
K ′

7 = K ′
6 ∪G3,4.

The filtration of K ′′ is denoted with the same set of indices than the
filtration of K ′, where numbers now correspond to the labels of the cells
shown in Fig 2(b).

If we compute persistent homology of K ′ and K ′′ using the above filtra-
tions, we will obtain, in both cases, that a connected component (0-homology
class) is born when cell 1 is added and survives until the end. So, in both
cases, a bar with endpoints (1, 1) and (19, 1) is added to the persistence
0-barcode.

However, we can observe that Fig. 1(a)-(d) cannot represent a connected
component that is moving from the very beginning until the end while Fig.
1(e)-(h) can. So we wonder if we could modify the persistence 0-barcode of
the first sequence (Fig. 1(a)-(d)) so that it codifies the connected components
that can survive along time. The idea is to replace the bar with endpoints
(1, 1) and (19, 1) by respective bars from (1, 1) to (13, 1) and from (3, 3) to
(19, 3), what will be formally described in next sections.

4. Spatiotemporal filtrations and paths

Going one step further, we introduce here the concept of spatiotemporal
filtration for a more general setting of cubical complexes (in any dimension).
The definition has been adapted from the construction described in [4, 1] for
a sequence of simplicial complexes.

First, given a sequence S = {Q1, . . . , Qℓ} of cubical complexes, each
one embedded in R

n, we want to construct a cubical complex embedded in
R

n+1, in which consecutive cubical complexes in S are stacked along a new
(temporal) dimension.

Definition 1. Let S = {Q1, . . . , Qℓ} be a sequence of cubical complexes
embedded in R

n. The stacked cubical complex SQ[S] is the cubical complex
embedded in R

n+1 obtained as follows. Initially, SQ[S] = ⊔ℓ
i=1(Qi × {i}).
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Figure 3: A sequence S of two 2D images and the associated stacked cubical complexes
SQ[S] and SQ[Sc] (the longest spatiotemporal paths obtained for v, in both cases, are
drawn in blue). The reader is referred to the online version for color version of this figure.

Now, if a d-cell σ with barycentric coordinates rσ belongs to Qi ∩Qi+1 (that
is, σ denotes corresponding cells in homologous positions in Qi and Qi+1),
for some i, 1 ≤ i < ℓ − 1, add the (d + 1)-cell τ = σ × [i, i + 1] to SQ[S].
This way, the barycentric coordinates of τ are rσ × {i+ 1

2
}.

See Fig. 3 as a toy example of stacked cubical complex. Since each cell
σ ∈ SQ[S] can be identified by its barycentric coordinates rσ × {tσ}, then σ
is spatial if tσ ∈ Z; and it is temporal otherwise.

Definition 2. Let SQ[S] be a stacked cubical complex for a sequence of
(spatial) cubical complexes S = {Q1, . . . , Qℓ}. Let Qi,i+1 denote the set of
(temporal) cells with faces in both Qi and Qi+1. The spatiotemporal filtration
∅ = SQ0 ⊂ SQ1 ⊂ · · · ⊂ SQm = SQ[S] is given by: SQ1 = Q1; SQi =
SQi−1 ∪ Qj+1 if i = 2j and j > 0; and SQi = SQi−1 ∪ Qj,j+1 if i = 2j + 1
and j > 0.

Once we have formally defined a spatiotemporal filtration for a sequence
of cubical complexes in any dimension, we need to define spatiotemporal paths
with the aim of setting down the restriction that it is not possible to move
backwards in time.

First, recall that a path p of edges in a cell complex K from a vertex v0
to a vertex vq is a chain of 1-cells p = e1 + e2 + · · ·+ eq (or p = {e1, . . . , eq}
in set notation) such that (1) only e1 has v0 as a face; (2) only eq has vq as
a face; (3) each two edges ei and ei+1 have a common face.

We have the following definition in the context of stacked cubical com-
plexes.
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Definition 3. [11] Let SQ[S] be a stacked cubical complex with spatiotem-
poral filtration ∅ ⊂ SQ0 ⊂ SQ1 ⊂ · · · ⊂ SQm = SQ[S]. A spatiotemporal
path p in SQ[S] is a path such that the number of edges in p ∩Qi,i+1 is less
than or equal to 1, for any i, 1 ≤ i < m.

Finally, two vertices are said to be spatiotemporally-connected if there is
a spatiotemporal path between them.

Notice that, in a spatiotemporal path p, there are not two temporal edges
in p connecting the same consecutive spatial complexes of the sequence, which
follows from the idea that it is not possible to move backwards in time.

5. Topological Tracking of Connected Components in a 2D Image

Sequence

In this section, which is the main section of the paper, we explain how
to compute spatiotemporal paths and barcodes for both the background and
the foreground of a given sequence of 2D images.

We first need an adequate representation of 2D image sequences that
captures the time-varying nature of the sequence.

Let I = (D, B) be a finite 2D image. We should deal with foreground and
background differently, since pixels in the foreground are 8-connected while
pixels in the background are 4-connected. Regarding the foreground of I, a
point p ∈ B can be interpreted as a unit closed square (called pixel) in R

2

centered at p with edges parallel to the coordinate axes. The set of pixels
centered at the points of B together with their faces (edges and vertices)
constitute a (2D) cubical complex denoted by Q(I). A cell σ in Q(I) can be
identified by its barycentric coordinates rσ ∈ R

2.
As for the background Bc of I, the cubical complex Q(Ic) is computed

as follows. Initially, Q(Ic) = Bc, which corresponds to the set of vertices of
Q(Ic). Each two 4-connected vertices in Q(Ic) form a unit edge that is added
to Q(Ic). Similarly, if four 4-connected vertices in Q(Ic) form a unit square
σ, then σ is also added to Q(Ic).

5.1. Computing Spatiotemporal Paths and Barcodes

Consider now a sequence of 2D images {I1, . . . , Iℓ}. Let S={Q(I1), . . . ,
Q(Iℓ)} and Sc = {Q(Ic1), . . . , Q(Icℓ )} be the associated cubical complexes
for, respectively, the foreground and the background of the 2D images in the
sequence. The stacked cubical complexes SQ[S] and SQ[Sc] (both embedded
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in R
3) are computed as in Section 4. See Fig. 3 as an example of both SQ[S]

and SQ[Sc].
In [11], given a spatiotemporal filtration, we designed an algorithm to

compute the spatiotemporal barcode encoding lifetime of connected compo-
nents on the 2D image sequence over time. The algorithm that we presented
in that paper was based on the incremental algorithm for computing AT-
models given in [10]. In particular, the chain homotopy operator φ provides
a path connecting each vertex v to a distinguished vertex that represents the
connected component that v belongs to. More specifically, in the algorithm
given in [11], a path φ(v) from v to a surviving cell (vertex) was computed
and, if φ(v) is not a spatiotemporal path, then it is broken into pieces that
are spatiotemporal paths. Regarding the spatiotemporal barcode, a bar was
elongated at time i if and only if dim(σi) = 1 and the connected compo-
nent that represents the bar is spatiotemporally connected to some of the
endpoints of the edge σi. Otherwise, the bar was not elongated. This dif-
ferentiates from classical persistence barcodes in which, for example, the bar
corresponding to a connected component that appears at time i and does not
merge to other connected component later, is elongated until the very end.

In this paper, given a spatial connected component (i.e., a connected
component in Ij or Icj , 1 ≤ j ≤ ℓ), we want to know in which previous
frame it was born and track the connected component evolution along
time. For this aim, we compute a spatiotemporal path φ′(v) for any vertex
v in SQ[S] or SQ[Sc] directly, i,e, without computing the chain homotopy
φ. Notice that in order to pursue our goal in this paper, we only need the
1-skeleton (i.e. vertices and edges) of both SQ[S] and SQ[Sc].

Now, let us explain how Alg. 1 works 1. Let F be a total ordering of the
cells of the spatiotemporal filtration considered. We say that a cell σi is older
than a cell σj if i < j. Let us suppose that we are in step i of the for-loop (line
4 in the algorithm). Then, H ′ is a collection of vertices of F representing the
spatiotemporally-connected components that were born and have survived
until step i. The map f ′ connects each vertex v ∈ F with the oldest vertex
w ∈ H ′ spatiotemporally connected to it. Besides, φ′(v) is a spatiotemporal
path from v to w. At step i, if σi ∈ F is a vertex, then a new connected
component is born (with only one vertex, σi), so σi is added to H ′, and f ′(σi)
is updated. If σi is an edge and f ′(∂σi) = 0, that means that f ′(σj) = f ′(σj′)

1A naive implementation of the algorithm is available in http://grupo.us.es/cimagroup/
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Algorithm 1: Computing spatiotemporal paths and barcode of a spa-
tiotemporal filtration.

1 Input: A spatiotemporal filtration. associated to a sequence of
cubical complexes. {Q1, . . . , Qn} (either Qi = Q(Ii) for all i, or
Qi = Q(Ici ) for all i, 1 ≤ i ≤ n).

2 Compute a total ordering F = {σ1, . . . , σm} of the vertices and edges
of the given spatiotemporal filtration, preserving the partial ordering
given by the filtration.

3 Initialize sets H ′, TE and B as ∅; and maps f ′ and φ′ as zero.
4 for i = 1 to m do

5 if σi is a vertex then

6 H ′ := H ′ ∪ {σi} and f ′(σi) := σi.
7 Add the bar ((i, i), (i, i)) to B.

8 if σi is an edge and f ′∂(σi) 6= 0 then

9 TE := TE ∪ {σi}.
10 Let σj ∈ Qs and σj′ ∈ Qs′ be the endpoints of σi such that
11 σk = f ′(σj) and σk′ = f ′(σj′) satisfy that k′ < k.
12 Let r = max{s, s′}.
13 if σk ∈ Qr then

14 H ′ := H ′ \ {σk}.

15 for ℓ = 1 to i− 1 do

16 φ′
aux(σℓ) := φ′(σℓ);

17 if σℓ is a vertex in Qr and f ′(σℓ) = σk then

18 if φ′(σℓ) + φ′(σj) + σi + φ′(σj′) is a spatiotemporal path
from σℓ to σk′ or σℓ = σj then

19 f ′(σℓ) := σk′,
φ′
aux(σℓ) := φ′(σℓ) + φ′(σj) + σi + φ′(σj′).

20 for ℓ = 1 to i− 1 do

21 φ′(σℓ) := φ′
aux(σℓ).

22 Add the bars ((k, k), (i, k)) and ((k′, k′), (i, k′)) to B.

23 Output: The spatiotemporal paths φ′(v) for all the vertices v in the
filtration, the associated spatiotemporal barcode B and the set of
edges TE.
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where σj ∈ Qs and σj′ ∈ Qs′ are the endpoints of σi. Then, σi is connecting
two paths, φ′(σj) and φ′(σj′), so no new connected component is created or
destroyed. In fact, a new 1-homology class is born. See Fig. 4.a. Finally, if
σi is an edge and f ′(∂σi) 6= 0, then σi is added to a set of edges TE that we
will be used later for tracking. Observe that f ′(σj) = σk and f ′(σj′) = σk′ for
some k, k′ (see Prop. 4). We can suppose that k′ < k. Let r = max{s, s′}.
If s < s′ = r then, we can not spatiotemporally connect σj with σk′. See
Fig. 4.b. If s = s′ = r, then σi is spatial and the connected components
represented by σk and σk′ are spatiotemporally connected. If s′ < s = r and
σk ∈ Qr, then, again, the connected components represented by σk and σk′

are spatiotemporally connected. Therefore we can remove σk or σk′ from H ′.
We convene to remove the newest one which is σk (line 14 of the algorithm).
See Fig. 4.c and 4.e. Finally, if s′ < s = r and σk 6∈ Qr, then we cannot
remove σk. Since φ′(σj) is a spatiotemporal path, then there only exists an
edge e in Qs′,s ∩ φ′(σj). See Fig. 4.d. Now, we update the spatiotemporal
paths of the vertices σℓ spatiotemporally connected to σk if and only if σℓ

belongs to Qr, to ensure that the updated path is also spatiotemporal (see
lines 15-17 of the algorithm). See Fig. 4.c and 4.d. Observe that we do not
compute the AT-model (F,H, f, g, φ) for the spatiotemporal filtration since
we are only interested in spatiotemporal paths and barcode.

Regarding time complexity of the algorithm, let m be the number of cells
of dimension 0 and 1 in the stacked cubical complex. Due to the for-loops,
the algorithm works in O(m2) time. Regarding space, a spatiotemporal path
φ′(v) must be stored for all the vertices v in the filtration; potentially, in
the spatiotemporal barcode B, there may be as many bars as vertices in the
stacked complex; also potentially, any of the edges of the stacked complex
could be added to the set TE, so space complexity is O(m).

Proposition 4. If v is a vertex in F , then f ′(v) is a vertex w in F .

Proof. We will prove it by induction on the steps of Alg. 1. Suppose we are
in step i. Then, by induction f ′(σℓ) is a vertex if σℓ is a vertex, for all ℓ,
1 ≤ ℓ < i. If σi is a vertex then f ′(σi) is defined as σi, so the statement
holds. If σi is an edge, we eventually update f ′ for some vertices σℓ, ℓ < i,
by f ′(σℓ) = σk′ which is a vertex, so the statement holds.

Proposition 5. If v is a vertex then φ′(v) is a spatiotemporal path.

Proof. We prove the statement by induction. Suppose that at step i and for
any vertex σℓ ∈ F , 1 ≤ ℓ < i, φ′(σℓ) is a spatiotemporal path connecting

12



Figure 4: Different configurations when adding an edge σi: a) f ′(∂σi) = 0; b) and d)
f ′(∂σi) 6= 0 and σi is temporal; c) f ′(∂σi) 6= 0 and σi is spatial. e) f ′(∂σi) 6= 0, σi is
temporal and σj , σk ∈ Qr. The reader is referred to the online version for color version of
this figure.

σℓ with another vertex σk ∈ F , being 1 ≤ k < ℓ < i. If dim(σi) = 0, or
dim(σi) = 1 and f ′(∂σi) = 0, then φ′(v) does not change for any vertex v
of F . If dim(σi) = 1, f ′(∂σi) 6= 0 and σj ∈ Qr then, for a vertex σℓ ∈ Qr

satisfying that either φ′(σℓ) + φ′(σj) + σi + φ′(σj′) is a spatiotemporal path
or σℓ = σj . So the statement holds.

Now, let us see how to “topologically” track a connected component, once
Alg. 1 has been executed. Let v be a vertex in Qr for some r, 1 ≤ r ≤ n.
Recall that the spatiotemporal path φ′(v) connects v with the oldest vertex
u in the sequence that is spatiotemporally connected with v. In particular,
u represents the connected component C in Qr that v belongs to. That is,
we can detect the time in which the connected component C is created and
we can follow it along the sequence. In fact, from the set of edges TE, we
can obtain a directed tree GTE containing all the vertices of SQ[S] that are
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Figure 5: Spatiotemporal paths we can find in GTE for a given vertex v.

spatiotemporally connected to other vertices in the sequence. Moreover, the
directed paths in GTE ending at a vertex v connect the vertex v with all the
older vertices that are spatiotemporally connected to it. See Fig. 5.

Fig. 6 shows three simple examples of 2D image sequences. The associ-
ated spatiotemporal barcodes are computed using Alg. 1. From left to right,
the first and second spatiotemporal barcodes have only one long bar, while
the third one has two. The longest spatiotemporal paths are pictured in blue.
Notice that the classical persistence 0-barcode would produce only one long
bar in all of them.

6. Towards the Computation of Spatiotemporal d-Barcodes for nD

Image Sequences

In this section, we generalize the concept of spatiotemporal path to higher
dimension in order to set the ground for a future extension of Alg 1 for
tracking higher dimensional topological features.

First, given a set of cells T and a cubical complex Q, we denote by T ∩Q
the subcomplex of Q obtained by taking all the cells of T ∩ Q together
with all their faces. Second, since the ground ring considered throughout the
paper is Z/2, we should restrict ourself to cubical complexes with torsion-free
homology groups in order to extend the definitions of spatiotemporal paths
and barcodes to nD. Nevertheless, if the ground ring is Z, the definitions
below are still valid for cubical complexes with non-torsion-free homology
groups replacing Z/2 by Z.

A “homological” 0-path P in a cubical complex Q is defined as a sub-
complex of Q formed by a set of edges of Q together with their faces such
that
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Figure 6: Left: Three simple examples of 2D image sequences (t being the temporal dimen-
sion). Center: Spatiotemporal paths of the longest-lived vertex in each spatiotemporally-
connected component. Rigth: The associated spatiotemporal barcodes. The reader is
referred to the online version for color version of this figure.

• ∂P = P1⊔
2P2 for some subcomplexes P1 and P2 of Q,

• H0(P ) = H0(P1) = H0(P2) = Z/2,

• Hj(P ) = Hj(P1) = Hj(P2) = 0 for j > 0.

2Recall that A ⊔B denotes the disjoint union of the sets A and B.
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Definition 6. A spatiotemporal 0-path P in a spatiotemporal filtration for a
given sequence of cubical complexes S = {Q1, . . . , Qℓ} is a homological 0-path
in SQ[S] such that H0(P ∩Qi,i+1) = Z/2 and Hj(P ∩ Qi,i+1) = 0 for j > 0
and for all i, 1 ≤ i < ℓ− 1.

Proposition 7. Def. 3 and Def. 6 are equivalent.

Proof. Def. 6 ⇒ Def. 3: P is formed by a set of edges and vertices. Since
H0(P ) = Z, then P has only one connected component. Since Hj(P ) = 0 for
j > 0, then P does not contain any holes. So P is a tree and ∂P is a set of
vertices. Since H0(P1) = H0(P2) = Z/2 then both P1 and P2 can contain only
one vertex. Therefore, P is a path. Besides, since H0(P ∩ Qi,i+1) = Z/2,
then the number of edges in P ∩ Qi,i+1 is less than or equal to 1, for any
1 < i ≤ ℓ− 1 (since edges in Qi,i+1 are disjoint).
Def. 3 ⇒ Def. 6: Since P is a path with no loops then H0(P ) = Z/2,
Hj(P ) = 0 for j > 1 and ∂P is formed by two vertices v0 and vm. Then
P1 = {v0} and P2 = {vm}. Besides, since the number of edges in P ∩Qi,i+1

is less than or equal to 1, for any 1 < i ≤ ℓ− 1, then H0(P ∩ Qi,i+1) = Z/2
and Hj(P ∩Qi,i+1) = 0 for j > 0 and for all i, 1 ≤ i < ℓ− 1, what concludes
the proof.

The above definition has an easy generalization to any dimension. A
“homological” d-path P in a cubical complex Q is defined as a subcomplex
of Q formed by a set of (d+ 1)-cells of Q together with their faces such that

• ∂P = P1 ⊔ P2 for some subcomplexes P1 and P2 of Q,

• Hi(P ) = Hi(P1) = Hi(P2) = Z/2 for i = 0, d,

• Hj(P ) = Hj(P1) = Hj(P2) = 0 for j 6= 0, d.

Definition 8. A spatiotemporal d-path P in a spatiotemporal filtration for
a sequence of cubical complexes S = {Q1, . . . , Qℓ} is a homological d-path in
SQ[S] such that H0(P ∩Qi,i+1) = Hd(P ∩Qi,i+1) = Z/2 and Hj(P ∩Qi,i+1) =
0 for j 6= 0, d and for all i, 1 ≤ i ≤ ℓ− 1.

7. Conclusions and Future Work

In this paper, we have computed a modified persistence barcode, named
spatiotemporal barcode, of a temporal sequence of 2D images reflecting the
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time nature of the data. The computation can be made both for the fore-
ground and background of the given images, what enables the tracking of
1-holes of the foreground as (bounded) connected components of the back-
ground. We have simplified the algorithm presented in [11] for computing
spatiotemporal paths, avoiding the computation of AT-models. Although we
have presented our algorithm for computing spatiotemporal paths only for
2D image sequences, it can be extended to sequences of images of any dimen-
sion, once a spatiotemporal filtration is constructed for the given sequence.
We have also extended the notion of spatiotemporal paths to any dimension.
This is part of an ongoing project to define and compute spatiotemporal
d-barcodes (for any d) for sequences of nD images.
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