BIROn - Birkbeck Institutional Research Online

Gutin, G.Z. and Reidl, Felix and Wahlström, M. (2018) k-distinct in- and outbranchings in digraphs. Journal of Computer and System Sciences 95 , pp. 86-97. ISSN 0022-0000.

Downloaded from:

k-Distinct In- and Out-Branchings in Digraphs*

Gregory Gutin ${ }^{1}$, Felix Reidl ${ }^{2}$, and Magnus Wahlström ${ }^{1}$
${ }^{1}$ Royal Holloway, University of London, UK
${ }^{2}$ North Carolina State University, USA

October 8, 2018

Abstract

An out-branching and an in-branching of a digraph D are called k distinct if each of them has k arcs absent in the other. Bang-Jensen, Saurabh and Simonsen (2016) proved that the problem of deciding whether a strongly connected digraph D has k-distinct out-branching and inbranching is fixed-parameter tractable (FPT) when parameterized by k. They asked whether the problem remains FPT when extended to arbitrary digraphs. Bang-Jensen and Yeo (2008) asked whether the same problem is FPT when the out-branching and in-branching have the same root.

By linking the two problems with the problem of whether a digraph has an out-branching with at least k leaves (a leaf is a vertex of out-degree zero), we first solve the problem of Bang-Jensen and Yeo (2008). We then develop a new digraph decomposition called the rooted cut decomposition and using it we prove that the problem of Bang-Jensen et al. (2016) is FPT for all digraphs. We believe that the rooted cut decomposition will be useful for obtaining other results on digraphs.

1 Introduction

While both undirected and directed graphs are important in many applications, there are significantly more algorithmic and structural results for undirected graphs than for directed ones. The main reason is likely to be the fact that most problems on digraphs are harder than those on undirected graphs. The situation has begun to change: recently there appeared a number of important structural results on digraphs, see e.g. [16, 17, 18. However, the progress was less pronounced with algorithmic results on digraphs, in particular, in the area of parameterized algorithms.

[^0]In this paper, we introduce a new decomposition for digraphs and show its usefulness by solving an open problem by Bang-Jensen, Saurabh and Simonsen [6]. We believe that our decomposition will prove to be helpful for obtaining further algorithmic and structural results on digraphs.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of in-degree zero (out-degree zero). The vertex s is the root of T. A vertex v of an out-tree (in-tree) is called a leaf if it has out-degree (in-degree) zero. If an out-tree (in-tree) T is a spanning subgraph of a digraph D, then T is an out-branching (an in-branching) of D. It is well-known that a digraph D contains an out-branching (in-branching) if and only if D has only one strongly connected component with no incoming (no outgoing) arc [3].

A well-known result in digraph algorithms, due to Edmonds, states that given a digraph D and a positive integer ℓ, we can decide whether D has ℓ arc-disjoint out-branchings in polynomial time [15]. The same result holds for ℓ arc-disjoint in-branchings. Inspired by this fact, it is natural to ask for a "mixture" of out- and in-branchings: given a digraph D and a pair u, v of (not necessarily distinct) vertices, decide whether D has an arc-disjoint outbranching T_{u}^{+}rooted at u and in-branching T_{v}^{-}rooted at v. We will call this problem Arc-Disjoint Branchings.

Thomassen proved (see [2]) that the problem is NP-complete and remains NP-complete even if we add the condition that $u=v$. The same result still holds for digraphs in which the out-degree and in-degree of every vertex equals two 7. The problem is polynomial-time solvable for tournaments [2 and for acyclic digraphs [8, 10]. The single-root special case (i.e., when $u=v$) of the problem is polynomial time solvable for quasi-transitive digraphs s^{1} [4] and for locally semicomplete digraph s^{2} [5].

An out-branching T^{+}and an in-branching T^{-}are called k-distinct if $\mid A\left(T^{+}\right) \backslash$ $A\left(T^{-}\right) \mid \geqslant k$. Bang-Jensen, Saurabh and Simonsen [6] considered the following parameterization of Arc-Disjoint Branchings.
k-Distinct Branchings parametrised by k
Input: $\quad \mathrm{A}$ digraph D, an integer k.
Question: Are there k-distinct out-branching T^{+}and in-branching T^{-}?

They proved that k-Distinct Branchings is fixed-parameter tractable (FPT) ${ }^{3}$ when D is strongly connected and conjectured that the same holds when D is an arbitrary digraph. Earlier, Bang-Jensen and Yeo [9] considered the version of

[^1]k-Distinct Branchings where T^{+}and T^{-}must have the same root and asked whether this version of k-Distinct Branchings, which we call Single-Root k-Distinct Branchings, is FPT.

The first key idea of this paper is to relate k-Distinct Branchings to the problem of deciding whether a digraph has an out-branching with at least k leaves via a simple lemma (see Lemma 1). The lemma and the following two results on out-branchings with at least k leaves allow us to solve the problem of Bang-Jensen and Yeo [9] and to provide a shorter proof for the above-mentioned result of Bang-Jensen, Saurabh and Simonsen [6] (see Theorem 3).
Theorem 1 ([1]). Let D be a strongly connected digraph. If D has no outbranching with at least k leaves, then the (undirected) pathwidth of D is bounded by $O(k \log k)$.

Theorem 2 (12, 19). We can decide whether a digraph D has an out-branching with at least k leaves in tim $\S^{4} O^{*}\left(3.72^{k}\right)$.

The general case of k-Distinct Branchings seems to be much more complicated. We first introduce a version of k-Distinct Branchings called k Rooted Distinct Branchings, where the roots s and t of T^{+}and T^{-}are fixed, and add arc ts to D (provided the arc is not in D) to make D strongly connected. This introduces a complication: we may end up in a situation where D has an out-branching with many leaves, and thereby potentially unbounded pathwidth, but the root of the out-branching is not s. To deal with this situation, our goal will be to reconfigure the out-branching into an out-branching rooted at s. In order to reason about this process, we develop a new digraph decomposition we call the rooted cut decomposition. The cut decomposition of a digraph D rooted at a given vertex r consists of a tree \hat{T} rooted at r whose nodes are some vertices of D and subsets of vertices of D called diblocks associated with the nodes of \hat{T}.

Our strategy is now as follows. If \hat{T} is shallow (i.e., it has bounded height), then any out-branching with sufficiently many leaves can be turned into an out-branching rooted at s without losing too many of the leaves. On the other hand, if \hat{T} contains a path from the root of \hat{T} with sufficiently many nondegenerate diblocks (diblocks with at least three vertices), then we are able to show immediately that the instance is positive. The remaining and most difficult issue is to deal with digraphs with decomposition trees that contain long paths of diblocks with only two vertices, called degenerate diblocks. In this case, we employ two reduction rules which lead to decomposition trees of bounded height.

The paper is organized as follows. In the next section, we provide some terminology and notation on digraphs used in this paper. In Section 3 we prove Theorem 3. Section 4 is devoted to proving that Rooted k-Distinct Branchings is FPT for all digraphs using cut decomposition and Theorems 1 and 2. We conclude the paper in Section 5. where some open parameterized problems on digraphs are mentioned.

[^2]

Figure 1: Subtree notation T_{x} for $x \in T$ (left) and the fins $F_{x_{1}}, \ldots, F_{x_{\ell}}$ for a path $x_{1} \ldots x_{\ell}$ in T (right).

2 Terminology and Notation

Let us recall some basic terminology of digraph theory, see [3. A digraph D is strongly connected (connected) if there is a directed (oriented) path from x to y for every ordered pair x, y of vertices of D. Equivalently, D is connected if the underlying graph of D is connected. A vertex v is a source (sink) if its in-degree (out-degree) is equal to zero. It is well-known that every acyclic digraph has a source and a sink [3].

In this paper, we exclusively work with digraphs, therefore we assume all our graphs, paths, and trees to be directed unless otherwise noted. For a path $P=x_{1} x_{2} \ldots x_{k}$ of length $k-1$ we will employ the following notation for subpaths of $P: P\left[x_{i}, x_{j}\right]:=x_{i} \ldots x_{j}$ for $1 \leqslant i \leqslant j \leqslant k$ is the infix of P from x_{i} to x_{j}. For paths $P_{1}:=x_{1} \ldots x_{k} v$ and $P_{2}:=v y_{1} \ldots y_{\ell}$ we denote by $P_{1} P_{2}:=x_{1} \ldots x_{k} v y_{1} \ldots y_{\ell}$ their concatenation. For rooted trees T and some vertex $x \in T, T_{x}$ stands for the subtree of T rooted at x (see Figure 1).

We will frequently partition the nodes of a tree around a path in the following sense (cf. Figure 1): Let T be a tree rooted at r and $P=x_{1} \ldots x_{\ell}$ a path from $r=x_{1}$ to some node $x_{\ell} \in T$. The fins of P are the sets $\left\{F_{x_{i}}\right\}_{x_{i} \in P}$ defined as $F_{x_{i}}:=V\left(T_{x_{i}}\right) \backslash V\left(T_{x_{i+1}}\right)$ for $i<\ell$ and $F_{x_{\ell}}:=V\left(T_{x_{\ell}}\right)$.

Definition 1 (Bi-reachable Vertex). A vertex v of a digraph D is bi-reachable from a vertex r if there exist two internally vertex-disjoint paths from r to v.

Given a digraph D and a vertex r, we can compute the set of vertices that are bi-reachable from r in polynomial time using network flows.

3 Strongly Connected Digraphs

Let us prove a simple fact on a link between out/in-branchings with many leaves and k-Distinct Branchings, which together with a structural result of Alon
et al. [1] and an algorithmic result for the Maximum Leaf Out-branching problem [12, 19] gives a short proof that both versions of k-Distinct BranchINGS are FPT for strongly connected digraphs.

Lemma 1. Let D be a digraph containing an out-branching and an in-branching. If D contains an out-branching (in-branching) T with at least $k+1$ leaves, then every in-branching (out-branching) T^{\prime} of D is k-distinct from T.

Proof. We will consider only the case when T is an out-branching since the other case can be treated similarly. Let T^{\prime} be an in-branching of D and let L be the set of all leaves of T apart from the one which is the root of T^{\prime}. Observe that all vertices of L have outgoing arcs in T^{\prime} and since in T the incoming arcs of L are the only arcs incident to L in T, the sets of the outgoing arcs in T^{\prime} and incoming arcs in T do not intersect.

From the next section, the following problem will be of our main interest. The problem k-Distinct Branchings in which T^{+}and T^{-}must be rooted at given vertices s and t, respectively, will be called the Rooted k-Distinct BranchINGS problem. We will use the following standard dynamic programming result (see, e.g., [6]).

Lemma 2. Let H be a digraph of (undirected) treewidth τ. Then k-Distinct Branchings, Single-Root k-Distinct Branchings as well as Rooted k Distinct Branchings on H can be solved in time $O^{*}\left(2^{O(\tau \log \tau)}\right)$.

Note that if a digraph D is a positive instance of Single-Root k-Distinct Branchings then D must be strongly connected as an out-branching and an inbranching rooted at the same vertex form a strongly connected subgraph of D. Thus, the following theorem, in particular, solves the problem of Bang-Jensen and Yeo mentioned above.

Theorem 3. Both k-Distinct Branchings and Single-Root k-Distinct Branchings on strongly connected digraphs can be solved in time $O^{*}\left(2^{O\left(k \log ^{2} k\right)}\right)$.

Proof. The proof is essentially the same for both problems and we will give it for Single-Root k-Distinct Branchings. Let D be an input strongly connected digraph. By Theorem 2 using an $O^{*}\left(3.72^{k}\right)$-time algorithm we can find an out-branching T^{+}with at least $k+1$ leaves, or decide that D has no such out-branching. If T^{+}is found, the instance of Single-Root k-Distinct Branchings is positive by Lemma 1 as any in-branching T^{-}of D is k-distinct from T^{+}. In particular, we may assume that T^{-}has the same root as T^{+} (a strongly connected digraph has an in-branching rooted at any vertex). Now suppose that T^{+}does not exist. Then, by Theorem 1 the (undirected) pathwidth of D is bounded by $O(k \log k)$. Thus, by Lemma 2 the instance can be solved in time $O^{*}\left(2^{O\left(k \log ^{2} k\right)}\right)$.

The following example demonstrates that Theorem 1 does not hold for arbitrary digraphs and thus the proof of Theorem 3 cannot be extended to the general case. Let D be a digraph with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n+1}\right\}$ and arc set
$\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n} v_{n+1}\right\} \cup\left\{v_{i} v_{j}: 1 \leqslant j<i \leqslant n\right\}$. Observe that D is of unbounded (undirected) treewidth, but has unique in- and out-branchings (which are identical). The same statement holds if we add an arc $v_{n+1} v_{0}$ (to make the graph strongly connected) but insist that the out-branching is rooted in v_{0} and the in-branching in v_{n+1}.

4 The k-Distinct Branchings Problem

In this section, we fix a digraph D with terminals s, t and simply talk about rooted out-branchings (in-branchings) whose root we implicitly assume to be s (t). Similarly, unless otherwise noted, a rooted out-tree (in-tree) is understood to be rooted at $s(t)$.

Clearly, to show that both versions of k-Distinct Branchings are FPT it is sufficient to prove the following:

Theorem 4. Rooted k-Distinct Branchings is FPT for arbitrary digraphs.
In the rest of this section, (D, s, t) will stand for an instance of Rooted k Distinct Branchings (in particular, D is an input digraph of the problem) and H for an arbitrary digraph. Let us start by observing what further restrictions on D can be imposed by polynomial-time preprocessing.

4.1 Preprocessing

Let (D, s, t) be an instance of Rooted k-Distinct Branchings. Recall that D contains an out-branching (in-branching) if and only if D has only one strongly connected component with no incoming (no outgoing) arc. As a first preprocessing step, we can decide in polynomial time whether D has a rooted out-branching and a rooted in-branching. If not, we reject the instance. Note that this in particular means that in a non-rejected instance, every vertex in D is reachable from s and t is reachable from every vertex.

Next, we test for every arc $a \in D$ whether there exists at least one rooted in- or out-branching that uses a as follows: since a maximal-weight out- or inbranching for an arc-weighted digraph can be computed in polynomial time [14], we can force the arc a to be contained in a solution by assigning it a weight of 2 and every other arc weight 1 . If we verify that a indeed does not appears in any rooted out-branching and in-branching, we remove a from D and obtain an equivalent instance of Rooted k-Distinct Branchings.

After this polynomial-time preprocessing, our instance has the following three properties: there exists a rooted out-branching, there exists a rooted inbranching, and every arc of D appears in some rooted in- or out-branching. We call such a digraph with a pair s, t reduced.

Lastly, the following result of Kneis et al. [19] will be frequently used in our arguments below.

Lemma 3. Let $H=(V, A)$ be a digraph containing an out-branching rooted at $s \in V$. Then every out-tree rooted at s with q leaves can be extended into an out-branching rooted at s with at least q leaves in time $O(|V|+|A|)$.

4.2 Decomposition and Reconfiguration

We work towards the following win-win scenario: either we find an out-tree with $\Theta(k)$ leaves that can be turned into a rooted out-tree with at least $k+1$ leaves, or we conclude that every out-tree in D has less than $\Theta(k)$ leaves. We refer to the process of turning an out-tree into a rooted out-tree as a reconfiguration. In the process we will develop a new digraph decomposition, the rooted cut-decomposition, which will aid us in reasoning about reconfiguration steps and ultimately lead us to a solution for the problem. In principle we recursively decompose the digraph into vertex sets that are bi-reachable from a designated 'bottleneck' vertex, but for technical reasons the following notion of a diblock results in a much cleaner version of the decomposition.
Definition 2. Let H be a digraph with at least two vertices, and let $r \in V(H)$ such that every vertex of H is reachable from r. Let $B \subseteq V(H)$ be the set of all vertices that are bi-reachable from r. The directed block (diblock) B_{r} of r in H is the set $B \cup N^{+}[r]$, i.e., the bi-reachable vertices together with all out-neighbors of r and r itself.

Note that according to the above definition a diblock must have at least two vertices.

The following statement provides us with an easy case in which a reconfiguration is successful, that is, we can turn an arbitrary out-tree into a rooted out-tree without losing too many leaves. Later, the obstructions to this case will be turned into building blocks of the decomposition.

Lemma 4. Let $B_{s} \subseteq V(D)$ be the diblock of s and let T be an out-tree of D whose root r lies in B_{s} with ℓ leaves. Then there exists a rooted out-tree with at least $(\ell-1) / 2$ leaves.

Proof. We may assume that $r \neq s$. In case T contains s as a leaf, we remove s from T for the remaining argument and hence will argue about the $\ell-1$ remaining leaves.

If r is bi-reachable from s, consider two internally vertex-disjoint paths P, Q from s to r. One of the two paths necessarily avoids half of the $\ell-1$ leaves of T; let without loss of generality this path be P. Let further L be the set of those leaves of T that do not lie on P. If $r \in N^{+}(s)$, let $P=s r$.

We construct the required out-tree T^{\prime} as follows: first, add all arcs and vertices of P to T^{\prime}. Now for every leaf $v \in L$, let P_{v} be the unique path from r to v in T and let P_{v}^{\prime} be the segment of P_{v} from the last vertex x of P_{v} contained in T. Add all arcs and vertices of P_{v}^{\prime} to T^{\prime}. Observe that $x \neq v$ as v cannot be in T^{\prime}. Since P_{v} and thus P_{v}^{\prime} contains no leaf of L other than v, in the end of the process, all vertices of L are leaves of T^{\prime}. Since $|L| \geqslant(\ell-1) / 2$, the claim follows.

The definition of diblocks can also be understood in terms of network flows: Let $v \neq r$. Consider the vertex-capacitated version of H where r and v both have capacity 2 , and every other vertex has capacity 1 , for some $v \in V(H) \backslash\{r\}$. Then v is contained in the diblock of r in H if and only if the max-flow from r to v equals 2. Dually, by Menger's theorem, v is not contained in the diblock if and only if there is a vertex $u \notin\{r, v\}$ such that all r-v paths P intersect u. This has the following simple consequence regarding connectivity inside a diblock:

Lemma 5. Fix $r \in V(H)$ and let $B_{r} \subseteq V(H)$ be the diblock of r in H. Then for every pair of distinct vertices $x, y \in B_{r}$, there exist an r-x-path P_{x} and an r-y-path P_{y} that intersect only in r.

Proof. If $r \in\{x, y\}$, then clearly the claim holds since every vertex in B_{r} is reachable from r. Otherwise, add a new vertex z with arcs $x z$ and $y z$, and note that the lemma holds if and only if z is bi-reachable from r. If this is not true, then by Menger's theorem there is a vertex $v \in B_{r}, v \neq r$, such that all paths from r to z, and hence to x and y, go through v. But as noted above, there is no cut-vertex $v \notin\{x, r\}$ for $r-x$ paths, and no cut-vertex $v \notin\{y, r\}$ for r - y paths. We conclude that z is bi-reachable from r, hence the lemma holds.

Next, we will use Lemma 5 to show that given a vertex r, the set of vertices not in the diblock B_{r} of r in H partitions cleanly around B_{r}.

Lemma 6. Let $r \in V(H)$ be given, such that every vertex of H is reachable from r. Let $B_{r} \subset V(H)$ be the diblock of r in H. Then $V(H) \backslash B_{r}$ partitions according to cut vertices in B_{r}, in the following sense: For every $v \in V(H) \backslash B_{r}$, there is a unique vertex $x \in B_{r} \backslash\{r\}$ such that every path from r to v intersects B_{r} for the last time in x. Furthermore, this partition can be computed in polynomial time.

Proof. Assume towards a contradiction that for $v \in V(H) \backslash B_{r}$ there exist two r-v-paths P_{1}, P_{2} that intersect B_{r} for the last time in distinct vertices x_{1}, x_{2}, respectively. We first observe that $r \notin\left\{x_{1}, x_{2}\right\}$, since the second vertices of P_{1} and P_{2} are contained in B_{r} by definition. By Lemma 5, we may assume that $P_{1}\left[r, x_{1}\right] \cap P_{2}\left[r, x_{2}\right]=\{r\}$. But then P_{1} and P_{2} intersect for the first time outside of B_{r} in some vertex v^{\prime} (potentially in $v^{\prime}=v$). This vertex is, however, bi-reachable from r, contradicting our construction of B_{r}. Hence there is a vertex $x \in B_{r}$ such that every path from r to v intersects B_{r} for the last time in x, with $x \neq r$, and clearly this vertex is unique. Finally, the set B_{r} can be computed in polynomial time, and given B_{r} it is easy to compute for each $x \in B_{r}$ the set of all vertices $v \in V(H)$ (if any) for which x is a cut vertex.

We refer to the vertices $x \in B_{r}$ that are cut vertices in the above partition as the bottlenecks of B_{r}. Note that r itself is not considered a bottleneck in B_{r}. Using these notions, we can now define a cut decomposition of a digraph H.

Definition 3 (Rooted cut decomposition and its tree). Let H be a digraph and r a vertex such that every vertex in H is reachable from r. The (r-rooted) cut

Figure 2: An example of a rooted cut decomposition.
decomposition of H is a pair (\hat{T}, \mathcal{B}) where \hat{T} is a rooted tree with $V(\hat{T}) \subseteq V(H)$ and $\mathcal{B}=\left\{B_{x}\right\}_{x \in \hat{T}}, B_{x} \subseteq V(H)$ for each $x \in \hat{T}$, is a collection of diblocks associated with the nodes of \hat{T}, defined and computed recursively as follows.

1. Let B_{r} be the diblock of r in H, and let $L \subseteq B_{r} \backslash\{r\}$ be the set of bottlenecks in B_{r}. Let $\left\{X_{x}\right\}_{x \in L}$ be the corresponding partition of the remainder $V(H) \backslash B_{r}$.
2. For every bottleneck $x \in L$, let $\left(\hat{T}_{x}, \mathcal{B}_{x}\right)$ be the x-rooted cut decomposition of the subgraph $D\left[X_{x} \cup\{x\}\right]$.
3. \hat{T} is the tree with root node r, where L is the set of children of r, and for every $x \in L$ the subtree of \hat{T} rooted at x is \hat{T}_{x}.
4. Finally, $\mathcal{B}=\left\{B_{r}\right\} \cup \bigcup_{x \in L} \mathcal{B}_{x}$.

Furthermore, for every node $x \in \hat{T}$, we define $B_{x}^{*}=\bigcup_{y \in \hat{T}_{x}} B_{y}$ as the set of all vertices contained in diblocks associated with nodes of the subtree \hat{T}_{x}.

Figure 2 provides an illustration to Definition 3 .
Lemma 7. Let a digraph H and a root $r \in V(H)$ be given, such that every vertex of H is reachable from r. Then the r-rooted cut decomposition $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ of H is well-defined and can be computed in polynomial time. Furthermore, the diblocks cover $V(H)$, i.e., $\bigcup_{x \in \hat{T}} B_{x}=V(H)$, and for every node $x \in \hat{T}$, every vertex of B_{x}^{*} is reachable from x in $D\left[B_{x}^{*}\right]$.

Proof. By Lemma 6, the root diblock B_{r} as well as the set $L \subseteq B_{r}$ of bottlenecks and the partition $\left\{X_{x}\right\}_{x \in L}$ are well-defined and can be computed in polynomial time. Also note that for each $x \in L, r \notin X_{x} \cup\{x\}$, and every vertex of $H_{x}:=H\left[X_{x} \cup\{x\}\right]$ is reachable from x in H_{x} by the definition of the partition. Hence the collection of recursive calls made in the construction is well-defined, and every digraph H_{x} used in a recursive call is smaller than H, hence the process terminates. Finally, for any two distinct bottlenecks $x, y \in L$ we have $V\left(H_{x}\right) \cap V\left(H_{y}\right)=\emptyset$. Thereby, distinct nodes of \hat{T} are associated with distinct vertices of $H,|\hat{T}| \leqslant|V(H)|$, and the map $x \mapsto B_{x}$ is well-defined. It is also clear that the whole process takes polynomial time.

We collect some basic facts about cut decompositions.
Lemma 8. Let H be a digraph, $r \in V(H)$ a vertex and let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the r-rooted cut decomposition of H. Then the following hold.

1. The sets $\left\{B_{x} \backslash\{x\}\right\}_{x \in \hat{T}}$ are all non-empty and partition $V(H) \backslash\{r\}$.
2. For distinct nodes $x, y \in \hat{T}$, if x is the parent of y in \hat{T} then $B_{x} \cap B_{y}=\{y\}$;
in every other situation, $B_{x} \cap B_{y}=\emptyset$.
3. For every node $x \in \hat{T}$, the following hold:
(a) If y is a child of x in \hat{T}, then any arc leading into the set B_{y}^{*} from $V(H) \backslash B_{y}^{*}$ will have the form uy where $u \in B_{x}$.
(b) If y, y^{\prime} are distinct children of x in \hat{T}, then there is no arc between B_{y}^{*} and $B_{y^{\prime}}^{*}$.

In particular, every arc of H is either contained in a subgraph of H induced by a diblock B_{x}, or it is a back arc going from a diblock B_{y} to a diblock B_{x}, where x is an ancestor of y in \hat{T}.

Proof. For the first claim, the sets $B_{x} \backslash\{x\}$ are non-empty by definition; we show the partitioning claim. By Lemma 6, for every $v \in V(H) \backslash\{r\}$ either $v \in B_{r} \backslash\{r\}$ or there is exactly one bottleneck $x \in B_{r}$ such that $v \in X_{x}$ in the construction of the decomposition. Also note that in the latter case, $v \neq x$ since $x \in B_{r}$. Applying the argument recursively and using that the diblocks cover $V(H)$, by Lemma 7 , we complete the proof of the partitioning claim.

For the second claim, the partitioning claim implies that if $v \in B_{x} \cap B_{y}$ for distinct nodes $x, y \in \hat{T}$, then either $v=x$ or $v=y$, i.e., v must be a bottleneck. This is only possible in the situation described.

For Claim 3(b), first consider the diblock B_{r} and the partition $\left\{X_{z}\right\}_{z \in L}$ given by Lemma 6. To prove Claim 3(b) it suffices to show that for any two distinct sets $X_{y}, X_{y^{\prime}}$ of the partition, there is no arc between X_{y} and $X_{y^{\prime}}$. Suppose for a contradiction that there is such an arc $u v, u \in X_{y}, v \in X_{y^{\prime}}$. By Lemma 5 . there are paths P_{y} and $P_{y^{\prime}}$ in B_{r} from r to y and y^{\prime}, respectively that intersect only in r, and by Lemma 7, there are paths P_{u} from y to u in X_{y} and P_{v} from y^{\prime} to v in $X_{y^{\prime}}$. But then the paths $P_{y} P_{u} u v$ and $P_{y^{\prime}} P_{v}$ form two $r-v$ paths that are internally vertex-disjoint, showing that $v \in B_{r}$, contrary to our assumptions. Since the decomposition is computed recursively, this also holds in every internal node of \hat{T}.

For Claim 3(a), let $u v$ be an arc such that $u \notin B_{y}^{*}$ and $v \in B_{y}^{*}$. Moreover, let $u \in B_{x^{\prime}}$ and $v \in B_{y^{\prime}}$. By construction of cut decomposition, there is a path \hat{P} from x^{\prime} to y^{\prime} in \hat{T} containing nodes x and y. Let $x^{\prime \prime}$ be the second node in \hat{P} (just after x^{\prime}). Thus, there is a path P from $x^{\prime \prime}$ to v in H containing the vertices of \hat{P} apart from x^{\prime}.

Assume that $u \neq x^{\prime \prime}$. Then by Lemma 5 there is an x^{\prime}-u-path P^{\prime} and an $x^{\prime}-x^{\prime \prime}$-path $P^{\prime \prime}$ of H which intersect only at x^{\prime}. Then $x^{\prime} P^{\prime} u v$ and $P^{\prime \prime} P$ are internally vertex-disjoint paths from x^{\prime} to v. This means that v must be in $B_{x^{\prime}}$,
a contradiction unless $x^{\prime}=x, u \in B_{x}$ and $v=y$. If $u=x^{\prime \prime}$, then P and $u v$ are internally vertex-disjoint paths from u to v. This means that v must be in $B_{x^{\prime \prime}}$, a contradiction unless $x^{\prime}=x$ and $v=y$.

As we saw, for every diblock $B_{y}, y \in \hat{T}$, any path "into" the diblock must go via the bottleneck vertex y. By induction, for any $v \in B_{y}$, every node of \hat{T} from r to y represents a bottleneck vertex that is unavoidable for paths from r to v. More formally, the following holds in cut decompositions:

Lemma 9. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut decomposition of H rooted at r. Fix a diblock B_{x} for $x \in \hat{T}$. Consider a path P in H from r to $v \in B_{x}$ and let $x_{1} \ldots x_{\ell}$ be the sequence of bottleneck vertices that P encounters. Then $\hat{P}=x_{0} x_{1} \ldots x_{\ell}$ with $x_{0}=r$ is the path from r to x in \hat{T}.
Proof. We prove the claim by induction over the depth d of the vertex x in \hat{T}. If $r=x$ then any path from r to $v \in B_{r}$ contains r itself and hence the base case for $d=0$ holds trivially.

Consider a diblock $B_{x}, x \in \hat{T}$ where x has distance d to r in \hat{T} and let y be the parent of x in \hat{T}. We assume the induction hypothesis holds for diblocks at depth $d-1$, hence it holds for B_{y} in particular. Because $x \in B_{y}$, this implies that every path from r to x will contain all ancestors of x in \hat{T}. Since by construction every path from r to a vertex $v \in B_{x}$ needs to pass through x, the inductive step holds. This proves the claim.

As an immediate consequence, we can identify arcs in cut decompositions that cannot participate in any rooted out-branching.

Corollary 1. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut decomposition of H rooted at r and let $R:=\left\{u v \in A(H) \mid u \in B_{x}\right.$ and $\left.x \in \hat{T}_{v}\right\}$ be all the arcs that originate in a diblock B_{x} and end in an ancestor v of x on \hat{T}. Then for every out-tree T rooted at r we have $A(T) \cap R=\emptyset$.
Proof. Fix a bottleneck vertex $v \in \hat{T}$ of the decomposition and let the arc $u v$ be in an out-tree T rooted at r. There must exist a path $P_{s u}$ from s to u that is part of T. By Lemma 9, this path will contain the vertex v. But then v is an ancestor of u in T and therefore the arc $u v$ cannot be part of T, which is a contradiction.

The decomposition actually restricts paths even further: a path that starts at the root and visits two bottleneck vertices x, y (in this order) cannot intersect any vertex of B_{y}^{*} before visiting y and cannot return to any set $B_{z}^{*}, z \in \hat{T}$, after having left it.

Lemma 10. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut decomposition of H rooted at r. Fix a diblock B_{x} for $x \in \hat{T}$. Consider a path P from r to $v \in B_{x}$ and let $\hat{P}=x_{0} \ldots x_{\ell}$ be the path from $r=x_{0}$ to $x=x_{\ell}$ in \hat{T}. Let further F_{0}, \ldots, F_{ℓ} be the fins of \hat{P} in \hat{T}. Then the subpath $P\left[x_{i}, x_{i+1}\right] \backslash\left\{x_{i+1}\right\}$ is contained in the union of diblocks of F_{i} for $0 \leqslant i<\ell$.

Proof. By Lemma 9 we know that the nodes of \hat{P} appear in P in the correct order, hence the subpath $P\left[x_{i}, x_{i+1}\right]$ is well-defined. Let us first show that the subpath $P\left[x_{i}, x_{i+1}\right] \backslash\left\{x_{i+1}\right\}$ cannot intersect any diblock associated with $\hat{T}_{x_{i+1}}$. By Lemma 8, the only arcs from $B_{x_{i}}$ into diblocks below x_{i+1} connect to the bottleneck x_{i+1} itself. Since x_{i+1} is already the endpoint of $P\left[x_{i}, x_{i+1}\right]$, this subpath cannot intersect the diblocks of $\hat{T}_{x_{i+1}}$. This already proves the claim for x_{0}; it remains to show that it does not intersect diblocks of $V(\hat{T}) \backslash V\left(\hat{T}_{x_{i}}\right)$ for $i \geqslant 1$. The reason is similar: since the bottleneck x_{i} is already part of $P\left[x_{i}, x_{i+1}\right]$, this subpath could not revisit $B_{x_{i}}$ if it enters any diblock B_{y} for a proper ancestor y of x_{i} in \hat{T}. We conclude that therefore it must be, with the exception of the vertex x_{i+1}, inside the diblocks of the fin F_{i}.

Corollary 2. For every vertex $u \in V(H)$ and every set $X \subseteq V(H) \backslash(V(\hat{T}) \cup$ $\{u\})$ of non-bottleneck vertices there exists a path P from r to u in H such that $|P \cap X| \leqslant|X| / 2$.
Proof. Assume that $u \in B_{x}$ and let $\hat{P}=x_{0} \ldots x_{\ell}$ be a path from $x_{0}=r$ to $x_{\ell}=x$ in \hat{T}. Let further F_{0}, \ldots, F_{ℓ} be the fins of \hat{P} in \hat{T} and U_{i} the union of diblocks associated with $F_{i}, 0 \leqslant i \leqslant \ell$. We partition the set X into X_{1}, \ldots, X_{ℓ} where $X_{i}=X \cap U_{i}$ for $0 \leqslant i \leqslant \ell$. Lemma 10 allows us to construct the path P iteratively: any path that leads to u will pass through bottlenecks x_{i}, x_{i+1} in succession and visit only vertices in U_{i} in the process. Since there are two internally vertex-disjoint paths between x_{i}, x_{i+1} for $1 \leqslant i \leqslant \ell$, we can always choose the path that has the smaller intersection with X_{i}. Stringing these paths together, we obtain the claimed path P.

We want to argue that one of the following cases must hold: either the cut decomposition has bounded height and we can 're-root' any out-tree with many leaves into a rooted out-tree with a comparable number of leaves, or we can directly construct a rooted out-tree with many leaves. In both cases we apply Lemmas 1 and 3 to conclude that the instance has a solution. This approach has one obstacle: internal diblocks of the decomposition that contain only two vertices.

Definition 4 (Degenerate diblocks). Let $\left\{B_{x}\right\}_{x \in \hat{T}}$ be the cut decomposition rooted at s. We call a diblock B_{x} degenerate if x is an internal node of \hat{T} and $\left|B_{x}\right|=2$.

Let us first convince ourselves that a long enough sequence of non-degenerate diblocks provides us with a rooted out-branching with many leaves.

Lemma 11. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut decomposition rooted at s of H and let y be a node in \hat{T} such that the path $\hat{P}_{s y}$ from s to y in \hat{T} contains at least ℓ nodes whose diblocks are non-degenerate. Then H contains an out-tree rooted at s with at least ℓ leaves.

Proof. We construct an s-rooted out-tree T by repeated application of Lemma 5 Let x_{1}, \ldots, x_{ℓ} be a sequence of nodes in $\hat{P}_{s y}$ whose diblocks are non-degenerate,
and for each $1 \leqslant i<\ell$ let x_{i}^{+}be the node after x_{i} in $\hat{P}_{s y}$. We construct a sequence of s-rooted out-trees T_{1}, \ldots, T_{ℓ} such that for $1 \leqslant i \leqslant \ell$, the vertex x_{i} is a leaf of T_{i}, and T_{i} contains i leaves. First construct T_{1} as a path from s to x_{1}, then for every $1 \leqslant i<\ell$ we construct an out-tree T_{i+1} from T_{i} as follows. Let $v_{i} \in B_{x_{i}} \backslash\left\{x_{i}, x_{i}^{+}\right\}$, which exists since $B_{x_{i}}$ is non-degenerate, and let $P_{x_{i} x_{i}^{+}}$, $P_{x_{i} v_{i}}$ be a pair of paths in $D\left[B_{x_{i}}^{*}\right]$ from x_{i} to x_{i}^{+}and to v_{i} respectively, which intersect only in x_{i}. Such paths exist by Lemma 5, and since x_{i} is a leaf of T_{i}, Lemma 9 implies that T_{i} is disjoint from $B_{x_{i}}^{*} \backslash\left\{x_{i}\right\}$. Hence the paths can be appended to T_{i} to form a new r-rooted out-tree T_{i+1} in H which contains a leaf in every diblock $B_{x_{j}}, 1 \leqslant i$. Finally, note that the final tree T_{ℓ} contains two leaves in $B_{x_{\ell-1}}$, hence T_{ℓ} is an r-rooted out-tree with ℓ leaves.

The next lemma is important to prove that Rooted k-Distinct Branchings is FPT for a special case of the problem considered in Lemma 13.

Lemma 12. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut decomposition of D rooted at such that \hat{T} is of height d and let T be an out-tree rooted at some vertex r with ℓ leaves. Then we can construct an out-tree T_{s} rooted at s with at least $(\ell-d) / 2$ leaves.

Proof. Assume that r is contained in the diblock B_{x} of the decomposition and let $x_{p} \ldots x_{1}=\hat{P}_{s x}$ be a path from $s=x_{p}$ to $x=x_{1}$ in \hat{T}. Let L be the leaves of T and let $L^{\prime}:=L \backslash \hat{P}_{s x}$. Clearly, $\left|L^{\prime}\right| \geqslant \ell-d$. Applying Corollary 2 with $X=L^{\prime}$ and $u=r$, we obtain a path $P_{s r}$ in D from s to r that avoids half of L^{\prime}. We construct T_{s} in a similar fashion to the proof of Lemma 4 . We begin with $T_{s}=P_{s r}$, then for every leaf $v \in L^{\prime} \backslash P_{s r}$, proceed as follows: let P_{v} be the unique path from r to v in T and let P_{v}^{\prime} be the segment of P_{v} from the last vertex x of P_{v} contained in T_{s}. Add all arcs and vertices of P_{v}^{\prime} to T_{s}. Since P_{v} and thus P_{v}^{\prime} contains no leaf of L^{\prime} other than v, in the end of the process, all vertices of $L^{\prime} \backslash P_{s r}$ are leaves of T_{s}. Since $\left|L^{\prime} \backslash P_{s r}\right| \geqslant\left|L^{\prime}\right| / 2$, we conclude that T_{s} contains at least $(\ell-d) / 2$ leaves, as claimed.

Using these results, we are now able to prove that if the height d of the cut decomposition of D is upper-bounded by a function in k, then Rooted k Distinct Branchings on D is FPT. Combined with Lemma 11, this implies that the remaining obstacle is cut decompositions with long chains of degenerate diblocks, which we will deal with in Section 4.3 .

Lemma 13. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ the cut decomposition rooted at s of height d. If $d \leqslant d(k)$ for some function $d(k)=\Omega(k)$ of k only, then we can solve ROOTED k-Distinct Branchings on D in time $O^{*}\left(2^{O\left(d(k) \log ^{2} d(k)\right)}\right)$.

Proof. By Theorem 2, in time $O^{*}\left(2^{O(d(k))}\right)$ we can decide whether D has an outbranching with at least $2 k+2+d(k)$ leaves. If D has such an out-branching, then by Lemma $12 D$ has a rooted out-tree with at least $k+1$ leaves. This out-tree can be extended to a rooted out-branching with at least $k+1$ leaves by Lemma 3. So by Lemma 1, (D, s, t) is a positive instance if and only if D has a rooted in-branching, which can be decided in polynomial time.

If D has no out-branching with at least $2 k+2+d(k)$ leaves, by Theorem 1 the pathwidth of D is $O(d(k) \log d(k))$ and thus by Lemma 2 we can solve Rooted k-Distinct Branchings on D in time $O^{*}\left(2^{O\left(d(k) \log ^{2} d(k)\right)}\right)$. (Note that for the dynamic programming algorithm of Lemma 2 we may fix roots of all outbranchings and all in-branchings of D by adding $\operatorname{arcs} s^{\prime} s$ and $t t^{\prime}$ to D, where s^{\prime} and t^{\prime} are new vertices.)

4.3 Handling degenerate diblocks

The following is the key notion for our study of degenerate diblocks.
Definition 5 (Degenerate paths). Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be a cut decomposition of D. We call a path \hat{P} in \hat{T} monotone if it is a subpath of a path from the root of \hat{T} to some leaf of \hat{T}. We call a path \hat{P} in \hat{T} degenerate if it is monotone and every diblock $B_{x}, x \in \hat{P}$ is degenerate.
Let (D, s, t) be a reduced instance of Rooted k-Distinct Branchings. As observed in Section 4.1, we can verify in polynomial time whether an arc participates in some rooted in- or out-branching. Let $R_{s} \subseteq A(D)$ be those arcs that do not participate in any rooted out-branching and $R_{t} \subseteq A(D)$ those that do not participate in any rooted in-branching. Since (D, s, t) is a reduced instance, we necessarily have that $R_{s} \cap R_{t}=\emptyset$, a fact we will use frequently in the following. Corollary 1 provides us with an important subset of R_{s} : every arc that originates in a diblock B_{x} of the cut decomposition and ends in a bottleneck vertex that is an ancestor of x on \hat{T} is contained in R_{s}.

Let us first prove some basic properties of degenerate paths.
Lemma 14. Let $\left(\hat{T},\left\{B_{x}\right\}_{x \in \hat{T}}\right)$ be the cut-decomposition of D rooted at s, and let $\hat{P}=x_{1} \ldots x_{\ell}$ be a degenerate path of \hat{T}. Then the following properties hold:

1. Every rooted out-branching contains $A(\hat{P})$,
2. every arc $x_{j} x_{i}$ with $j>i$ is contained in R_{s}, and
3. there is no arc from $x_{i}(i<\ell)$ to B_{y} in D, where y is a descendant of x_{i} on \hat{T}, except for the arc $x_{i} x_{i+1}$.
Proof. First observe that, by definition of a degenerate path, \hat{P} is a path in D. Every rooted out-branching contains in particular the last vertex x_{ℓ} of the path. By Lemma 9, it follows that \hat{P} is contained in the out-branching as a monotone path, hence it contains $A(\hat{P})$. Consequently, no 'back-arc' $x_{j} x_{i}$ with $j>i$ can be part of a rooted out-branching and thus it is contained in R_{s}. For the third property, note that all arcs from x_{i} except back arcs are contained in $B_{x_{i}}$. Since $B_{x_{i}}$ is degenerate there can be only one such arc.
For the remainder of this section, let us fix a single degenerate path $\hat{P}=x_{1} \ldots x_{\ell}$. We categorize the arcs incident to \hat{P} as follows:
4. Let A^{+}contain all 'upward arcs' that originate in \hat{P} and end in some diblock B_{y} where y is an ancestor of x_{1},
5. let A^{0} contain all 'on-path arcs' $x_{j} x_{i}, j>i$, and
6. let A^{-}contain all 'arcs from below' that originate from some diblock B_{y} where y is a (not necessarily proper) descendant of x_{ℓ}.

By Lemma 14 this categorization is complete: no other arcs can be incident to \hat{P} in a reduced instance. By the same lemma, we immediately obtain that $A^{0}, A^{-} \subseteq R_{s}$. We will now apply certain reduction rules to (D, s, t) and prove in the following that they are safe, with the goal of bounding the size of \hat{P} by a function of the parameter k.
Reduction rule 1: If there are two $\operatorname{arcs} x_{i} u, x_{j} u \in A^{+} \cap R_{t}$ with $i<j$, remove the $\operatorname{arc} x_{j} u$.

Lemma 15. Rule 1 is safe.
Proof. Since (D, s, t) is reduced, the arcs $x_{i} u$ and $x_{j} u$ cannot be in R_{s}. Pick any rooted out-branching T that contains the arc $x_{j} u$. By Lemma 14 , we have that $\hat{P} \subseteq T$, therefore we can construct an out-branching T^{\prime} by exchanging the $\operatorname{arc} x_{j} u$ for the arc $x_{i} u$. Since a) no rooted in-branching contains either of these two arcs, and b) no out-branching can contain both, we conclude that (D \} $\left.\left\{x_{j} u\right\}, s, t\right)$ is equivalent to (D, s, t) and thus Rule 1 is safe.

Corollary 3. Let (D, s, t) be reduced with respect to Rule 1. Then we either find a solution for (D, s, t) or $\left|A^{+} \cap R_{t}\right| \leqslant 2 k+1$.

Proof. Let H be the heads of the $\operatorname{arcs} A^{+} \cap R_{t}$. Since Rule 1 was applied exhaustively, no vertex in H is the head of two $\operatorname{arcs} A^{+} \cap R_{t}$; therefore we have that $|H|=\left|A^{+} \cap R_{t}\right|$.

Note that any arc in $A^{+} \cap R_{t}$ cannot be contained in R_{s}, therefore H does not contain any bottleneck vertices. Applying Corollary 2, we can find a path P_{ℓ} from s to x_{ℓ} that avoids half of the vertices in H. Thus we can add half of H as leaves to P_{ℓ} using the arcs from $A^{+} \cap R_{t}$. Thus if $|H| \geqslant 2 k+2$, we obtain a rooted out-tree with at least $k+1$ leaves, which by Lemmas 1 and 3 imply that the original instance has a solution. We conclude that otherwise $|H|=\left|A^{+} \cap R_{t}\right| \leqslant 2 k+1$.

Lemma 16. Let $\hat{P}=x_{1} \ldots x_{\ell}$ be a degenerate path. Assume $t \notin \hat{P}$ and that (D, s, t) is reduced with respect to Rule 1. Let further $X \subseteq V(\hat{P})$ be those vertices of \hat{P} that are tails of the arcs in A^{+}. We either find that (D, s, t) has a solution or that $|X| \leqslant 3 k+1$.

Proof. For every vertex $x_{i} \in X$ with an arc $x_{i} v \in A^{+} \backslash R_{t}$, we construct a path $\tilde{P}_{x_{i} t}$ from x_{i} to t that contains $x_{i} v$ as follows: since $x_{i} v \notin R_{t}$, there exists a rooted in-branching \tilde{T} that contains $x_{i} v$. We let $\tilde{P}_{x_{i} t} \subseteq \tilde{T}$ be the path from x_{i} to t in \tilde{T}.
Claim. Each path $\tilde{P}_{x_{i} t}$ does not intersect vertices in diblocks of $\hat{T}_{x_{i}}$.

Since $\tilde{P}_{x_{i} t}$ leaves \hat{P} via the first arc $x_{i} v$, it cannot use the arc $x_{i} x_{i+1}$. Since this is the only arc that leads to vertices in diblocks of $\hat{T}_{x_{i}}$, the claim follows.
Let us relabel the just constructed paths to $\tilde{P}_{1}, \ldots, \tilde{P}_{\ell}$ such that they are sorted with respect to their start vertices on \hat{P}. That is, for $i<j$ the first vertex of \tilde{P}_{i} appears before the first vertex of \tilde{P}_{j} on \hat{P}. We iteratively construct rooted in-trees $\tilde{T}_{1}, \ldots \tilde{T}_{\ell}$ with the invariant that a) \tilde{T}_{i} has exactly i leaves and b) does not contain any vertex of \hat{P} below the starting vertex of \tilde{P}_{i}. Choosing $\tilde{T}_{1}:=\tilde{P}_{1}$ clearly fulfills this invariant. To construct \tilde{T}_{i} from \tilde{T}_{i-1} for $2 \leqslant i \leqslant \ell$, we simply follow the path \tilde{P}_{i} up to the first intersection with \tilde{T}_{i-1}. Since $t \in \tilde{P}_{i} \cap \tilde{T}_{i-1}$, such a vertex must eventually exist. By the above claim, \tilde{P}_{i} does not contain any vertex below its starting vertex on \hat{P}, thus both parts of the invariant remain true.

We conclude that \tilde{T}_{ℓ} is a rooted in-tree with ℓ leaves, where ℓ is the number of vertices in X that have at least one upwards arc not contained in R_{t}. For $\ell \geqslant k+1$, Lemmas 1 and 3 imply that the original instance has a solution. Otherwise, $\ell \leqslant k$. By Corollary 3, we may assume that $\left|A^{+} \cap R_{t}\right| \leqslant 2 k+1$. Taken both facts together, we conclude that either $|X| \leqslant 3 k+1$, or we can construct a solution.

We will need the following.
Lemma 17. Let $\hat{P}=x_{1} \ldots x_{\ell}$ be a degenerate path and assume that $t \notin \hat{P}$. Let further $Y \subseteq V(\hat{P})$ be those vertices of \hat{P} that are tails of the arcs in A^{0}. We either find that (D, s, t) has a solution or we have $|Y|<k$.

Proof. We will construct a rooted in-tree that contains $|Y| \operatorname{arcs}$ from A^{0}. Since no rooted out-branching contains any such arc, this will prove that the instance is positive provided $|Y| \geqslant k$. Note in particular that we are not concerned with the number of leaves of the resulting tree.

First associate every vertex $v \in Y$ with an $\operatorname{arc} v x_{v} \in A^{0}$, where we choose x_{v} to be the vertex closest to v. Let X^{+}be the heads of all arcs in A^{+}and let $X \subseteq \hat{P}$ be the tails of all arcs in A^{+}.

Let $u \in Y$ be the vertex that appears first on \hat{P} among all vertices in Y. Since $u x_{u} \in R_{s}, u x_{u}$ cannot be contained in R_{t}. Accordingly there exists a path P_{u} from u to t that uses the arc $u x_{u}$. Note that P_{u} leaves \hat{P} through an A^{+}-arc whose tail lies between x_{u} and u on \hat{P}.

Note that the segment $P_{u}\left[x_{u}, t\right]$, by our choice of u, does not contain any vertex of Y. We now construct the seed in-tree T_{0} as follows. We begin with P_{u} and add the arc $u^{\prime} x_{u^{\prime}}$ for every vertex $u^{\prime} \in Y$ where $x_{u^{\prime}} \in P_{u}$. Next, we add every vertex $v \in X^{+}$to T_{0} by finding a path from v to t and attach this path up to its first intersection with T_{0}. Since v lies above x_{u} in the decomposition, this path cannot intersect any vertex in Y.

We form an in-forest ${ }^{5} \mathcal{F}_{0}$ from the arcs of T_{0} and all arcs $v x_{v}, v \in Y$ that are not in T_{0}. Every in-tree $T \in \mathcal{F}_{0}$ has the following easily verifiable properties:

1. Its root is the highest vertex in the decomposition among all vertices $V(T)$ (recall Lemma 8),

[^3]2. its root is either t or a vertex x_{v} with $v \in Y$, and
3. every segment $\hat{P}[x, y]$ of \hat{P} contained in T has no vertex of X or Y with the possible exception of $y \in Y$.

We will maintain all three of these properties while constructing a sequence of in-forests $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots$ where each in-forest in the sequence will have less roots than its predecessor (here \subseteq stands for \mathcal{F}_{i-1} being a subgraph of \mathcal{F}_{i}). We stop the process when the number of roots drop to one.

The construction of \mathcal{F}_{i} from \mathcal{F}_{i-1} for $i \geqslant 1$ works as follows. Let $T \in \mathcal{F}_{i-1}$ be the in-tree with the lowest root in the in-forest. By assumption, \mathcal{F}_{i-1} has at least two roots, thus it cannot be t and therefore, by part 2 of our invariant, is a vertex x_{v} with $v \in Y$. Now from x_{v} onwards, we walk along the path \hat{P} until we encounter a vertex z that is either 1) the tail of an arc A^{+}or 2) a vertex of the in-forest \mathcal{F}_{i-1}. In the former case, we use the segment $\hat{P}\left[x_{u}, z\right]$ to connect T to a vertex in X^{+}via the A^{+}-arc emanating from z. Since all vertices in X^{+}are part of the seed in-tree T_{0} this preserves all three parts of the invariant and $\mathcal{F}_{i-1} \subseteq \mathcal{F}_{i}$.

Consider the second case: we encounter a vertex z that is part of some tree $T^{\prime} \in \mathcal{F}_{i-1}$. Let us first eliminate a degenerate case:
Claim. The trees T^{\prime} and T are distinct.
Assume towards a contradiction that $T^{\prime}=T$. In that case, there is no single vertex between x_{v} and z that is either the tail of an A^{+}or A^{0}-arc. If z is such that $x_{z}=x_{v}$ (for example $z=v$), we already obtain a contradiction: the arc $z x_{z}$ cannot possibly be part of any in-branching rooted at t, contradicting the fact that it is not in R_{t}.

Otherwise, $z=x_{w}$ for some $w \in Y$. By assumption, $w z \in T$, thus there exists a path $P_{w x_{v}}$ which contains both the arc $w z$ as well as the arc $v x_{v}$. Therefore, the vertex w must lie below v on P. Furthermore, the path $P_{w x_{v}}$ cannot contain any vertex above x_{v} by property 1 of the invariant. It follows that the subpath $P[z, v]$ is entirely contained in T-by property 3 of the invariant, none of the vertices (except v) in this subpath can be in X or Y. Since the same was true for the subpath $P\left[x_{v}, z\right]$, we conclude that the whole subpath $P\left[x_{v}, v\right]$ contains no vertex of X or Y. This contradicts our assumption that $x_{v} v \notin R_{t}$ and we conclude that T and T^{\prime} must be distinct.

By our choice of T, the vertex z cannot be the root of T^{\prime}. Accordingly, we can merge T and T^{\prime} by adding the path $\hat{P}\left[x_{v}, z\right]$. This concludes our construction of \mathcal{F}_{i}. Since the root of T^{\prime} lies above all vertices of T, part 1) of the invariant remains true. We did not change a non-root to a root in this construction, thus part 2) remains true. The one segment of $\hat{P}\left[x_{v}, z\right]$ we added to merge T and T^{\prime} did not, by construction, contain any vertex of Y or X, with the exception of the last vertex z, hence part 3) remains true. Finally, we clearly have that $\mathcal{F}_{i-1} \subseteq \mathcal{F}_{i}$ and the latter contains one less root than the former.

The process clearly terminates with some in-forest \mathcal{F}_{p} which contains a single in-tree \tilde{T}. The root of this in-tree is necessarily t. Note further that \mathcal{F}_{0} contained
all $|Y| \operatorname{arcs} u x_{u}, u \in Y$; therefore \tilde{T} contains those arcs, too. Since all of these arcs are in R_{s}, we arrive at the following: either $|Y|<k$, as claimed, or we found a rooted in-tree that avoids at least k arcs with every rooted out-branching, in other words, as solution to (D, s, t).

Taking Lemma 16 and Lemma 17 together, we see that only $O(k)$ vertices of a degenerate path are tails of arcs in A^{+}or A^{0}. The following lemma now finally lets us deal with degenerate paths: we argue that those parts of the path that contain none of these few 'interesting' vertices can be contracted.
Reduction rule 2: If $\hat{P}[x, y] \subseteq \hat{P}$ is such that no vertex in $\hat{P}[x, y]$ is a tail of arcs in $A^{+} \cup A^{0}$, contract $\hat{P}[x, y]$ into a single vertex.

Lemma 18. Rule 2 is safe.
Proof. Simply note that every vertex in $\hat{P}[x, y]$ has exactly one outgoing arc. We already know that every arc of \hat{P} must be contained in every rooted outbranching, now we additionally have that all arcs in $\hat{P}[x, y]$ are necessarily contained in every rooted in-branching. We conclude that Rule 2 is safe.
We summarize the result of applying Rules 1 and 2.
Lemma 19. Let \hat{P} be a degenerate path in an instance reduced with respect to Rules 1 and 2. If $t \notin \hat{P}$ then $|\hat{P}| \leqslant 8 k+1$. Otherwise, $|\hat{P}| \leqslant 16 k+3$.

Proof. We may assume that $t \notin \hat{P}$ as otherwise we can partition \hat{P} into its part before t and its part after t and obtain $|\hat{P}| \leqslant 16 k+3$ from the bound on $|\hat{P}|$ when $t \notin \hat{P}$. By Lemmas 16 and 17 the number of vertices on \hat{P} that are tails of either A^{+}or A^{0} is bounded by $4 k$. Between each consecutive pair of such vertices, we can have at most one vertex that is not a tail of such an arc. We conclude that $|\hat{P}| \leqslant 8 k+1$, as claimed.

Now we can prove the main result of this paper.
Proof of Theorem 4 . Consider the longest monotone path \hat{P} of \hat{T}. By Lemma 11, if \hat{P} has at least $k+1$ non-degenerate diblocks, then D has a rooted out-tree with at least $k+1$ leaves. This out-tree can be extended to a rooted out-branching with at least $k+1$ leaves by Lemma 3. Thus, by Lemma 1 , (D, s, t) is a positive instance if and only if D has a rooted in-branching, which can be decided in polynomial time.

Now assume that \hat{P} has at most k non-degenerate diblocks. By Lemma 19 we may assume that before, between and after the non-degenerate diblocks there are $O(k)$ degenerate diblocks. Thus, the height of \hat{T} is $O\left(k^{2}\right)$. Therefore, by Lemma 13, the time complexity for Theorem 4 is $O^{*}\left(2^{O\left(k^{2} \log ^{2} k\right)}\right)$.

5 Conclusion

We showed that the Rooted k-Distinct Branchings problem is FPT for general digraphs parameterized by k, thereby settling open question of BangJensen et al. [6]. The solution in particular uses a new digraph decomposition, the rooted cut decomposition, that we believe might be useful for settling other problems as well.

We did not attempt to optimize the running time of the algorithm of Theorem 4. Perhaps, a more careful handling of degenerate diblocks may lead to an algorithm of running time $O^{*}\left(2^{O\left(k \log ^{2} k\right)}\right)$. Another question of interest is whether the Rooted k-Distinct Branchings problem admits a polynomial kernel.

References

[1] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directed trees with many leaves. SIAM Journal on Discrete Mathematics, 23(1):466-476, 2009.
[2] J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path problems. Journal of Combinatorial Theory, Series B, 51(1):123, 1991.
[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer, 2002.
[4] J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. Journal of Graph Theory, 20:141-161, 1995.
[5] J. Bang-Jensen and J. Huang. Arc-disjoint in- and out-branchings with the same root in locally semicomplete digraphs. Journal of Graph Theory, 77:278-298, 2014.
[6] J. Bang-Jensen, S. Saurabh, and S. Simonsen. Parameterized algorithms for non-separating trees and branchings in digraphs. Algorithmica, 76(1):279296, 2016.
[7] J. Bang-Jensen and S. Simonsen. Arc-disjoint paths and trees in 2-regular digraphs. Discrete Applied Mathematics, 161:2724-2730, 2013.
[8] J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. Journal of Graph Theory, 42(4):297-307, 2003.
[9] J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph problem is fixed parameter tractable. Discrete Applied Mathematics, 156:2924-2929, 2008.
[10] K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find a pair of arc-disjoint spanning in-arborescence and out-arborescence in a directed acyclic graph. Information Processing Letters, 109(23-24):12271231, 2009.
[11] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
[12] J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT algorithms and kernels for the directed k-leaf problem. Journal of Computer and System Sciences, 76(2):144-152, 2010.
[13] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
[14] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, Section B, 71B:233-240, 1967.
[15] J. Edmonds. Edge-disjoint branchings. In B. Rustin, editor, Combinatorial Algorithms, pages 91-96. Academic Press, 1973.
[16] A. Fradkin and P. Seymour. Tournament pathwidth and topological containment. Journal of Combinatorial Theory, Series B, 103(3):374-384, 2013.
[17] K. Kawarabayashi and S. Kreutzer. The directed grid theorem. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 655-664, 2015.
[18] I. Kim and P. D. Seymour. Tournament minors. Journal of Combinatorial Theory, Series B, 112:138-153, 2015.
[19] J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with many leaves. Algorithmica, 61(4):882-897, 2011.

[^0]: *A short version of this paper was published in the proceedings of ICALP 2017. Research of Gutin was partially supported by Royal Society Wolfson Research Merit Award.

[^1]: ${ }^{1}$ A digraph $D=(V, A)$ is quasi-transitive if for every $x y, y z \in A$ there is at least one arc between x and z, i.e. either $x z \in A$ or $z x \in A$ or both.
 ${ }^{2}$ A digraph $D=(V, A)$ is locally semicomplete if for every $x y, x z \in A$ there is at least one arc between y and z and for every $y x, z x \in A$ there is at least one arc between y and z. Tournaments and directed cycles are locally semicomplete digraphs.
 ${ }^{3}$ Fixed-parameter tractability of k-Distinct Branchings means that the problem can be solved by an algorithm of runtime $O^{*}(f(k))$, where O^{*} omits not only constant factors, but also polynomial ones, and f is an arbitrary computable function. The books [11, 13] are excellent recent introductions to parameterized algorithms and complexity.

[^2]: ${ }^{4}$ The algorithm of [19] runs in time $O^{*}\left(4^{k}\right)$ and its modification in [12] in time $O^{*}\left(3.72^{k}\right)$.

[^3]: ${ }^{5} \mathrm{An}$ in-forest is a vertex-disjoint collection of in-trees.

