
On Temporal Graph Exploration∗

Thomas Erlebach† and Michael Hoffmann†

School of Informatics, University of Leicester, Leicester, England

Frank Kammer‡

THM, University of Applied Sciences Mittelhessen, Giessen, Germany

Abstract

A temporal graph is a graph in which the edge set can change from one
time step to the next. The temporal graph exploration problem TEXP is
the problem of computing a foremost exploration schedule for a temporal
graph, i.e., a temporal walk that starts at a given start node, visits all
nodes of the graph, and has the smallest arrival time. In the first part of
the paper, we consider only undirected temporal graphs that are connected
at each time step. For such temporal graphs with n nodes, we show that
it is NP-hard to approximate TEXP with ratio O(n1−ε) for every ε > 0.
We also provide an explicit construction of temporal graphs that require
Θ(n2) time steps to be explored.

In the second part of the paper, we still consider temporal graphs
that are connected in each time step, but we assume that the underly-
ing graph (i.e. the graph that contains all edges that are present in the
temporal graph in at least one time step) belongs to a specific class of
graphs. Among other results, we show that temporal graphs can be ex-
plored in O(n1.5k1.5 logn) time steps if the underlying graph has treewidth
k, in O(n1.8 logn) time steps if the underlying graph is planar, and in
O(n log3 n) time steps if the underlying graph is a 2 × n grid.

In the third part of the paper, we consider settings where the graphs
in future time steps are not known and the exploration schedule is con-
structed online. We replace the connectedness assumption by a weaker
assumption and show that m-edge temporal graphs with regularly present
edges and with probabilistically present edges can be explored online in
O(m) time steps and O(m logn) time steps with high probability, re-
spectively. We finally show that the latter result can be used to obtain
a distributed algorithm for the gossiping problem in random temporal
graphs.

Keywords: non-approximability, planar graphs, bounded treewidth, reg-
ularly present edges, random edges, distributed algorithm, gossiping prob-
lem

ACM classification: C.2.4; F.2.2; G.2.2

∗An extended abstract with some of the results of this paper has appeared in [14]. A
journal version of the paper can be found in [16]. Research partially supported by EPSRC
grant EP/S033483/1.

†E-mail address: {te17,mh55}@leicester.ac.uk
‡E-mail address: frank.kammer@mni.thm.de

1

ar
X

iv
:1

50
4.

07
97

6v
3

 [
cs

.D
S]

 1
6

M
ar

 2
02

1

1 Introduction

Many networks are not static and change over time. For example, connections
in a transport network may only operate at certain times. Connections in so-
cial networks are created and removed over time. Links in wired or wireless
networks may change dynamically. Dynamic networks have been studied in
the context of faulty networks, scheduled networks, time-varying networks, dis-
tributed algorithms, etc. For an overview, we refer to [9], [30], [32], and [35]. We
consider a model of time-varying networks called temporal graphs. A temporal
graph G is given by a sequence of undirected graphs G0 = (V,E0), G1 = (V,E1),
G2 = (V,E2), . . . , GL = (V,EL) that all share the same vertex set V , but whose
edge sets may differ. The number L is called the lifetime of G. In Sections 3
and 4, we assume that the whole temporal graph is presented to the algorithm.

In temporal graphs, the natural notion of moving through the graph using at
most one edge in each time step leads to the concept of temporal paths. Stan-
dard algorithms for well known path-related problems such as connected com-
ponents, diameter, reachability, shortest paths, graph exploration, etc. cannot
be used directly in temporal graphs, as temporal paths behave quite differently
from paths in static graphs. For instance, Berman [4] observed that the ver-
tex version of Menger’s theorem does not hold for temporal graphs. Moreover,
algorithms for path problems in static graphs usually have a natural objective
to optimize (the length of the path or tour), whereas temporal graphs allow us
to consider different possible objectives. For example, Bui-Xuan, Ferreira, and
Jarry [8] search for a shortest, a foremost, or a fastest s-t-path, i.e., a temporal
path from s to t with a minimal number of edges, earliest arrival time, or a
shortest duration, respectively.

We consider the temporal graph exploration problem, introduced by Michail
and Spirakis [33] and denoted TEXP, whose goal is to compute an exploration
schedule (or temporal walk) with the earliest arrival time such that an agent
can visit all vertices in V . The agent is initially located at a start node s ∈ V .
In time step i (i ≥ 0) the agent can either remain at its current node or move
to an adjacent node via an edge that is present in Ei. Unless we consider an
online variant of TEXP we always assume that we know the graphs of all time
steps in advance.

We remark that static undirected graphs can easily be explored in less than
2|V | steps using depth-first search, while there are static directed graphs for
which exploration requires Θ(|V |2) steps.

Some work on dynamic networks considers temporal graphs whose edges
appear with some kind of periodicity [10, 29] or graphs whose edges appear
or fail with a certain probability [1, 24, 26]. Except in Sections 5-7 we do
not assume that edges appear with some periodicity or certain probabilistic
properties. Instead, unless stated otherwise, we only assume that the given
temporal graph is always connected, meaning that each of the graphs Gi for
0 ≤ i ≤ L is a connected graph in the standard sense. Michail and Spirakis [33]
observe that without such an assumption, it is even NP-complete to decide if the
graph can be explored at all. They also show that, under this connectedness
assumption, every temporal graph with n vertices can be explored with an
arrival time of at most n2. We focus on the case where an exploration schedule
always exists and assume throughout this paper that the lifetime of the given
temporal graph is at least |V |2.

2

A ρ-approximation algorithm for TEXP is an algorithm that runs in poly-
nomial time and outputs an exploration schedule whose arrival time is at most
ρ times the arrival time of the optimal exploration schedule. Michail and Spi-
rakis also prove that there is no (2− ε)-approximation for TEXP for any ε > 0
unless P = NP. They define the dynamic diameter of a temporal graph to be
the minimum integer d such that for every time i and every vertex v, every
other vertex w can be reached in d time steps on a temporal walk that starts
at v at time i. They provide a d-approximation algorithm for TEXP, where d
is the dynamic diameter of the temporal graph. We note that d can be as large
as n− 1, and hence the approximation ratio of their algorithm in terms of n is
only n − 1. Thus, there is a significant gap between the lower bound of 2 − ε
and the upper bound of n− 1 on the best possible approximation ratio, which
we address in this paper.

Our contributions We close the gap between the upper and lower bound on
the approximation ratio of TEXP by proving that it is NP-hard to approximate
TEXP with ratio O(n1−ε) for every ε > 0. Furthermore, we provide an explicit
construction of temporal graphs that require Θ(n2) time steps to be explored.
We also prove that the problem is NP-hard to approximate with ratio O(∆1−ε)
for every ε > 0 if the underlying graph (i.e., the graph that contains all edges
that are present in the temporal graph in at least one time step) has degree
∆ = Ω(nδ) for any constant δ > 0.

We then consider TEXP under the assumption that the underlying graph
belongs to a specific class of graphs. We present an exploration method for
temporal graphs whose underlying graphs can be split into “small” components
using “small” separators. This allows us to show that temporal graphs can be
explored in O(n1.5k1.5 log n) time steps if the underlying graph has treewidth k
and in O(n1.8 log n) time steps if the underlying graph is planar. Furthermore,
we show that temporal graphs can be explored in O(n log3 n) time steps if the
underlying graph is a 2×n grid and in O(n) time steps if the underlying graph is
a cycle or a cycle with a chord. Several of these results use a technique by which
we specify an exploration schedule for multiple agents and then apply a general
reduction from the multi-agent case to the single-agent case. We also show that
temporal graphs exist where the underlying graph is a bounded-degree planar
graph and each Gi is a path such that the optimal arrival time of the exploration
walk is Ω(n log n).

After this, we consider a setting where the edges of the underlying graph are
present with a certain regularity or with a certain probability, and the algorithm
does not have full knowledge of the edges that are present in each future time
step. Thus, the exploration schedule needs to be determined online. We show
that it is possible to determine an exploration schedule online that explores
m-edge temporal graphs with an arrival time of O(m) for regularly present
edges or O(m log n) for probabilistically present edges (the latter holds with
high probability).

As an application of our graph-exploration algorithm on random temporal
graphs, we present a distributed algorithm for the so-called gossiping problem [5,
11, 21]. In the gossiping problem, every vertex of a graph has to communicate a
private value to all the other vertices. Thus, Ω(n) messages between neighbors
are required even if a connected n-vertex graph is given that does not change

3

over time. Ignoring special cases of negligible probability, we show that, after
some initialization using O(m log2 n) messages, we can solve instances of the
gossiping problem with O(m log n) messages per instance on an n-vertex m-
edge graph G that is “connected” (in a certain sense). If G is sparse (i.e.,
m = O(n)), we thus need only a factor of O(log n) more messages than the
lower bound of Ω(n) to solve an instance of the problem.

The remainder of the paper is structured as follows. Related work is dis-
cussed in Section 1.1. In Section 2, we give some definitions and preliminary
results. Section 3 presents our inapproximability results for general temporal
graphs and for temporal graphs whose underlying graph has maximum degree
∆. The results for temporal graphs with restricted underlying graphs are given
in Section 4. Temporal graphs with regularly present edges and probabilistically
present edges are considered in Sections 5 and 6, respectively. The distributed
algorithm for the gossiping problem is given in Section 7. Section 8 concludes
the paper.

1.1 Related work

The problem of exploring a static graph (as part of an exploration of a maze)
is already formulated by Shannon [36]. In that work and in many subsequent
studies, the exploration of unknown static graphs is considered. For example,
Bender et al. [3] analyze conditions that allow the exploration of an unknown
directed graph making very limited assumptions about the environment. They
also mention applications in robot navigation and searching the World Wide
Web.

Models of temporal graphs similar to the model used in this paper are con-
sidered by various authors. Berman [4] studies temporal networks in which each
edge has an arrival time and a departure time, termed scheduled networks. He
gives a polynomial algorithm for the problem of determining time periods during
which two given nodes remain connected if k edges fail. As already mentioned,
he also shows that a temporal analogue of Menger’s theorem does not hold as
the maximum number of node-disjoint time-respecting paths between two nodes
can be strictly smaller than the minimum number of nodes whose deletion dis-
connects the two nodes. Biswas, Ganguly, and Shah [6] present several heuristics
and an FPTAS for the problem of finding a temporal path of minimum total
length with bounded penalty in a network where each edge is associated with
a start time, an end time, a length, and a penalty. Kempe, Kleinberg, and
Kumar [25] consider a model of temporal graphs where each edge e of the graph
is associated with a label λ(e) that represents the time step in which the edge
is present. They characterize the temporal graphs in which Menger’s theorem
holds and show that it is NP-complete to decide whether there are two node-
disjoint time-respecting paths between a given source and sink. Furthermore,
they provide a polynomial-time algorithm for computing node-disjoint time-
respecting paths for any constant number of terminal pairs in temporal directed
acyclic graphs. They also consider inference problems where some edge labels
are missing (only an interval containing the exact value of the label is provided)
and the goal is to infer the values of these labels from other data. In particular,
they give a polynomial-time algorithm for the reachability inference problem,
i.e., for checking the existence of a labeling with the property that all nodes in a
set P are reachable via time-respecting paths from the source s while all nodes

4

in another set N are not reachable.
Temporal graphs where the label λ(e) of each edge e is the set of time steps

during which the edge e is present are considered by Mertzios, Michail, Chatzi-
giannakis, and Spirakis [31]. They give efficient algorithms for the problem of
computing a foremost path between two vertices. They also present an analogue
of Menger’s theorem that holds for temporal graphs, showing that the number
of out-disjoint temporal paths between two nodes is equal to the number of
node departure times that have to be removed to separate the two nodes. Fur-
thermore, they consider temporal network design problems where the goal is
to determine a label function λ that satisfies given connectivity properties and
minimizes either

∑
e∈E |λ(e)| or maxe∈E |λ(e)|.

Michail and Spirakis [33] further study this model of temporal graphs. In
addition to their results for TEXP that were already discussed in the first part
of Section 1, they consider the temporal traveling salesperson problem (TSP)
under the assumption that each Gi is a complete directed graph whose edges
have weights in {1, 2} (and the weight of each edge can change from one time
step to the next). They present a (1.7 + ε)-approximation algorithm for this
problem and a (13

8 + ε)-approximation algorithm for the case that the lifetime
of the given temporal graph is n. Their algorithms make use of connections to
suitably defined temporal matching problems.

Another variant of TSP for temporal graphs is studied by Brodén, Hammar,
and Nilsson [7]. The temporal graph under consideration is a complete graph
with lifetime equal to the number of vertices, and the edge costs can change
over time. They assume that the edge costs change at most k times during
the lifetime of the graph. The goal is to compute a tour that uses one edge
in each time step and minimizes the total edge cost, where each edge of the
tour contributes its cost in the time step in which it is traversed. They mainly
study the online version of the problem, but they also give a polynomial-time
approximation algorithm for the case where the edge costs are 1 or 2. The
algorithm has approximation ratio 2− 2/3k.

Flocchini, Mans, and Santoro [17] consider the graph exploration problem
for temporal graphs with periodicity defined by the periodic movements of car-
riers. They assume that the graph is unknown to the exploring agent and study
necessary and sufficient conditions under which the problem can be solved. The
temporal exploration problem for the special case where the underlying graph
is a ring is studied for the setting of T -interval-connectivity (the intersection
of the graphs of any T consecutive time steps is connected) by Ilcinkas and
Wade [22]. Distributed algorithms for the exploration of temporal rings are
studied by Di Luna, Dobrev, Flocchini, and Santoro [12]. Temporal exploration
for the case where the underlying graph is a cactus is studied by Ilcinkas, Klas-
ing, and Wade [23]. Erlebach et al. [15] show that temporal exploration can be
done in O(n1.75) time steps if the graph in each time step has bounded degree
or if the agent is allowed to make two moves in each time step.

Avin, Koucký, and Lotker [2] study the cover time of random walks in tem-
poral graphs. They show that a simple random walk may take exponentially
many time steps to visit all vertices while a lazy random walk, which remains
at the current vertex with a certain probability, has polynomial cover time.

5

2 Preliminaries

2.1 Definitions

A temporal graph G with vertex set V and lifetime L is given by a sequence of
graphs (Gi)0≤i≤L with Gi = (V,Ei). In this and the next two sections, we only
consider temporal graphs for which L ≥ |V |2 as well as each Gi is connected
and undirected. We refer to i, 0 ≤ i ≤ L, as time i or time step i. The graph
G = (V,E) with E =

⋃
0≤i≤LEi is called the underlying graph of G.

If the underlying graph of a temporal graph G is a graph G, we call the
temporal graph G a temporal realization of G. If G belongs to the class of cycles
or the class of graphs of bounded treewidth, we also call G a temporal cycle or
a temporal graph of bounded treewidth, respectively, and similarly for any other
graph classes.

If an edge e is in Ei, we use the edge-time pair (e, i) to denote the existence
of e at time i. A temporal (or time-respecting) walk from v0 ∈ V starting at
time t to vk ∈ V is an alternating sequence of vertices and edge-time pairs
v0, (e0, i0), v1, . . . , (ek−1, ik−1), vk such that ej = {vj , vj+1} ∈ Eij for 0 ≤ j ≤
k − 1 and t ≤ i0 < i1 < · · · < ik−1. The walk reaches vk at time ik−1 + 1. We
often explain the construction of a temporal walk by describing the actions of
an agent that is initially located at the start vertex and can in every time step i
either stay at its current node or move to a node that is adjacent to its current
node in Ei.

For a given temporal graph G with source node s, an exploration schedule S
is a temporal walk that starts at s at time 0 and visits all vertices. The arrival
time of S is the time step in which the walk reaches the last unvisited vertex. An
exploration schedule with smallest arrival time is called foremost. The temporal
exploration problem TEXP is defined as follows: Given a temporal graph G
with source node s and lifetime at least |V |2, compute a foremost exploration
schedule. We assume that the lifetime of the given temporal graph G is at least
|V |2 in order to ensure the existence of a feasible solution. We also consider
a multi-agent variant k-TEXP of TEXP in which there are k agents initially
located at s. An exploration schedule S comprises temporal walks for all k
agents such that each node of G is visited by at least one agent. The arrival
time of S is then the time when the last unvisited node is reached by an agent.

In the remainder of this section and in Sections 3 and 4 we assume that
full knowledge about the graphs in all time steps is available to the algorithm
when the exploration schedule is computed. In Sections 5–7, we consider online
problems where full knowledge about the graphs in future time steps is not
available.

2.2 Preliminary Results

We establish some preliminary results that will be useful for the proofs of our
main results. We start with a definition. Given a temporal graph G with vertex
set V , the temporal subgraph G′ of G induced by a vertex set V ′ ⊆ V is the
temporal graph obtained from G by replacing the graph Gi in each time step
i of G by Gi[V

′]. Here, Gi[V
′] denotes the subgraph of Gi that is induced by

the vertex set V ′, using the standard definition of induced subgraphs for static
graphs. The following lemma allows us to bound the time steps of a temporal

6

walk from one vertex to another vertex in a temporal graph.

Lemma 2.1 (reachability) Let G be a temporal graph with vertex set V . As-
sume that an agent is at vertex u. Let v be another vertex and H a subset of
the vertices that includes u and v and has size k. If there exists a set of k − 1
consecutive time steps starting with some time step t such that the temporal sub-
graph of G induced by H contains a path from u to v (which can be a different
path in each time step) in each of these k − 1 time steps, then the agent can
move from u to v in these k − 1 time steps.

Proof. For i ≥ 0, let Si be the set of vertices in H that the agent could have
reached after i time steps (i.e., by the start of time step t+ i); in other words,
we can choose any vertex in Si, and the agent must be able to reach that vertex
in i time steps. We have S0 = {u}. We claim that as long as v /∈ Si, at least
one vertex of H is added to Si to form Si+1. To see this, consider the graph in
time step t + i. By the assumption, the graph induced by H contains a path
from u to v in time step t+ i. The first vertex on this path that is not in Si is
added to Si+1. Therefore, if v is not reachable by the start of time step t + i,
then Si+1 \ Si is non-empty. Since S0 = {u} and H contains only k vertices,
v must be contained in Sk−1. �

The next lemma shows that a solution to k-TEXP also yields a solution
to TEXP.

Lemma 2.2 (multi-agent to single-agent) Let G be a connected graph with
n vertices. If every temporal realization of G with lifetime at least t can be
explored in t time steps with k agents, then there is a τ = O((t+n)k log n) such
that every temporal realization of G with lifetime at least τ can be explored in τ
time steps with one agent.

Proof. Let G be a temporal realization of G. Consider the exploration schedule
constructed as follows: In the first t time steps, the k agents explore G. Then
all k agents move back to the start vertex in n time steps (Lemma 2.1). Refer
to these t+ n time steps as a phase. Such a phase can be repeated as often as
we like. The moves of the agents can be different in each phase, as they depend
on the edges that are present in the time steps of that phase, but each phase
can still be performed in t+ n time steps. We construct a schedule for a single
agent x by copying one of the k agents in each phase. In each phase, the k
agents together visit all n vertices, so the agent that visits the largest number of
vertices that have not yet been explored by x must visit at least a 1/k fraction
of these unexplored vertices. We let x copy that agent in this phase. This is
repeated until x has visited all vertices.

The number of unexplored vertices is n initially. Each phase takes t + n
time steps and reduces the number of unexplored vertices by a factor of 1−1/k.
Then after dk lnne + 1 phases the number of unexplored vertices is less than
n · (1− 1/k)k lnn ≤ ne− lnn = 1 and therefore all vertices are explored. �

The next two lemmas show that taking subgraphs and edge contractions do
not increase the arrival time of an exploration in the worst case.

Lemma 2.3 (subgraphs) Let G = (V,E) be a graph such that every temporal
realization of G with lifetime at least t can be explored in t time steps. Let
G′ = (V ′, E′) be a connected subgraph of G. Then every temporal realization of
G′ with lifetime at least t can also be explored in t time steps.

7

Proof. We first consider the case that V ′ = V . Consider a temporal realization
of G′. Consider the corresponding temporal realization of G in which all the
missing edges are never present. A schedule S with arrival time t that explores
the temporal realization of G is also a schedule of the temporal realization of G′.

Let us now assume that V \V ′ = {v}. Consider a temporal realization G′ of
G′. Consider the corresponding temporal realization of G in which v is always
adjacent to the same vertex w ∈ V ′, but to no other vertex. In other words, in
every time step the edge {v, w} is the only edge incident with v that is present.
If S is a schedule with arrival time t that explores the temporal realization of
G, then we can ignore the moves on {v, w} and obtain in this way a suitable
exploration schedule for the realization G′ of G′.

The lemma now follows by induction over the number of missing vertices
of G′. �

Lemma 2.4 (edge contraction) Let G be a graph such that every temporal
realization of G with lifetime at least t can be explored in t time steps. Let G′

be a graph that is obtained from G by contracting edges. Then every temporal
realization of G′ with lifetime at least t can also be explored in t time steps.

Proof. Consider a temporal realization of G′. Consider the corresponding tem-
poral realization of G in which all the contracted edges are always present. Let
S be a schedule with arrival time t that explores the temporal realization of G.
S can be executed in t time steps in the temporal realization of G′ simply by
ignoring moves along edges that were contracted. �

Corollary 2.5 (minor) Let G = (V,E) be a graph such that every temporal
realization of G with lifetime at least t can be explored in t time steps. Let
G′ = (V ′, E′) be a connected minor of G. Then every temporal realization of G′

with lifetime at least t can also be explored in t time steps.

Corollary 2.6 Let c < 1 be a positive constant and t(n) a function that is
monotone increasing and satisfies t(kn) = O(t(n)) for every constant k > 0,
e.g., a polynomial. Let C be a class of graphs such that every temporal realization
of every graph G in the class with lifetime at least t(n) can be explored in t(n)
time steps, where n is the number of nodes of G. Let D be the class of graphs
that contains all graphs that can be obtained from a graph G in C with n vertices
by at most cn edge contractions. Then there is a τ = O(t(n′)) such that every
temporal realization of a graph in D with n′ vertices and lifetime at least τ can
be explored in τ time steps.

Proof. Let G be a graph in the class C, and let H be obtained from G by at
most cn edge contractions. Furthermore, let n and n′ be the number of vertices
of G and H, respectively. Thus, n′ ≥ (1− c)n. Since every temporal realization
of G can be explored in t(n) time steps, by Lemma 2.4, every realization of H
can also be explored in t(n) ≤ t(n′/(1− c)) = O(t(n′)) time steps. �

Now we consider how exploration schedules for the biconnected components
of a graph can be combined into an exploration schedule for the whole graph.
Recall that the block-cut tree (often also called the block graph) of a connected
graph is a tree with a vertex for every block (biconnected component or bridge)
and for every cut vertex of the graph, with an edge between a block and a

8

cut vertex if the block contains that cut vertex [13]. If the vertices represent-
ing blocks in the block-cut tree of the graph have bounded degree, the next
lemma shows that the total exploration time is on the order of the sum of the
exploration times of the blocks.

Lemma 2.7 Assume that, for some function t(n) ≥ n − 1, every temporal
realization of every n-vertex graph with lifetime at least t(n) from a class C
of biconnected graphs can be explored in t(n) time steps. Let G = (V,E) be
a connected graph all of whose biconnected components belong to C. Let Hi =
(Vi, Ei), for 1 ≤ i ≤ k, be the blocks of G. If all vertices representing blocks in the

block-cut tree of G have degree at most d, then there is τ = O(d|V |+
∑k
i=1 t(|Vi|))

such that every temporal realization of G with lifetime at least τ can be explored
in τ time steps.

Proof. Traverse the blocks of G in the order of a depth-first search of the
block-cut tree of G, starting in a block that contains the start vertex. Visit
the blocks in that order one by one. Each block is explored upon its first
visit; every subsequent visit to the block enters it via a cut vertex and leaves
it via a possibly different cut vertex. Observe that, in every time step of the
temporal realization of G, the subgraph induced by the vertex set Vi of any
block must be connected since we assume that the graph is connected in each
time step. By Lemma 2.1, we can move from a vertex in one block H ′ =
(V ′, E′) to the cut vertex shared with any adjacent block in |V ′| time steps.
Furthermore, each block is traversed (i.e., entered at one cut vertex and exited
at a different cut vertex) at most d times, and the total number of time steps for
these d traversals is at most d|V ′|. The exploration of the temporal realization
of H ′ takes at most t(|V ′|) time steps. (This holds also for blocks that are
bridges, since bridges consist of two vertices and can be explored in one time
step starting from either of the two vertices.) Thus, every temporal realization

of G can be explored in
∑k
i=1(d|Vi|+ t(|Vi|)) time steps, which can be bounded

by O(d|V | +
∑k
i=1 t(|Vi|)) time steps by the following two facts. First, each

pair of biconnected components has at most one common vertex, a cut vertex.
Second, the number of biconnected components containing the same cut vertex
is equal to its degree in the block-cut tree of G, and the total degree of all
vertices in the block-cut tree is O(|V |). �

3 Inapproximability Results for General and
Bounded-Degree Temporal Graphs

Recall that we assume that an algorithm has full knowledge about the graphs in
all time steps of the given temporal graph G. While static undirected connected
graphs with n nodes can always be explored in less than 2n steps, the following
lemma shows that there are temporal graphs that require Ω(n2) time steps.

Lemma 3.1 There is an infinite family of temporal graphs that, for every r ≥ 1,
contains a temporal graph G with n = 2r vertices that requires Ω(n2) time steps
to be explored. The graph contains r vertices `j, 0 ≤ j ≤ r − 1, such that it
takes at least r + 1 time steps to move from one of them to any other.

9

Proof. Let V = {cj , `j | 0 ≤ j ≤ r − 1} be the vertex set of G. For each time
step i ≥ 0, the graph Gi is a star with center ci mod r. Figure 1 shows the edges
of the graphs in the first three time steps. The start vertex is c0. If an agent
is at a vertex that is not the current center, the agent can only wait or travel
to the current center. As in the next time step the center will have changed,
the agent is again at a vertex that is not the current center. Hence, to get from
one vertex `j to another vertex `k for k 6= j, r + 1 time steps are needed: The
fastest way is to move from `j to the center of the current star, and then to wait
for r − 1 time steps until that vertex is again the center of a star, and then to
move to `k. The total number of time steps is Ω(n2). �

We remark that the idea of a star whose center changes in every time step
was also used by Avin, Koucký, and Lotker [2] to construct a graph on which a
standard random walk has exponential cover time.

Using Lemmas 2.1 and 3.1 we can also show the following.

Corollary 3.2 For every number k = o(n) of agents, there is an infinite family
of temporal graphs such that each n-vertex temporal graph in the family cannot
be explored in o(n2/k) time steps.

Proof. Assume for a contradiction that the corollary does not hold. Then there
is a schedule for k agents A1, . . . , Ak using t = o(n2/k) time steps to explore
the graph described in the proof of Lemma 3.1. We can build a schedule for one
agent A as follows: A first behaves as A1. After t time steps, Amoves to the start
vertex (Lemma 2.1) and waits further O(n) time steps until vertex c0 becomes
the center again. Now A behaves as A2—note that the edges are now present
in the next t time steps as in the first t time steps. After tk + O(kn) = o(n2)
time steps, A has explored everything; a contradiction to Lemma 3.1. �

The underlying graph of the temporal graph constructed in the proof of
Lemma 3.1 has maximum degree |V | − 1. For graphs with maximum degree
bounded by d, we can show a lower bound of Ω(dn) on the exploration time.
In the following proposition, we present the lower bound construction in a form
that we will reuse later in the proof of Theorem 3.7, including the property that
a certain subset of the vertices can be explored quickly, which will be needed
there. Afterwards, we will state the lower bound in a simpler form as Lemma 3.4.

c0

c1

c2

c3

c4

c5

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

c1

c0

c2

c3

c4

c5

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

c2

c0

c1

c3

c4

c5

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

Figure 1: The first three time steps of the temporal graph constructed in the
proof of Lemma 3.1 for r = 6.

10

Proposition 3.3 For every even d ≥ 4, there is an infinite family of temporal
graphs with underlying graphs of maximum degree d that, for every integer g ≥ 1,
contains a temporal graph G that has g(d− 1) + 1 = Θ(gd) vertices and requires
Ω(gd2) time steps to be explored. That graph contains g(d/2 − 1) + 1 vertices,
called leaf vertices, such that moving from one of them to any other takes at
least d/2 time steps. The remaining gd/2 vertices are called center vertices and
have the property that, starting at an arbitrary vertex of the graph, all center
vertices can be explored in at most g(2d− 1) time steps.

Proof. Let g ≥ 1 be given. We construct the temporal graph G with g(d−1)+1
vertices in two steps. First, we take g copies of a temporal graph G′, which we
connect in the end. G′ is the graph with d vertices constructed as in the proof
of Lemma 3.1 (by setting the r in Lemma 3.1 to d/2). Note that moving from a
vertex `j in a copy of G′ to a vertex `k for k 6= j in the same copy of G′ requires
Ω(d) time steps.

Let G1, . . . ,Gg be the g copies of G′. For all i = 1, . . . , g − 1, connect Gi and
Gi+1 by merging vertex `1 of Gi with `0 of Gi+1, i.e., by replacing `1 and `0 by
a new vertex that has the neighbors of both `1 and `0. Let G be the temporal
graph obtained (see Fig. 2 for a sketch of the first time step of G). Note that
the underlying graph of G has maximum degree d: The vertices that have been
merged have degree d, all other vertices `j have degree d/2, and all vertices cj
have degree d− 1). The vertices `j (including the merged vertices) are the leaf
vertices, and the vertices cj are the center vertices. By our way of merging, G
is connected at all times as this is true for all copies of G′. Furthermore, we
observe that G has g(d − 1) + 1 vertices, because it has gd/2 vertices cj and
g · (d/2− 1) + 1 vertices `j , where the ‘+1’ arises from `0 in G1 and `1 in Gg not
being merged.

Let us consider an exploration schedule of G. By the arguments used in the
proof of Lemma 3.1, we can now observe that getting from any `i in one copy of
G′ to a different vertex `j in the same or another copy of G′ takes at least d/2
time steps (in many of these, the agent may not move). As there are at least
g · (d/2 − 1) = Ω(gd) (recall that d ≥ 4) such consecutive pairs (ignoring the
center vertices) in every exploration schedule of G, we need Ω(gd2) time steps
in total.

Finally, consider the exploration of the center vertices. As the graph has

c0

c1

c2

c3

c4

c5

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

c
′

0

c
′

1

c
′

2

c
′

3

c
′

4

c
′

5

ℓ
′

0

ℓ
′

1

ℓ
′

2

ℓ
′

3

ℓ
′

4

ℓ
′

5

c
′′

0

c
′′

1

c
′′

2

c
′′

3

c
′′

4

c
′′

5

ℓ
′′

0

ℓ
′′

1

ℓ
′′

2

ℓ
′′

3

ℓ
′′

4

ℓ
′′

5

Figure 2: A sketch of the graph of the first time step constructed in the proof
of Proposition 3.3. Vertices enclosed by a dashed line are merged to one vertex.

11

g(d− 1) + 1 vertices, we can, starting from an arbitrary vertex at an arbitrary
time t, move in at most g(d−1) time steps (by Lemma 2.1) to the center vertex
in the g-th copy of G′ that is the center of the star in that copy in time step
t+g(d−1)−1. From time step t+g(d−1) onward, we can in each step move to
the new center of the star in that copy, thus visiting all center vertices in that
copy in d/2 − 1 time steps. Then we wait d/2 − 1 time steps until the current
vertex is again the center of the star. In that time step we move to the vertex
that is the result of merging `1 in the (g − 1)-th copy with `0 in the g-th copy,
and in the next time step we move from that vertex to the current center in the
star of the (g − 1)-th copy of G′. At the start of time step t+ g(d− 1) + d, we
are at the center vertex of the (g − 1)-th copy of G′ that has been the center
of the star in that copy in the time step just before. Thus, we can repeat the
procedure and explore the (g − 1)-th copy, the (g − 2)-th copy, etc., in d steps
per copy. We complete the exploration of all center vertices in all copies before
time step t+ g(d− 1) + gd = t+ g(2d− 1). �

Lemma 3.4 For every d ≥ 2, there is an infinite family of temporal graphs
with underlying graphs of maximum degree at most d that require Ω(dn) time
steps to be explored, where n is the number of vertices of the graph.

Proof. If d ∈ {2, 3}, take G to be a static path with n vertices and n− 1 edges,
for any n ≥ 1. Assume d ≥ 4. Without loss of generality, we can assume
that d is even (otherwise, decrement d by one). The result then follows by
Proposition 3.3. �

In the following, we study the complexity and approximability of the problem
of computing an optimal exploration schedule. The next three proofs show NP-
hardness results and inapproximability results for TEXP by reductions from
the Hamiltonian s-t path problem, which is NP-complete even if the input
graphs are connected, planar and have maximum degree 3 as shown by Garey,
Johnson, and Tarjan [20]. Moreover, in the proof of Theorem 3.5 we use that
their NP-completeness proof shows that the problem remains NP-complete if
we further restrict the graphs such that every Hamiltonian path that starts in s
(if the graph contains one) must end in t. This follows because their reduction
from 3SAT to Hamiltonian s-t path (via Hamiltonian cycle) only constructs
such graphs. (In their words: “a Hamiltonian line must either start at v11 and
finish at w11, or start at vn4 and finish at wm6.” Hence, if we fix the starting
point s to v11, then every Hamiltonian path starting in s, if one exists, must end
in w11, and so we can choose w11 as t.) We call an instance of the Hamiltonian
s-t path problem with this property a unique destination instance.

Theorem 3.5 TEXP on planar graphs of maximum degree 3 is NP-hard.

Proof. We give a reduction from the Hamiltonian s-t path problem for unique
destination instances. Let such an instance be given by a connected planar graph
G′ = (V ′, E′) with maximum degree 3 and vertices s and t. Take n′ = |V ′|.
Since we can consider G′ as a temporal graph whose edges always exist, an
exploration schedule from s with n′ − 1 time steps exists in G′ if and only if G′

has a Hamiltonian path from s to t. Thus, TEXP on planar graphs of maximum
degree 3 is NP-hard. �

We remark that temporal graphs whose underlying graph has maximum de-
gree 2 are temporal realizations of paths or cycles. The exploration of temporal

12

realizations of paths is trivial, as all edges of the path must exist in all time
steps of every temporal realization since we assume that the graph is connected
in each time step. We will show in Theorem 4.7 that temporal realizations
of cycles can be explored with arrival time O(n), and an optimal exploration
schedule can be computed in polynomial time.

Theorem 3.6 Approximating TEXP with ratio O(n1−ε) is NP-hard for every
constant ε > 0.

Proof. Assume we are given an instance I ′ of the Hamiltonian s-t path problem
consisting of a connected, undirected n′-vertex graph G′, a start vertex s, and an
end vertex t. We now construct an instance I of the temporal graph exploration
problem as follows: Take the temporal graph G as constructed in the proof of
Lemma 3.1 with r = (n′)c for a constant c that we will choose later. In addition,
replace each `i−1 by a copy of G′, called the ith copy, for 1 ≤ i ≤ r. The edges
in each copy of G′ are present in every time step. For all 1 ≤ i, j ≤ r, the
edge {cj−1, `i−1} is replaced by an edge connecting cj−1 and vertex s in the ith
copy. In other words, we identify s in the ith copy with `i−1. Furthermore, we
call the vertices ci the center vertices. In addition, we add so-called quick links.
Each quick link is an edge that connects the vertex t of the i-th copy with the
vertex s of the (i + 1)-th copy only in time step i · n′, for 1 ≤ i < r. There
are additional quick links in time step r · n′ from vertex t in the r-th copy to
all center vertices. Denote by H the resulting temporal graph. Its underlying
graph is illustrated in Figure 3. Note that H has n = r(1+n′) vertices and that
r = Θ(nc/(c+1)). Since G is connected in each time step and each copy of G′ is
connected and present in each time step, H is also connected in each time step.
The start vertex of the exploration is set to be c0.

Clearly, if G′ has a Hamiltonian path from s to t, then H can be explored
in n time steps: The agent starts at c0 and then explores the first copy of G′

in n′ time steps by following the Hamiltonian s-t-path. The agent arrives at t
in the first copy of G′ at the start of time step n′, and we can use the unique
quick link present in time step n′ to move to s in the second copy of G′, etc.
After exploring all r copies of G′, the agent is at t in the r-th copy of G′ at the
start of time step r · n′. Let ci′ he the vertex that is the center of the star in
time step r ·n′+ 1. The agent moves from t in the r-th copy of G′ to ci′ via the

c2

c0

c1

c3

c4

c5

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

s t
G′

s t
G′

s t
G′

s t
G′

s t
G′

s t
G′

Figure 3: The underlying graph of the temporal graph H constructed in the
proof of Theorem 3.6 where the quick links from t in the rth copy of G′ are not
shown.

13

quick link that is present between these two vertices in time step r · n′. After
that, the agent can explore all remaining center vertices ci′′ in r time steps, i.e.,
H can be explored in n time steps—note that c0 may be visited twice.

Now assume that G′ does not have a Hamiltonian s-t-path. This means that
no copy of G′ can be explored entirely in one visit while using a quick link to
enter the copy and another quick link to exit it. If the exploration schedule
enters and exits a copy of G′ via quick links, it must enter that copy at least
one more time to explore its remaining vertices. We say that the exploration
schedule enters a copy of G′ via a center vertex if it traverses the edge from
a center vertex ci to the s vertex in that copy of G′, and we say that it exits
the copy of G′ via a center vertex if it traverses the edge from the s vertex in
that copy to some center vertex ci. Ignoring the last copy of G′ (in the order in
which the copies of G′ are explored) as well as the copy that is entered or exited
via a quick link in time step r ·n′, we therefore have that each of the remaining
r−2 copies of G′ is entered or exited (or both) at least once via a center vertex.
Whenever a copy of G′ is exited via a center vertex, the exploration schedule
requires r time steps to visit another (or the same) copy of G′, by the argument
in the proof of Lemma 3.1. Whenever a copy of G′ is entered via a center vertex
and is not the first copy visited, the previously visited copy of G′ must have
been exited via a center vertex, except possibly in the case where a quick link
from that copy to a center vertex was used. The latter can happen only once,
namely at time r · n′.

Let k be the number of copies of G′ that are entered via a center vertex, and
l the number of copies that are exited via a center vertex. By the discussion
above, we have k+l ≥ r−2 and l ≥ k−2, which together imply (l+2)+l ≥ r−2
and thus l ≥ r/2− 2. Perhaps, after the last exit of a copy there is no reenter.
Thus, for our r copies of G′, it happens at least r/2−3 times that the exploration
schedule moves from a copy of G′ to another copy of G′ (or back to the same
copy) via a center vertex. As each such move requires at least r time steps, the
total number of time steps in the exploration schedule is at least r(r/2− 3). So
a total of at least Ω(r2) = Ω(n2c/(c+1)) = Ω(n2−ε) time steps are needed, where
ε = 2/(c+ 1) can be made arbitrarily small by choosing c large enough.

Distinguishing whether H can be explored in n time steps or whether it
requires Ω(n2−ε) time steps therefore solves the Hamiltonian s-t-path problem,
and the theorem follows. �

Theorem 3.7 For all ε, δ > 0, approximating TEXP with ratio O(∆1−ε) is
NP-hard even if the underlying graphs have maximum degree at most ∆ = Ω(nδ)
with n being the number of vertices of the temporal graph.

Proof. Choosing our graphs large enough, we assume without loss of generality
that ∆ ≥ 8. Recall that the Hamiltonian s-t path problem remains NP-hard if
the graphs have maximum degree 3. Let I ′ be an instance of the Hamiltonian s-t
path problem consisting of a graph G′ = (V ′, E′) with maximum degree 3 and
vertices s and t in V ′ such that |V ′| ≥ 72. If n′ = |V ′| is not a multiple of ∆−4,
then modify I ′ by adding a path of new vertices v1, . . . , vi (i = −n′mod (∆−4))
and by connecting vi with t and asking for a Hamiltonian s-v1 path. In this
case, we rename the original vertex t to t′, and rename vertex v1 to t. Clearly,
a solution to the modified instance can be easily turned into a solution of the
original instance, and vice versa. Thus, we can assume without loss of generality

14

that n′ is a multiple of ∆ − 4 and all vertices except one have degree ≤ 3 and
one vertex t′ 6= t has degree ≤ 4.

The idea of the remainder of the proof is to proceed along similar lines as
in the proof of Theorem 3.6, but start with the temporal graphs provided by
Proposition 3.3 instead of those provided by Lemma 3.1.

First, apply Proposition 3.3 with d = ∆ − 4 and g = 2(n′)c/d to obtain a
temporal graph G′, for some integer c ∈ IN whose choice will be discussed later.
Note that g is an integer as d = ∆− 4 divides n′. G′ has q = gd/2 = (n′)c ≥ 72
center vertices and r = g(d/2 − 1) + 1 = q(d − 2)/d + 1 leaf vertices. Now
add r disjoint copies of G′ to G′, and identify the vertex s from each copy with
a different leaf vertex. The edges in these copies of G′ are present in every
time step. The start vertex of the exploration is set to be an arbitrary center
vertex c0 that is conneced to some leaf vertex `0 in the first time step. Order
the r copies of G′ arbitrarily, starting with the copy whose vertex s has been
identified with `0. Denote the copies of G′ in this order by G′0, G′1, . . . , G′r−1.
For 1 ≤ i ≤ r − 1, add an edge called quick link that connects the vertex t in
G′i−1 with the vertex s in G′i and is present only in time step i ·n′. Let G denote
the resulting temporal graph. See Fig. 4 for an illustration of the construction.

The temporal graph G has n = q + rn′ = q(1 + n′(d − 2)/d + n′) vertices,
thus n ≤ q(3 · q1/c) and therefore q ≥ (n/3)c/(c+1) ≥ nc/(c+1)/3 (?). Moreover,
it is easy to see that the underlying graph of G has maximum degree ∆: Center
vertices have degree at most d. Consider a copy of G′: Vertex s has at most
d = ∆ − 4 edges to center vertices, one quick link, and 3 edges to vertices in
the same copy; vertex t′ and t have degree at most 4 due to a possible edge to
a new path and a possible quick link, respectively, and all other vertices have
degree at most 3.

If G′ has a Hamiltonian path from s to t, then G can be explored in at most
(r+1)n′+4q ≤ 4n time steps: It takes n′ time steps to explore the first copy ofG′

(we move from c0 to the vertex s in that copy and then follow the Hamiltonian
path, reaching the vertex t in that copy in time step n′ − 1), then another n′

time steps to move via the quick link to the second copy and explore it, and so
on, with n′ time steps for each of the r copies of G′. After rn′ time steps, we
have explored all copies of G′ and arrived at vertex t in the last copy. Now we

Graph from

Fig. 2 with

rearranged

vertices.

l0 = s t
G′

l1 = s t
G′

.

.

.
t

G′

l′

0
= s t

G′

l′

1
= s t

G′

.

.

.
t

G′

Figure 4: A sketch of the underlying graph constructed in the proof of Theo-
rem 3.7.

15

move back to the vertex s in that copy using at most n′ further time steps. It
remains to explore the center vertices, which takes at most g(2d− 1) ≤ 4q time
steps by Proposition 3.3.

If G′ does not have a Hamiltonian s-t-path, an exploration of the r copies
of G′ in G must move at least r/2 − 3 times from one copy of G′ to another
via a center vertex, using the same argument as in the proof of Theorem 3.6.
By Proposition 3.3, moving from the leaf vertex in one copy to the leaf vertex
of another copy via center vertices takes at least d/2 time steps. Thus, the
exploration of G takes at least

d

2
· (r/2− 3) ≥ d

2
· q(d− 2)/d− 6

2

d≥3,q≥72
≥ d

2
· q

8

(?)

≥ d

48
nc/(c+1) ≥ d

48
n1−γ

time steps, where γ > 0 is chosen below and can be made arbitrarily small by
making c large enough. Distinguishing whether G can be explored in at most 4n
time steps or whether it requires at least d

48n
1−γ = Ω(∆n1−γ) = Ω(∆1−γ/δn)

time steps therefore solves the Hamiltonian s-t-path problem, and the theorem
follows by taking γ = εδ. �

4 Restricted Underlying Graphs

In Section 3, we showed that arbitrary temporal graphs may require Ω(n2) time
steps to be explored and that it is NP-hard to approximate the optimal arrival
time of an exploration schedule within O(n1−ε) for every ε > 0. This motivates
us to consider the case where the underlying graph is from a restricted class of
graphs. In particular, the underlying graph of the construction from Lemma 3.1
is dense (it contains Ω(n2) edges) and has large maximum degree. For the case
of underlying graphs with degree bound d, we could only show that there are
graphs that require Ω(dn) time steps. It is therefore interesting to consider cases
of underlying graphs that are sparse, or have bounded degree, or are planar. We
consider several such cases in this section. As before, we assume for all temporal
graphs under consideration that the graph in each time step is connected and
that the lifetime is at least n2, where n is the number of nodes of the temporal
graph. Furthermore, we still assume that full knowledge about the graphs in all
time steps of the given temporal graph is available to an algorithm.

4.1 Lower Bound for Planar Bounded-Degree Graphs

First, we show that even the restriction to underlying graphs that are planar and
have bounded degree is not sufficient to ensure the existence of an exploration
schedule with a linear number of time steps.

Theorem 4.1 Even if the underlying graph G = (V,E) of a temporal graph G
is planar with maximum degree 4 and the graph Gi in every time step i ≥ 0
is a simple path, an optimal exploration can take Ω(n log n) time steps, where
n = |V |.

Proof. Without loss of generality, we assume that n = 2k for some k ≥ 3.
Consider the following underlying graph G: It contains vertices V0 = {ti, bi |
0 ≤ i ≤ n/4 − 1}, the edges {ti, ti+1}, {bi, bi+1}, {ti, bi+1} and {bi, ti+1} for

16

0 ≤ i < n/4 − 1, and a path P of n/2 additional vertices that connects t0 and
b0—P ensures the connectedness of G. It is not hard to see that G is planar:
Arrange the vertices as in Figure 5. For each 0 ≤ i < n/4 − 1, draw the edge
{bi, ti+1} as shown in the figure and the edge {ti, bi+1} around the outside. We
refer to the edges {ti−1, ti} and {bi−1, bi} as horizontal edges of column i, and
the edges {ti−1, bi} and {bi−1, ti} as cross edges of column i.

Consider the following temporal realization of G: The path P is always
present. We divide the time into rounds, each consisting of n/2 time steps. The
first round consists of the first n/2 time steps, etc. For the first round, the
graph additionally contains the horizontal edges of all columns. For the next
round, the horizontal edges of column n/8 are replaced by the cross edges. For
the next round, the horizontal edges of columns n/16 and 3n/16 are replaced
by the cross edges. Following the same pattern of replacements (each time the
horizontal edges of the middle column in each stretch of horizontal edges are
replaced by the cross edges), this is repeated for O(log n) rounds.

For i ≥ 1, let Gi be the graph of the n/2 time steps of round i that is induced
by V0, and let Ti and Bi denote the vertices of V0 that are connected to t0 and
to b0, respectively, in Gi. Observe that in the n/2 time steps of round i, an
agent can visit either vertices in Ti or vertices in Bi, as it takes more than n/2
time steps to travel from t0 to b0 or vice versa. In particular, after round 1
either T1 or B1 is entirely unvisited. Let U1 be that unvisited set (U1 = T1 or
U1 = B1). We have |U1| = n/4. Observe that in round 2, half the vertices of U1

are in T2 and the other half in B2. If the agent visits vertices of T2 in round 2,
let U2 = U1 ∩ B2; otherwise, let U2 = U1 ∩ T2. If we continue in the same
way, after i rounds Ui is a set containing |U1|/2i−1 = n/2i+1 unvisited vertices.
Thus, no matter what the start position of the agent is, Ω(log n) rounds of Θ(n)

t7 t6 t5 t4 t3 t2 t1 t0

b7 b6 b5 b4 b3 b2 b1 b0

t7 t6 t5 t4 t3 t2 t1 t0

b7 b6 b5 b4 b3 b2 b1 b0

t7 t6 t5 t4 t3 t2 t1 t0

b7 b6 b5 b4 b3 b2 b1 b0

t7 t6 t5 t4 t3 t2 t1 t0

b7 b6 b5 b4 b3 b2 b1 b0

Figure 5: The graphs for different time steps constructed in the proof of The-
orem 4.1 for n = 32. The topmost picture shows the edges present in the first
round, the next picture shows the edges present in the second round, etc. The
remaining edges of the underlying graph are drawn dashed.

17

time steps each are required until all vertices are visited. �

4.2 Underlying Graphs with Small Separators

In this section we consider underlying graphs that can be divided into parts in
such a way that the parts are small and are connected to the rest of the graph
via a small set of so-called boundary vertices. The formal definition is as follows:

Definition 4.2 ((r, b)-division) For positive integers r and b (which might be
functions of n), an (r, b)-division of a graph G = (V,E) with n vertices is given
by a separator S ⊆ V and a partition of G[V \ S] into O(n/r) (not necessar-
ily connected) components, each associated with a boundary set consisting of
vertices from S, such that the following properties hold:

1. Each component contains at most r vertices.

2. The boundary set of each component has size at most b.

3. The boundary sets of different components may overlap, and the union of
the boundary sets of all components is S.

4. Every edge of G that has only one endpoint in a component has its other
endpoint in the boundary set of that component.

This definition slightly generalizes the r-divisions introduced by Frederick-
son [18] by allowing the choice of the additional parameter b.

Theorem 4.3 Every temporal graph whose underlying graph belongs to a class
of graphs that have (r, b)-divisions can be explored in O((n2b/r + nrb2) log n)
time steps.

Proof. We first give an exploration schedule using b agents. The agents explore
the O(n/r) components one by one. Consider the exploration of a component C
with boundary set B. We refer to the vertices in B as boundary vertices. First,
we use O(n) time steps to position an agent at each boundary vertex. Now,
as the graph is connected in each time step, we know that each vertex v in C
is connected to some boundary vertex w ∈ B in each time step, meaning that
there is a path from v to w all of whose internal vertices are in C. Therefore,
by the pigeonhole principle, for a vertex v in C, we have that in every period
of 2rb time steps, there exists a vertex w ∈ B such that v is connected to w
in at least 2r of these 2rb time steps. By Lemma 2.1, applied with H as the
subgraph of G induced by w and the vertices of C, the agent from w can visit v
and return to w during these 2r time steps, ignoring the other time steps in the
period of 2rb time steps. Thus, the agents can visit all up to r vertices of C in
2r2b time steps. Therefore, the vertices of C and its boundary set are explored
in O(n + r2b) time steps, and handling all O(n/r) components one after the
other takes O(n(n+ r2b)/r) = O(n2/r+ nrb) time steps. Finally, we can apply
Lemma 2.2 and obtain an exploration schedule with a single agent that uses
O((n2/r + nrb)b log n) time steps. �

The following lemma will allow us to apply Theorem 4.3 to graphs with
bounded treewidth.

Lemma 4.4 Graphs with treewidth at most k admit a (2
√
n/k, 6k)-division.

18

Proof. Let G be a graph of treewidth at most k. Consider a nice tree decom-
position [27, 34] of width k for G, i.e., the tree of the tree decomposition is
a binary tree and all inner nodes are so-called join nodes, introduce nodes, or
forget nodes. The bag of a join node contains the same vertices as the bags of
the two children of the join node. Select bags as separators via the following
procedure: Visit the bags in a post-order traversal of the tree. Select a bag B as
a separator if the number of unmarked vertices in the bag B and in bags below
B is at least

√
n/k, or if the number of selected bags that are below B and are

not descendants of another selected bag is at least 2. If a bag B is selected,
let the unmarked vertices that are in bags below B but not in B form a new
component, and mark all vertices in B and below B.

The number of bags selected as separators is O(
√
nk). This can be shown as

follows. At any point of the procedure, call a selected bag a topmost bag if it is
not a descendant of another selected bag. If a bag is selected because there are
at least

√
n/k unmarked vertices below, the number of topmost bags increases

by at most one and
√
n/k unmarked vertices become marked. This can happen

at most
√
nk times. If a bag is selected because there are two topmost bags

below it, the number of topmost bags decreases by one. As the number of
topmost bags increases by one at most

√
nk times, it can also decrease at most√

nk times, and hence at most
√
nk bags are selected because there are two

topmost selected bags immediately below them.
As we have a binary tree decomposition, the left and right subtree of a join

node whose bag is chosen as separator can have at most
√
n/k − 1 unmarked

vertices each, so the join node whose bag is chosen as separator could have up to
2
√
n/k− 2 unmarked vertices below it. When the bag of an introduce or forget

node is chosen as separator, there can be at most
√
n/k − 1 unmarked vertices

below it. As a consequence, the procedure splits the graph into a separator set S
(the union of all bags selected as separators) and O(

√
nk) components (that are

not necessarily connected) such that each component contains at most 2
√
n/k−

2 vertices (not counting separators). The boundary set of each component is
taken to be the union of the at most three selected bags that separate the
component from the rest of the graph: The bag that was selected when the
component was formed, and the one or two topmost bags in the subtree below
that bag. Thus, the boundary set of each component contains at most 3(k+1) ≤
6k vertices. �

Corollary 4.5 Every temporal graph whose underlying graph has treewidth at
most k can be explored in O(n1.5k1.5 log n) time steps.

Proof. By Lemma 4.4, graphs with treewidth at most k admit a (2
√
n/k, 6k)-

division. By Theorem 4.3, applied with r = 2
√
n/k and b = 6k, the exploration

time for temporal graphs whose underlying graph has treewidth at most k is
then O((n2b/r + nrb2) log n) = O(n1.5k1.5 log n). �

Corollary 4.6 Every temporal graph whose underlying graph is planar can be
explored in O(n1.8 log n) time steps.

Proof. Using the planar separators introduced by Lipton and Tarjan [28], Fred-
erickson proved that planar graphs with n vertices have (r,O(

√
r))-divisions [18]

for every 1 ≤ r ≤ n. Choosing r = n0.4, we can apply Theorem 4.3 with r = n0.4

19

and b = n0.2 and obtain that the exploration time for temporal graphs whose
underlying graph is planar is O((n2b/r + nrb2) log n) = O(n1.8 log n). �

4.3 Cycles and Cycles with Chords

Theorem 4.7 Every temporal cycle C of length n can be explored in at most
2n−2 time steps, and a schedule using this many time steps can be computed in
time linear in the total size of the graphs of the first 2n− 2 time steps, i.e., in
O(n2) time. If additionally an array A : {1, . . . , 2n−2} → E is given that stores
in A[t] the edge that is missing in time step t, if any, then the running-time can
be improved to O(n). Moreover, an optimal schedule for exploring a temporal
cycle can be computed in polynomial time.

Proof. We start by showing that 2n − 2 time steps suffice to explore every
temporal cycle of length n. The exploration schedule is constructed in two
phases. In the first phase, our goal is to distribute n virtual agents over the
whole cycle. In detail, move n virtual agents from the start vertex to all vertices
of the cycle such that one virtual agent is on each vertex, its virtual start vertex.
By Lemma 2.1, this can be done in n− 1 time steps.

In the second phase, which follows the first phase, all virtual agents move in
clockwise direction in each time step. Whenever a virtual agent cannot move
due to a temporal missing edge, that virtual agent disappears. Note that a
temporal missing edge can cause the disappearance of at most one virtual agent
in each time step. Therefore, at least one virtual agent remains after n− 1 time
steps in the second phase. The exploration schedule of that virtual agent has
explored the whole temporal cycle in at most 2n− 2 time steps.

We can compute a schedule using 2n − 2 time steps efficiently as follows.
Consider the second phase and maintain the set of agents that have not yet
disappeared. For each time step i = n, . . . , 2n−2, spend O(1) time to determine
the agent that starts i − n + 1 vertices counterclockwise to the missing edge,
i.e., determine the agent that disappears, if any. Finally, take one of the agents
that remains in the set and compute a schedule for it to reach its virtual start
vertex during the first phase. If we spend O(n2) time to iterate over the graphs
of the first 2n time steps and build the array A, then it is easy to see that the
remaining computation can be done in O(n) time.

Finally, we show how to compute an optimal exploration schedule in polyno-
mial time. By shortcutting backward and forward moves of the agents such that
no vertices are skipped completely, every optimal schedule can be converted into
one with the same arrival time that falls into one of these types: move clockwise
around the cycle; move counter-clockwise around the cycle; move clockwise to
some vertex v, then counter-clockwise until the cycle is explored; move counter-
clockwise to some vertex w, then clockwise until the cycle is explored. The
types can be enumerated in polynomial time, and the optimal schedule for each
type can be calculated in a greedy way. The best of these schedules can then
be output as the optimal exploration schedule for the given temporal cycle. �

Observation 4.8 For every n ≥ 3, there is a temporal cycle of length n in
which the optimal exploration requires at least 2n− 3 time steps.

Proof. Assume that u, v, w are three consecutive vertices in this order of the
cycle and the agent is initially at u. Let the edge {u, v} be absent for the

20

first n − 2 time steps, and let the edge {v, w} be absent in all time steps after
that. The agent cannot traverse the edge {v, w} as it can reach neither v nor w
before the edge disappears forever. So, the only two candidates for an optimal
exploration schedule are the following: We can either wait at u until {u, v} is
available (n− 2 time steps), move to v (1 time step) and then walk to w (n− 1
time steps), giving a total of 2n− 2 time steps, or walk to w in n− 2 time steps
and then from w to v in n−1 time steps, giving a total of 2n−3 time steps. �

A graph is a tree of rings if it is connected and all its blocks are cycles. By
Lemma 2.7, it follows that temporal graphs whose underlying graph G is a tree
of rings with n nodes can be explored in O(n) time steps provided that each
cycle of G contains at most a constant number of cut nodes of G.

Next, we show that the addition of a single chord to a cycle does not destroy
the property of admitting an exploration schedule with O(n) time steps.

Theorem 4.9 A temporal cycle of length n with one chord can be explored in
O(n) time.

Proof. Let the left and right cycle be the two cycles that contain the chord.
Check how often the chord is present in the first 7n time steps. If the chord is
present in at least 5n time steps, use 2n of these to explore the (left or right)
cycle in which the start node is contained (which is possible by Theorem 4.7),
n time steps to move to the other cycle, and 2n time steps to explore that cycle.
Otherwise, there are at least 2n time steps in which the chord is absent and the
remaining graph is a cycle instance. The cycle can be explored in these time
steps. �

We conjecture that Theorem 4.9 can be extended to O(1) chords.

4.4 The 2× n Grid

In this section, we consider temporal graphs whose underlying graph is a grid
with 2 rows and n columns.

Theorem 4.10 Every temporal 2 × n grid can be explored in O(n log n) time
steps with 4 log n agents.

Proof. We show a slightly more general statement. We show that, if we are
given an underlying graph G′ being a grid of size 2 × n′ and a subgrid G′′ of
size 2×n′′ of G′ such that each pair of vertices in G′′ is connected in G′ in each
time step (i.e., for every two vertices u, v in G′′, the graph contains a path from
u to v in G′ in each time step), then 4 log n′ agents initially on some vertices of
G′′ can explore G′′ in T (n′) = O(n′ log n′) time. The theorem follows by taking
G′ = G′′ = G. See also Figure 6.

We start with exploring the left half H ′ of G′′. The idea is to move 4 agents
to the corners of H ′, one to each corner, and all remaining 4(log n′)− 4 agents
to a suitable middle location of H ′—specified below—using the first 2n′ time
steps. This is possible by Lemma 2.1. For the next T (n′/2) + n′/2 time steps,
in each time step where it is possible, we move the 2 agents `1 and `2 on the left
corners of H ′ in parallel to the right using only horizontal edges. Similarly, we
move the 2 agents r1 and r2 on the right corners to the left in parallel. Let i and
j be the number of actual moves (i.e., the number of time steps during which
the agents could move) of `1 and r1, respectively. The middle location is any

21

ℓ1 → ← r1

ℓ2 → ← r2

n
′′

n
′

Figure 6: The situation as described in the proof of Theorem 4.10. A grid G′

with a subgrid G′′ (indicated by the black vertices) and the initial position of
the agents to explore the left half of G′′.

position between the final position of `1 and `2 on the left and the final position
of r1 and r2 on the right. If the agents on the left and on the right meet, they
stop moving and H ′ is explored. In particular, if H ′ is a 2 × 1 grid, `1 and
r1 (as well as `2 and r2) are at the same vertex, i.e., we can stop immediately
and T (1) = O(1). Otherwise, we have i + j < n′′/2 ≤ n′/2 and in the same
T (n′/2)+n′/2 time steps where the 4 agents try to move, we explore recursively
the subgrid H ′′ of H ′ consisting of the columns that are not visited by the 4
corner agents. More precisely, there are at least T (n′/2)+n′/2−i−j ≥ T (n′/2)
time steps in which neither the 2 agents `1 and `2 nor the 2 agents r1 and r2
move, and each pair of vertices of H ′′ is connected in H ′ in each of these time
steps. Therefore, the agents starting in the middle location can explore H ′′ in
T (n′/2) of those time steps. Consequently, after the first 2n′ time steps to place
the agents, the next T (n′/2) + n′/2 time steps are enough to explore H ′.

We subsequently explore the right half in the same way. The total time to
explore G′′ is T (n′) ≤ 2(2n′ + T (n′/2) + n′/2) = O(n′ log n′). �

Using Lemma 2.2, we can reduce the number of agents to one.

Corollary 4.11 A temporal 2×n grid can be explored in O(n log3 n) time steps
by one agent.

Let Hn be the graph that consists of a path with n − 1 vertices and one
additional vertex that is adjacent to all vertices on the path. Note that Hn can
be obtained from the 2× (n− 1) grid using n− 2 edge contractions. Therefore,
Corollary 2.6 implies that every temporal Hn can be explored in O(n log3 n)
time steps by one agent.

5 Temporal Graphs with Regularly Present Edges

We say that a temporal graph has regularly present edges if for every edge e
there is a constant integer Ie with the property that, whenever e is absent from
the temporal graph, the number of consecutive time steps during which e is
absent is strictly less than Ie. In other words, if edge e is not present in some
time step t, then the first time step after t when e is present again is no later
than time step t+ Ie− 1. Moreover, in contrast to the rest of the paper, in this
and the following section, we drop the assumption that we know the schedule
of the existing edges in advance. In other words, for the rest of the paper, we
consider an online problem where the algorithm only knows Ie for each edge e,
but has no advance information in which time step an edge is present. In each

22

time step i, the algorithm has to decide whether to stay at its current vertex v
or move to a neighbor of v in the current graph knowing only the graphs of all
time steps up to i. We also drop the connectedness assumption in this and the
following section. In this section, we only require that there is a constant c ≥ 1
such that, over every cut S, it is guaranteed that there is an edge on average
at least once every c time steps, i.e.,

∑
e:|e∩S|=1 1/Ie ≥ 1/c or, equivalently,∑

e:|e∩S|=1 c/Ie ≥ 1.

Theorem 5.1 A temporal graph G with regularly present edges whose underly-
ing graph has n vertices and m edges can be explored online in O(m) time steps.

Proof.For each Ie, let Je be the largest power of 2 with Je ≤ Ie. Calculate a
minimum spanning tree T of the underlying graph with respect to edge weights
Je. Explore the graph by following an Euler tour of T (if the next edge of the
tour is not present in the current time step, simply wait at the current vertex
until the edge becomes available). Moving over an edge e takes at most Ie ≤ 2Je
time steps, so the total exploration takes at most 4

∑
e∈T Je time steps.

We next show that
∑
e∈T Je = O(m). The idea is, for each edge e of T ,

to split Je into several charges and to distribute these charges to several edges
such that, afterwards, one can show that the sum of the charges distributed to
each edge is O(1). Consider any k ≥ 0 such that T contains at least one edge e
with Je = 2k. Consider the connected components C1, . . . , Crk of T \ {e ∈ T |
Je = 2k}. Observe that every edge of G leaving a component Ci (i.e., with one
endpoint in Ci) must have weight at least 2k since, otherwise, the tree would not
contain e, but an edge with smaller weight than e. Let Ei be the set of edges of
the underlying graph of G that leave Ci. Since

∑
e∈Ei

c/Ie ≥ 1,
∑
e∈Ei

c/Je ≥ 1.

Assign a charge of c2k/Je to each e ∈ Ei. The total charge that Ci assigns to
Ei is

∑
e∈Ei

c2k/Je = 2k
∑
e∈Ei

c/Je ≥ 2k. Since an edge receives the charge

c2k/Je from at most two components Ci, no edge receives more than 2c2k/Je
of charge for every fixed k.

The total weight of edges of weight 2k in T is 2k(rk − 1). Each of the rk
components assigns a charge of at least 2k to edges, so the total charge of the
rk components is greater than the total cost of edges of weight 2k in T .

To bound the total charge that an edge e of G can receive, let the weight of
e be Je = 2j . For k > j, e does not receive any charge. For each 0 ≤ k ≤ j, e
receives charge at most 2c2k/2j . The total charge received by e is then at most∑j
k=0

2c2k

2j ≤
2c2j+1

2j = 4c.
So we have that all the weight of T is charged to edges of G, and no edge

of G receives more than 4c of charge. As G has m edges, the total charge is at
most 4cm = O(m), and hence the weight of T is O(m). �

6 Random Temporal Graphs

Let G = (V,E) be a given graph with n vertices and m edges. As in the previous
section, we do not assume that we know the schedule of the edges. Instead, we
now know the probabilities pe for all e ∈ E such that each edge e exists in every
time step with probability pe. We assume that the probabilities of two edges
are independent. G is not necessarily connected in each time step. In order to

23

guarantee that exploration is always possible, we make the following assumption
that replaces the connectedness condition in every time step by a probabilistic
analogue: We require that, for every cut, the number of edges crossing the cut
is at least some constant in expectation in every time step. More precisely, we
now assume that the total sum of the probabilities of the edges over each cut of
G is greater or equal than 1/c for some arbitrary constant c ≥ 1. In particular,
this implies that m ≥ n− 1.

Theorem 6.1 Let G be a random graph with n vertices and m edges where
each edge e exists with probability pe and where the total sum of the probabilities
of the edges over each cut of G is greater or equal than some constant. Then,
for every constant d ≥ 1 we can find an online exploration schedule of an agent
that uses only O(m log n) time steps with probability 1− 1/nd. The exploration
schedule traverses an Euler tour of a minimum spanning tree of G with respect
to edge weights Ie = 1/pe.

Proof. To explore G, we first determine a spanning tree T as in the previous
section after setting the weight of e to Ie = 1/pe. Then we explore G by an
Euler Tour of T . Let ` ≥ 2 be some positive number that we fix later. The
number of time steps an edge e is present in an interval of t = d` · Iee time steps
is a random variable Xe with Pr[Xe < 1] = (1− pe)t ≤ (1− pe)`/pe ≤ exp(−`).
Intuitively speaking, with increasing `, the probability that e is not present in
any of t consecutive time steps drops exponentially. Since the Euler tour visits
each edge of T twice, the probability that the total exploration takes more
than 2

∑
e∈T d` · Iee ≤ 2n + 2

∑
e∈T ` · Ie time steps can be upper bounded by

2
∑
e∈T exp(−`) ≤ 2n exp(−`). By choosing ` = 3d·lnn for some constant d ≥ 1,

this bound is ≤ 1/nd. Thus, with high probability (with probability 1− 1/nd),
we can explore G in τ = d2n+ 2

∑
e∈T ` · Iee ≤ d2n+ 4`

∑
e∈T Jee = O(m log n)

time steps as shown in the proof of Theorem 5.1, where
∑
e:|e∩S|=1 c/Ie =∑

e:|e∩S|=1 c ·pe ≥ 1 for each cut S ⊆ V of G follows from the fact that the total
sum of the probabilities of the edges over the cut S is greater or equal than
1/c. �

7 Application: Gossiping Problem

In this section we consider a distributed computing problem in a network of
processors where the presence of links in each time step is determined in the
same way as in the random temporal graphs considered in Section 6. Formally,
the problem and the model of computation are defined as follows. Throughout
this section, we refer to time steps as rounds, as is common in distributed
computing.

First, we define the model of distributed computing that we consider.

Definition 7.1 (Model of Distributed Computing) Consider the follow-
ing model of distributed computing in random temporal graphs: Let G be a
connected graph with n vertices and m edges, representing a communication
network where each vertex is a processor. In each round, each edge e of G is
present with an independent probability pe. The graph G represents the under-
lying graph of a random temporal graph, and the edge probabilities pe describe
the temporal realization of G. For some arbitrary constant c ≥ 1, the sum of

24

the probabilities pe of the edges e over each cut of G must be at least 1/c. Each
vertex has a unique id and knows the following at the start of the computation:

• its own id

• n and m,

• the moment in time when the distributed computation starts,

• for each edge e that is incident with the vertex, the id of the opposite
endpoint and the probability pe of e to exist in a time step.

The computation proceeds in synchronous rounds. In every round, each vertex
can do an arbitrary amount of local computation and send one message of ar-
bitrary size (consisting possibly of all information known to the vertex) to one
of its neighbors. A message from a vertex to a neighbor can only be received if
the edge between the two vertices exists in that round, and the sender can only
detect the presence of the edge by a successful message delivery. Both success-
ful and unsuccessful message transmissions are counted in the total number of
messages.

Now we define the gossiping problem that we want to solve.

Definition 7.2 (Gossiping Problem in Random Temporal Graphs)
Consider the model of distributed computing in random temporal graphs of Defi-
nition 7.1. At the start of the computation, each vertex (processor) additionally
has an initial value. The goal of the gossiping problem in random temporal
graphs is to distribute the initial value of each vertex to all other vertices.

Our aim is to present a distributed algorithm to solve the gossiping problem
in random temporal graphs while sending only a small total number of messages
over the edges of G. Since we later want to use 4dlog ne ≤ n, we assume that
n ≥ 20 in the remainder of this section.

The basic idea of our algorithm is to first determine a minimum spanning tree
T of G with respect to edge weights defined by setting the weight of each edge
e to Ie = 1/pe (as in the proof of Theorem 6.1), and then to use two traversals
of an Euler tour of T to distribute the value of each processor to all other
processors. Once the minimum spanning tree T has been constructed, the same
tree can be re-used to solve further gossiping problems without recomputing the
tree.

First, we adapt the minimum-spanning-tree algorithm of Gallager, Hum-
blet, and Spira [19] to our model of distributed computing in random temporal
graphs.

Lemma 7.3 In the model of distributed computing of Definition 7.1, a mini-
mum spanning tree T of G with respect to edge weights set to Ie = 1/pe for all
edges e of G can be built using O(m log2 n) messages with probability at least
1− 1/nd−1.

Proof. We compute T in phases similar to Kruskal’s algorithm, with grow-
ing connected components distributed over the whole graph. Moreover, each
phase is divided into four subphases; each runs for exactly τ rounds where

25

τ = O(m log n) is the integer defined in the proof of Theorem 6.1. Let us as-
sume that at the beginning of each phase, all vertices of each component know
the set of vertex ids of all vertices of the component, and hence also the minimal
id of a vertex belonging to the component. In the following, we describe our
algorithm by tokens walking around in the graph. Whenever a token moves from
one vertex u to another vertex v, a message is sent from u to v until the edge
{u, v} is present in G.

Each phase consists of several subphases, which itself consist of several
rounds. In the first subphase, each vertex first identifies its incident edge of
minimal weight leaving the component (a vertex can determine whether an in-
cident edge leaves its component because it knows the set of vertex ids of its
component as well as the vertex id of the other endpoint of the edge), and
the vertex of minimal id in each component starts a token that walks around
the so far constructed minimum spanning tree twice; first to collect and then
to distribute the information on these edges. Afterwards, each vertex in every
component knows the edge of minimal weight leaving its component—to make
the weight unique, incorporate the vertex ids in the weights. Let us call these
edges the new edges (of the final minimum spanning tree). Moreover, for each
component C and the new edge eC chosen by the component, define the ver-
tex in the component incident to the new edge as the start vertex sC of the
component.

In a second subphase, the start vertex sC of each component C informs the
opposite vertex of the new edge eC that it is incident to a new edge, which will
connect both components soon. This can be done by sending a message from
each start vertex over its incident new edge.

In a third subphase, each component C starts a new token from sC walking
around the minimum spanning tree of the component. Whenever the token
visits a vertex v that is incident to a new edge eC′ 6= eC of another component
C ′, the token of C waits for a message over eC′ from the token walking around
in C ′. To be more precise, the token for C waits for a message for each new
edge e 6= eC incident to v. (Possibly, this already happened before the token
reaches v. Then the token can continue immediately.) Finally, after the token
returned to its start vertex v, i.e, after visiting all vertices of the old component
C and after receiving a message over all incident new edges e 6= eC , a message
is sent over eC with all ids known by C’s token.

Assume that the tokens above collect all ids of both, the visited vertices and
the ids received from other tokens sent by their messages over the new edges.
We next want to show that there is then a token at the end of the subphase that
knows all vertex ids of the new component. For the analysis, let us merge each
component to one vertex and direct the new edges in the direction in which the
message is sent. (Since over the final edge messages are sent simultaneously in
both directions, the endpoints of the edge must agree to ignore one of the two
messages.) In this way we obtain a rooted intree. It is not hard to see that the
root of the tree is exactly the component whose token finishes its travel last and
knows all vertex ids.

In a fourth subphase, these last finished tokens (one for each new component)
can travel the spanning tree of the new component to inform all vertices about
the set of vertex ids of the new component, and hence also about the new vertex
with minimal id. This finishes the current phase and the next phase can start.

To bound the number of messages sent in one phase observe that the total

26

number of messages in each subphase is bounded by a constant factor times
the number of messages of an Euler tour of the final minimum spanning tree.
This is because we only send messages over edges that are also used by the
Euler tour and because, since the probabilities of two edges are independent, it
makes no difference in which order the messages are sent (even parallel sending
is possible). Moreover, since the number of components halves in each phase,
there are dlog ne phases. Thus by Theorem 6.1, we can build T with O(m log2 n)
messages with probability ≥ 1− 4dlog ne/nd ≥ 1− 1/nd−1. �

We are now ready to prove the main theorem of this section.

Theorem 7.4 Let d ≥ 1 be any constant. Consider the model of distributed
computing of Definition 7.1. After building a minimum spanning tree using
O(m log2 n) messages with probability at least 1 − 1/nd−1, we can solve in-
stances of the gossiping problem on G with O(m log n) messages per instance
with probability at least 1− 2/nd.

Proof. The message bound for constructing the minimum spanning tree is given
by Lemma 7.3. Once the minimum spanning tree has been constructed, we can
solve the gossiping problem as follows. Starting from the vertex of minimal id
we can send a message collecting all initial values along the Euler tour twice, in a
first traversal to collect all initial values and in a second traversal to distribute
them. By Theorem 6.1, we can run each traversal with O(m log n) messages
with probability ≥ 1− 1/nd. �

We finally want to remark that the number of successfully transmitted mes-
sages for the initialization (minimum spanning tree computation) and for solving
the gossiping problem is O(n log n) and O(n), respectively.

8 Conclusion

Even though the literature on temporal graphs has grown substantially in re-
cent years, the study of temporal graphs is still in its infancy, and we do not
yet have intuition and a range of techniques comparable to what has been de-
veloped over many years for static graphs. Even seemingly simple tasks such as
constructing temporal graphs (possibly with an underlying graph from a given
family) that cannot be explored quickly is surprisingly difficult. We hope that
the methods used in this paper to prove results for temporal graphs, e.g., the
general conversion of multi-agent solutions to single-agent solutions, contribute
to the formation of a growing toolbox for dealing with temporal graphs.

Our results directly suggest a number of questions for future work. In par-
ticular, deriving tight bounds on the largest number of time steps required to
explore a temporal graph whose underlying graph is an m× n grid, a bounded
degree graph, or a planar graph would be interesting. We have given a lower
bound of Ω(n log n) time steps for a specific family of temporal graphs whose un-
derlying graph is planar and has bounded degree, but the upper bounds we have
are only O(n1.8 log n) time steps for underlying planar graphs and O(n1.75) time
steps for the case where the graph in each time step has bounded degree [15].
Closing this gap would be a worthwhile research direction. It would also be
interesting to study the approximability of TEXP for restricted underlying
graphs, and to identify further cases of underlying graphs where the temporal
exploration problem can be solved optimally in polynomial time.

27

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. Largest random compo-
nent of a k-cube. Combinatorica, 2(1):1–7, 1982. doi:10.1007/BF02579276.

[2] Chen Avin, Michal Koucký, and Zvi Lotker. Cover time and mixing time
of random walks on dynamic graphs. Random Struct. Algorithms, 52(4):
576–596, 2018. doi:10.1002/rsa.20752.

[3] Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and
Salil Vadhan. The power of a pebble: Exploring and mapping directed
graphs. In Proc. 30th Annual ACM Symposium on Theory of Comput-
ing (STOC 1998), pages 269–278, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276759.

[4] Kenneth A. Berman. Vulnerability of scheduled networks and a
generalization of Menger’s theorem. Networks, 28(3):125–134, 1996.
doi:10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P.

[5] Jean-Claude Bermond, Luisa Gargano, Adele A. Rescigno, and Ugo Vac-
caro. Fast gossiping by short messages. In Proc. 22nd International Collo-
quium on Automata, Languages and Programming (ICALP95), volume 944
of LNCS, pages 135–146. Springer, 1995. doi:10.1007/3-540-60084-1 69.

[6] Sudip Biswas, Arnab Ganguly, and Rahul Shah. Restricted shortest path
in temporal graphs. In Proc. 26th International Conference on Database
and Expert Systems Applications (DEXA 2015), Part I, volume 9261 of
LNCS, pages 13–27. Springer, 2015. doi:10.1007/978-3-319-22849-5 2.

[7] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Online and offline
algorithms for the time-dependent TSP with time zones. Algorithmica, 39
(4):299–319, 2004. doi:10.1007/s00453-004-1088-z.

[8] Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing short-
est, fastest, and foremost journeys in dynamic networks. Int. J. Found.
Comput. Sci., 14(2):267–285, 2003. doi:10.1142/S0129054103001728.

[9] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola San-
toro. Time-varying graphs and dynamic networks. IJPEDS, 27(5):387–408,
2012. doi:10.1080/17445760.2012.668546.

[10] Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro.
Measuring temporal lags in delay-tolerant networks. IEEE Trans. Com-
puters, 63(2):397–410, 2014. doi:10.1109/TC.2012.208.

[11] Bogdan S. Chlebus and Dariusz R. Kowalski. Gossiping to reach con-
sensus. In Proc. 14th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA 2002), pages 220–229. ACM, 2002.
doi:10.1145/564870.564908.

[12] Giuseppe Antonio Di Luna, Stefan Dobrev, Paola Flocchini, and Nicola
Santoro. Live exploration of dynamic rings. In Proceedings of the
36th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS 2016), pages 570–579. IEEE Computer Society, 2016.
doi:10.1109/ICDCS.2016.59.

28

https://doi.org/10.1007/BF02579276
https://doi.org/10.1002/rsa.20752
https://doi.org/10.1145/276698.276759
https://doi.org/10.1002/(SICI)1097-0037(199610)28:3%3C125::AID-NET1%3E3.0.CO;2-P
https://doi.org/10.1007/3-540-60084-1_69
https://doi.org/10.1007/978-3-319-22849-5_2
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1109/TC.2012.208
https://doi.org/10.1145/564870.564908
https://doi.org/10.1109/ICDCS.2016.59

[13] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in Math-
ematics. Springer, 4th edition, 2010.

[14] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On tempo-
ral graph exploration. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, 42nd International Collo-
quium on Automata, Languages, and Programming (ICALP 2015), volume
9134 of Lecture Notes in Computer Science, pages 444–455. Springer, 2015.
doi:10.1007/978-3-662-47672-7 36.

[15] Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and
Jakob T. Spooner. Two moves per time step make a difference. In
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019), volume 132 of LIPIcs, pages
141:1–141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.141.

[16] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal
graph exploration. Journal of Computer and System Sciences, 119:1–18,
2021. doi:https://doi.org/10.1016/j.jcss.2021.01.005.

[17] Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of pe-
riodically varying graphs. In Proc. 20th International Symposium on Al-
gorithms and Computation (ISAAC 2009), volume 5878 of LNCS, pages
534–543. Springer, 2009. doi:10.1007/978-3-642-10631-6 55.

[18] Greg N. Frederickson. Fast algorithms for shortest paths in planar
graphs, with applications. SIAM J. Comput., 16(6):1004–1022, 1987.
doi:10.1137/0216064.

[19] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang.
Syst., 5(1):66–77, 1983. doi:10.1145/357195.357200.

[20] M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar
hamiltonian circuit problem is NP-complete. SIAM J. Comput., 5(4):704–
714, 1976. doi:10.1137/0205049.

[21] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and Wal-
ter Unger. Dissemination of Information in Communication Networks -
Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2005. ISBN
978-3-540-00846-0. doi:10.1007/b137871.

[22] David Ilcinkas and Ahmed Mouhamadou Wade. Exploration of the t-
interval-connected dynamic graphs: the case of the ring. Theory of Com-
puting Systems, 62(5):1144–1160, 2018. doi:10.1007/s00224-017-9796-3.

[23] David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade. Exploration
of constantly connected dynamic graphs based on cactuses. In Proceedings
of the 21st International Colloquium on Structural Information and Com-
munication Complexity (SIROCCO 2014), volume 8576 of LNCS, pages
250–262. Springer, 2014. doi:10.1007/978-3-319-09620-9 20.

29

https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1007/978-3-642-10631-6_55
https://doi.org/10.1137/0216064
https://doi.org/10.1145/357195.357200
https://doi.org/10.1137/0205049
https://doi.org/10.1007/b137871
https://doi.org/10.1007/s00224-017-9796-3
https://doi.org/10.1007/978-3-319-09620-9_20

[24] Anna R. Karlin, Greg Nelson, and Hisao Tamaki. On the fault tolerance of
the butterfly. In Proc. 26th Annual ACM Symposium on Theory of Comput-
ing (STOC 1994), pages 125–133. ACM, 1994. doi:10.1145/195058.195117.

[25] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and
inference problems for temporal networks. J. Comput. Syst. Sci., 64(4):
820–842, 2002. doi:10.1006/jcss.2002.1829.

[26] Harry Kesten. The critical probability of bond percolation on the square
lattice equals 1

2 . Comm. Math. Phys., 74(1):41–59, 1980.

[27] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of
LNCS. Springer, 1994. ISBN 3-540-58356-4. doi:10.1007/BFb0045375.

[28] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math., 36(2):177–189, 1979.

[29] Cong Liu and Jie Wu. Scalable routing in cyclic mobile net-
works. IEEE Trans. Parallel Distrib. Syst., 20(9):1325–1338, 2009.
doi:10.1109/TPDS.2008.218.

[30] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., 1996.

[31] George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G.
Spirakis. Temporal network optimization subject to connectivity con-
straints. In Proc. 40th International Colloquium on Automata, Languages,
and Programming (ICALP 2013), Part II, volume 7966 of LNCS, pages
657–668. Springer, 2013. doi:10.1007/978-3-642-39212-2 57.

[32] Othon Michail. An introduction to temporal graphs: An al-
gorithmic perspective. Internet Mathematics, 12(4):239–280, 2016.
doi:10.1080/15427951.2016.1177801.

[33] Othon Michail and Paul G. Spirakis. Traveling salesman prob-
lems in temporal graphs. Theor. Comput. Sci., 634:1 – 23, 2016.
doi:http://dx.doi.org/10.1016/j.tcs.2016.04.006.

[34] Petra Scheffler. A practical linear time algorithm for disjoint paths in
graphs with bounded tree-width. Technical Report 396, Department of
Mathematics, Technische Universität Berlin, 1994.

[35] Christian Scheideler. Models and techniques for communication in dynamic
networks. In Proc. 19th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 2002), volume 2285 of LNCS, pages 27–49. Springer,
2002. doi:10.1007/3-540-45841-7 2.

[36] Claude Shannon. Presentation of a maze-solving machine. In Proc. 8th
Conference of the Josiah Macy Jr. Found (Cybernetics), pages 173–180,
1951. doi:10.4472/3935300352.0030.

30

https://doi.org/10.1145/195058.195117
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1109/TPDS.2008.218
https://doi.org/10.1007/978-3-642-39212-2_57
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1007/3-540-45841-7_2
https://doi.org/10.4472/3935300352.0030

	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Definitions
	2.2 Preliminary Results

	3 Inapproximability Results for General andBounded-Degree Temporal Graphs
	4 Restricted Underlying Graphs
	4.1 Lower Bound for Planar Bounded-Degree Graphs
	4.2 Underlying Graphs with Small Separators
	4.3 Cycles and Cycles with Chords
	4.4 The 2n Grid

	5 Temporal Graphs with Regularly Present Edges
	6 Random Temporal Graphs
	7 Application: Gossiping Problem
	8 Conclusion

