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On approximate pure Nash equilibria in weighted

congestion games with polynomial latencies

Ioannis Caragiannis∗ Angelo Fanelli†

Abstract

We consider weighted congestion games with polynomial latency functions of maximum
degree d ≥ 1. For these games, we investigate the existence and efficiency of approximate
pure Nash equilibria which are obtained through sequences of unilateral improvement moves
by the players.

By exploiting a simple technique, we firstly show that these games admit an infinite set
of d-approximate potential functions. This implies that there always exists a d-approximate
pure Nash equilibrium which can be reached through any sequence of d-approximate im-
provement moves by the players. As a corollary, we also obtain that, under mild assumptions
on the structure of the players’ strategies, these games also admit a constant approximate
potential function. Secondly, using a simple potential function argument, we are able to
show that a (d+ δ)-approximate pure Nash equilibrium of cost at most (d+1)/(d+ δ) times
the cost of an optimal state always exists, for every δ ∈ [0, 1].

1 Introduction

Among other solution concepts, the notion of the pure Nash equilibrium plays a central role in
Game Theory. Pure Nash equilibria in a game characterize situations in which no player has an
incentive to unilaterally deviate from the current situation in order to achieve a higher payoff.
Unfortunately, it is well known that there are games that do not have any pure Nash equilib-
rium. Furthermore, even in games where the existence of pure Nash equilibria is guaranteed,
these equilibria could be very inefficient compared to solutions dictated by a central authority.
Such negative results question the importance of pure Nash equilibria as solution concepts that
characterize the behavior of rational players.

One way to overcome the limitations of the non-existence and inefficiency of pure Nash
equilibria is to consider a relaxation of the equilibrium condition. This relaxation leads to the
concept of approximate pure Nash equilibrium; it characterizes situations where no player can
significantly improve her payoff by unilaterally deviating from her current strategy. Approximate
pure Nash equilibria can accommodate small modeling inaccuracies (e.g., see the discussion in
[8]), therefore they may be more desirable as solution concepts in practical settings. Besides
existence and efficiency, approximate pure Nash equilibria are an appealing alternative also from
a computational point of view (e.g., [3, 4, 5, 7, 13]).

In this work, we investigate the existence and efficiency of approximate pure Nash equilibria
in weighted congestion games, with the additional requirement that such equilibria are obtained
through sequences of unilateral improvements by the players. This class of games forms a general
framework which models situations where a group of agents compete for the use of a set of shared
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resources. In the following, we define weighted congestion games and give a formal statement of
the two problems we address. We continue this section with a discussion of the related literature
and a detailed presentation of our contribution. This discussion includes formal definitions that
are necessary in the presentation of our problem statement and the comparison of our results
to related work.

Weighted congestion games. A typical example of a subclass of games in this family is
that of weighted congestion games in networks, where each player has alternative paths that
connect two nodes of the network as strategies to select. Each player selfishly chooses a path
trying to optimize a local objective. Thus, each network link corresponds to a resource that
can be shared among the players in the network. Each link incurs a latency to all players who
use it; this latency depends on the total weight (congestion) of the players that use the link
according to a resource-specific, non-negative, and non-decreasing latency function. Therefore,
among the given set of paths, each player aims to select one that minimizes her individual total
cost, i.e., the sum of the latencies on the links in her path. Departing from games in networks,
we can generalize the set of strategies of a player to any combinatorial structure; in weighted
congestion games, we generally assume that the set of strategies of a player is a subset of the
power set of a ground set of resources. A particular setting is when latencies are polynomial
functions of the total weights of the users; we refer to this setting as weighted congestion games
with polynomial latencies. In the following we give a formal description of the games in this
class.

A weighted congestion game with polynomial latencies of maximum degree d ≥ 1
(we use WCG(d) to denote the class of these games) consists of a set of players
N = {1, 2, . . . , |N |} and a set of resources E = {1, 2, . . . , |E|}. Each player i is
associated with a weight wi ∈ R

>0 and a non-empty set of strategies Si ⊆ 2E . Every
resource e is described by a pair (ae, ke) ∈ R

>0 × {1, 2, . . . , d}, which encodes the
latency function ℓe : 2N 7→ R

≥0 associated with e, mapping every subset of players
P ⊆ N to the non-negative real; specifically this value is given by the product of ae
with the ke-th power of the total weights of the players in P , i.e.,

ℓe(P ) = ae





∑

j∈P

wj





ke

.

We refer to ae and ke as the coefficient and the degree of resource e, respectively,
and assume that d = maxe∈E ke. The set of states of the game is denoted by S =
S1 × S2 × . . .× S|N |. For every state s ∈ S, we refer to its i-th component, that is the
strategy played by player i in s, by s(i). For every state s and resource e, we denote
by Le(s) the set of players using resource e in s, i.e., Le(s) = {j ∈ N : e ∈ s(j)}. We
refer to the sum of the weights of all players in Le(s) as the congestion of e in s. For
every state s, the cost incurred by player i in s is

ci(s) =
∑

e∈s(i)

ℓe(Le(s)).

Notice that, by definition, ci(s) > 0 for every player i and state s. For τ > 0, we say
that the game is τ -congested if for every resource e ∈ E, every state s ∈ S, and every
player i ∈ Le(s), it holds that

∑

j∈Le(s)\{i}
wj ≥ τkewi.
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Equilibria, potential functions, and the price of stability. We now introduce concepts
that are necessary to formally state our problems and present our results. For every state
s ∈ S, every player i ∈ N and every s ∈ Si, we denote by [s−i, s] the new state obtained from
s by setting the i-th component, that is the strategy of i, to s and keeping all the remaining
components unchanged, i.e., [s−i, s](i) = s and [s−i, s](j) = s(j) for every player j 6= i.

The transition from s to [s−i, s] is called a move of player i from state s. For α ≥ 1, we
say that a transition from s to [s−i, s] is an α-improvement move for i if αci([s−i, s]) < ci(s).
For α ≥ 1, we say that a state-valued function Γ : S 7→ R

≥0 is an α-approximate potential
function for the game if it strictly decreases at every α-improvement move, i.e., Γ([s−i, s]) < Γ(s)
whenever αci([s−i, s]) < ci(s). If the game admits an α-approximate potential function Γ, then
every sequence of α-improvement moves leads to a local optimum of Γ, i.e., to a state in which
no further α-improvement move can be performed. Such a state is called α-approximate pure
Nash equilibrium. Formally, for α ≥ 1, we say that a state s ∈ S is an α-approximate pure Nash
equilibrium if, for every player i ∈ N and every strategy s ∈ Si, we have ci(s) ≤ αci([s−i, s]); if
α = 1, we simply refer to s as an exact pure Nash equilibrium, or simply pure Nash equilibrium,
rather than a 1-approximate pure Nash equilibrium. For any α ≥ 1 such that the game admits
an α-approximate potential function, we denote by Eα ⊆ S the set of all α-approximate pure
Nash equilibria of the game.

The social cost of state s ∈ S is the weighted sum of the players’ costs, i.e., C(s) =
∑

i∈N wici(s). Notice that, by summing over the resources instead of the players, C(s) can

be rewritten as C(s) =
∑

e∈E ae

(

∑

j∈Le(s)
wj

)ke+1
. Every state s ∈ S that minimizes the

social cost is called a social optimum; we denote by OPT the set of social optima of the game,
i.e., OPT = argmins∈S C(s). For any o ∈ OPT and any α ≥ 1 such that Eα 6= ∅, we define the

α-approximate price of stability of the game as PoSα = mine∈Eα
C(e)
C(o) .

Problem statements. We consider the following two problems for games in WCG(d) .

(I) Existence of convergent sequences of α-improvement moves. In this
problem, we seek for a reasonably small α ≥ 1 for which any sequence of α-
improvement moves converges to an α-approximate pure Nash equilibrium. This
would be equivalent to saying that the game admits an α-approximate potential
function, whose value decreases at every α-improvement move and whose local
optima coincide with α-approximate pure Nash equilibria.

(II) Bounding the approximate price of stability. In this problem, for any
value of α ≥ 1 for which the game admits an α-approximate pure Nash equilib-
rium, we aim at bounding its α-approximate price of stability.

Notice that problem (I) is more stringent than the problem of establishing whether the game
admits an approximate pure Nash equilibrium. Here, we also require that such an equilibrium
can be achieved through a sequence of α-improvement moves.

Related work. The unweighted setting (i.e., when all players have unit weights) with general
latencies has been widely studied in the literature. For this case, Rosenthal [21] proved that
there exists a 1-approximate potential function; this immediately implies that every sequence
of 1-improvement moves by the players leads to a pure Nash equilibrium. Unfortunately, this
nice property does not carry over when players have weights. In fact, if there are at least
three players and we restrict to the set of twice continuously differentiable latency functions,
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a 1-approximate potential function exists only when the latencies are linear or exponential
[14, 18, 20]. For polynomial latencies of constant maximum degree strictly higher than 1, pure
Nash equilibria may not exist [14, 16, 19]. More generally, for arbitrary non-decreasing latencies,
the problem of deciding whether a given instance has a pure Nash equilibrium is NP-hard [12].

Caragiannis et al. [5] proved that any game in WCG(d) admits a d!-approximate potential
function. This result has been subsequently improved considerably by Hansknecht et al. [17],
who showed that any game in WCG(d) admits a (d+1)-approximate potential function. Their
potential function is defined in a parameterized way, using an ordering of the players as param-
eter. The particular (d+1)-approximate potential function is obtained by ordering the players
in terms of their weights.

The 1-approximate price of stability for games in WCG(d) has been recently investigated
by Christodoulou et al. in [10]; they provided a lower bound of Ω

(

(d/ log d)d+1
)

, matching the
upper bound of Aland et al. [1]. The authors of [10] also showed bounds on the α-approximate
price of stability. Specifically, they proved that any game in WCG(d) with weights ranging in

[1, wmax] has an α-approximate pure Nash equilibrium, for any α in the range
[

2(d+1)wmax

2wmax+d+1 , d+ 1
]

,

whose cost is at most 1+(d+1
α

−1)wmax times the cost of any optimal state. Their proof exploits
a potential function called Faulhaber’s potential. For the unweighted setting, tight bounds of
1.577 for linear latencies [6, 11] and of Θ(d) for polynomial latencies of degree d ≥ 1 [9] are
known.

Our contribution. Concerning problem (I), we show (in Theorem 2) that games in WCG(d)
admit an infinite set of d-approximate potential functions. This implies that every sequence of
d-improvement moves by the players always leads to a d-approximate pure Nash equilibrium.
This result is achieved using the technique that is formalized in Lemma 1 and the class of state-
valued functions Φγ , parametrized by γ, defined in Definition 1. Essentially, while Definition
1 provides a simple interesting class of candidate potential functions, Lemma 1 gives a local
condition for each resource to determine the approximation guarantee achieved by a given state-
valued function. So, by exploiting Lemma 1, in Theorem 2 we are able to show that the class
Φγ contains a large subclass of (d+ δ)-approximate potential functions, for every δ ∈ [0, 1].

We remark that, our potential functions are substantially different from the potential func-
tion proposed in [17]. In particular, the potential in [17] is obtained in a Rosenthal-like fashion,
by ordering the players and summing their costs assuming that each player is affected only
by the congestion caused by preceding players in the ordering. In contrast, our potential is
much simpler and is obtained by a suitable scaling of the coefficients of the polynomials in the
definition of the latency functions. As a matter of fact, we define potentials which, despite their
simplicity, provide an approximation factor that approaches d (instead of d + 1) from below,
although it is worth noticing that, for small values of d (e.g., d ∈ {2, 3, 4}), the approximation
shown in [17] coincides with the one guaranteed by Φ1 (see our discussion in Section 2 and Table
1 in [17]). As a corollary of part (b) of Theorem 2, we show (in Corollary 4) that the social
optimum of the game is a (d + 1)-approximate pure Nash equilibrium. This result has been
shown before in [10]; our aim with restating it here is to highlight the merit of the class of state-
valued functions Φγ as an effective tool to effortlessly prove an important property of congestion
games. More importantly, as an exclusive property of our class of potential functions, the proof
of Theorem 2 implies, as stated by Corollary 5, that τ -congested games admit approximate
potential functions with considerably better approximation guarantees (approaching 1 for very
high congestion).

The class of functions Φγ serves also as an essential tool to give an answer to problem (II).
More specifically, by exploiting the collection of (d + δ)-approximate potentials in the class of
functions Φγ , we are able to show (Theorem 7) an upper bound of (d + 1)/(d + δ) for the
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(d + δ)-approximate price of stability, for every δ ∈ [0, 1]. To prove this bound, we use the
standard potential function argument. Specifically, we first bound (Lemma 6) the value of any
(d+ δ)-approximate potential function for a given state in terms of the social cost of that state;
if we then perform a sequence of (d + δ)-improvement moves starting from an optimal state,
the potential does not increase, and hence we can bound the cost of any (d + δ)-approximate
pure Nash equilibrium that we reach. Notice that our bound does not depend on the range of
the players’ weights and significantly improves the bound provided in [10], by making use of a
different and much simpler potential function.

Roadmap. The rest of the paper is structured as follows. In Section 2 we first present a simple
technique to bound the approximation guarantee of a given state-valued function. Subsequently,
we show that a class of state-valued functions provide a good approximation. Then, the bound
on the approximate price of stability is presented in Section 3. We conclude with a discussion
on open problems and possible extensions of our results in Section 4.

2 Approximate potential functions

The main result of this section is given by Theorem 2, which identifies a class of d-approximate
potential functions. Before presenting this result, in Lemma 1 we illustrate the tool we use
to design an approximate potential function; this tool gives a local condition to each resource
to determine the approximation guarantee of a given state-valued function. We conclude the
section with two corollaries. The first (Corollary 4) states that the social optimum of the game
is always a (d+1)-approximate pure Nash equilibrium. The second (Corollary 5) indicates that,
under mild conditions, the game always admits a constant approximate potential function.

Lemma 1. Let Γ : S 7→ R
>0 be a state-valued function such that Γ(s) =

∑

e∈E aeΓe

(

Le(s)
)

,
where Γe : 2

N 7→ R
>0. If, for every resource e ∈ E, every non-empty subset of players P ⊆ N

and every player i ∈ P , there exist λ, υ ∈ R
>0, with λ ≤ υ, such that

wiℓe(P )

ae

(

Γe(P )− Γe(P \ {i})
) ∈ [λ, υ] (1)

then Γ is a
(

υ
λ

)

-approximate potential function.

Proof. Let us consider a state s ∈ S and a player i. Let us assume that i can perform an
υ
λ
-improvement move by replacing strategy s(i) with s 6= s(i), i.e., υ

λ
ci([s−i, s]) < ci(s). In order

to prove the claim we need to show that Γ([s−i, s]) < Γ(s). To this aim, let us bound the
expression Γ([s−i, s])− Γ(s). By the definition of the state-valued function Γ, we have

Γ([s−i, s])− Γ(s) =
∑

e∈E

aeΓe

(

Le([s−i, s])
)

−
∑

e∈E

aeΓe

(

Le(s)
)

=
∑

e∈E

ae

(

Γe

(

Le([s−i, s])
)

− Γe

(

Le(s)
)

)

=
∑

e∈s\s(i)

ae

(

Γe

(

Le([s−i, s])
)

− Γe

(

Le(s)
)

)

−
∑

e∈s(i)\s

ae

(

Γe

(

Le(s)
)

− Γe

(

Le([s−i, s])
)

)

. (2)

Now, observe that player i belongs to Le([s−i, s]) but not to Le(s) when e ∈ s \ s(i) (thus,
Le(s) = Le([s−i, s]) \ {i}), while she belongs to Le(s) but not to Le([s−i, s]) when e ∈ s(i) \ s
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(thus, Le([s−i, s]) = Le(s) \ {i} in this case). Hence, by applying (1) to the right-hand side of
(2), we obtain

Γ([s−i, s])− Γ(s) ≤
wi

λ

∑

e∈s\s(i)

ℓe
(

Le([s−i, s])
)

−
wi

υ

∑

e∈s(i)\s

ℓe
(

Le(s)
)

≤
wi

λ

∑

e∈s\s(i)

ℓe
(

Le([s−i, s])
)

−
wi

υ

∑

e∈s(i)\s

ℓe
(

Le(s)
)

+
(wi

λ
−

wi

υ

)

∑

e∈s(i)∩s

ℓe
(

Le(s)
)

=
wi

λ

∑

e∈s

ℓe
(

Le([s−i, s])
)

−
wi

υ

∑

e∈s(i)

ℓe
(

Le(s)
)

=
wi

υ

(υ

λ
ci([s−i, s])− ci(s)

)

. (3)

The second inequality is due to the fact υ ≥ λ. The first equality follows since Le(s) =
Le([s−i, s]) for e ∈ s(i) ∩ s and the last equality follows by the definition of the players’ cost.
The lemma follows since (3) implies that Γ([s−i, s]) < Γ(s) whenever υ

λ
ci([s−i, s]) < ci(s).

In order to state the main result of this section (Theorem 2), we define a class of state-
valued functions mapping every state of the game to a non-negative real number. This class of
functions will be exploited in subsequent results as well.

Definition 1. For every γ = (γe)e∈E, we define

Φγ(s) =
∑

e∈E

aeΨ
γe
e

(

Le(s)
)

,

where, for every resource e ∈ E, it is Ψγe
e

(

∅
)

= 0 and

Ψγe
e (P ) =

γe
ke + 1





∑

j∈P

wj





ke+1

+

(

1−
γe

ke + 1

)

∑

j∈P

wke+1
j ,

for every nonempty subset of players P ⊆ N .

Theorem 2. Let γ = (γe)e∈E with 1 ≤ γe ≤ ke + 1 for e ∈ E and γ∗ = maxe∈E γe. We have

(a) If γ∗ = 1 then Φγ (denoted by Φ1 in this case) is a ρ–approximate potential function with

ρ = max
e∈E

sup
x≥0

(

1 + x
)ke

1
ke+1

(

1 + x
)ke+1

+ ke
ke+1 −

1
ke+1x

ke+1
≤ d.

(b) Otherwise (if γ∗ > 1), Φγ is a max{γ∗, d}–approximate potential function.

Proof. We prove the claim using Lemma 1. For every resource e ∈ E, every non-empty subset
of players P ⊆ N and every player i ∈ P , we bound the ratio

wiℓe(P )

ae

(

Ψγe
e (P )−Ψγe

e (P \ {i})
) . (4)

6



For every player i ∈ P , let µi(P ) = 1
wi

∑

j∈P\{i}wj . We have,

wiℓe(P ) = wiae





∑

j∈P

wj





ke

= wiae



wi +
∑

j∈P\{i}

wj





ke

= aew
ke+1
i

(

1 + µi(P )
)ke . (5)

Now, let us focus on the expression Ψγe
e (P )−Ψγe

e (P \ {i}). Using Definition 1, we have

Ψγe
e (P )−Ψγe

e (P \ {i})

=
γe

ke + 1





∑

j∈P

wj





ke+1

+

(

1−
γe

ke + 1

)

∑

j∈P

wke+1
j

−
γe

ke + 1





∑

j∈P\{i}

wj





ke+1

−

(

1−
γe

ke + 1

)

∑

j∈P\{i}

wke+1
j

=
γe

ke + 1





∑

j∈P

wj





ke+1

+

(

1−
γe

ke + 1

)

wke+1
i −

γe
ke + 1





∑

j∈P\{i}

wj





ke+1

=
γe

ke + 1



wi +
∑

j∈P\{i}

wj





ke+1

+

(

1−
γe

ke + 1

)

wke+1
i −

γe
ke + 1





∑

j∈P\{i}

wj





ke+1

=
γe

ke + 1
wke+1
i

(

1 + µi(P )
)ke+1

+

(

1−
γe

ke + 1

)

wke+1
i −

γe
ke + 1

wke+1
i µi(P )ke+1

= wke+1
i

[

γe
ke + 1

(

1 + µi(P )
)ke+1

+

(

1−
γe

ke + 1

)

−
γe

ke + 1
µi(P )ke+1

]

. (6)

Using (5) and (6), (4) can be rewritten as

wiℓe(P )

ae

(

Ψγe
e (P )−Ψγe

e (P \ {i})
)

=
aew

ke+1
i

(

1 + µi(P )
)ke

aew
ke+1
i

[

γe
ke+1

(

1 + µi(P )
)ke+1

+
(

1− γe
ke+1

)

− γe
ke+1µi(P )ke+1

]

=

(

1 + µi(P )
)ke

γe
ke+1

(

1 + µi(P )
)ke+1

+
(

1− γe
ke+1

)

− γe
ke+1µi(P )ke+1

. (7)

To proceed, we need the following technical lemma.

Lemma 3. For every x ∈ R
≥0, h ∈ Z

≥1 and β ∈ R
≥1, we have

(1 + x)h

β
h+1(1 + x)h+1 + (1− β

h+1)−
β

h+1x
h+1

∈

[

1

β
,max

{

1,
h

β

}]

.

Proof. We have

(1 + x)h

β
h+1(1 + x)h+1 + (1 − β

h+1)−
β

h+1x
h+1

=

∑h
t=0

(

h
t

)

xt

β
h+1

∑h+1
t=0

(

h+1
t

)

xt + (1− β
h+1)−

β
h+1x

h+1

7



=
1 +

∑h
t=1

(

h
t

)

xt

1 + β
h+1

∑h
t=1

(

h+1
t

)

xt

=
1 +

∑h
t=1

(

h
t

)

xt

1 +
∑h

t=1
β

h+1−t

(

h
t

)

xt
.

The lemma now follows by observing that

min{1, β/h}

(

1 +

h
∑

t=1

(

h

t

)

xt

)

≤ 1 +

h
∑

t=1

β

h+ 1− t

(

h

t

)

xt ≤ β

(

1 +

h
∑

t=1

(

h

t

)

xt

)

.

By applying Lemma 3 to (7) with x = µi(P ), h = ke and β = γe, we obtain that

wiℓe(P )

ae

(

Ψγe
e (P )−Ψγe

e (P \ {i})
) ∈

[

1

γe
,max

{

1,
ke
γe

}]

. (8)

Part (a) follows by combining Lemma 1, (7), (8) and the fact that γ∗ = 1. Part (b) follows
from Lemma 1, (8) and the definition of γ∗.

We remark that ρ, as defined in part (a) of Theorem 2, is considerably smaller than d for
small values of the latter. In particular, we can show that ρ = 4/3, 1.7848, and 2.326 for d = 2,
3, and 4, respectively. Interestingly, these values coincide with those obtained in [17], even
though the expression that gives the approximation bound therein is different than ours. With
our expression for ρ, we are able to bound it by d (as opposed to d+1 in [17]). Theorem 2 can
also be used to obtain the next statement that has originally been proved in [10], as well as new
statements such as Corollary 5 below and, more importantly, Theorem 7 in the next section.

Corollary 4. Any social optimum is a (d+ 1)-approximate pure Nash equilibrium.

Proof. Let Φγ be the state-valued function with γ = (γe)e∈E and γe = ke + 1 for e ∈ E. The
claim follows by observing that Φγ(s) = C(s) and from the fact that, by Theorem 2, Φγ is a
(d+ 1)-approximate potential function.

Corollary 5. Let τ > 0, if the game is τ -congested then the state-valued function Φγ is an
exp(1/τ)-approximate potential function.

Proof. The proof is along the lines of the proof of Theorem 2. We remark that, even though
the set P is not restricted in the statement of Lemma 1, whenever it is used in the proofs of
Lemma 1 and Theorem 2, it coincides with the set of players Le(s) for a resource e ∈ E and a
state s ∈ S. Then, the definition of τ -congested game implies that the quantity µi(P ), that is
used in the proof of Theorem 2, has value at least τke. Hence, the same proof of Theorem 2
yields that the state-valued function Φγ is a ρ-approximate potential function with

ρ = max
e∈E

sup
x≥τke

(

1 + x
)ke

1
ke+1

(

1 + x
)ke+1

+ ke
ke+1 −

1
ke+1x

ke+1
. (9)

Due to the convexity of function zke+1, the slope of the line connecting points (x, xke+1) and
(1+x, (1+x)ke+1), which is (1+x)ke+1−xke+1, is at least as high as the value of the derivative
of the function zke+1 for z = x, i.e., (ke + 1)xke . Hence, (9) yields that

ρ ≤ max
e∈E

sup
x≥τke

(

1 + x

x

)ke

≤ max
e∈E

sup
x≥τke

exp(ke/x) = exp(1/τ),

and the theorem follows.
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3 Approximate price of stability

In this section we present our upper bound on the α-approximate price of stability, for α ∈
[d, d+ 1]. This bound is stated by Theorem 7; the proof uses the following lemma.

Lemma 6. Let δ ∈ [0, 1] and γ = (γe)e∈E where γe = min{ke + 1, d + δ} for e ∈ E. For every
state s ∈ S, it holds that

Φγ(s) ≤ C(s) ≤
d+ 1

d+ δ
Φγ(s).

Proof. Let E = {e1, e2, . . . , em}. We need to bound the ratio

C(s)

Φγ(s)
=

∑m
t=1 aet

(

∑

j∈Let
(s) wj

)ket+1

∑m
t=1 aetΨ

γet
et

(

Let(s)
) .

In order to do so, we consider the ratio between the t-th term in the numerator and the t-th
term in the denominator, for every t ∈ [m], that is

(

∑

j∈Let
(s) wj

)ket+1

Ψ
γet
et

(

Let(s)
) . (10)

Recall the definition of the state-value function Ψγe
e , which yields

Ψγe
e (Let(s)) =

γe
ke + 1





∑

j∈Let
(s)

wj





ke+1

+

(

1−
γe

ke + 1

)

∑

j∈Let
(s)

wke+1
j .

By the definition of γe and since
∑

j∈Let
(s) w

ke+1
j ≤

(

∑

j∈Let
(s) wj

)ke+1
, we get that (10) is

between 1 and ke+1
γe

= max
{

1, ke+1
d+δ

}

≤ d+1
d+δ

. It follows that, C(s)/Φγ(s) is at least 1 and at

most d+1
d+δ

and the lemma follows.

Theorem 7. PoSd+δ ≤
d+1
d+δ

, for every δ ∈ [0, 1].

Proof. Let Φγ be the function with γ = (γe)e∈E and γe = min{ke + 1, d + δ} for e ∈ E. Let
o ∈ OPT be a social optimum. Consider any sequence of (d + δ)-improvement moves starting
from o. By Theorem 2, we know that this sequence converges to a state which is a (d + δ)-
approximate pure Nash equilibrium; we denote this state by e. Moreover, along this sequence
of moves, Φγ is not increasing. Hence,

Φγ(e) ≤ Φγ(o).

Using this fact and applying Lemma 6 repeatedly to both o and e, we obtain

C(e) ≤
d+ 1

d+ δ
Φγ(e) ≤

d+ 1

d+ δ
Φγ(o) ≤

d+ 1

d+ δ
C(o).

The theorem follows.
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4 Conclusion

Our work leaves several open questions. For example, can our techniques yield a better than d-
approximate potential function? After several unsuccessful attempts to define better potentials,
we conjecture that this is not possible. In particular, we believe that for any better than d-
approximate potential function defined as in Lemma 1, there exists a game in WCG(d) in which
the range condition (1) of Lemma 1 is violated (at some resource). Unfortunately, we have been
unable to prove such a statement so far.

Still, it is important to further expand the class of approximate potential functions for
weighted congestion games with polynomial latencies as they may have several applications; let
us mention a few here. First, we believe that approximate potential functions will be useful in
bounding the convergence time to states with nearly-optimal social cost, extending the results
of Awerburch et al. [2], who focused on games that admit exact potential funtions. Second, it is
worth investigating whether our results can be combined with the approach in [4, 5] to compute
approximate equilibria in polynomial time; the use of our new approximate potential functions
could replace the Faulhaber potential in the analysis of [15] and simplify it or even improve
it. Third, new approximate potential functions will be useful in determining the best possible
bounds on the approximate price of stability. Our bounds in Theorem 7 are very close to 1 but,
still, they are not know to be tight (for δ ∈ [0, 1)). Finally, what about the ρ-approximate price
of stability for ρ < d?
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