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Abstract. Given a subset of states S of a deterministic finite automaton and a word w, the

preimage is the subset of all states mapped to a state in S by the action of w. We study

three natural problems concerning words giving certain preimages. The first problem is whether,
for a given subset, there exists a word extending the subset (giving a larger preimage). The

second problem is whether there exists a totally extending word (giving the whole set of states as

a preimage)—equivalently, whether there exists an avoiding word for the complementary subset.
The third problem is whether there exists a resizing word. We also consider variants where the

length of the word is upper bounded, where the size of the given subset is restricted, and where

the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of
the complexities in all combinations of the cases.

Keywords: avoiding word, extending word, extensible subset, reset word, synchronizing automa-

ton

1. Introduction

A deterministic finite complete (semi)automaton A is a triple (Q,Σ, δ), where Q is the set of
states, Σ is the input alphabet, and δ : Q × Σ → Q is the transition function. We extend δ to
a function Q × Σ∗ → Q in the usual way. Throughout the paper, by n we always denote the
number of states |Q|.
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2 PREIMAGE PROBLEMS FOR DETERMINISTIC FINITE AUTOMATA

When the context is clear, given a state q ∈ Q and a word w ∈ Σ∗, we write shortly q · w for
δ(q, w). Given a subset S ⊆ Q, the image of S under the action of a word w ∈ Σ∗ is S · w =
δ(S,w) = {q · w | q ∈ S}. The preimage is S · w−1 = δ−1(S,w) = {q ∈ Q | q · w ∈ S}. If S = {q},
then we usually simply write q · w−1.

We say that a word w compresses a subset S if |S ·w| < |S|, avoids S if (Q ·w)∩S = ∅, extends
S if |S · w−1| > |S|, and totally extends S if S · w−1 = Q. A subset S is compressible, avoidable,
extensible, and totally extensible, if there is a word that, respectively, compresses, avoids, extends
and totally extends it.

Remark 1. A word w ∈ Σ∗ is avoiding for S ⊆ Q if and only if w is totally extending for Q \ S.

1 2
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Figure 1. The Černý automaton with 4 states.

Fig. 1 shows an example automaton. For S = {2, 3}, the shortest compressing word is aab, and
we have {2, 3} · aab = {1}, while the shortest extending word is ba, and we have {2, 3} · (ba)−1 =
{1, 2} · b−1 = {1, 2, 4}.

Note that the preimage of a subset under the action of a word can be smaller than the subset.
In this case, we say that a word shrinks the subset (not to be confused with compressing when the
image is considered). For example, in Fig. 1, subset {3, 4} is shrank by b to subset {4}.

Note that shrinking a subset is equivalent to extending its complement. Similarly, a word totally
extending a subset also shrinks its complement to the empty set.

Remark 2. |S · w−1| > |S| if and only if |(Q \ S) · w−1| < |Q \ S|, and S · w−1 = Q if and only if
(Q \ S) · w−1 = ∅.

Therefore, avoiding a subset is equivalent to shrinking it to the empty set.
The rank of a word w is the cardinality of the image Q · w. A word of rank 1 is called reset

or synchronizing, and an automaton that admits a reset word is called synchronizing. Also, for
a subset S ⊆ Q, we say that a word w ∈ Σ∗ such that |S · w| = 1 synchronizes S.

Synchronizing automata serve as transparent and natural models of various systems in many
applications in different fields, e.g., in coding theory [12, 26], model testing of reactive systems [37],
robotics [31], and biocomputing [7]. They also reveal interesting connections with many parts of
mathematics. For example, some of the recent works involve group theory [4], representation theory
[1], computational complexity [32], optimization and convex geometry [19], regular languages and
universality [34], approximability [18], primitive sets of matrices [14], and graph theory [23]. For
a brief introduction to the theory of synchronizing automata we refer the reader to an excellent,
though quite outdated, survey [45].
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The famous Černý conjecture [16], which was formally stated in 1969 during a conference [45],
is one of the most longstanding open problems in automata theory. It states that a synchronizing
automaton has a reset word of length at most (n − 1)2. The currently best upper bound is cubic
and has been improved recently [38] (cf. [41]). Besides the conjecture, algorithmic issues are also
important. Unfortunately, the problem of finding a shortest reset word is computationally hard
[17, 32], and also its length approximation remains hard [18]. We also refer to surveys [37, 45]
dealing with algorithmic issues and the Černý conjecture.

Compressing and extending a subset in general play a crucial role in the synchronization of
automata and related areas. In fact, all known algorithms finding a reset word use finding words that
either compresses or extends a subset as subprocedures (e.g. [2, 11, 17, 28, 35]). Moreover, probably
all proofs of upper bounds on the length of the shortest reset words use bounds on the length of
words that compress (e.g. [2, 3, 11, 13, 17, 22, 41, 43, 46]) or extend (e.g. [6, 8, 11, 25, 27, 40, 41])
some subsets.

In this paper, we study several problems about finding a word yielding a certain preimage. We
provide a systematic view of their computational complexity in various combinations of cases.

1.1. Compressing a subset. The complexities of problems related to images of a subset have
been well studied. It is known that given an automaton A and a subset S ⊆ Q, determining
whether there is a word that synchronizes it is PSPACE-complete [36]. The same holds even for
strongly connected binary automata [47].

On the other hand, checking whether the automaton is synchronizing, i.e. whether there is a word
that synchronizes Q, can be solved in Ø(|Σ|n2) time and space [16, 17, 45] and in Ø(n) average time
and space when the automaton is randomly chosen [10]. To this end, we verify whether all pairs
of states are compressible. Using the same algorithm, we can determine whether a given subset is
compressible.

Deciding whether there exists a synchronizing word of a given length is NP-complete [17] (cf. [32]
for the complexity of the corresponding functional problems), even if the given automaton is bi-
nary. The NP-completeness holds even when the automaton is Eulerian and binary [48], which
immediately implies that for the class of strongly connected automata the complexity is the same.

However, deciding whether there exists a word of a given length that only compresses a subset
still can be solved in Ø(|Σ|n2) time, as for every pair of states we can compute a shortest word that
compresses the pair.

The problems related to images have been also studied in other settings for both complexity and
the bounds on the length of the shortest words, for example, in the case of a nondeterministic au-
tomaton [36], in the case of a partial deterministic finite automaton [30], in the partial observability
setting for various kinds of automata [24], and for the reachability of a given subset in the case of
a deterministic finite automaton [15, 20].

1.2. Extending a subset and our contributions. In contrast to the problems related to images
(compression), the complexity of the problems related to preimages has not been thoroughly studied
in the literature. In the paper, we fill this gap and give a comprehensive analysis of all basic cases.
We study three families of problems. As noted before, extending is equivalent to shrinking the
complementary subset, hence we need to deal only with the extending word problems. Similarly,
totally extending words are equivalent to avoiding the complement, thus we do not need to consider
avoiding a set of states separately.
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Table 1. The computational complexity of decision problems (new results are in
bold): given an automaton A = (Q,Σ, δ) with n states and a subset S ⊆ Q, is
there a word w ∈ Σ∗ such that:

Subclass of automata

Problem
All Strongly

Synchronizing
Str. con.

automata connected and synch.

|S · w| = 1 PSPACE-c
Ø(1) Ø(1)

(reset word) [36, 47]

|S · w| < |S| Ø(|Σ|n2)
Ø(1) Ø(1)

(compressing word) [16, 45]

|S · w−1| > |S| PSPACE-c PSPACE-c
Ø(1)

(Problem 1) (Thm. 3) (Prop. 5)

S · w−1 = Q PSPACE-c Ø(|Σ|n)
Ø(1)

(Problem 2) (Thm. 3) (Thm. 6)

|S · w−1| > |S|, |S| ≤ k Ø(|Σ|nk) Ø(|Σ|nk)
Ø(1)

(Problem 5) (Prop. 7) (Prop. 7)

S · w−1 = Q, |S| ≤ k Ø(|Σ|nk + n3) Ø(|Σ|n)
Ø(1)

(Problem 6) (Prop. 8) (Thm. 6)

|S · w−1| > |S|, |S| ≥ n− k PSPACE-c
Open

PSPACE-c
Ø(1)

(Problem 9, k ≥ 2) (Thm. 10) (Thm. 10)

S · w−1 = Q, |S| ≥ n− k Ø(|Σ|nk + n3) Ø(|Σ|n)
Ø(1)

(Problem 10, k ≥ 2) (Thm. 12) (Thm. 6)

S · w−1 = Q, |S| = n− 1 Ø(|Σ|n2)
Ø(|Σ|) Ø(1)

(Problem 11) (Thm. 11)

|S · w−1| 6= |S| Ø(|Σ|n3)
Ø(1) Ø(1)

(Problem 15) (Thm. 15)

Extending words: Our first family of problems is the question whether there exists an extending
word (Problems 1, 3, 5, 7, 9, 12 in this paper).

This is motivated by the fact that finding such a word is the basic step of the so-called extension
method of finding a reset word, which is used in many proofs and also some algorithms. The
extension method of finding a reset word is as follows: we start from some singleton S0 = {q} and
iteratively find extending words w1, . . . , wk such that |S0 · w−1

1 · · ·w
−1
i | > |S0 · w−1

1 · · ·w
−1
i−1| for

1 ≤ i ≤ k, and where S0 · w−1
1 · · ·w

−1
k = Q. For finding a short reset word one needs to bound the

lengths of the extending words. For instance, in the case of synchronizing Eulerian automata, the
fact that there always exists an extending word of length at most n − 1 implies the upper bound
(n − 2)(n − 1) + 1 on the length of the shortest reset words for this class [27] (the first extending
step requires just one letter, as we can choose an arbitrary singleton). In this case, a polynomial
algorithm for finding extending words has been proposed [11].
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Table 2. The computational complexity of decision problems (new results are in
bold): given an automaton A = (Q,Σ, δ) with n states, a subset S ⊆ Q, and
an integer ` given in binary form, is there are a word w ∈ Σ∗ of length ≤ ` such
that:

Subclass of automata

Problem
All Strongly

Synchronizing
Str. con.

automata connected and synch.

|S · w| = 1 PSPACE-c NP-c NP-c

(reset word) [36, 47] [17] [48]

|S · w| < |S| Ø(|Σ|n2) Ø(|Σ|n2) Ø(|Σ|n2)

(compressing word) [17] [17] [17]

|S · w−1| > |S| PSPACE-c PSPACE-c NP-c

(Problem 3) (Subsec. 2.2) (Subsec. 2.2) (Thm. 13)

S · w−1 = Q PSPACE-c NP-c NP-c

(Problem 4) (Subsec. 2.2) (Cor. 14) (Cor. 14)

|S · w−1| > |S|, |S| ≤ k Ø(|Σ|nk) Ø(|Σ|nk) Ø(|Σ|nk)

(Problem 7 (Prop. 7) (Prop. 7) (Prop. 7)

S · w−1 = Q, |S| ≤ k NP-c NP-c NP-c

(Problem 8) (Prop. 9) (Prop. 9) (Prop. 9)

|S · w−1| > |S|, |S| ≥ n− k PSPACE-c
Open

PSPACE-c NP-c

(Problem 12, k ≥ 2) (Thm. 10) (Thm. 10) (Cor. 14)

S · w−1 = Q, |S| ≥ n− k NP-c NP-c NP-c

(Problem 13, k ≥ 2) (Cor. 14) (Cor. 14) (Cor. 14)

S · w−1 = Q, |S| = n− 1 NP-c NP-c NP-c

(Problem 14) (Thm. 13) (Thm. 13) (Thm. 13)

|S · w−1| 6= |S| Ø(|Σ|n3) Ø(|Σ|n3) Ø(|Σ|n3)

(Problem 16) (Thm. 15) (Thm. 15) (Thm. 15)

Totally extending words and avoiding: We study the problem whether there exists a totally
extending word (Problems 2, 4, 6, 8, 10, 13 in this paper). The question of the existence of
a totally extending word is equivalent to the question of the existence of an avoiding word for the
complementary subset.

Totally extending words themselves can be viewed as a generalization of reset words: a word
totally extending a singleton to the whole set of states Q is a reset word. If we are not interested
in bringing the automaton into one particular state but want it to be in any of the states from
a specified subset, then it is exactly the question about totally extending word for our subset. In
view of applications of synchronization, this can be particularly useful when we deal with non-
synchronizing automata, where reset words cannot be applied.
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Avoiding word problem is a recent concept that is dual to synchronization: instead of being in
some states, we want not to be in them. A quadratic upper bound on the length of the shortest
avoiding words of a single state has been established [41], which led to an improvement of the
best known upper bound on the length of the shortest reset words (see also [38] for a very recent
improvement of that improvement of the upper bound). Furthermore, better upper bounds on
the length of the shortest avoiding words would lead to further improvements; in particular, a
subquadratic upper bound implies the upper bound on the reset threshold equal to 7n3/48 + o(n3)
[21]. There is a precise conjecture that the shortest avoiding words have length at most 2n− 2 [41,
Open Problem 1]. The computational complexity of the problems related to avoiding, both a single
state or a subset, has not been established before. We give a special attention to the problem of
avoiding one state and a small subset of states (totally extending a large subset), as since they seem
to be most important in view of their applications (and as we show, the complexity grows with the
size of the subset to avoid).
Resizing: Shrinking a subset is dual to extending, i.e. shrinking a subset means extending its
complement. Therefore, the complexity immediately transfers from the previous results. How-
ever, in Section 5 we consider the problem of determining whether there is a word whose inverse
action results in a subset having a different size, that is, either extends the subset or shrinks it
(Problems 15, 16).

Interestingly, in contrast with the computationally difficult problems of finding a word that ex-
tends the subset and finding a word that shrinks the subset, for this variant there exists a polynomial
algorithm finding a shortest resizing word in all cases.

We can mention that in some cases extending and shrinking words are related, and it may be
enough to find either one. For instance, this is used in the so-called averaging trick, which appears
in several proofs [11, 25, 27, 39].
Summary: For all the problems we consider the subclasses of strongly connected, synchronizing,
and binary automata. Also, we consider the problems where an upper bound on the length of the
word is additionally given in a binary form in the input. Since, in most cases, the problems are
computationally hard, in Section 3 and Section 4, we consider the complexity parameterized by the
size of the given subset.

Table 1 and Table 2 summarize our results together with known results about compressing
words. For the cases where a polynomial algorithm exists, we put the time complexity of the best
one known. All the hardness results hold also in the case of a binary alphabet.

2. Extending a subset in general

2.1. Unbounded word length. In the first studied case, we do not have any restriction on the
given subset S neither on the length of the extending word. We deal with the following problems:

Problem 1 (Extensible subset). Given A = (Q,Σ, δ) and a subset S ⊆ Q, is S extensible?

Problem 2 (Totally extensible subset). Given A = (Q,Σ, δ) and a subset S ⊆ Q, is S totally
extensible?

Theorem 3. Problem 1 and Problem 2 are PSPACE-complete, even if A is strongly connected.

Proof. To solve one of the problems in NPSPACE, we guess the length of a word w with the required
property, and then guess the letters of w from the end. Of course, we do not store w, which may
have exponential length, but just keep the subset S · u−1, where u is the current suffix of w. The
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current subset can be stored in Ø(n), and since there are 2n different subsets, |w| ≤ 2n and the
current length also can be stored in Ø(n). By Savitch’s theorem, the problems are in PSPACE.

For PSPACE-hardness, we construct a reduction from the problem of determining whether an
intersection of regular languages given as DFAs is non-empty. We create one instance for both
problems that consists of a strongly connected automaton and a subset S extensible if and only if it
is also totally extensible, which is simultaneously equivalent to the non-emptiness of the intersection
of the given regular languages.

Let (Di)i∈{1,...,m} be the given sequence of DFAs with an i-th automaton Di = (Qi,Σ, δi, si, Fi)
recognizing a language Li, where Qi is the set of states, Σ is the common alphabet, δi is the
transition function, si is the initial state, and Fi is the set of final states. The problem whether
there exists a word accepted by all D1, . . . ,Dm (i.e. the intersection of Li is non-empty) is a well
known PSPACE-complete problem, called Finite Automata Intersection [29]. We can assume that
the DFAs are minimal ; in particular, they do not have unreachable states from the initial state,
otherwise, we may easily remove them in polynomial time.

For eachDi we choose an arbitrary fi ∈ Fi. LetM =
∑m
i=1 |Qi|. We construct the (semi)automaton

D′ = (Q′,Σ′, δ′) and define S ⊆ Q′ as an instance of our both problems. The scheme of the au-
tomaton is shown in Fig. 2.

• For i ∈ {0, 1, . . . ,m}, let Γi = {fi} × {0, . . . , 2M − 1} be fresh states and let Q′i = (Qi \
{fi}) ∪ Γi. Let Q′0 = {s0, t0} ∪ Γ0, where s0 and t0 are fresh states. Then Q′ =

⋃m
i=0Q

′
i.

• Σ′ = Σ ∪ {α, β}, where α and β are fresh letters.
• δ′ is defined by:

– For q ∈ Qi \ {fi} and a ∈ Σ, we have

δ′(q, a) =

{
δi(q, a) if δi(q, a) 6= fi,

(fi, 0) otherwise.

– For a ∈ Σ, we have

δ′(t0, a) = t0, δ′(s0, a) = s0.

– For k ∈ {0, . . . , 2M − 1}, i ∈ {1, . . . ,m}, and a ∈ Σ, we have

δ′((f0, k), a) = t0,

δ′((fi, k), a) =

{
δi(fi, a) if δi(fi, a) 6= fi,

(fi, 0) otherwise.

– For q ∈ Q′i, we have

δ′(q, α) = s(i+1) mod (m+1).

– For i ∈ {0, . . . ,m} and k ∈ {0, . . . , 2M − 1}, we have

δ′((fi, k), β) = (fi, k + 1 mod 2M).

– We have

δ′(s0, β) = (f0, 0).

– For the remaining states q ∈ Q′ \ (
⋃m
i=0 Γi ∪ {s0}), we have

δ′(q, β) = q.
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Q′

0

s0 f0, 0

f0, 1

. . .

f0, 2M -1

Γ0 t0

Σ

β

β β

ββ

Σ

Σ, β

Q′

1

s1 f1, 0

f1, 1

. . .

f1, 2M -1

Γ1
. . .

β β

ββ

β β β β

α

. . .

α

α

Figure 2. The automaton D′ from the proof of Theorem 3.

• The subset S ⊆ Q′ is defined as

S =
( m⋃
i=1

Fi ∩Q′
)
∪

m⋃
i=0

Γi ∪ {s0}.

It is easy to observe that D′ is strongly connected. Take any i, j ∈ {0, . . . ,m}. We show how to
reach any state q ∈ Q′j from a state p ∈ Q′i. First, we can reach sj by α(m+1+j−i) mod (m+1). For

j ≥ 1, each state q ∈ Q′j \
(
Γj \ {(fj , 0)}

)
is reachable from sj , since δ′ restricted to Σ acts on Q′j

as δj on Qj (with fj replaced by (fj , 0)) and Dj is minimal. For j = 0, states (f0, 0) and t0 are
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reachable from s0 by the transformations of β and βa respectively, for any a ∈ Σ. States q ∈ Γj
can be reached from (fj , 0) using δβ .

We will show the following statements:

(1) If S is extensible in D′, then the intersection of the languages Li is non-empty.
(2) If the intersection of the languages Li is non-empty, then S is extensible to Q′ in D′.

This will prove that the intersection of the languages Li is non-empty if and only if S is extensible,
which is also equivalent to that S is extensible to Q′.

(1): Observe that, for each i ∈ {0, . . . ,m}, if (S · w−1) ∩ Γi 6= ∅, then (S · w−1) ∩ Γi = Γi. This
follows by induction: the empty word possesses this property; the transformation δa of a ∈ Σ \ {β}
maps every state from Γi to the same state, so it preserves the property; δβ acts cyclically on Γi so
also preserves the property.

Suppose that S is extensible by a word w. Notice that, M is an upper bound on the number
of states in Q′ \

⋃m
i=0 Γi (for m ≥ 2). We also have |S| ≥ 1 + (m + 1) · 2M . We conclude that

Γi ⊆ S · w−1 for each i ∈ {0, . . . ,m}, since

|Q′ \ Γi| ≤ m · 2M +M ≤ (m+ 1) · 2M < |S|,

so (S · w−1) ∩ Γi 6= ∅ and then our previous observation Γi ⊆ S · w−1.
Now, the extending word w must contain the letter α. For a contradiction, if w ∈ (Σ′ \ {α})∗,

then if it contains a letter a ∈ Σ, then S · w−1 does not contain any state from Γ0 ∪ {t0}, as the
only outgoing edges from this subset are labeled by α, t0 /∈ S, Γ0 ·β−1 = Γ0, and Γ0 ·a−1 = ∅. This
contradicts the previous paragraph. Also, w cannot be of the form βk, for k ∈ N, since S · βk = S.
Hence, w = wpαws, where wp ∈ (Σ′)∗ and ws ∈ (Σ′ \ {α}).

Note that if T is a subset of Q′ such that T ∩ Q′i = ∅ for some i, then also (T · u−1) ∩ Q′i′ = ∅
for every word u and some i′; because only α maps states Qi outside Qi, and it acts cyclically on
these sets. Hence, in this case, every preimage of T does not contain some Γi′ set. So {si | i ∈
{0, · · · ,m}} ⊆ S · (ws)−1, since in the opposite case

(
S · (αws)−1

)
∩Q′i = ∅ for some i.

Let w′s be the word obtained by removing all β letters from ws. Note that, for every i ∈ {1, . . . ,m}
and every suffix u of ws, we have (S · u−1)∩Q′i = (S · (βu)−1)∩Q′i. Hence, (S ·w−1

s )∩ (Q′ \Q′0) =
S · (w′s)−1 ∩ (Q′ \Q′0).

Now, the word w′s is in Σ∗, and S · w−1
s contains si for all i ∈ {1, . . . ,m}. Hence, the action

of w′s maps si to either a state in Fi \ {fi} or (fi, 0), which means that w′s maps si to Fi in Di.
Therefore, w′s is in the intersection of the languages Li.

(2): Suppose that the intersection of the languages Li is non-empty, so there exists a word
w ∈ Σ∗ such that si · w ∈ Fi for every i. Then we have S · (αw)−1 = Q′, thus S is extensible to
Q′. �

We ensure that both problems remain PSPACE-complete in the case of a binary alphabet, which
follows from the following theorem.

Theorem 4. Given an automaton A = (Q,Σ, δ) and a subset S ⊆ Q, we can construct in polyno-
mial time a binary automaton A ′ = (Q′, {a′, b′}, δ′) and a subset S′ ⊆ Q′ such that:

(1) A is strongly connected if and only if A ′ is strongly connected;
(2) S′ is extensible in A ′ if and only if S is extensible in A ;
(3) S′ is totally extensible in A ′ if and only if S is totally extensible in A .

Proof. Let Σ = {a0, . . . , ak−1}. The idea is as follows: We reduce A to a binary automaton A ′

that consists of k copies of A . The first letter a acts in an i-th copy as the letter ai in A . The
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second letter b acts cyclically on these copies. Then we define S′ to contain states from S in the
first copy and all states from the other copies. The construction is shown in Fig. 3.

Q× {a0}

Q× {a1}

a′ = a0

a′

a′

a′
a′

a′

a′
a′

a′

a′ = a1

a′
a′

a′

a′ a′

a′
a′

a′

Q× {ak−1}

a′ = ak−1

a′

a′

a′

a′ a′

a′
a′

b′

b′

b′

a′

. . .

b′

Figure 3. The binary automaton A′ from the proof of Theorem 4.

We construct A ′ = (Q′, {a′, b′}, δ′) with Q′ = Q × Σ and δ′ defined as follows: δ′((q, ai), a
′) =

(δ(q, ai), ai), and δ′((q, ai), b
′) = (q, a(i+1) mod k). Clearly, A ′ can be constructed in Ø(nk) time,

where k = |Σ|.
(1): Suppose that A is strongly connected; we will show that A ′ is also strongly connected. Let

(q1, ai) and (q2, aj) be any two states of A ′. In A , there is a word w such that q1 ·w = q2. Let w′

be the word obtained from w by replacing every letter ah by the word (b′)ha′(b′)k−h. Note that in
A ′ we have

(p, a0) · (b′)ha′(b′)k−h = (p · ah, a0),

hence (q1, a0) ·w′ = (q1 ·w, a0). Then the action of the word (b′)k−iw′(b′)j maps (q1, ai) to (q2, aj).
Conversely, suppose that A ′ is strongly connected, so every (q1, ai) can be mapped to every

(q2, aj) by the action of a word w′. Then

w′ = (b′)h1a′ . . . (b′)hm−1a′(b′)hm ,
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for some m ≥ 1 and h1, . . . , hm ≥ 0. We construct w of length m − 1, where the s-th letter is ar
with r = (i+ Σsj=1hj) mod k. Then w maps q1 to q2 in A .

(2) and (3): For i ∈ {0, . . . , k − 1} we define Ui = (Q× {Σ \ {ai}}). Observe that for any word
u′ ∈ {a′, b′}∗, we have Ui · (u′)−1 = Uj for some j, which depends on i and the number of letters b′

in u′.
We define

S′ = (S × {a0}) ∪ U0.

Suppose that S is extensible in A by a word w, and let w′ be the word obtained from w as in (1).
Then (w′)−1 maps U0 to U0, and (S × {a0}) to (S · w−1)× {a0}). We have:

S′(w′)−1 = ((S · w−1)× {a0}) ∪ U0,

and since |S ·w−1| > |S|, this means that w′ extends S′. By the same argument, if w extends S to
Q, then w′ extends S′ to Q′.

Conversely, suppose that S′ is extensible in A ′ by a word w′, and let w be the word obtained
from w′ as in (1). Then, for some i, we have

S′ · (w′)−1 = ((S · w−1)× {ai}) ∪ Ui,

and since |U0| = |Ui| it must be that |S ·w−1| > |S|. Also, if S′ · (w′)−1 = Q′ then S ·w−1 = Q. �

Now, we consider the subclass of synchronizing automata. We show that synchronizability does
not change the complexity of the first problem, whereas the second problem becomes much easier.

Proposition 5. When the automaton is binary and synchronizing, Problem 1 remains PSPACE-
complete.

Proof. From Theorem 3, Problem 1 is in PSPACE, as the algorithm works the same in the restricted
case.

Problem 1 for binary and synchronizing automata is PSPACE-hard, as any general instance
with a binary automaton A = (Q, {a, b}, δ) can be reduced to an equivalent instance with a binary
synchronizing automaton A ′. For this, we just add a sink state s and a letter which synchronizes Q
to s. Additionally, a standard tree-like binarization is suitably used to obtain a binary automaton
A ′.

Formally, we construct a synchronizing binary automaton A ′ from the binary automaton A as
follows. We can assume that Q = {q1, . . . , qn}. Let s be a fresh state. Let Q′ = Q ∪ {qa1 , . . . , qan}.
We construct A ′ = (Q′ ∪ {s}, {a, b}, δ′), where δ′ for all i is defined as follows: δ′(qi, a) = qai ,
δ′(qi, b) = s, δ′(qai , a) = δ(q, a), and δ′(qai , b) = δ(q, b). Then bb is a synchronizing word for A ′, and
each S ⊆ Q is extensible in A ′ if and only if it is extensible in A . �

Theorem 6. When the automaton is synchronizing, Problem 2 can be solved in Ø(|Σ|n) time and
it is NL-complete.

Proof. Since A is synchronizing, Problem 2 reduces to checking whether there is a state q ∈ S
reachable from every state: It is well known that a synchronizing automaton has precisely one
strongly connected sink component that is reachable from every state. If w is a reset word that
synchronizes Q to p, and u is such that p · u = q, then wu extends {q} to Q. If S does not contain
a state from the sink component, then every preimage of S also does not contain these states.

The problem can be solved in Ø(|Σ|n) time, since the states of the sink component can be
determined in linear time by Tarjan’s algorithm [42].
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It is also easy to see that the problem is in NL: Guess a state q ∈ S and verify in logarithmic
space that it is reachable from every state.

For NL-hardness, we reduce from ST-connectivity: Given a graph G = (V,E) and vertices s, t,
check whether there is a path from s to t. We will output a synchronizing automaton A = (V,Σ, δ)
and S ⊆ Q such that S is extensible to Q if and only if there is a path from s to t in G.

First, we compute the maximum out-degree of G, and set Σ = Σ′ ∪ {α}, where |Σ′| is equal to
the maximum out-degree. We output A such that for every q ∈ V , every edge (q, p) ∈ E is colored
by a different letter from Σ′. If there is no outgoing edge from q, then we set the transitions of
all letters from Σ′ to be loops. If the out-degree is smaller than |Σ′|, then we simply repeat the
transition of the last letter. Next, we define δ(q, α) = s for every q ∈ V . Finally, let S = {t}. The
reduction uses logarithmic space since it requires only counting and enumerating through V and
Σ′. The produced automaton A is synchronizing just by α.

Suppose that there is a path from s to t. Then there is a word w such that δ(s, w) = t, and so
{t} · (αw)−1 = Q.

Suppose that {t} is extensible to Q by some word w. Let w′ be the longest suffix of w that does
not contain α. Since α−1 results in ∅ for any subset not containing s, it must be that s ∈ {t}(w′)−1.
Hence δ(s, w′) = t, and the path labeled by w′ is the path from s to t in G. �

Note that in the case of strongly connected synchronizing automaton, both problems have a trivial
solution, since every non-empty proper subset of Q is totally extensible (by a suitable reset word);
thus they can be solved in constant time, assuming that we can check the size of the given subset
and the number of states in constant time.

2.2. Bounded word length. We turn our attention to the variants in which an upper bound on
the length of word w is also given.

Problem 3 (Extensible subset by short word). Given A = (Q,Σ, δ), a subset S ⊆ Q, and an in-
teger ` given in binary representation, is S extensible by a word of length at most `?

Problem 4 (Totally extensible subset by short word). Given A = (Q,Σ, δ), a subset S ⊆ Q, and
an integer ` given in binary representation, is S totally extensible by a word of length at most `?

Obviously, these problems remain PSPACE-complete (also when the automaton is strongly con-
nected and binary), as we can set ` = 2n, which bounds the number of different subsets of Q. In
this case, both the problems are reduced respectively to Problem 1 and Problem 2.

When the automaton is synchronizing, Problem 4 is NP-complete, which will be shown in Corol-
lary 14. Of course, Problem 3 remains PSPACE-complete for a synchronizing automaton by the
same argument as in the general case.

3. Extending small subsets

The complexity of the extending problems is caused by an unbounded size of the given subset.
Note that in the proof of PSPACE-hardness in Theorem 3 the used subsets and simultaneously
their complements may grow with an instance of the reduced problem, and it is known that the
problem of the emptiness of intersection can be solved in polynomial time if the number of given
DFAs is fixed. Here, we study the computational complexity of the extending problems when the
size of the subset is not larger than a fixed k.
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3.1. Unbounded word length.

Problem 5 (Extensible small subset). For a fixed k ∈ N \ {0}, given A = (Q,Σ, δ) and a subset
S ⊆ Q with |S| ≤ k, is S extensible?

Proposition 7. Problem 5 can be solved in Ø(|Σ|nk) time.

Proof. We build the k-subsets automaton A ≤k = (Q≤k,Σ, δ≤k, S0, F ), whereQ≤k = {A ⊆ Q : |A| ≤
k} and δ≤k is naturally defined by the image of δ on a subset. Let the set of initial states be
I = {A ∈ Q≤k : |A · a−1| > |S| for some a ∈ Σ}, and the set of final states be the set of all subsets
of S. A final state can be reached from an initial state if and only if S is extensible in A . We can
simply check this condition by a BFS algorithm.

Note that we can compute whether a subset A of size at most k is in I in Ø(|Σ|), by summing
the sizes |q · a−1| for all q ∈ A, where |q · a−1| are computed during a preprocessing, which takes
O(n) time for a single a ∈ Σ. Also, for a given subset A of size at most k, we can compute T · a in
constant time (which depends only k). Hence, the BFS works in linear time in the size of A ≤k, so
in O(|Σ|nk) time. �

Problem 6 (Totally extensible small subset). For a fixed k ∈ N \ {0}, given A = (Q,Σ, δ) and
a subset S ⊆ Q with |S| ≤ k, is S totally extensible?

For k = 1, Problem 2 is equivalent to checking if the automaton is synchronizing to the given
state, thus can be solved in Ø(|Σ|n2) time. For larger k we have the following:

Proposition 8. Problem 6 can be solved in Ø(|Σ|nk + n3) time.

Proof. Let u be a word of the minimal rank in A . We can find such a word and compute the
image Q · u in Ø(n3 + |Σ|n2) time, using the well-known algorithm [17, Algorithm 1] generalized to
non-synchronizing automata. The algorithm just stops when there are no more compressible pairs
of states contained in the current subset, and since the subset cannot be further compressed, the
found word has the minimal rank.

For each w ∈ Σ∗ we have S · w−1 = Q if and only if Q · w ⊆ S. We can meet the required
condition for w if and only if (Q · u) · w ⊆ S. Surely |(Q · u) · w| = |Q · u|. The desired word does
not exist if the minimal rank is larger than |S| = k. Otherwise, we can build the subset automaton
A ≤|Q·u| (similarly as in the proof of Proposition 7). The initial subset is Q · u. If some subset of
S is reachable by a word w, then the word uw totally extends S in A . Otherwise, S is not totally
extensible. The reachability can be checked in at most Ø(|Σ|nk) time. However, if the rank r of u
is less than k, the algorithm takes only Ø(|Σ|nr) time. �

3.2. Bounded word length. We also have the two variants of the above problems when an upper
bound on the length of the word is additionally given.

Problem 7 (Extensible small subset by short word). For a fixed k ∈ N \ {0}, given A = (Q,Σ, δ),
a subset S ⊆ Q with |S| ≤ k, and an integer ` given in binary representation, is S extensible by a
word of length at most `?

Problem 7 can be solved by the same algorithm in a Proposition 7, since the procedure can find
a shortest extending word.

Problem 8 (Totally extensible small subset by short word). For a fixed k ∈ N \ {0}, given A =
(Q,Σ, δ), a subset S ⊆ Q with |S| ≤ k, and an integer ` given in binary representation, is S totally
extensible by a word of length at most `?
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Proposition 9. For every k, Problem 8 is NP-complete, even if the automaton is simultaneously
strongly connected, synchronizing, and binary.

Proof. The problem is in NP, as the shortest extending words have length at most Ø(n3 +nk) (since
words of this length can be found by the procedure from Proposition 8).

When we choose S of size 1, the problem is equivalent to finding a reset word that maps every
state to the state in S. In [48] it has been shown that for Eulerian automata that are simultaneously
strongly connected, synchronizing, and binary, deciding whether there is a reset word of length at
most ` is NP-complete. Moreover, in this construction, if there exists a reset word of this length,
then it maps every state to one particular state s2 (see [48, Lemma 2.4]). Therefore, we can set
S = {s2}, and thus Problem 8 is NP-complete. �

4. Extending large subsets

In this section, we consider the case where the subset S contains all except at most a fixed
number of states k.

4.1. Unbounded word length.

Problem 9 (Extensible large subset). For a fixed k ∈ N \ {0}, given A = (Q,Σ, δ) and a subset
S ⊆ Q with |Q \ S| ≤ k, is S extensible?

Problem 10 (Totally extensible large subset). For a fixed k ∈ N \ {0}, given A = (Q,Σ, δ) and
a subset S ⊆ Q with |Q \ S| ≤ k, is S totally extensible?

Problem 10 is equivalent to deciding the existence of an avoiding word for a subset S of size ≤ k.
Note that Problem 9 and Problem 10 are equivalent for k = 1, when they become the problem of
avoiding a single given state. Its properties will also turn out to be different than in the case of
k ≥ 2. We give a special attention to this problem, defined as follows, and study it separately.

Problem 11 (Avoidable state). Given A = (Q,Σ, δ) and a state q ∈ Q, is {q} avoidable?

The following result may be a bit surprising, in view of that it is the only case where a general
problem (i.e., Problems 1 and 2) remains equally hard when the subset size is additionally bounded.
We show that Problem 9 is PSPACE-complete for all k ≥ 2, although the question about its
complexity remains open for the class of strongly connected automata.

Theorem 10. Problem 9 is PSPACE-complete for every fixed k ≥ 2, even if the given automaton
is synchronizing and binary.

Proof. Problem 9 is in PSPACE as a special case of Problem 1, which is PSPACE-complete
(Thm. 3).

Now, we show a reduction from Problem 2. The idea is as follows. We construct an automaton
A ′ from the automaton A = (Q,Σ, δ) given for Problem 2. We add two new states, e and s, and
let the initial set S′ contain all the original states of A . State s is a sink state ensuring that the
automaton is synchronizing; it cannot be reached from S′ by inverse transitions. Hence, to extend
S′, one needs to get e, which is doable only by a new special letter α. This letter has the transition
that shrinks all states Q to the initial subset S for the totally extensible problem. This is done
through an arbitrary selected state f ∈ Q. Then we can reach Q ∪ {e} only by a totally extending
word for A . The overall construction is presented in Fig. 4.1.
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S

Q = S ′

s

f

e

α

Q \ S

Σ ∪ {α}

Σ

α

α

Figure 4. The constructed automaton A ′: States in Q = S′ have the transitions
on Σ as in A . The preimage of S′ = Q by α is marked by gray nodes and reflects
the initial situation after applying for any subset containing f and not containing
s.

Let A = (Q,Σ, δ) and S ⊆ Q be an instance of Problem 2. We construct an automaton
A ′ = (Q′ = Q ∪ {e, s},Σ′ = Σ ∪ {α}, δ′), where e, s are fresh states and α is a fresh letter. Let f
be an arbitrary state from Q \ S (if S = Q then the problem is trivial). We define δ′ as follows:

(1) δ′(q, a) = δ(q, a) for q ∈ Q, a ∈ Σ;
(2) δ′(q, a) = q for q ∈ {e, s}, a ∈ Σ;
(3) δ′(q, α) = f for q ∈ S ∪ {e};
(4) δ′(q, α) = s for q ∈ (Q ∪ {s}) \ S.

We define S′ = Q. Note that |Q′ \ S′| = 2, and hence automaton A ′ with S′ is an instance of
Problem 9 for k = 2. We will show that S′ is extensible in A ′ if and only if S is totally extensible
in A .
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If S is totally extensible in A by a word w ∈ Σ∗, we have S′ · (wα)−1 = Q \ {s}, which means
that S′ is extensible in A ′.

Conversely, if S′ is extensible in A ′, then there is some extending word of the form wα for some
w ∈ Σ∗, because S′ · a−1 = S′ for a ∈ Σ, (Q′ \ {s}) · α−1 ⊆ S′ · α−1, and each reachable set (as
a preimage) is a subset of Q′ \ {s}. We know that S′ · (wα)−1 = (S ∪ {e}) ·w−1 = (S ·w−1) ∪ {e}.
From the fact that |S′ · (wα)−1| > |S′|, we conclude that S · w−1 = Q, so S is totally extensible in
A .

Note that A ′ is synchronizing, since Q′ · α2 = {f, s} · α = {s}.
Now, we show that we can reduce the alphabet to two letters. Consider the application of the

Theorem 4 to Problem 9. Note that the reduction in the proof keeps the size of complement set
the same (i.e. |Q′ \ S′| = |Q′′ \ S′′|, where Q′′ and S′′ are the set and the subset of states in the
constructed binary automaton), so we can apply it.

Furthermore, we identify all the states of the form (s, a) for a ∈ Σ in the obtained binary
automaton to one sink state s′′. In this way, we get a synchronizing binary automaton (since A ′ is
synchronizing). The extending words remain the same, since the identified state s′′ is not reversely
reachable from S′′, and s′′ is not contained in the subset S′′.

Finally, we conclude that the proof generalizes to the case of any k ≥ 2 since we can add an
arbitrary number of states with the same transitions as e. �

Now, we focus on totally extending words for large subsets, which we study in terms of avoiding
small subsets. First we provide a complete characterization of single states that are avoidable:

Theorem 11. Let A = (Q,Σ, δ) be a strongly connected automaton. For every q ∈ Q, state q is
avoidable if and only if there exists p ∈ Q \ {q} and w ∈ Σ∗ such that q · w = p · w.

Proof. First, for a given q ∈ Q, let p ∈ Q \ {q} and w ∈ Σ∗ be such that q · w = p · w. Since the
automaton is strongly connected, there is a word w′ such that (p · w) · w′ = (q · w) · w′ = p. For
each subset S ⊆ Q such that p ∈ S we have p ∈ S · ww′. Moreover, if q ∈ S then |S · ww′| < |S|,
because {q, p} · ww′ = {p}. If q is not avoidable, then all subsets Q · (ww′), Q · (ww′)2, . . . contain
q and they form an infinite sequence of subsets of decreasing cardinality, which is a contradiction.

Now, consider the other direction. Suppose for a contradiction that a state q ∈ Q is avoidable,
but there is no state p ∈ Q\{q} such that {q, p} can be compressed. Let u be a word of the minimal
rank in A , and v be a word that avoids q. Then w = uv has the same rank and also avoids q. Let
∼ be the equivalence relation on Q defined with a word w as follows:

p1 ∼ p2 ⇐⇒ p1 · w = p2 · w.
The equivalence class [p]∼ for p ∈ Q is (p · w) · w−1. There are |Q/∼| = |Q · w| equivalence classes
and one of them is {q}, since q does not belong to a compressible pair of states. For every state
p ∈ Q, we know that |(Q · w) ∩ [p]∼| ≤ 1, because [p]∼ is compressed by w to a singleton and
Q · w cannot be compressed by any word. Note that every state r ∈ Q · w belongs to some class
[p]∼. From the equality |Q/ ∼ | = |Q · w| we conclude that for every class [p]∼ there is a state
r ∈ (Q ·w)∩ [p]∼, thus |(Q ·w)∩ [p]∼| = 1. In particular, 1 = |(Q ·w)∩ [q]∼| = |(Q ·w)∩{q}|. This
contradicts that w avoids q. �

Note that if A is not strongly connected, then every state from a strongly connected component
that is not a sink can be avoided. If a state belongs to a sink component, then we can consider
the sub-automaton of this sink component, and by Theorem 11 we know that given q ∈ Q, it is
sufficient to check whether q belongs to a compressible pair of states. Hence, Problem 11 can be
solved using the well-known algorithm (stage 1 in the proof of [17, Theorem 5]) computing the pair
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automaton and performing a breadth-first search with inverse edges on the pairs of states. It works
in Ø(|Σ|n2) time and Ø(n2 + |Σ|n) space.

We note that in a synchronizing automaton all states are avoidable except a sink state, which is
a state q such that q · a = q for all a ∈ Σ. We can check this condition and hence verify if a state
is avoidable in a synchronizing automaton in Ø(|Σ|) time.

The above algorithm does not find an avoiding word but checks avoidability indirectly. For larger
subsets than singletons, we construct another algorithm finding a word avoiding the subset, which
also generalizes the idea from Theorem 11. From the following theorem, we obtain that Problem 10
for a constant k ≥ 2 can be solved in polynomial time.

Theorem 12. Let A = (Q,Σ, δ), let r be the minimum rank in A over all words, and let S ⊆ Q
be a subset of size ≤ k. We can find a word w such that (Q · w) ∩ S = ∅ or verify that it does not
exist in Ø(|Σ|(nmin(r,k) +n2) +n3) time and Ø(nmin(r,k) +n2 + |Σ|n) space. Moreover the length of
w is bounded by Ø(nmin(r,k) + n3)).

Proof. Similarly to the proof of Theorem 11, let u be a word of the minimal rank r in A and let ∼
be the equivalence relation on Q defined by word u as follows:

p1 ∼ p2 ⇐⇒ p1 · u = p2 · u.
The equivalence class [p]∼ for p ∈ Q is the set (p · u) · u−1. There are |Q/∼| = |Q · u| equivalence
classes.

First, we prove a key observation that the image of each word starting with prefix u has exactly
one state in each equivalence class of ∼ relation. Let w = uw′. Then the word w has rank r and its
image is not compressible. For every state p ∈ Q, we know that |(Q · w) ∩ [p]∼| ≤ 1, because [p]∼
is compressed by u to a singleton and Q · w cannot be compressed by any word. Note that every
state q ∈ Q ·w belongs to some class [p]∼. From the equality |Q/ ∼ | = |Q ·u| = |Q ·w| we conclude
that for every class [p]∼ there is an unique state q[p]∼ ∈ (Q · w) ∩ [p]∼. This proves the mentioned
observation.

Now, we are going to show the following characterization: S is avoidable if and only if there exist
a subset Q′ ⊆ Q · u of size |S/∼| and a word w′ such that (Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for each s ∈ S.
The idea of the characterization is illustrated in Fig. 5.

Suppose that S is avoidable, and let w′ be an avoiding word for S. Then the word w = uw′ also
avoids S. Observe that Q ·w has an unique state q[p]∼ ∈ (Q ·w)∩ [p]∼ for each class [p]∼. Then for
every state s ∈ S, we have q[s]∼ ∈ [s]∼\S, because w avoids S and q[s]∼ ∈ Q ·w. Notice that [s]∼∩S
can contain more than one state, so the set {q[s]∼ | s ∈ S} has size |S/∼|, which is not always equal
to |S|. Therefore, there exists a subset Q′ ⊆ Q · u of size |S/∼| such that Q′ · w′ = {q[s]∼ | s ∈ S}.
Now, we know that for every s ∈ S we have q[s]∼ ∈ Q′ · w′ and q[s]∼ ∈ [s]∼ \ S. We conclude
that, if S is avoidable, then there exist a subset Q′ ⊆ Q · u of size |S/∼| and a word w′ such that
(Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for every s ∈ S.

Conversely, suppose that there is a subset Q′ ⊆ Q · u of size |S/∼| and a word w′ such that
(Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for every s ∈ S. Since in the image Q · uw′ there is exactly one state in
each equivalence class, we have ((Q ·u) \Q′) ·w′ ⊆ Q \

⋃
s∈S([s]∼) ⊆ Q \S, and by the assumption,

(Q′ · w′) ∩ S = ∅. Therefore, we get that uw′ is an avoiding word for S.
This characterization gives us Alg. 1 to find w or verify that S cannot be avoided.
Alg. 1 first finds a word u of the minimal rank. This can be done by in Ø(n3 + |Σ|n2) time and

Ø(n2 + |Σ|n) space by the well-known algorithm [17, Algorithm 1] generalized to non-synchronizing
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[s1]∼

s1

s6

[s2]∼

s2

[s3]∼

s3

s7

[s4]∼

s4

[s5]∼

s5

Figure 5. The states of an automaton divided by ∼. The states si ∈ S are marked
by bold border and the states q[si]∼ in the image Q · uw′ are filled. Every class
has exactly one state in the image but can contain more than one state from S. If
for each class this state is not in S, then S is avoided. This is not the case in this
example, because s5 ∈ Q · uw′.

Algorithm 1 Avoiding a subset.

Require: Automaton A (Q,Σ, δ) and a subset S ⊆ Q.
1: Find a word u of the minimal rank.
2: Compute |S/∼|.
3: for all Q′ ⊆ Q · u of size |S/∼| do
4: if there is a word w′ such that (Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for each s ∈ S then
5: return uw′.
6: end if
7: end for
8: return “S is unavoidable”.
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automata (cf. the proof of Proposition 8. For every subset Q′ ⊆ Q · u of size z = |S/∼| the
algorithm checks whether there is a word w′ mapping Q′ to avoid S, but using its ∼-classes. This
can be done by constructing the automaton A z(Qz,Σ, δz), where δz is δ naturally extended to
z-tuples of states, and checking whether there is a path from Q′ to a subset containing a state from
each class [s]∼ but avoiding the states from S. Note that since Q′ cannot be compressed, every
reachable subset from Q′ has also size |Q′|. The number of states in this automaton is

(
n
z

)
∈ Ø(nz).

Also, note that we have to visit every z-tuple only once during a run of the algorithm, and we can
store it in Ø(nz + |Σ|n) space. Therefore, the algorithm works in Ø(n3 + |Σ|(n2 + nz)) time and
Ø(n2 + nz + |Σ|n) space.

The length of u is bounded by Ø(n3), and the length of w′ is at most Ø(nz). Note that z =
|S/∼| ≤ min(r, |S|), where r is the minimal rank in the automaton. �

4.2. Bounded word length. We now turn our attention to the variants of Problem 9, Problem 10,
and Problem 11 where an upper bound on the length of the word is additionally given.

Problem 12 (Extensible large subset by short word). For a fixed k ∈ N\{0}, given A = (Q,Σ, δ),
a subset S ⊆ Q with |Q \S| ≤ k, and an integer ` given in binary representation, is S extensible by
a word of length at most `?

Problem 13 (Totally extensible large subset by short word). For a fixed k ∈ N \ {0}, given
A = (Q,Σ, δ), a subset S ⊆ Q with |Q \ S| ≤ k, and an integer ` given in binary representation, is
S totally extensible by a word of length at most `?

As before, both problems for k = 1 are equivalent to the following:

Problem 14 (Avoidable state by short word). Given A = (Q,Σ, δ), a state q ∈ Q, and an integer
` given in binary representation, is {q} avoidable by a word of length at most `?

Problem 12 for k ≥ 2 obviously remains PSPACE-complete. By the following theorem, we show
that Problem 14 is NP-complete, which then implies NP-completeness of Problem 13 for every
k ≥ 1 (by Corollary 14).

Theorem 13. Problem 14 is NP-complete, even if the automaton is simultaneously strongly con-
nected, synchronizing, and binary.

Proof. The problem is in NP, because we can non-deterministically guess a word w as a certificate,
and verify q /∈ Q · w in Ø(|Σ|n) time. If the state q is avoidable, then the length of the shortest
avoiding words is at most Ø(n2) [41]. Then we can guess an avoiding word w of at most quadratic
length and compute Q · w in Ø(n3) time.

In order to prove NP-hardness, we present a polynomial-time reduction from the problem of
determining the reset threshold in a specific subclass of automata, which is known to be NP-
complete [17, Theorem 8]. The reduction has two steps. First, we construct a strongly connected
synchronizing ternary automaton A ′ for which deciding about the length of an avoiding word is
equivalent to determining the existence of a bounded length reset word in the original automaton.
Then, based on the ideas from [9], we turn the automaton into a binary automaton A , which still
has the desired properties.

Let us have an instance of this problem from the Eppstein’s proof of [17, Theorem 8]. Namely,
for a given synchronizing automaton B = (QB, {α0, α1}, δB) and an integer m > 0, we are to
decide whether there is a reset word w of length at most m. We do not want to reproduce here the
whole construction from the Eppstein proof but we need some ingredients of it. Specifically, B is



20 PREIMAGE PROBLEMS FOR DETERMINISTIC FINITE AUTOMATA

an automaton with a sink state z ∈ QB, and there are two subsets S = {s1, . . . , sd} and F ⊆ QB

with the following properties:

(1) Each state q ∈ QB \ S is reachable from a state s ∈ S through a (directed) path in the
underlying digraph of B.

(2) For each state s ∈ S and each word w of length m, we have δB(s, w) ∈ F ∪ {z}.
(3) For each f ∈ F we have δB(f, α0) = δB(f, α1) = z.
(4) For each state s ∈ S and a non-empty word w ∈ {α0, α1}<m, we have δB(s, w) /∈ (F ∪ S).

In particular, it follows that each word of length m + 1 is reset. Deciding whether B has a reset
word of length m is NP-hard.

We transform the automaton B into A ′ as follows. First, we add the subset R = {r0, r1, . . . , rm}
of states to provide that z is not avoidable by words of length less than m+1. The transitions of both
letters are δA ′(ri, α0) = δA ′(ri, α1) = ri+1 for i = 0, . . . ,m−1, and δA ′(rm, α0) = δA ′(rm, α1) = z.

Secondly, we add a set of states S′ = {s′1, . . . , s′d} of size d = |S| and a letter α2 to make the
automaton strongly connected. Letters α0 and α1 map S′ to the corresponding states from S, that
is, δA ′(s

′
i, α0) = δA ′(s

′
i, α1) = si ∈ S. Letter α2 connects states r0, s

′
1, s
′
2 . . . , s

′
d into one cycle, i.e.

δA ′(r0, α2) = s′1, δA ′(s
′
1, α2) = s′2, . . . , δA ′(s

′
d−1, α2) = s′d, δA ′(s

′
d, α2) = r0.

We also set δA ′(sd, α2) = r1, δA ′(z, α2) = r0, and all the other transitions of α2 we define equal to
the transitions of α0.

Finally, we transform A ′ to the final automaton A = (Q, {a, b}, δ). We encode letters α0, α1, α2

by 2-letter words over {a, b} alike it was done in [9]. Namely, for each state q ∈ QA ′ \ (F ∪ {z}),
we add two new states qa, qb and define their transitions as follows:

δ(q, a) = qa, δ(qa, a) = δ(qa, b) = δA ′(q, α0),

δ(q, b) = qb, δ(qb, a) = δA ′(q, α1), δ(qb, b) = δA ′(q, α2).

Then, aa, ab correspond to applying letter α0, ba corresponds to applying letter α1, and bb corre-
sponds to applying letter α2. Denote this encoding function by φ, i.e. φ(α0) = aa, φ(α1) = ba, and
φ(α2) = bb. We also extend φ to words over {α0, α1, α2}∗ as usual. For simplicity, we denote also
φ(q) = {q, qa, qb}, and extend to subsets of QA ′ as usual.

It remains to define the transitions for F ∪ {z}. We set δ(z, a) = z, δ(z, b) = r0, and δ(f, a) =
δ(f, b) = z for each f ∈ F . Automaton A is shown in Fig. 6.

Observe that A ′ is strongly connected: z is reachable from each state, from z we can reach r0

by α2, from r0 we can reach every state from S′ by applying a power of letter α2, and we can reach
every state of S from the corresponding state from S′. Then every state from QB is reachable from
a state from S by Property 1. It follows that A is also strongly connected, since for every q ∈ QA ′ ,
every state from φ(q) is reachable from q, and since for F ∪ {z} the outgoing edges correspond to
those in A.

Observe that A is synchronizing: We claim that a4m+6 is a reset word for A . Indeed, aa does
not map any state into φ(S′). Every word of length m+ 1 is reset for B and synchronizes to z, in
particular, αm+1

0 . Since φ(αm+1
0 ) = a2m+2 does not contain bbb, state z cannot go to S′ by a factor

of this word. Hence, we have

δ(Q, a2m+4) ⊆ {z} ∪ φ(R).

Then, finally, a2(m+1) compresses {z} ∪ φ(R) to z.
Now, we claim that the original problem of checking whether B has a reset word of length m is

equivalent to determining whether z can be avoided in A by a word of length at most 2m+ 3.
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Figure 6. The automaton A obtained from A ′ in the proof of Theorem 13. Here
every state q represents φ(q), and we have α0 : aa, ab, α1 : ba, and α2 : bb.

Suppose that B has a reset word w of length m, and consider u = φ(α0w)b. Note that φ(α0) = aa
does not map any state into φ(S′) nor into φ(r0). Hence, we have

δ(Q,φ(α0)) ⊆ φ(QB) ∪ φ(R \ {r0}).

Due to the definition of φ, factor bbb cannot appear in the image of words from {α0, α1}∗ by φ.
Henceforth, z cannot go to S′ by a factor of φ(w). Since |φ(w)| = 2m and to map z into φ(rm) we
require a word of length 2m + 1, the factors of φ(w) do not map z into φ(rm). Since also w is a
reset word for B that maps every state from QB to z, we have

δ(φ(QB), φ(w)) ⊆ {z} ∪ φ(R \ {rm}).
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By the definition of the transitions on R∪{z} (only φ(α2) maps r0 outside), and since |φ(w)| = 2m,
we also have

δ(φ(R \ {r0}), φ(w)) ⊆ {z} ∪ φ(R \ {rm}).
Finally, we get that δ({z} ∪ φ(R \ {rm}), b) ⊂ R, thus u avoids z.

Now, we prove the opposite direction. Suppose that state z can be avoided by a word u of length
at most 2m+ 3. Then, by the definition of the transitions on R, |u| = 2m+ 3 because z ∈ δ(R,w)
for each w of length at most 2(m+ 1). Let u = u′u′′u′′′ with |u′| = 2, |u′′| = 2m, and |u′′′| = 1.

For words w ∈ {a, b}∗ of even length, we denote by φ̃−1(w) the inverse image of encoding φ with

respect to the definition on A ′, that is, φ̃−1(aa) = φ̃−1(ab) = α0, φ̃−1(ba) = α1, φ̃−1(bb) = α2,
which is extended to words of even length by concatenation.

First notice that φ̃−1(u′) 6= α2. Otherwise {z, r0, r1, r2, . . . , rm} ⊆ δ(S′∪R∪{z}, φ̃−1(u′)) whence

by the definition of R the word u′′u′′′ of length 2m+ 1 cannot avoid z. Therefore φ̃−1(u′) 6= α2 and
S ⊆ δ(S ∪ S′, u′).

If α2 is the second letter of φ̃−1(u), then sd goes to r1 and we get {r1, r2, . . . , rm, z} in the image
of the prefix of u of length 4. Then, due to the definition of R, no word of length at most 2m can
avoid z.

Hence, the first two letters of φ̃−1(u) are either α0 or α1.
By Property 2 of B, every zero-one word of length m maps s ∈ S into {z} ∪ F . Since the letter

α2 acts like α0 on QB \ S in A ′ and φ̃−1(u′′) starts with α0 or α1, u′′ maps S into {z} ∪ F . If u′′

maps some state to F , then by Property 3 u cannot avoid z. Hence, φ̃−1(u′′) with all α2 replaced
with α0 must be a reset word for B. �

By a corollary from Theorem 13 and Theorem 12, we complete our results about extending
subsets.

Corollary 14. Problem 13 is NP-complete, Problem 4 is NP-complete when the automaton is
synchronizing, and Problem 12 is NP-complete when the automaton is strongly connected and syn-
chronizing. They remain NP-complete when the automaton is simultaneously strongly connected,
synchronizing, and binary.

Proof. NP-hardness for all the problems follows from Theorem 13, since we can set S = Q \ {q}.
Problem 13 is solvable in NP as follows. By Theorem 12 if there exists a totally extending word,

then there exists such a word of polynomial length. Thus we first run this algorithm, and if there
is no totally extending word then we answer negatively. Otherwise, we know that the length of
the shortest totally extending words is polynomially bounded, so we can nondeterministically guess
such a word of length at most ` and verify whether it is totally extending.

Similarly, Problem 4 is solvable in NP for synchronizing automata. For a synchronizing automa-
ton there exists a reset word w of length at most n3 [45]. Furthermore, if S is totally extensible,
then there must exist a reset word w such that Q · w = {q} ⊆ S, which has length at most
n3 + n− 1. Therefore, if the given ` is larger than this bound, we answer positively. Otherwise, we
nondeterministically guess a word of length at most ` and verify whether it totally extends S.

By the same argument for Problem 12, if the automaton is strongly connected and synchronizing,
then for a non-empty proper subset of Q using a reset word we can always find an extending word
of length at most n3 + n− 1, thus the problem is solvable in NP. �

5. Resizing a subset

In this section we deal with the following two problems:
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Problem 15 (Resizable subset). Given an automaton A = (Q,Σ, δ) and a subset S ⊆ Q, is S
resizeable?

Problem 16 (Resizable subset by short word). Given an automaton A = (Q,Σ, δ), a subset
S ⊆ Q, and an integer ` given in binary representation, is S resizeable by a word of length at most
`?

In contrast to the cases |S · w−1| > |S| and |S · w−1| < |S|, there exists a polynomial-time
algorithm for both these problems. Furthermore, we prove that if S is resizeable, then the length
of the shortest resizing words is at most n− 1.

To obtain a polynomial-time algorithm, one could reduce Problem 15 to the multiplicity equiva-
lence of NFAs, which is the problem whether two given NFAs have the same number of accepting
paths for every word. It can be solved in Ø(|Σ|n4) time by a Tzeng’s algorithm [44], assuming
that arithmetic operations on real numbers have a unitary cost; this algorithm relies on linear al-
gebra methods. Alternatively, it can be solved in Ø(|Σ|2n3) time by an algorithm of Archangelsky
[5]. It was noted by Diekert that the Tzeng’s algorithm could be improved to Ø(|Σ|n3) time [5]
(unpublished).

However, to obtain the tight upper bound n− 1 on the length we need to design and analyze a
specialized algorithm for our problem. It is also based on the Tzeng’s linear algebraic method.

Theorem 15. Assuming that in our computational model every arithmetic operation has a unitary
cost, there is an algorithm with Ø(|Σ|n3) time and Ø(|Σ|n + n2) space complexity, which, given
an n-state automaton A = (Q,Σ, δ) and a subset S ⊆ Q, returns the minimum length ` such
that |S · w−1| 6= |S| for some word w ∈ Σ≤` if it exists or reports that there is no such a word.
Furthermore, we always have 1 ≤ ` ≤ n− 1.

Proof. The idea of the algorithm is based on the ascending chain condition, often used for automata
(e.g. [27, 33, 41]). We need to introduce a few definitions from linear algebra. We associate a natural
linear structure with automaton A . By Rn we denote the real n-dimensional linear space of row
vectors. The value at an i-th entry of a vector v ∈ Rn we denote by v(i). Without loss of generality,
we assume that Q = {1, 2, . . . , n} and then assign to each subset K ⊆ Q its characteristic vector
[K] ∈ Rn, whose i-th entry v(i) = 1 if i ∈ K, and v(i) = 0, otherwise. By span(S) we denote the
linear span of S ⊆ Rn. The dimension of a linear subspace L is denoted by dim(L).

Each word w ∈ Σ∗ corresponds to a linear transformation of Rn. By [w] we denote the matrix
of this transformation in the standard basis [1], . . . , [n] of Rn. For example, if A is the automaton
from Fig. 1, then

[a] =

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, [b] =

(
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

)
, [ba] =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

Clearly, as the automaton is deterministic, the matrix [w] has exactly one non-zero entry in each
row. In particular, [w] is row stochastic, which means that the sum of entries in each row is equal
to 1. For every words u, v ∈ Σ∗, we have [uv] = [u][v]. By [w]T we denote the transpose of the
matrix [w]. The transpose corresponds to the preimage by the action of a word; one verifies that
[S · w−1] = [S][w]T . For two vectors v1, v2 ∈ Rn, we denote their usual inner (scalar) product by
v1 · v2.
Algorithm description. Now, we design the algorithm, which consists of two parts.

First, consider the auxiliary Filter function shown in Algorithm 2. Its goal is to filter a stream
of vectors g ∈ Rn, keeping only a subset of those vectors that are linearly independent. To perform
this subroutine efficiently, we maintain a sequence of vectors G (basis) and a sequence of indices I,
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which are empty at the beginning. Every time, we use the Gaussian approach to reduce the matrix
of vectors from G to a pseudo-triangular form. The sequence of (column) indices I = (i1, i2, . . . , ik)
and vectors G = (g1, . . . , gk) have the property that for each j, 1 ≤ j ≤ k, there is exactly one
vector from {g1, . . . , gk} with non-zero ij-th entry, which contains 1.

Algorithm 2 Filter.

1: G← (), I ← (). . Global initialization
2: function Feed(g ∈ Rn)

3: g′ ← g −
∑k
r=1 g(ir) · gr

4: if g′ = 0 then
5: return False
6: else
7: i′ ← min(i | g(i) 6= 0)
8: g′ ← g′/g′(i′)
9: for all gr from G do

10: gr ← gr − gr(i′) · g′
11: end for
12: Append g′ to G
13: Append i′ to I
14: return True
15: end if
16: end function

We begin with the first non-zero vector g1 and put its smallest index i of a non-zero entry to
I, and the vector itself is normalized to have 1 in the i-th entry. Now, suppose we are given a
vector g and we have already built G = (g1, . . . , gk) and I = (i1, i2, . . . , ik) with aforementioned

properties. Then, we just compute g′ = g−
∑k
r=1 g(ir) · gr. Due to the construction, all the entries

at the coordinates from I in g′ are zero. If there is a non-zero coordinate left in g′, then we need to
normalize g′, and it to G, and update the previous vectors. So we take the smallest coordinate i′

whose entry is non-zero in g′, normalize g′ to have 1 in the i′-th entry, and add g′ to G. To update
the previous vectors, for each r, 1 ≤ r ≤ k, we set gr ← gr − gr(i′) · g′, which results in that gr
has now zero in the i′-th entry, and finally we add i′ to I. In the opposite case, if g′ = 0, then g
belongs to span(G) and thus should not be added.

Note that at any point, the set G is a basis of the linear span of all the processed vectors, which
is a straightforward corollary from using the Gaussian approach.

We now turn to the main procedure of our algorithm, which is shown in Algorithm 3. Our
goal is to find the minimum length of a word w such that |S · w−1| 6= |S|. This is equivalent to
[S] · [Q][w] 6= |S|. We do this by using a wave approach as in breadth-first search. We start by
feeding [Q] to Filter and let W0 = {[Q]}. Then in each iteration 1 ≤ i ≤ n − 1, we consider the
set of vectors D = {g[a] | g ∈ Wi−1, a ∈ Σ} and build a new subset of independent vectors Wi as
follows. For each vector z from D, we first check whether [S] · z = |S|. If this is not the case, we
claim that i is the length of a shortest word which changes the size of the preimage of S. Otherwise,
we feed z to Filter and add it to (initially empty) Wi if the corresponding basis vector was added
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Algorithm 3 Resizing a subset.

Require: An automaton A = (Q,Σ, δ), a subset S ⊆ Q
1: W0 ← {[Q]}
2: for i from 1 to n− 1 do
3: D ← {g[a] | g ∈Wi−1, a ∈ Σ}
4: Wi ← {}
5: for all z ∈ D do
6: if [S] · z 6= |S| then
7: return i
8: else if Feed(z) then
9: Add z to Wi

10: end if
11: end for
12: if Wi = ∅ then
13: return None
14: end if
15: end for
16: return None

to G. Note that the current G after the i-th iteration is equal to
⋃i
j=0Wi. We stop if either Wi = ∅

or the last (n− 1)-th iteration ends, which means that there is no resizing word.
Correctness. To prove the correctness, note that by the construction all vectors from Wi can be
written as [Q][w] for some word w of length i. Thus, if we have found a vector z ∈ D such that
[S] · z 6= |S|, this means there is a word w of length i such that

[S] · [Q][w] = [S · w−1] · [Q] = |S · w−1| 6= |S|.

It remains to show that if we get to an i-th iteration, then there is no word w of length less than
i which violates [S] · [Q][w] = |S|. For r ≥ 0, denote Ur =

⋃r
i=0Wi. We prove by induction that

for each word w of length r < i, [Q][w] ∈ span([Q][Ur]). For r = 0 this is trivial. If r > 0, then
w = w′a for some a ∈ Σ and by induction [Q][w′] ∈ span([Q][Ur−1]), that is,

[Q][w′] =

r−1∑
j=0

∑
u∈Wj

λu[Q][u],

for some values λu ∈ R. It follows that

[Q][w′a] = [Q][w′][a] =

r−1∑
j=0

∑
u∈Wj

λu[Q][u][a] = gv +
∑

u∈Wr−1

λu[Q][u][a],

where gv ∈ span([Q][Ur−1]). By the construction, we feed all vectors of the form [Q][u][a] for
u ∈Wr−1 and a ∈ Σ to Filter function. Since the added vectors to G, and so to Wr, are a linear
basis of the linear span of all the processed vectors, every vector [Q][u][a] belongs to span([Q][Ur]),
which proves the induction step.
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Thus, if we had a word of length w of length less than i with [S] · [Q][w] 6= |S|, we would have
[Q][w] =

∑
u∈Ui−1

λu[Q][u] for some λu ∈ R. Now, on the one hand we have

(1) n = [Q][w] · [Q] =
∑

u∈Ui−1

λu([Q][u] · [Q]) = n
∑

u∈Ui−1

λu,

while on the other hand we have

|S| 6= [Q][w] · [S] =
∑

u∈Ui−1

λu[Q][u] · [S] =
∑

u∈Ui−1

λu|S|

contradicting (1).
On the other hand, ifWi is empty for an i < n, this means that span([Q][Σ≤i]) = span([Q][Σ≤i−1])

and by the linear extending argument we know that the same holds for all j ≥ i, hence there cannot
be a word that violates [S] · [Q][w] = |S|. Note that if there is no resizing word, then we always
have this case for some i < n, because dim(span([Q][w] | w ∈ Σ∗)) ≤ n− 1 and the vectors from all
Wj are a basis.

We also conclude that i cannot exceed n− 1, which proves that the shortest resizing words have
length at most n − 1. Note that the upper bound n − 1 is the best possible, at least in the cases
|S| ∈ {1, n− 1}, which can be observed in the Černý automata (see Fig. 1 with S = {3}).
Complexity. Assume that in our computational model every arithmetic operation has a unitary
cost. Then clearly a k-th call of Feed can be performed in Ø(kn)-time. However, note that, if
an exact computation is performed using rational numbers, then we may require to handle values
of exponential order, and the total complexity would depend on the algorithms used for particular
arithmetic operations.

Notice that at an i-th iteration, we call Feed at most |Σ||Wi| times, since, by the construction,
sets Wi are disjoint because the corresponding vectors are independent. Since the complexity of
Feed is in Ø(n2), all calls work in Ø(|Σ|n3)-time. The other operations took amortized time at
most Ø(|Σ|n2), which is the cost of computing sets D (at most n vectors in sets Wi; note that
one g[a] can be computed in Ø(n) time, because the automaton is deterministic). Thus, the whole
algorithm works in Ø(|Σ|n3) time.

The space complexity is at most Ø(|Σ|n+n2), which is caused by storing the automaton and at
most Ø(n2) vectors in the sets Wi, G, and I. �

The running time Ø(|Σ|n3) of the algorithm is quite large (and may require large arithmetic as
discussed in the proof), and it is an interesting open question whether there is a faster algorithm
for Problems 15 and 16.

We note that Problem 15 becomes trivial when the automaton is synchronizing: A word resizing
the subset exists if and only if S 6= ∅ and S 6= Q, because if w is a reset word and {q} = Q ·w, then
S ·w−1 is either Q when q ∈ S or ∅ when q /∈ S. This implies that there exists a faster algorithm in
the sense of expected running time when the automaton over at least a binary alphabet is drawn
uniformly at random:

Remark 16. The algorithm from [10] checks in expected Ø(n) time (regardless of the alphabet
size, which is not fixed) whether a random automaton is synchronizing, and it is synchronizing with
probability 1 − Θ(1/n0.5|Σ|) (for |Σ| ≥ 2). Then only if it is not synchronizing we have to use
the algorithm from Theorem 15. Thus, Problem 16 can be solved for a random automaton in the
expected time

Ø(|Σ|n3) ·Θ(1/n0.5|Σ|) + Ø(n) = Ø(|Σ|n3−0.5|Σ|) ≤ Ø(n2).
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Note that the bound is independent on the alphabet size, and this is because a random automaton
with a growing alphabet is more likely to be synchronizing, so less likely we need to use Theorem 15.

6. Conclusions

We have established the computational complexity of problems related to extending words. In-
directly, our results about the complexity imply also the bounds on the length of the shortest
compressing/extending words, which are of separate interest. In particular, PSPACE-hardness
implies that the shortest words can be exponentially long in this case, and polynomial determin-
istic or nondeterministic algorithms in our proofs imply polynomial upper bounds. For example,
the question about the length of the shortest totally extending words (in the equivalent terms
of compressing Q to a subset included in S) was recently considered [20], and from our results
(PSPACE-completeness) we could infer an answer that the tight upper bound is exponential. The
algorithm from Theorem 12 implies also a bound on the length of the shortest avoiding words for a
subset. That length is at least cubic, which is useless in the case of synchronizing automata, since
reset words can be used as avoiding words and there exists a cubic upper bound on the length of
the shortest reset words [38, 41].

Some problems are left open. In Tables 1 and 2 there is a gap. The complexity of the existence
of an extending word when the subset is large (Problem 9) and the automaton is strongly connected
is unknown. The same holds in the case when the length of the extending word is bounded (Prob-
lem 12); now, we can only conclude that it is NP-hard, which follows from Corollary 14. The proof
of Theorem 10 relies on the automaton being not strongly connected.

Further questions may concern other complexity classes like NL (cf. Theorem 6). Also, one
could try improving the complexity of algorithms, in particular, those from Theorems 11 and 12
for avoiding words, and also that from Theorem 15 for resizing words.
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[40] B. Steinberg. The Černý conjecture for one-cluster automata with prime length cycle. Theoretical Computer

Science, 412(39):5487–5491, 2011.
[41] M. Szyku la. Improving the Upper Bound on the Length of the Shortest Reset Word. In Symposium on Theoretical

Aspects of Computer Science, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2018.
[42] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972.
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