
BIROn - Birkbeck Institutional Research Online

Gutin, G.Z. and Reidl, Felix and Wahlström, M. (2018) k-distinct in- and out-
branchings in digraphs. Journal of Computer and System Sciences 95 , pp.
86-97. ISSN 0022-0000.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/24756/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/24756/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

k-Distinct In- and Out-Branchings in Digraphs∗

Gregory Gutin1, Felix Reidl2, and Magnus Wahlström1

1Royal Holloway, University of London, UK
2North Carolina State University, USA

October 8, 2018

Abstract

An out-branching and an in-branching of a digraph D are called k-
distinct if each of them has k arcs absent in the other. Bang-Jensen,
Saurabh and Simonsen (2016) proved that the problem of deciding whether
a strongly connected digraph D has k-distinct out-branching and in-
branching is fixed-parameter tractable (FPT) when parameterized by k.
They asked whether the problem remains FPT when extended to arbitrary
digraphs. Bang-Jensen and Yeo (2008) asked whether the same problem
is FPT when the out-branching and in-branching have the same root.

By linking the two problems with the problem of whether a digraph
has an out-branching with at least k leaves (a leaf is a vertex of out-degree
zero), we first solve the problem of Bang-Jensen and Yeo (2008). We then
develop a new digraph decomposition called the rooted cut decomposition
and using it we prove that the problem of Bang-Jensen et al. (2016) is
FPT for all digraphs. We believe that the rooted cut decomposition will
be useful for obtaining other results on digraphs.

1 Introduction

While both undirected and directed graphs are important in many applications,
there are significantly more algorithmic and structural results for undirected
graphs than for directed ones. The main reason is likely to be the fact that
most problems on digraphs are harder than those on undirected graphs. The
situation has begun to change: recently there appeared a number of important
structural results on digraphs, see e.g. [16, 17, 18]. However, the progress was
less pronounced with algorithmic results on digraphs, in particular, in the area
of parameterized algorithms.

∗A short version of this paper was published in the proceedings of ICALP 2017. Research
of Gutin was partially supported by Royal Society Wolfson Research Merit Award.

1

ar
X

iv
:1

61
2.

03
60

7v
3

 [
cs

.D
S]

 1
5

Ja
n

20
18

In this paper, we introduce a new decomposition for digraphs and show its
usefulness by solving an open problem by Bang-Jensen, Saurabh and Simon-
sen [6]. We believe that our decomposition will prove to be helpful for obtaining
further algorithmic and structural results on digraphs.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one
vertex s of in-degree zero (out-degree zero). The vertex s is the root of T. A
vertex v of an out-tree (in-tree) is called a leaf if it has out-degree (in-degree)
zero. If an out-tree (in-tree) T is a spanning subgraph of a digraph D, then T
is an out-branching (an in-branching) of D. It is well-known that a digraph D
contains an out-branching (in-branching) if and only if D has only one strongly
connected component with no incoming (no outgoing) arc [3].

A well-known result in digraph algorithms, due to Edmonds, states that
given a digraph D and a positive integer `, we can decide whether D has `
arc-disjoint out-branchings in polynomial time [15]. The same result holds for
` arc-disjoint in-branchings. Inspired by this fact, it is natural to ask for a
“mixture” of out- and in-branchings: given a digraph D and a pair u, v of
(not necessarily distinct) vertices, decide whether D has an arc-disjoint out-
branching T+

u rooted at u and in-branching T−v rooted at v. We will call this
problem Arc-Disjoint Branchings.

Thomassen proved (see [2]) that the problem is NP-complete and remains
NP-complete even if we add the condition that u = v. The same result still
holds for digraphs in which the out-degree and in-degree of every vertex equals
two [7]. The problem is polynomial-time solvable for tournaments [2] and for
acyclic digraphs [8, 10]. The single-root special case (i.e., when u = v) of the
problem is polynomial time solvable for quasi-transitive digraphs1 [4] and for
locally semicomplete digraphs2 [5].

An out-branching T+ and an in-branching T− are called k-distinct if |A(T+)\
A(T−)| > k. Bang-Jensen, Saurabh and Simonsen [6] considered the following
parameterization of Arc-Disjoint Branchings.

Input: A digraph D, an integer k.
Question: Are there k-distinct out-branching T+ and in-branching T−?

k-Distinct Branchings parametrised by k

They proved that k-Distinct Branchings is fixed-parameter tractable (FPT)3

when D is strongly connected and conjectured that the same holds when D is
an arbitrary digraph. Earlier, Bang-Jensen and Yeo [9] considered the version of

1A digraph D = (V,A) is quasi-transitive if for every xy, yz ∈ A there is at least one arc
between x and z, i.e. either xz ∈ A or zx ∈ A or both.

2A digraph D = (V,A) is locally semicomplete if for every xy, xz ∈ A there is at least
one arc between y and z and for every yx, zx ∈ A there is at least one arc between y and z.
Tournaments and directed cycles are locally semicomplete digraphs.

3Fixed-parameter tractability of k-Distinct Branchings means that the problem can be
solved by an algorithm of runtime O∗(f(k)), where O∗ omits not only constant factors, but
also polynomial ones, and f is an arbitrary computable function. The books [11, 13] are
excellent recent introductions to parameterized algorithms and complexity.

2

k-Distinct Branchings where T+ and T− must have the same root and asked
whether this version of k-Distinct Branchings, which we call Single-Root
k-Distinct Branchings, is FPT.

The first key idea of this paper is to relate k-Distinct Branchings to the
problem of deciding whether a digraph has an out-branching with at least k
leaves via a simple lemma (see Lemma 1). The lemma and the following two
results on out-branchings with at least k leaves allow us to solve the problem of
Bang-Jensen and Yeo [9] and to provide a shorter proof for the above-mentioned
result of Bang-Jensen, Saurabh and Simonsen [6] (see Theorem 3).

Theorem 1 ([1]). Let D be a strongly connected digraph. If D has no out-
branching with at least k leaves, then the (undirected) pathwidth of D is bounded
by O(k log k).

Theorem 2 ([12, 19]). We can decide whether a digraph D has an out-branching
with at least k leaves in time4 O∗(3.72k).

The general case of k-Distinct Branchings seems to be much more com-
plicated. We first introduce a version of k-Distinct Branchings called k-
Rooted Distinct Branchings, where the roots s and t of T+ and T− are
fixed, and add arc ts to D (provided the arc is not in D) to make D strongly
connected. This introduces a complication: we may end up in a situation where
D has an out-branching with many leaves, and thereby potentially unbounded
pathwidth, but the root of the out-branching is not s. To deal with this situ-
ation, our goal will be to reconfigure the out-branching into an out-branching
rooted at s. In order to reason about this process, we develop a new digraph
decomposition we call the rooted cut decomposition. The cut decomposition of a
digraph D rooted at a given vertex r consists of a tree T̂ rooted at r whose nodes
are some vertices of D and subsets of vertices of D called diblocks associated
with the nodes of T̂ .

Our strategy is now as follows. If T̂ is shallow (i.e., it has bounded height),
then any out-branching with sufficiently many leaves can be turned into an
out-branching rooted at s without losing too many of the leaves. On the other
hand, if T̂ contains a path from the root of T̂ with sufficiently many non-
degenerate diblocks (diblocks with at least three vertices), then we are able
to show immediately that the instance is positive. The remaining and most
difficult issue is to deal with digraphs with decomposition trees that contain
long paths of diblocks with only two vertices, called degenerate diblocks. In
this case, we employ two reduction rules which lead to decomposition trees of
bounded height.

The paper is organized as follows. In the next section, we provide some
terminology and notation on digraphs used in this paper. In Section 3, we
prove Theorem 3. Section 4 is devoted to proving that Rooted k-Distinct
Branchings is FPT for all digraphs using cut decomposition and Theorems 1
and 2. We conclude the paper in Section 5, where some open parameterized
problems on digraphs are mentioned.

4The algorithm of [19] runs in time O∗(4k) and its modification in [12] in time O∗(3.72k).

3

Figure 1: Subtree notation Tx for x ∈ T (left) and the fins Fx1 , . . . , Fx`
for a

path x1 . . . x` in T (right).

2 Terminology and Notation

Let us recall some basic terminology of digraph theory, see [3]. A digraph D is
strongly connected (connected) if there is a directed (oriented) path from x to y
for every ordered pair x, y of vertices of D. Equivalently, D is connected if the
underlying graph of D is connected. A vertex v is a source (sink) if its in-degree
(out-degree) is equal to zero. It is well-known that every acyclic digraph has a
source and a sink [3].

In this paper, we exclusively work with digraphs, therefore we assume all
our graphs, paths, and trees to be directed unless otherwise noted. For a
path P = x1x2 . . . xk of length k − 1 we will employ the following notation
for subpaths of P : P [xi, xj] := xi . . . xj for 1 6 i 6 j 6 k is the infix of P
from xi to xj . For paths P1 := x1 . . . xkv and P2 := vy1 . . . y` we denote
by P1P2 := x1 . . . xkvy1 . . . y` their concatenation. For rooted trees T and some
vertex x ∈ T , Tx stands for the subtree of T rooted at x (see Figure 1).

We will frequently partition the nodes of a tree around a path in the following
sense (cf. Figure 1): Let T be a tree rooted at r and P = x1 . . . x` a path
from r = x1 to some node x` ∈ T . The fins of P are the sets {Fxi}xi∈P defined
as Fxi := V (Txi) \ V (Txi+1) for i < ` and Fx`

:= V (Tx`
).

Definition 1 (Bi-reachable Vertex). A vertex v of a digraph D is bi-reachable
from a vertex r if there exist two internally vertex-disjoint paths from r to v.

Given a digraph D and a vertex r, we can compute the set of vertices that are
bi-reachable from r in polynomial time using network flows.

3 Strongly Connected Digraphs

Let us prove a simple fact on a link between out/in-branchings with many leaves
and k-Distinct Branchings, which together with a structural result of Alon

4

et al. [1] and an algorithmic result for the Maximum Leaf Out-branching
problem [12, 19] gives a short proof that both versions of k-Distinct Branch-
ings are FPT for strongly connected digraphs.

Lemma 1. Let D be a digraph containing an out-branching and an in-branching.
If D contains an out-branching (in-branching) T with at least k+ 1 leaves, then
every in-branching (out-branching) T ′ of D is k-distinct from T .

Proof. We will consider only the case when T is an out-branching since the
other case can be treated similarly. Let T ′ be an in-branching of D and let L
be the set of all leaves of T apart from the one which is the root of T ′. Observe
that all vertices of L have outgoing arcs in T ′ and since in T the incoming arcs
of L are the only arcs incident to L in T , the sets of the outgoing arcs in T ′ and
incoming arcs in T do not intersect.

From the next section, the following problem will be of our main interest. The
problem k-Distinct Branchings in which T+ and T− must be rooted at given
vertices s and t, respectively, will be called the Rooted k-Distinct Branch-
ings problem. We will use the following standard dynamic programming result
(see, e.g., [6]).

Lemma 2. Let H be a digraph of (undirected) treewidth τ . Then k-Distinct
Branchings, Single-Root k-Distinct Branchings as well as Rooted k-
Distinct Branchings on H can be solved in time O∗(2O(τ log τ)).

Note that if a digraph D is a positive instance of Single-Root k-Distinct
Branchings then D must be strongly connected as an out-branching and an in-
branching rooted at the same vertex form a strongly connected subgraph of D.
Thus, the following theorem, in particular, solves the problem of Bang-Jensen
and Yeo mentioned above.

Theorem 3. Both k-Distinct Branchings and Single-Root k-Distinct
Branchings on strongly connected digraphs can be solved in time O∗(2O(k log2 k)).

Proof. The proof is essentially the same for both problems and we will give
it for Single-Root k-Distinct Branchings. Let D be an input strongly
connected digraph. By Theorem 2 using an O∗(3.72k)-time algorithm we can
find an out-branching T+ with at least k + 1 leaves, or decide that D has no
such out-branching. If T+ is found, the instance of Single-Root k-Distinct
Branchings is positive by Lemma 1 as any in-branching T− of D is k-distinct
from T+. In particular, we may assume that T− has the same root as T+

(a strongly connected digraph has an in-branching rooted at any vertex). Now
suppose that T+ does not exist. Then, by Theorem 1 the (undirected) pathwidth
of D is bounded by O(k log k). Thus, by Lemma 2 the instance can be solved

in time O∗(2O(k log2 k)).

The following example demonstrates that Theorem 1 does not hold for arbi-
trary digraphs and thus the proof of Theorem 3 cannot be extended to the
general case. Let D be a digraph with vertex set {v0, v1, . . . , vn+1} and arc set

5

{v0v1, v1v2, . . . , vnvn+1} ∪ {vivj : 1 6 j < i 6 n}. Observe that D is of un-
bounded (undirected) treewidth, but has unique in- and out-branchings (which
are identical). The same statement holds if we add an arc vn+1v0 (to make the
graph strongly connected) but insist that the out-branching is rooted in v0 and
the in-branching in vn+1.

4 The k-Distinct Branchings Problem

In this section, we fix a digraph D with terminals s, t and simply talk about
rooted out-branchings (in-branchings) whose root we implicitly assume to be s
(t). Similarly, unless otherwise noted, a rooted out-tree (in-tree) is understood
to be rooted at s (t).

Clearly, to show that both versions of k-Distinct Branchings are FPT it
is sufficient to prove the following:

Theorem 4. Rooted k-Distinct Branchings is FPT for arbitrary digraphs.

In the rest of this section, (D, s, t) will stand for an instance of Rooted k-
Distinct Branchings (in particular, D is an input digraph of the problem)
and H for an arbitrary digraph. Let us start by observing what further restric-
tions on D can be imposed by polynomial-time preprocessing.

4.1 Preprocessing

Let (D, s, t) be an instance of Rooted k-Distinct Branchings. Recall
that D contains an out-branching (in-branching) if and only if D has only one
strongly connected component with no incoming (no outgoing) arc. As a first
preprocessing step, we can decide in polynomial time whether D has a rooted
out-branching and a rooted in-branching. If not, we reject the instance. Note
that this in particular means that in a non-rejected instance, every vertex in D
is reachable from s and t is reachable from every vertex.

Next, we test for every arc a ∈ D whether there exists at least one rooted
in- or out-branching that uses a as follows: since a maximal-weight out- or in-
branching for an arc-weighted digraph can be computed in polynomial time [14],
we can force the arc a to be contained in a solution by assigning it a weight of
2 and every other arc weight 1. If we verify that a indeed does not appears in
any rooted out-branching and in-branching, we remove a from D and obtain an
equivalent instance of Rooted k-Distinct Branchings.

After this polynomial-time preprocessing, our instance has the following
three properties: there exists a rooted out-branching, there exists a rooted in-
branching, and every arc of D appears in some rooted in- or out-branching. We
call such a digraph with a pair s, t reduced.

Lastly, the following result of Kneis et al. [19] will be frequently used in our
arguments below.

6

Lemma 3. Let H = (V,A) be a digraph containing an out-branching rooted at
s ∈ V . Then every out-tree rooted at s with q leaves can be extended into an
out-branching rooted at s with at least q leaves in time O(|V |+ |A|).

4.2 Decomposition and Reconfiguration

We work towards the following win-win scenario: either we find an out-tree
with Θ(k) leaves that can be turned into a rooted out-tree with at least k + 1
leaves, or we conclude that every out-tree in D has less than Θ(k) leaves. We
refer to the process of turning an out-tree into a rooted out-tree as a reconfigu-
ration. In the process we will develop a new digraph decomposition, the rooted
cut-decomposition, which will aid us in reasoning about reconfiguration steps
and ultimately lead us to a solution for the problem. In principle we recursively
decompose the digraph into vertex sets that are bi-reachable from a designated
‘bottleneck’ vertex, but for technical reasons the following notion of a diblock
results in a much cleaner version of the decomposition.

Definition 2. Let H be a digraph with at least two vertices, and let r ∈ V (H)
such that every vertex of H is reachable from r. Let B ⊆ V (H) be the set of all
vertices that are bi-reachable from r. The directed block (diblock) Br of r in H is
the set B ∪N+[r], i.e., the bi-reachable vertices together with all out-neighbors
of r and r itself.

Note that according to the above definition a diblock must have at least two
vertices.

The following statement provides us with an easy case in which a reconfig-
uration is successful, that is, we can turn an arbitrary out-tree into a rooted
out-tree without losing too many leaves. Later, the obstructions to this case
will be turned into building blocks of the decomposition.

Lemma 4. Let Bs ⊆ V (D) be the diblock of s and let T be an out-tree of D
whose root r lies in Bs with ` leaves. Then there exists a rooted out-tree with at
least (`− 1)/2 leaves.

Proof. We may assume that r 6= s. In case T contains s as a leaf, we remove s
from T for the remaining argument and hence will argue about the ` − 1 re-
maining leaves.

If r is bi-reachable from s, consider two internally vertex-disjoint paths P,Q
from s to r. One of the two paths necessarily avoids half of the `−1 leaves of T ;
let without loss of generality this path be P . Let further L be the set of those
leaves of T that do not lie on P . If r ∈ N+(s), let P = sr.

We construct the required out-tree T ′ as follows: first, add all arcs and
vertices of P to T ′. Now for every leaf v ∈ L, let Pv be the unique path from r
to v in T and let P ′v be the segment of Pv from the last vertex x of Pv contained
in T . Add all arcs and vertices of P ′v to T ′. Observe that x 6= v as v cannot be
in T ′. Since Pv and thus P ′v contains no leaf of L other than v, in the end of
the process, all vertices of L are leaves of T ′. Since |L| > (` − 1)/2, the claim
follows.

7

The definition of diblocks can also be understood in terms of network flows: Let
v 6= r. Consider the vertex-capacitated version of H where r and v both have
capacity 2, and every other vertex has capacity 1, for some v ∈ V (H) \ {r}.
Then v is contained in the diblock of r in H if and only if the max-flow from r
to v equals 2. Dually, by Menger’s theorem, v is not contained in the diblock if
and only if there is a vertex u /∈ {r, v} such that all r-v paths P intersect u. This
has the following simple consequence regarding connectivity inside a diblock:

Lemma 5. Fix r ∈ V (H) and let Br ⊆ V (H) be the diblock of r in H. Then
for every pair of distinct vertices x, y ∈ Br, there exist an r-x-path Px and an
r-y-path Py that intersect only in r.

Proof. If r ∈ {x, y}, then clearly the claim holds since every vertex in Br is
reachable from r. Otherwise, add a new vertex z with arcs xz and yz, and note
that the lemma holds if and only if z is bi-reachable from r. If this is not true,
then by Menger’s theorem there is a vertex v ∈ Br, v 6= r, such that all paths
from r to z, and hence to x and y, go through v. But as noted above, there
is no cut-vertex v /∈ {x, r} for r-x paths, and no cut-vertex v /∈ {y, r} for r-y
paths. We conclude that z is bi-reachable from r, hence the lemma holds.

Next, we will use Lemma 5 to show that given a vertex r, the set of vertices not
in the diblock Br of r in H partitions cleanly around Br.

Lemma 6. Let r ∈ V (H) be given, such that every vertex of H is reachable from
r. Let Br ⊂ V (H) be the diblock of r in H. Then V (H)\Br partitions according
to cut vertices in Br, in the following sense: For every v ∈ V (H) \Br, there is
a unique vertex x ∈ Br \ {r} such that every path from r to v intersects Br for
the last time in x. Furthermore, this partition can be computed in polynomial
time.

Proof. Assume towards a contradiction that for v ∈ V (H) \ Br there exist two
r-v-paths P1, P2 that intersect Br for the last time in distinct vertices x1, x2,
respectively. We first observe that r /∈ {x1, x2}, since the second vertices of
P1 and P2 are contained in Br by definition. By Lemma 5, we may assume
that P1[r, x1] ∩ P2[r, x2] = {r}. But then P1 and P2 intersect for the first time
outside of Br in some vertex v′ (potentially in v′ = v). This vertex is, however,
bi-reachable from r, contradicting our construction of Br. Hence there is a
vertex x ∈ Br such that every path from r to v intersects Br for the last time
in x, with x 6= r, and clearly this vertex is unique. Finally, the set Br can
be computed in polynomial time, and given Br it is easy to compute for each
x ∈ Br the set of all vertices v ∈ V (H) (if any) for which x is a cut vertex.

We refer to the vertices x ∈ Br that are cut vertices in the above partition as
the bottlenecks of Br. Note that r itself is not considered a bottleneck in Br.
Using these notions, we can now define a cut decomposition of a digraph H.

Definition 3 (Rooted cut decomposition and its tree). LetH be a digraph and r
a vertex such that every vertex in H is reachable from r. The (r-rooted) cut

8

Figure 2: An example of a rooted cut decomposition.

decomposition of H is a pair (T̂ ,B) where T̂ is a rooted tree with V (T̂) ⊆ V (H)
and B = {Bx}x∈T̂ , Bx ⊆ V (H) for each x ∈ T̂ , is a collection of diblocks

associated with the nodes of T̂ , defined and computed recursively as follows.

1. Let Br be the diblock of r in H, and let L ⊆ Br \ {r} be the set of
bottlenecks in Br. Let {Xx}x∈L be the corresponding partition of the
remainder V (H)\Br.

2. For every bottleneck x ∈ L, let (T̂x,Bx) be the x-rooted cut decomposition
of the subgraph D[Xx ∪ {x}].

3. T̂ is the tree with root node r, where L is the set of children of r, and for
every x ∈ L the subtree of T̂ rooted at x is T̂x.

4. Finally, B = {Br} ∪
⋃
x∈L Bx.

Furthermore, for every node x ∈ T̂ , we define B∗x =
⋃
y∈T̂x

By as the set of all

vertices contained in diblocks associated with nodes of the subtree T̂x.

Figure 2 provides an illustration to Definition 3.

Lemma 7. Let a digraph H and a root r ∈ V (H) be given, such that every ver-
tex of H is reachable from r. Then the r-rooted cut decomposition (T̂ , {Bx}x∈T̂)
of H is well-defined and can be computed in polynomial time. Furthermore, the
diblocks cover V (H), i.e.,

⋃
x∈T̂ Bx = V (H), and for every node x ∈ T̂ , every

vertex of B∗x is reachable from x in D[B∗x].

Proof. By Lemma 6, the root diblock Br as well as the set L ⊆ Br of bottlenecks
and the partition {Xx}x∈L are well-defined and can be computed in polynomial
time. Also note that for each x ∈ L, r /∈ Xx ∪ {x}, and every vertex of
Hx := H[Xx ∪ {x}] is reachable from x in Hx by the definition of the partition.
Hence the collection of recursive calls made in the construction is well-defined,
and every digraph Hx used in a recursive call is smaller than H, hence the
process terminates. Finally, for any two distinct bottlenecks x, y ∈ L we have
V (Hx) ∩ V (Hy) = ∅. Thereby, distinct nodes of T̂ are associated with distinct

vertices of H, |T̂ | 6 |V (H)|, and the map x 7→ Bx is well-defined. It is also
clear that the whole process takes polynomial time.

9

We collect some basic facts about cut decompositions.

Lemma 8. Let H be a digraph, r ∈ V (H) a vertex and let (T̂ , {Bx}x∈T̂) be the
r-rooted cut decomposition of H. Then the following hold.

1. The sets {Bx \ {x}}x∈T̂ are all non-empty and partition V (H) \ {r}.

2. For distinct nodes x, y ∈ T̂ , if x is the parent of y in T̂ then Bx∩By = {y};
in every other situation, Bx ∩By = ∅.

3. For every node x ∈ T̂ , the following hold:

(a) If y is a child of x in T̂ , then any arc leading into the set B∗y from
V (H) \B∗y will have the form uy where u ∈ Bx.

(b) If y, y′ are distinct children of x in T̂ , then there is no arc between
B∗y and B∗y′ .

In particular, every arc of H is either contained in a subgraph of H induced by
a diblock Bx, or it is a back arc going from a diblock By to a diblock Bx, where

x is an ancestor of y in T̂ .

Proof. For the first claim, the sets Bx \ {x} are non-empty by definition; we
show the partitioning claim. By Lemma 6, for every v ∈ V (H) \ {r} either
v ∈ Br \ {r} or there is exactly one bottleneck x ∈ Br such that v ∈ Xx in the
construction of the decomposition. Also note that in the latter case, v 6= x since
x ∈ Br. Applying the argument recursively and using that the diblocks cover
V (H), by Lemma 7, we complete the proof of the partitioning claim.

For the second claim, the partitioning claim implies that if v ∈ Bx ∩By for

distinct nodes x, y ∈ T̂ , then either v = x or v = y, i.e., v must be a bottleneck.
This is only possible in the situation described.

For Claim 3(b), first consider the diblock Brand the partition {Xz}z∈L given
by Lemma 6. To prove Claim 3(b) it suffices to show that for any two distinct
sets Xy, Xy′ of the partition, there is no arc between Xy and Xy′ . Suppose for
a contradiction that there is such an arc uv, u ∈ Xy, v ∈ Xy′ . By Lemma 5,
there are paths Py and Py′ in Br from r to y and y′, respectively that intersect
only in r, and by Lemma 7, there are paths Pu from y to u in Xy and Pv from y′

to v in Xy′ . But then the paths PyPuuv and Py′Pv form two r-v paths that are
internally vertex-disjoint, showing that v ∈ Br, contrary to our assumptions.
Since the decomposition is computed recursively, this also holds in every internal
node of T̂ .

For Claim 3(a), let uv be an arc such that u /∈ B∗y and v ∈ B∗y . Moreover,
let u ∈ Bx′ and v ∈ By′ . By construction of cut decomposition, there is a path

P̂ from x′ to y′ in T̂ containing nodes x and y. Let x′′ be the second node in
P̂ (just after x′). Thus, there is a path P from x′′ to v in H containing the
vertices of P̂ apart from x′.

Assume that u 6= x′′. Then by Lemma 5, there is an x′-u-path P ′ and
an x′-x′′-path P ′′ of H which intersect only at x′. Then x′P ′uv and P ′′P are
internally vertex-disjoint paths from x′ to v. This means that v must be in Bx′ ,

10

a contradiction unless x′ = x, u ∈ Bx and v = y. If u = x′′, then P and uv are
internally vertex-disjoint paths from u to v. This means that v must be in Bx′′ ,
a contradiction unless x′ = x and v = y.

As we saw, for every diblock By, y ∈ T̂ , any path “into” the diblock must go

via the bottleneck vertex y. By induction, for any v ∈ By, every node of T̂ from
r to y represents a bottleneck vertex that is unavoidable for paths from r to v.
More formally, the following holds in cut decompositions:

Lemma 9. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of H rooted at r. Fix a

diblock Bx for x ∈ T̂ . Consider a path P in H from r to v ∈ Bx and let x1 . . . x`
be the sequence of bottleneck vertices that P encounters. Then P̂ = x0x1 . . . x`
with x0 = r is the path from r to x in T̂ .

Proof. We prove the claim by induction over the depth d of the vertex x in T̂ .
If r = x then any path from r to v ∈ Br contains r itself and hence the base
case for d = 0 holds trivially.

Consider a diblock Bx, x ∈ T̂ where x has distance d to r in T̂ and let y be
the parent of x in T̂ . We assume the induction hypothesis holds for diblocks at
depth d − 1, hence it holds for By in particular. Because x ∈ By, this implies

that every path from r to x will contain all ancestors of x in T̂ . Since by
construction every path from r to a vertex v ∈ Bx needs to pass through x, the
inductive step holds. This proves the claim.

As an immediate consequence, we can identify arcs in cut decompositions that
cannot participate in any rooted out-branching.

Corollary 1. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of H rooted at r and

let R := {uv ∈ A(H) | u ∈ Bx and x ∈ T̂v} be all the arcs that originate in
a diblock Bx and end in an ancestor v of x on T̂ . Then for every out-tree T
rooted at r we have A(T) ∩R = ∅.

Proof. Fix a bottleneck vertex v ∈ T̂ of the decomposition and let the arc uv
be in an out-tree T rooted at r. There must exist a path Psu from s to u that
is part of T . By Lemma 9, this path will contain the vertex v. But then v is
an ancestor of u in T and therefore the arc uv cannot be part of T , which is a
contradiction.

The decomposition actually restricts paths even further: a path that starts at
the root and visits two bottleneck vertices x, y (in this order) cannot intersect
any vertex of B∗y before visiting y and cannot return to any set B∗z , z ∈ T̂ , after
having left it.

Lemma 10. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of H rooted at r. Fix a

diblock Bx for x ∈ T̂ . Consider a path P from r to v ∈ Bx and let P̂ = x0 . . . x`
be the path from r = x0 to x = x` in T̂ . Let further F0, . . . , F` be the fins of P̂
in T̂ . Then the subpath P [xi, xi+1]\{xi+1} is contained in the union of diblocks
of Fi for 0 6 i < `.

11

Proof. By Lemma 9 we know that the nodes of P̂ appear in P in the correct
order, hence the subpath P [xi, xi+1] is well-defined. Let us first show that the
subpath P [xi, xi+1] \ {xi+1} cannot intersect any diblock associated with T̂xi+1

.
By Lemma 8, the only arcs from Bxi

into diblocks below xi+1 connect to the
bottleneck xi+1 itself. Since xi+1 is already the endpoint of P [xi, xi+1], this
subpath cannot intersect the diblocks of T̂xi+1 . This already proves the claim

for x0; it remains to show that it does not intersect diblocks of V (T̂)\V (T̂xi) for
i > 1. The reason is similar: since the bottleneck xi is already part of P [xi, xi+1],
this subpath could not revisit Bxi

if it enters any diblock By for a proper

ancestor y of xi in T̂ . We conclude that therefore it must be, with the exception
of the vertex xi+1, inside the diblocks of the fin Fi.

Corollary 2. For every vertex u ∈ V (H) and every set X ⊆ V (H) \ (V (T̂) ∪
{u}) of non-bottleneck vertices there exists a path P from r to u in H such
that |P ∩X| 6 |X|/2.

Proof. Assume that u ∈ Bx and let P̂ = x0 . . . x` be a path from x0 = r
to x` = x in T̂ . Let further F0, . . . , F` be the fins of P̂ in T̂ and Ui the union of
diblocks associated with Fi, 0 6 i 6 `. We partition the set X into X1, . . . , X`

where Xi = X ∩ Ui for 0 6 i 6 `. Lemma 10 allows us to construct the path P
iteratively: any path that leads to u will pass through bottlenecks xi, xi+1 in
succession and visit only vertices in Ui in the process. Since there are two
internally vertex-disjoint paths between xi, xi+1 for 1 6 i 6 `, we can always
choose the path that has the smaller intersection with Xi. Stringing these paths
together, we obtain the claimed path P .

We want to argue that one of the following cases must hold: either the cut
decomposition has bounded height and we can ‘re-root’ any out-tree with many
leaves into a rooted out-tree with a comparable number of leaves, or we can
directly construct a rooted out-tree with many leaves. In both cases we apply
Lemmas 1 and 3 to conclude that the instance has a solution. This approach
has one obstacle: internal diblocks of the decomposition that contain only two
vertices.

Definition 4 (Degenerate diblocks). Let {Bx}x∈T̂ be the cut decomposition

rooted at s. We call a diblock Bx degenerate if x is an internal node of T̂
and |Bx| = 2.

Let us first convince ourselves that a long enough sequence of non-degenerate
diblocks provides us with a rooted out-branching with many leaves.

Lemma 11. Let (T̂ , {Bx}x∈T̂) be the cut decomposition rooted at s of H and

let y be a node in T̂ such that the path P̂sy from s to y in T̂ contains at least `
nodes whose diblocks are non-degenerate. Then H contains an out-tree rooted
at s with at least ` leaves.

Proof. We construct an s-rooted out-tree T by repeated application of Lemma 5.
Let x1, . . ., x` be a sequence of nodes in P̂sy whose diblocks are non-degenerate,

12

and for each 1 6 i < ` let x+i be the node after xi in P̂sy. We construct a
sequence of s-rooted out-trees T1, . . ., T` such that for 1 6 i 6 `, the vertex xi
is a leaf of Ti, and Ti contains i leaves. First construct T1 as a path from s to
x1, then for every 1 6 i < ` we construct an out-tree Ti+1 from Ti as follows.
Let vi ∈ Bxi

\ {xi, x+i }, which exists since Bxi
is non-degenerate, and let Pxix

+
i

,

Pxivi be a pair of paths in D[B∗xi
] from xi to x+i and to vi respectively, which

intersect only in xi. Such paths exist by Lemma 5, and since xi is a leaf of Ti,
Lemma 9 implies that Ti is disjoint from B∗xi

\ {xi}. Hence the paths can be
appended to Ti to form a new r-rooted out-tree Ti+1 in H which contains a leaf
in every diblock Bxj , 1 6 i. Finally, note that the final tree T` contains two
leaves in Bx`−1

, hence T` is an r-rooted out-tree with ` leaves.

The next lemma is important to prove that Rooted k-Distinct Branchings
is FPT for a special case of the problem considered in Lemma 13.

Lemma 12. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of D rooted at s such

that T̂ is of height d and let T be an out-tree rooted at some vertex r with ` leaves.
Then we can construct an out-tree Ts rooted at s with at least (`− d)/2 leaves.

Proof. Assume that r is contained in the diblock Bx of the decomposition and
let xp . . . x1 = P̂sx be a path from s = xp to x = x1 in T̂ . Let L be the

leaves of T and let L′ := L \ P̂sx. Clearly, |L′| > ` − d. Applying Corollary 2
with X = L′ and u = r, we obtain a path Psr in D from s to r that avoids
half of L′. We construct Ts in a similar fashion to the proof of Lemma 4. We
begin with Ts = Psr, then for every leaf v ∈ L′ \ Psr, proceed as follows: let Pv
be the unique path from r to v in T and let P ′v be the segment of Pv from the
last vertex x of Pv contained in Ts. Add all arcs and vertices of P ′v to Ts. Since
Pv and thus P ′v contains no leaf of L′ other than v, in the end of the process,
all vertices of L′ \ Psr are leaves of Ts. Since |L′ \ Psr| > |L′|/2, we conclude
that Ts contains at least (`− d)/2 leaves, as claimed.

Using these results, we are now able to prove that if the height d of the cut
decomposition of D is upper-bounded by a function in k, then Rooted k-
Distinct Branchings on D is FPT. Combined with Lemma 11, this implies
that the remaining obstacle is cut decompositions with long chains of degenerate
diblocks, which we will deal with in Section 4.3.

Lemma 13. Let (T̂ , {Bx}x∈T̂) the cut decomposition rooted at s of height d. If
d 6 d(k) for some function d(k) = Ω(k) of k only, then we can solve Rooted

k-Distinct Branchings on D in time O∗(2O(d(k) log2 d(k))).

Proof. By Theorem 2, in time O∗(2O(d(k))) we can decide whether D has an out-
branching with at least 2k + 2 + d(k) leaves. If D has such an out-branching,
then by Lemma 12 D has a rooted out-tree with at least k + 1 leaves. This
out-tree can be extended to a rooted out-branching with at least k+ 1 leaves by
Lemma 3. So by Lemma 1, (D, s, t) is a positive instance if and only if D has
a rooted in-branching, which can be decided in polynomial time.

13

If D has no out-branching with at least 2k+2+d(k) leaves, by Theorem 1 the
pathwidth of D is O(d(k) log d(k)) and thus by Lemma 2 we can solve Rooted

k-Distinct Branchings on D in time O∗(2O(d(k) log2 d(k))). (Note that for
the dynamic programming algorithm of Lemma 2 we may fix roots of all out-
branchings and all in-branchings of D by adding arcs s′s and tt′ to D, where s′

and t′ are new vertices.)

4.3 Handling degenerate diblocks

The following is the key notion for our study of degenerate diblocks.

Definition 5 (Degenerate paths). Let (T̂ , {Bx}x∈T̂) be a cut decomposition of

D. We call a path P̂ in T̂ monotone if it is a subpath of a path from the root
of T̂ to some leaf of T̂ . We call a path P̂ in T̂ degenerate if it is monotone and
every diblock Bx, x ∈ P̂ is degenerate.

Let (D, s, t) be a reduced instance of Rooted k-Distinct Branchings. As
observed in Section 4.1, we can verify in polynomial time whether an arc partic-
ipates in some rooted in- or out-branching. Let Rs ⊆ A(D) be those arcs that
do not participate in any rooted out-branching and Rt ⊆ A(D) those that do
not participate in any rooted in-branching. Since (D, s, t) is a reduced instance,
we necessarily have that Rs ∩ Rt = ∅, a fact we will use frequently in the fol-
lowing. Corollary 1 provides us with an important subset of Rs: every arc that
originates in a diblock Bx of the cut decomposition and ends in a bottleneck
vertex that is an ancestor of x on T̂ is contained in Rs.

Let us first prove some basic properties of degenerate paths.

Lemma 14. Let (T̂ , {Bx}x∈T̂) be the cut-decomposition of D rooted at s, and

let P̂ = x1 . . . x` be a degenerate path of T̂ . Then the following properties hold:

1. Every rooted out-branching contains A(P̂),

2. every arc xjxi with j > i is contained in Rs, and

3. there is no arc from xi (i < `) to By in D, where y is a descendant of xi
on T̂ , except for the arc xixi+1.

Proof. First observe that, by definition of a degenerate path, P̂ is a path in D.
Every rooted out-branching contains in particular the last vertex x` of the path.
By Lemma 9, it follows that P̂ is contained in the out-branching as a monotone
path, hence it contains A(P̂). Consequently, no ‘back-arc’ xjxi with j > i can
be part of a rooted out-branching and thus it is contained in Rs. For the third
property, note that all arcs from xi except back arcs are contained in Bxi

. Since
Bxi

is degenerate there can be only one such arc.

For the remainder of this section, let us fix a single degenerate path P̂ = x1 . . . x`.
We categorize the arcs incident to P̂ as follows:

1. Let A+ contain all ‘upward arcs’ that originate in P̂ and end in some
diblock By where y is an ancestor of x1,

14

2. let A0 contain all ‘on-path arcs’ xjxi, j > i, and

3. let A− contain all ‘arcs from below’ that originate from some diblock By
where y is a (not necessarily proper) descendant of x`.

By Lemma 14, this categorization is complete: no other arcs can be inci-
dent to P̂ in a reduced instance. By the same lemma, we immediately obtain
that A0, A− ⊆ Rs. We will now apply certain reduction rules to (D, s, t) and
prove in the following that they are safe, with the goal of bounding the size of P̂
by a function of the parameter k.

Reduction rule 1: If there are two arcs xiu, xju ∈ A+∩Rt with i < j, remove
the arc xju.

Lemma 15. Rule 1 is safe.

Proof. Since (D, s, t) is reduced, the arcs xiu and xju cannot be in Rs. Pick
any rooted out-branching T that contains the arc xju. By Lemma 14, we have

that P̂ ⊆ T , therefore we can construct an out-branching T ′ by exchanging the
arc xju for the arc xiu. Since a) no rooted in-branching contains either of these
two arcs, and b) no out-branching can contain both, we conclude that (D \
{xju}, s, t) is equivalent to (D, s, t) and thus Rule 1 is safe.

Corollary 3. Let (D, s, t) be reduced with respect to Rule 1. Then we either
find a solution for (D, s, t) or |A+ ∩Rt| 6 2k + 1.

Proof. Let H be the heads of the arcs A+ ∩ Rt. Since Rule 1 was applied
exhaustively, no vertex in H is the head of two arcs A+ ∩Rt; therefore we have
that |H| = |A+ ∩Rt|.

Note that any arc in A+∩Rt cannot be contained in Rs, therefore H does not
contain any bottleneck vertices. Applying Corollary 2, we can find a path P`
from s to x` that avoids half of the vertices in H. Thus we can add half
of H as leaves to P` using the arcs from A+ ∩ Rt. Thus if |H| > 2k + 2, we
obtain a rooted out-tree with at least k + 1 leaves, which by Lemmas 1 and 3
imply that the original instance has a solution. We conclude that otherwise
|H| = |A+ ∩Rt| 6 2k + 1.

Lemma 16. Let P̂ = x1 . . . x` be a degenerate path. Assume t 6∈ P̂ and that
(D, s, t) is reduced with respect to Rule 1. Let further X ⊆ V (P̂) be those vertices
of P̂ that are tails of the arcs in A+. We either find that (D, s, t) has a solution
or that |X| 6 3k + 1.

Proof. For every vertex xi ∈ X with an arc xiv ∈ A+ \ Rt, we construct a
path P̃xit from xi to t that contains xiv as follows: since xiv 6∈ Rt, there exists
a rooted in-branching T̃ that contains xiv. We let P̃xit ⊆ T̃ be the path from xi
to t in T̃ .

Claim. Each path P̃xit does not intersect vertices in diblocks of T̂xi
.

15

Since P̃xit leaves P̂ via the first arc xiv, it cannot use the arc xixi+1. Since this
is the only arc that leads to vertices in diblocks of T̂xi , the claim follows.

Let us relabel the just constructed paths to P̃1, . . . , P̃` such that they are sorted
with respect to their start vertices on P̂ . That is, for i < j the first vertex
of P̃i appears before the first vertex of P̃j on P̂ . We iteratively construct rooted

in-trees T̃1, . . . T̃` with the invariant that a) T̃i has exactly i leaves and b) does
not contain any vertex of P̂ below the starting vertex of P̃i. Choosing T̃1 := P̃1

clearly fulfills this invariant. To construct T̃i from T̃i−1 for 2 6 i 6 `, we simply
follow the path P̃i up to the first intersection with T̃i−1. Since t ∈ P̃i∩T̃i−1, such
a vertex must eventually exist. By the above claim, P̃i does not contain any ver-
tex below its starting vertex on P̂ , thus both parts of the invariant remain true.

We conclude that T̃` is a rooted in-tree with ` leaves, where ` is the num-
ber of vertices in X that have at least one upwards arc not contained in Rt.
For ` > k + 1, Lemmas 1 and 3 imply that the original instance has a solution.
Otherwise, ` 6 k. By Corollary 3, we may assume that |A+ ∩ Rt| 6 2k + 1.
Taken both facts together, we conclude that either |X| 6 3k + 1, or we can
construct a solution.

We will need the following.

Lemma 17. Let P̂ = x1 . . . x` be a degenerate path and assume that t 6∈ P̂ . Let
further Y ⊆ V (P̂) be those vertices of P̂ that are tails of the arcs in A0. We
either find that (D, s, t) has a solution or we have |Y | < k.

Proof. We will construct a rooted in-tree that contains |Y | arcs from A0. Since
no rooted out-branching contains any such arc, this will prove that the instance
is positive provided |Y | > k. Note in particular that we are not concerned with
the number of leaves of the resulting tree.

First associate every vertex v ∈ Y with an arc vxv ∈ A0, where we choose xv
to be the vertex closest to v. LetX+ be the heads of all arcs in A+ and letX ⊆ P̂
be the tails of all arcs in A+.

Let u ∈ Y be the vertex that appears first on P̂ among all vertices in Y .
Since uxu ∈ Rs, uxu cannot be contained in Rt. Accordingly there exists a
path Pu from u to t that uses the arc uxu. Note that Pu leaves P̂ through an
A+-arc whose tail lies between xu and u on P̂ .

Note that the segment Pu[xu, t], by our choice of u, does not contain any
vertex of Y . We now construct the seed in-tree T0 as follows. We begin with Pu
and add the arc u′xu′ for every vertex u′ ∈ Y where xu′ ∈ Pu. Next, we add
every vertex v ∈ X+ to T0 by finding a path from v to t and attach this path
up to its first intersection with T0. Since v lies above xu in the decomposition,
this path cannot intersect any vertex in Y .

We form an in-forest5 F0 from the arcs of T0 and all arcs vxv, v ∈ Y that are
not in T0. Every in-tree T ∈ F0 has the following easily verifiable properties:

1. Its root is the highest vertex in the decomposition among all vertices V (T)
(recall Lemma 8),

5An in-forest is a vertex-disjoint collection of in-trees.

16

2. its root is either t or a vertex xv with v ∈ Y , and

3. every segment P̂ [x, y] of P̂ contained in T has no vertex of X or Y with
the possible exception of y ∈ Y .

We will maintain all three of these properties while constructing a sequence of
in-forests F0 ⊆ F1 ⊆ . . . where each in-forest in the sequence will have less roots
than its predecessor (here ⊆ stands for Fi−1 being a subgraph of Fi). We stop
the process when the number of roots drop to one.

The construction of Fi from Fi−1 for i > 1 works as follows. Let T ∈ Fi−1
be the in-tree with the lowest root in the in-forest. By assumption, Fi−1 has
at least two roots, thus it cannot be t and therefore, by part 2 of our invariant,
is a vertex xv with v ∈ Y . Now from xv onwards, we walk along the path P̂
until we encounter a vertex z that is either 1) the tail of an arc A+ or 2) a
vertex of the in-forest Fi−1. In the former case, we use the segment P̂ [xu, z]
to connect T to a vertex in X+ via the A+-arc emanating from z. Since all
vertices in X+ are part of the seed in-tree T0 this preserves all three parts of
the invariant and Fi−1 ⊆ Fi.

Consider the second case: we encounter a vertex z that is part of some
tree T ′ ∈ Fi−1. Let us first eliminate a degenerate case:

Claim. The trees T ′ and T are distinct.

Assume towards a contradiction that T ′ = T . In that case, there is no single
vertex between xv and z that is either the tail of an A+ or A0-arc. If z is
such that xz = xv (for example z = v), we already obtain a contradiction: the
arc zxz cannot possibly be part of any in-branching rooted at t, contradicting
the fact that it is not in Rt.

Otherwise, z = xw for some w ∈ Y . By assumption, wz ∈ T , thus there
exists a path Pwxv which contains both the arc wz as well as the arc vxv. There-
fore, the vertex w must lie below v on P . Furthermore, the path Pwxv

cannot
contain any vertex above xv by property 1 of the invariant. It follows that the
subpath P [z, v] is entirely contained in T—by property 3 of the invariant, none
of the vertices (except v) in this subpath can be in X or Y . Since the same
was true for the subpath P [xv, z], we conclude that the whole subpath P [xv, v]
contains no vertex of X or Y . This contradicts our assumption that xvv 6∈ Rt
and we conclude that T and T ′ must be distinct.

By our choice of T , the vertex z cannot be the root of T ′. Accordingly, we can
merge T and T ′ by adding the path P̂ [xv, z]. This concludes our construction
of Fi. Since the root of T ′ lies above all vertices of T , part 1) of the invariant
remains true. We did not change a non-root to a root in this construction, thus
part 2) remains true. The one segment of P̂ [xv, z] we added to merge T and T ′

did not, by construction, contain any vertex of Y or X, with the exception of the
last vertex z, hence part 3) remains true. Finally, we clearly have that Fi−1 ⊆ Fi
and the latter contains one less root than the former.

The process clearly terminates with some in-forest Fp which contains a single

in-tree T̃ . The root of this in-tree is necessarily t. Note further that F0 contained

17

all |Y | arcs uxu, u ∈ Y ; therefore T̃ contains those arcs, too. Since all of these
arcs are in Rs, we arrive at the following: either |Y | < k, as claimed, or we found
a rooted in-tree that avoids at least k arcs with every rooted out-branching, in
other words, as solution to (D, s, t).

Taking Lemma 16 and Lemma 17 together, we see that only O(k) vertices of a
degenerate path are tails of arcs in A+ or A0. The following lemma now finally
lets us deal with degenerate paths: we argue that those parts of the path that
contain none of these few ‘interesting’ vertices can be contracted.

Reduction rule 2: If P̂ [x, y] ⊆ P̂ is such that no vertex in P̂ [x, y] is a tail of
arcs in A+ ∪A0, contract P̂ [x, y] into a single vertex.

Lemma 18. Rule 2 is safe.

Proof. Simply note that every vertex in P̂ [x, y] has exactly one outgoing arc.
We already know that every arc of P̂ must be contained in every rooted out-
branching, now we additionally have that all arcs in P̂ [x, y] are necessarily
contained in every rooted in-branching. We conclude that Rule 2 is safe.

We summarize the result of applying Rules 1 and 2.

Lemma 19. Let P̂ be a degenerate path in an instance reduced with respect to
Rules 1 and 2. If t 6∈ P̂ then |P̂ | 6 8k + 1. Otherwise, |P̂ | 6 16k + 3.

Proof. We may assume that t 6∈ P̂ as otherwise we can partition P̂ into its part
before t and its part after t and obtain |P̂ | 6 16k + 3 from the bound on |P̂ |
when t 6∈ P̂ . By Lemmas 16 and 17, the number of vertices on P̂ that are tails
of either A+ or A0 is bounded by 4k. Between each consecutive pair of such
vertices, we can have at most one vertex that is not a tail of such an arc. We
conclude that |P̂ | 6 8k + 1, as claimed.

Now we can prove the main result of this paper.

Proof of Theorem 4. Consider the longest monotone path P̂ of T̂ . By
Lemma 11, if P̂ has at least k+ 1 non-degenerate diblocks, then D has a rooted
out-tree with at least k + 1 leaves. This out-tree can be extended to a rooted
out-branching with at least k + 1 leaves by Lemma 3. Thus, by Lemma 1,
(D, s, t) is a positive instance if and only if D has a rooted in-branching, which
can be decided in polynomial time.

Now assume that P̂ has at most k non-degenerate diblocks. By Lemma 19
we may assume that before, between and after the non-degenerate diblocks there
are O(k) degenerate diblocks. Thus, the height of T̂ is O(k2). Therefore, by

Lemma 13, the time complexity for Theorem 4 is O∗(2O(k2 log2 k)).

18

5 Conclusion

We showed that the Rooted k-Distinct Branchings problem is FPT for
general digraphs parameterized by k, thereby settling open question of Bang-
Jensen et al. [6]. The solution in particular uses a new digraph decomposition,
the rooted cut decomposition, that we believe might be useful for settling other
problems as well.

We did not attempt to optimize the running time of the algorithm of The-
orem 4. Perhaps, a more careful handling of degenerate diblocks may lead to
an algorithm of running time O∗(2O(k log2 k)). Another question of interest is
whether the Rooted k-Distinct Branchings problem admits a polynomial
kernel.

References

[1] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning
directed trees with many leaves. SIAM Journal on Discrete Mathematics,
23(1):466–476, 2009.

[2] J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and
related path problems. Journal of Combinatorial Theory, Series B, 51(1):1–
23, 1991.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applica-
tions. Springer, 2002.

[4] J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. Journal of Graph
Theory, 20:141–161, 1995.

[5] J. Bang-Jensen and J. Huang. Arc-disjoint in- and out-branchings with
the same root in locally semicomplete digraphs. Journal of Graph Theory,
77:278–298, 2014.

[6] J. Bang-Jensen, S. Saurabh, and S. Simonsen. Parameterized algorithms for
non-separating trees and branchings in digraphs. Algorithmica, 76(1):279–
296, 2016.

[7] J. Bang-Jensen and S. Simonsen. Arc-disjoint paths and trees in 2-regular
digraphs. Discrete Applied Mathematics, 161:2724–2730, 2013.

[8] J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings.
Journal of Graph Theory, 42(4):297–307, 2003.

[9] J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph
problem is fixed parameter tractable. Discrete Applied Mathematics,
156:2924–2929, 2008.

19

[10] K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find
a pair of arc-disjoint spanning in-arborescence and out-arborescence in a
directed acyclic graph. Information Processing Letters, 109(23-24):1227–
1231, 2009.

[11] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[12] J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT algorithms and kernels
for the directed k-leaf problem. Journal of Computer and System Sciences,
76(2):144–152, 2010.

[13] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

[14] J. Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards, Section B, 71B:233–240, 1967.

[15] J. Edmonds. Edge-disjoint branchings. In B. Rustin, editor, Combinatorial
Algorithms, pages 91–96. Academic Press, 1973.

[16] A. Fradkin and P. Seymour. Tournament pathwidth and topological con-
tainment. Journal of Combinatorial Theory, Series B, 103(3):374–384,
2013.

[17] K. Kawarabayashi and S. Kreutzer. The directed grid theorem. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, pages 655–664, 2015.

[18] I. Kim and P. D. Seymour. Tournament minors. Journal of Combinatorial
Theory, Series B, 112:138–153, 2015.

[19] J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees
with many leaves. Algorithmica, 61(4):882–897, 2011.

20

	1 Introduction
	2 Terminology and Notation
	3 Strongly Connected Digraphs
	4 The k-Distinct Branchings Problem
	4.1 Preprocessing
	4.2 Decomposition and Reconfiguration
	4.3 Handling degenerate diblocks

	5 Conclusion

