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Abstract7

The Existential Theory of the Reals (ETR) consists of existentially quantified Boolean formulas8

over equalities and inequalities of polynomial functions of real variables. In this paper we propose9

and study the approximate existential theory of the reals (ε-ETR) in which the constraints are only10

satisfied approximately. We first show that when the domain of the variables is the reals then ε-ETR =11

ETR under polynomial time reductions, and then study the constrained ε-ETR problem where groups12

of variables are constrained to lie in bounded convex sets.13

Our main result is a sampling theorem that discretizes the domain in a grid-like manner whose14

density depends on various properties of the ETR formula. A consequence of our theorem is that15

we obtain a (quasi-)polynomial time approximation scheme ((Q)PTAS) for a fragment of constrained16

ε-ETR. We use this theorem to create several new PTAS and QPTAS for problems from a variety of17

fields.18
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1. Introduction20

1.1. Sampling techniques21

The Lipton-Markakis-Mehta algorithm (LMM) is a well-known method for computing approximate22

Nash equilibria in normal form games [2]. The key idea behind their technique is to prove that there23

exist approximate Nash equilibria where all players use simple strategies.24

Suppose that we have a convex set C = conv(c1, c2, . . . , c`) defined by vectors c1 through c`. A25

vector x ∈ C is k-uniform if it can be written as a sum of the form (β1/k)·c1+(β2/k)·c2+· · ·+(β`/k)·c`,26

where each βi is a non-negative integer and
∑`
i=1 βi = k. Since there are at most `O(k) k-uniform27
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vectors, we can enumerate all k-uniform vectors in `O(k) time. For approximate equilibria in n × n28

bimatrix games, Lipton, Markakis, and Mehta showed that for every ε > 0 there exists an ε-Nash29

equilibrium in which both players use k-uniform strategies where k ∈ O(log n/ε2), and so they obtained30

a quasi-polynomial time approximation scheme (QPTAS) for finding an ε-Nash equilibrium.31

Their proof of this fact uses a sampling argument. Every bimatrix game has an exact Nash32

equilibrium (NE), and each player’s strategy in this NE is a probability distribution. If we sample33

from each of these distributions k times, and consequently construct new k-uniform strategies using34

these samples, then for any k ≥ a · log n/ε2, where a is a specified constant, there is positive probability35

the new strategies form an ε-NE. So by the probabilistic method, there must exist a k-uniform ε-NE.36

Finally, the aforementioned convex set containing each of the players’ vectors (strategies) is now the37

unit (n− 1)-simplex, and therefore it can be described as a convex hull of ` = n vectors. This means38

that there are
(
n+k−1

k

)2
pairs of k-uniform strategies, thus by exhaustively checking them in time nO(k)

39

they find an ε-NE.40

The sampling technique has been widely applied. It was initially used by Althöfer [3] in zero-sum41

games, before being applied to non-zero sum games by Lipton, Markakis, and Mehta [2]. Subsequently,42

it was used to produce algorithms for finding approximate equilibria in normal form games with many43

players [4], sparse bimatrix games [5], tree polymatrix [6], and Lipschitz games [7]. It has also been44

used to find constrained approximate equilibria in polymatrix games with bounded treewidth [8].45

At their core, each of these results uses the sampling technique in the same way as the LMM46

algorithm: first take an exact solution to the problem, then sample from this solution k times, and47

finally prove that with positive probability the sampled vector is an approximate solution to the48

problem. The details of the proofs, and the value of k, are often tailored to the specific application,49

but the underlying technique is the same.50

1.2. The existential theory of the reals51

In this paper we ask the following question: is there a broader class of problems to which the

sampling technique can be applied? We answer this by providing a sampling theorem for the existential

theory of the reals. The existential theory of the reals consists of existentially quantified formulae using

the connectives {∧,∨,¬} over polynomials compared with the operators {<,≤,=,≥, >}. For example,
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each of the following is a formula in the existential theory of the reals.

∃x∃y∃z · (x = y) ∧ (x > z) ∃x · (x2 = 2)

∃x∃y · ¬(x10 = y100) ∨ (y ≥ 4) ∃x∃y∃z · (x2 + y2 = z2)

Given a formula in the existential theory of the reals, we must decide whether the formula is true,52

that is, whether there do indeed exist values for the variables that satisfy the formula. Throughout53

this paper we will use the Turing model of computation (also known as bit model). In this model, the54

inputs of our problems will be polynomial functions represented by tensors with rational entries which55

are encoded as a string of binary bits.56

ETR is defined as the class that contains every problem that can be reduced in polynomial time to the57

typical ETR problem: Given a Boolean formula F , decide whether F is a true sentence in the existential58

theory of the reals. It is known that, in the Turing model, ETR ⊆ PSPACE [9], and NP ⊆ ETR since the59

problem can easily encode Boolean satisfiability. However, the class is not known to be equal to either60

PSPACE or NP, and it seems to be a distinct class of problems between the two. Many problems are61

now known to be ETR-complete, including various problems involving constrained equilibria in normal62

form games with at least three players [10, 11, 12, 13, 14].63

1.3. Our contribution64

In this paper we propose the approximate existential theory of the reals (ε-ETR), where we seek a65

solution that approximately satisfies the constraints of the formula. We show a subsampling theorem66

for a large fragment of ε-ETR, which can be used to obtain PTASs and QPTASs for the problems that67

lie within it. We believe that this will be useful for future research: instead of laboriously reproving68

subsampling results for specific games, it now suffices to simply write a formula in ε-ETR and then69

apply our theorem to immediately get the desired result. To exemplify this, we prove several new70

QPTAS and PTAS results using our theorem.71

Our first result is actually that, in the computational complexity world, ε-ETR = ETR, meaning that72

the problem of computing an approximate solution to an ETR formula is as hard as finding an exact73

solution. However, this result crucially relies on the fact that ETR formulas can have solutions that74

are doubly-exponentially large. This motivates the study of constrained ε-ETR, where the solutions75

are required to lie within a given bounded convex set.76
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Our main theorem (Theorem 5) gives a subsampling result for constrained ε-ETR. It states that if77

the formula has an exact solution, then it also has a k-uniform approximate solution, where the value78

of k depends on various parameters of the formula, such as the number of constraints and the number79

of vector-variables. The theorem allows for the formula to be written using tensor constraints, which80

are a type of constraint that is useful in formulating game-theoretic problems.81

The consequence of the main theorem is that, when various parameters of the formula are up to82

polylogarithmic in other specific parameters (see Corollary 1), we are able to obtain a QPTAS for83

approximating the existential theory of the reals. Specifically, this algorithm either finds an approx-84

imate solution of the constraints, or verifies that no exact solution exists. In many game theoretic85

and fair division applications an exact solution always exists, and so this algorithm will always find an86

approximate solution.87

We should mention here also that our technique allows approximation of optimization problems88

whose objective function does not need to be described using the grammar of ETR formulas. For a89

discussion on this, see Remark 1. Also, we are not just applying the well-known subsampling techniques90

in order to derive our main theorem. The aforementioned theorem (Theorem 5) incorporates a new91

method for dealing with polynomials of degree d, which prior subsampling techniques were not able to92

deal with.93

Theorem 5 can be applied to a wide variety of problems. In the game theoretic setting, we prove94

new results for constrained approximate equilibria in normal form games, and approximating the value95

vector of a Shapley game. Then we move to the fair division setting, and we show how a special case of96

the consensus halving problem admits a QPTAS. We also show optimization results. Specifically, we97

give approximation algorithms for optimizing polynomial functions over a bounded convex set, subject98

to polynomial constraints. We also give algorithms for approximating eigenvalues and eigenvectors of99

tensors. Finally, we apply our results to some problems from computational geometry.100

2. The Existential Theory of the Reals101

Let x1, x2, . . . , xq ∈ R be distinct variables, which we will treat as a vector x ∈ Rq, called vector-102

variable. A term of a multivariate polynomial is a function T (x) := a · xd11 · x
d2
2 · · · · · x

dq
q , where a is103

a non negative rational and d1, d2, . . . , dq are non negative integers. A multivariate polynomial is a104
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function p(x) := T1(x) +T2(x) + · · ·+Tt(x) + c, where each Ti is a term as defined above, and c ∈ Q≥0105

is a constant.106

We now define Boolean formulae over multivariate polynomials. The atoms of the formula are107

polynomials compared with {<,≤,=,≥, >}, and the formula itself can use the connectives {∧,∨,¬}.108

Definition 1. The existential theory of the reals consists of every true sentence of the form109

∃x1∃x2 . . . ∃xq · F (x), where F is a Boolean formula over multivariate polynomials of x1 through110

xq.111

ETR is defined as the class that contains every problem that can be reduced in polynomial time to112

the typical ETR problem: Given a Boolean formula F , decide whether F is a true sentence in the113

existential theory of the reals. We will say that F has m constraints if it uses m operators from the114

set {<,≤,=,≥, >} in its definition.115

2.1. The approximate ETR116

In the approximate existential theory of the reals, we replace the operators {<,≤,≥, >} with their117

approximate counterparts. We define the operators <ε and >ε with the interpretation that x <ε y118

holds if and only if x < y + ε and x >ε y if and only if x > y − ε for some given ε > 0. The operators119

≤ε and ≥ε are defined analogously.120

We do not allow equality tests in the approximate ETR. Instead, we require that every constraint of121

the form x = y should be translated to (x ≤ y)∧ (y ≤ x) before being weakened to (x ≤ε y)∧ (y ≤ε x).122

We also do not allow negation in Boolean formulas. Instead, we require that all negations are first123

pushed to atoms, using De Morgan’s laws, and then further pushed into the atoms by changing the124

inequalities. So the formula ¬((x ≤ y) ∧ (a > b)) would first be translated to (x > y) ∨ (a ≤ b) before125

then being weakened to (x >ε y) ∨ (a ≤ε b).126

Definition 2. The approximate existential theory of the reals consists of every true sentence of the127

form ∃x1∃x2 . . . ∃xq ·F (x), where F is a negation-free Boolean formula using the operators {<ε,≤ε,≥ε128

, >ε} over multivariate polynomials of x1 through xq.129

Given a Boolean formula F , the ε-ETR problem asks us to decide whether F is a true sentence in130

the approximate existential theory of the reals, where the operators {<ε,≤ε,≥ε, >ε} are used.131
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2.1.1. Unconstrained ε-ETR132

Our first result is that if no constraints are placed on the value of the variables, that is if each133

xi can be arbitrarily large, then ε-ETR = ETR for all values of ε > 0. We show this via a two way134

polynomial time reduction between ε-ETR and ETR. The reduction from ε-ETR to ETR is trivial, since135

we can just rewrite each constraint x <ε y as x < y + ε, and likewise for the other operators.136

For the other direction, we show that the ETR-complete problem Feasible, which asks us to decide137

whether a system of multivariate polynomials (pi)i=1,...,k has a shared root, can be formulated in ε-ETR.138

We will prove this by modifying a technique of Schaefer and Stefankovic [15].139

Definition 3 (Feasible). Given a system of k multi-variate polynomials pi : Rn → Rn, i = 1, . . . , k,140

decide whether there exists an x ∈ Rn such that pi(x) = 0 for all i.141

Schaefer and Stefankovic showed that this problem is ETR-complete.142

Theorem 1 ([15]). Feasible is ETR-complete.143

We will reduce Feasible to ε-ETR. Let P = (pi)i=1,...,k be an instance of Feasible, and let L144

be the number of bits needed to represent this instance. We define gap(P ) = 2−2L+5

. The following145

lemma was shown by Schaefer and Stefankovic.146

Lemma 2 ([15]). Let P = (pi)i=1,...,k be an instance of Feasible. If there does not exist an x ∈ Rn147

such that pi(x) = 0 for all i, then for every x ∈ Rn there exists an i such that |pi(x)| > gap(P ).148

In other words, if the instance of Feasible is not solvable, then at any given point, some polynomial149

will be bounded away from 0 by at least gap(P ).150

The reduction.. The first task is to build an ε-ETR formula that ensures that a variable t ∈ R satisfies

t ≥ ε/ gap(P ). This can be done by the standard trick of repeated squaring, but we must ensure that

the ε-inequalities do not interfere with the process. We define the following formula over the variables

t, g1, g2, . . . , gL+6 ∈ Rn, where all of the following constraints are required to hold.

g1 ≥ε 2 + ε,

gj ≥ε g2
j−1 + ε, for all j ∈ {2, 3, . . . , L+ 6}.

t ≥ε ε · gL+6 + ε.
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In other words, this requires that g1 ≥ 2, and gj ≥ g2
j−1. So we have gL+6 ≥ 22L+5

, and hence151

t ≥ ε/ gap(P ). Note that the size of this formula is polynomial in L, i.e., the size of instance P .152

Given an instance P = (pi)i=1,...,k of Feasible we create the following ε-ETR instance ψ, where all

of the following are required to hold.

t · pi(x) ≤ε 0 for all i, (1)

t · pi(x) ≥ε 0 for all i, (2)

t ≥ε ε/ gap(P ) + ε, (3)

where the final inequality is implemented using the construction given above.153

Lemma 3. ψ is satisfiable if and only if P has a solution.154

Proof. First, let us assume that P has a solution. This means that there exists an x ∈ Rn such that155

pi(x) = 0 for all i. Note that x clearly satisfies inequalities (1) and (2), while inequality (3) can be156

satisfied by fixing t to be any number greater than ε/ gap(P ). So we have proved that ψ is satisfiable.157

For the other direction of the equivalence, now we will assume that x ∈ Rn satisfies ψ. Note that

we must have

pi(x) ≤ ε/t ≤ gap(P )

and likewise

pi(x) ≥ −ε/t ≥ − gap(P ),

and hence |pi(x)| ≤ gap(P ) for all i. But Lemma 2 states that this is only possible in the case where158

P has a solution.159

This completes the proof of the following theorem.160

Theorem 4. ε-ETR = ETR for all ε ≥ 0.161

2.1.2. Constrained ε-ETR162

In our negative result for unconstrained ε-ETR, we abused the fact that variables could be arbitrarily163

large to construct the doubly-exponentially large number t. So, it makes sense to ask whether ε-ETR164

gets easier if we constrain the problem so that variables cannot be arbitrarily large.165
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In this paper, we consider ε-ETR problems that are constrained by a Cartesian product of bounded166

convex sets, each being a subset of Rq. For a fixed i ∈ [n], and some given vectors ci1, ci2, . . . , ci` ∈ Rq,167

we use conv(ci1, c
i
2, . . . , c

i
`) := Ci to denote the set containing every vector that lies in the convex hull168

of ci1 through ci`. In the constrained ε-ETR, we require that in a solution x := (x1, . . . , xn) of the ε-ETR169

problem (with n vector-variables), we have xi ∈ Ci for every i ∈ [n]. In other words, the solution x170

lies in the Cartesian product of individual vector-variables’ domains, that is,×n

i=1
Ci.171

Definition 4. Given vectors c1, c2, . . . , c` ∈ Rq and a Boolean formula F that uses the operators

{<ε,≤ε,≥ε, >ε}, the constrained ε-ETR problem asks us to decide whether

∃x1∃x2 . . . ∃xq ·
(
x ∈ conv(c1, c2, . . . , c`) ∧ F (x)

)
.

Note that, unlike the constraints used in F , the convex hull constraints are not weakened. So the172

resulting solution x1, x2, . . . , xq, must actually lie in the convex hull.173

3. Approximating Constrained ε-ETR174

3.1. Polynomial classes175

To state our main theorem, we will use a certain class of polynomials where the coefficients are176

given as a tensor. This will be particularly useful when we apply our theorem to certain problems,177

such as normal form games. To be clear though, this is not a further restriction on the constrained178

ε-ETR problem, since all polynomials can be written down in this form.179

As mentioned earlier, we use the term vector-variable to refer to a p-dimensional vector; for example,180

in Definition 4, the q-dimensional vector x would be called vector-variable under this terminology.181

The variables of the polynomials we study in this paper will be grouped, without loss of generality,182

into p-dimensional vector-variables denoted as x1, x2, . . . , xn, where xj(i) will denote the i-th element183

(i ∈ [p]) of vector xj , and is called variable. The coefficients of the polynomials will be captured by a184

tensor denoted by A. Given a ×nj=1p tensor A, we denote by a(i1, . . . , in) its element with coordinates185

(i1, . . . , in) on the tensor’s dimensions 1, . . . , n, respectively, and by α we denote the maximum absolute186

value of these elements. We define the following two classes of polynomials.187

• Simple tensor multivariate.188
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We will use STM(A, xd11 , . . . , x
dn
n ) to denote an STM polynomial with n vector-variables where

each vector-variable xj , j ∈ [n] is applied dj times on tensor A that defines the coefficients.

Tensor A has
∑n
j=1 dj dimensions with p indices each. We will say that an STM polynomial is

of maximum degree d, if d = maxj dj . Note that in an STM polynomial, in each of its terms a

variable from each of all vector-variables appears. Here is an example of a degree 2 simple tensor

multivariate polynomial with two vector-variables:

STM(A, x2, y) =

p∑
i=1

p∑
j=1

p∑
k=1

x(i) · x(j) · y(k) · a(i, j, k).

This polynomial itself is written as follows.

STM(A, xd11 , . . . , x
dn
n ) =∑

i1,1∈[p]

· · ·
∑

in,dn∈[p]

(x1(i1,1)) · . . . · (x1(i1,d1)) · . . . · (xn(in,1)) · . . . · (xn(in,dn))·

· a(i1,1, . . . , i1,d1 . . . , in,1, . . . , in,dn).

• Tensor multivariate. A tensor multivariate (TMV) polynomial is the sum over a number of

simple tensor multivariate polynomials. We will use TMV(x1, . . . , xn) to denote a tensor

multivariate polynomial with n vector-variables, which is formally defined as

TMV(x1, . . . , xn) =
∑
i∈[t]

STM(Ai, x
di1
1 , . . . , xdinn ),

where the exponents di1, . . . , din depend on i, and t is the number of simple multivariate poly-189

nomials. We will say that TMV(x1, . . . , xn) has length t if it is the sum of t STM polynomials,190

and that it is of degree d if d = max
i∈[t],j∈[n]

dij . Observe that t ≤ (d+ 1)n; it could be the case that191

a TMV polynomial is a sum of STM polynomials, each of which has a distinct combination of192

exponents di1, . . . , din in its vector-variables, where dij ∈ {0, 1, . . . , d}.193

3.2. ε-ETR with tensor constraints194

We focus on ε-ETR instances F where all constraints are of the form TMV(x1, . . . , xn) ./ 0, where195

./ is an operator from the set {<ε,≤ε, >ε,≥ε}. Recall that each TMV constraint considers vector-196

variables. We consider the number of vector-variables used in F (denoted as n) to be the number of197
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vector-variables used in the TMV constraints. So the value of n used in our main theorem may be198

constant in the case that a constant number of vector-variables are used, even if the underlying ε-ETR199

instance actually has a non-constant number of variables. For example, if x, y and w are p-dimensional200

probability distributions and A1 and A2 are p× p tensors, the TMV constraint xTA1y + wTA2x > 0201

has three vector-variables, degree 1, length two; though the underlying problem has 3 · p variables.202

Note that every ε-ETR constraint can be written as a TMV constraint, because all multivariate203

polynomials can be written down as a TMV polynomial. Every term of a TMV can be written as a204

STM polynomial where the tensor entry is non zero for exactly the combination of variables used in205

the term, and 0 otherwise. Then a TMV polynomial can be constructed by summing over the STM206

polynomials for each individual term.207

3.2.1. The main theorem208

Given an ε-ETR formula F , we define exact(F ) to be a Boolean formula in which every approximate209

constraint is replaced by its exact variant, meaning that every instance of x ≤ε y is replaced with210

x ≤ y, and likewise for the other operators. We also call by k-uniform solution a solution whose each211

vector-variable is a k-uniform vector.212

Our main theorem is as follows.213

Theorem 5. Let F be an ε-ETR instance with n vector-variables and m multivariate-polynomial con-

straints each one of length at most t and maximum degree d. Let each vector-variable xi be constrained

in the convex hull Ci defined by ` vectors ci1, ci2, . . . , ci` ∈ Rp. Let α be the maximum absolute value of

the coefficients of constraints of F , and let γ = maxi∈[n] maxj∈[`] ‖cij‖∞. If exact(F ) has a solution in

×n

i=1
Ci, then F has a k-uniform solution in×n

i=1
Ci where

k =
512 · α6 · γ2d+2 · d6 · n6 · t5 · ln(2 · α′ · γ′ · d · n · t ·m)

ε5
,

where α′ := max(α, 1), γ′ := max(γ, 1).214

3.2.2. Consequences of the main theorem215

Our main theorem gives a QPTAS for approximating a fragment of ε-ETR. The total number of k-216

uniform vectors in a convex set C = conv(c1, c2, . . . , c`) is
(
`+k−1
k

)
which is min{`O(k), kO(`)}. In most217

of the applications (see Section 5), we have ` >> k, that is why for ease of presentation we will assume218
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in the sequel that
(
`+k−1
k

)
∈ `O(k). So, if the parameters α, γ, d, t, and n are all polylogarithmic in m,219

then our main theorem tells us that the total number of k-uniform vectors for each vector-variable is220

`O(poly logm), where m is the number of constraints. Therefore, if we consider all k-uniform vectors for221

each of the n vector-variables, we can check whether F holds for each individual n-tuple of k-uniform222

vectors, and if it does, we can output it as a solution. If no such n-tuple exists that satisfies F , then223

we can conclude that exact(F ) has no solution. This gives us the following result.224

Corollary 1. Let F be an ε-ETR instance constrained by the convex hull defined by c1, c2, . . . , c`. If α,225

γ, n, d, and t are polylogarithmic in m, then we have an algorithm that runs in time `O( poly logm

ε5
) and226

either finds a solution to F , or determines that exact(F ) has no solution.227

Let N be the input size of the given problem. If m is constant and ` is polynomial in N then this228

gives a PTAS, while if m and ` are polynomial in N , then this gives a QPTAS.229

In Section 5 we will show that the problem of approximating the best social welfare achievable230

by an approximate Nash equilibrium in a two-player normal form game can be written down as a231

constrained ε-ETR formula where α, γ, d, and n are constant (and recall that t ≤ (d + 1)n). It has232

been shown that, assuming the exponential time hypothesis, this problem cannot be solved faster than233

quasi-polynomial time [16, 17], so this also implies that constrained ε-ETR where α, γ, d, and n are234

constant cannot be solved faster than quasi-polynomial time unless the exponential time hypothesis is235

false.236

Many ε-ETR problems are naturally constrained by sets that are defined by the convex hull of237

exponentially many vectors. The cube [0, 1]p is a natural example of one such set. Brute force238

enumeration does not give an efficient algorithm for these problems, since we need to enumerate `O(k)
239

vectors, and ` is already exponential in the dimension parameter p. However, our main theorem is240

able to provide non-deterministic polynomial time algorithms for these problems.241

This is because each k-uniform vector is, by definition, the convex combination of at most k of the242

vectors in the convex set, and this holds even if ` is exponential. So, provided that k is polynomial243

in the input size, we can guess the subset of vectors that are used, and then verify efficiently that the244

formula holds. This is particularly useful for problems where exact(F ) always has a solution, which is245

often the case in game theory applications, since it places the approximation problem in NP, whereas246

deciding the existence of an exact solution may be ETR-complete.247
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Corollary 2. Let F be an ε-ETR instance constrained in×n

i=1
Ci, where Ci = conv(ci1, c

i
2, . . . , c

i
`).248

If α, γ, d, t, n, are polynomial in the input size, then there is a non-deterministic polynomial time249

algorithm that either finds a solution to F , or determines that exact(F ) has no solution. Moreover, if250

exact(F ) is guaranteed to have a solution, then the problem of finding an approximate solution for F251

is in NP.252

3.2.3. Approximation notions253

According to the relaxation procedure for ETR that we have described, each atom Ai of the ETR254

formula is relaxed additively by a positive quantity ε. The main theorem (Theorem 5) and the inter-255

mediate results, give a sufficiently fine discretization (distance at most 1/k for some k ∈ N∗) of the256

domain of the ETR instance’s variables, such that if there exists an exact solution x∗ = (x∗1, . . . , x
∗
n)257

of the formula then there exists a k-uniform solution in the discretized domain that ε-satisfies every258

Ai. In particular we prove that if Ai = (p(x) ./ 0), where p(x) is a multivariate polynomial and259

./∈ {<,≤,=,≥, >}, then there exists a k-uniform vector x′ such that |p(x′)− p(x∗)| ≤ ε. This implies260

the ε-satisfaction of each Ai by the triangle inequality.261

In fact, by this work we do not aim to output an “approximate yes/no” to an ETR instance, i.e. to give262

a yes/no answer to the relaxed ETR instance, but instead to output an approximate solution (if an exact263

solution exists) to the ETR instance. Therefore, more accurately we should refer to this approximation264

of ETR as an approximation of Function ETR (FETR), where FETR is the function problem extension of265

the decision problem complexity class ETR. As ETR is the analogue of NP, FETR is the analogue of FNP266

in the Blum-Shub-Smale computation model [18].267

Definition 5 (ε-approximation). Consider a given ETR instance with domain D and formula F . If268

x∗ is a solution to the instance and x′ is a solution to the respective ε-ETR instance for a given ε > 0,269

then x′ is called an ε-approximation of x∗.270

Definition 6 (PTAS/QPTAS). Consider a function problem P with input size N , whose objective271

is to output a solution x∗. An algorithm that computes an ε-approximation x′ of P in time polynomial272

in N for any fixed ε > 0 is a Polynomial Time Approximation Scheme (PTAS). An algorithm that273

computes x′ in time O(Npoly logN ) is a Quasi-Polynomial Time Approximation Scheme (QPTAS).274
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Remark 1. Our technique that finds an x′ such that |p(x′) − p(x∗)| ≤ ε provides one with more275

power than showing that polynomial inequalities weakened by ε hold for x′. In fact, it allows for276

approximation of solutions that need not be described by an ETR formula. A simple example of such277

a case is the one presented in Section 4.1 where we seek an approximation of the maximum of the278

quadratic function in the simplex. The maximization objective does not need to be written in an ETR279

formula. Instead, we show that any point f(x) of the quadratic function, for x in the simplex, can be280

approximated by a point f(x′) where x′ is in a discrete simplex with a small number of points. Then281

we find the maximum of f(x′)′s which is smaller than max(f(x)) by at most ε.282

The fact that operation “max” can be executed in time linear in the number of points of the283

discretized simplex allows us to use our method for expressions with “max” which is forbidden in the284

grammar of ETR. More generally, the following theorem shows that even more complicated objectives,285

such as “maxx1
minx2

” can be treated by a modification of the algorithm described in Section 3.2.2.286

Theorem 6. Let F be a multi-objective optimization instance whose objective functions are multi-287

variate polynomials, with n vector-variables constrained in×n

i=1
Ci, where Ci = conv(ci1, c

i
2, . . . , c

i
`).288

Let k be the quantity specified in Theorem 5 with m being the number of polynomial functions in the289

instance, meaning the ones in the objectives and constraints. If every objective on the functions has a290

polynomial time algorithm to be performed on a discrete domain, then there is an algorithm that runs291

in time min{`O(k·n), kO(`·n)}, and either finds a solution which satisfies every objective of F within292

additive ε, or determines that F has no solution.293

Proof. As explained at the beginning of this section, our technique discretizes the domain of the294

variables with a density sufficient to approximate any point of any of the polynomial functions that are295

given as part of the atoms of an ETR formula. That is, for any x∗ in the continuous domain it guarantees296

the existence of a discrete x′ such that for every polynomial p in the atoms, it is |p(x′) − p(x∗)| ≤ ε.297

Note now that the technique works for any given set of polynomials when we require that for every298

polynomial in the set, every point x∗ has a discrete x′. This is regardless of what the atoms’ operators299

from {<,≤,=,≥, >} are or with what logical operators from {∧,∨} the atoms connect to each other.300

In view of the above, observe that any objective (with the properties of the statement of the301

theorem) on functions, takes time polynomial in the size of the discretized space, therefore it does not302

change asymptotically the total running time of the algorithm described at the beginning of Section303

13



3.2.2. That is because first, the aforementioned algorithm will brute-force through all of the points in304

the discretized domain and for these points it will check if all of the constraints of F are satisfied. Now305

the algorithm we propose will deviate from the aforementioned algorithm and for the points that satisfy306

the constraints of F (feasible points), for each objective it will run the efficient respective algorithm of307

the objective on the feasible points and check whether all objectives of the relaxed by ε instance are308

satisfied for some point. This can be done in time polynomial in the size of the discretized domain,309

i.e.
(
`+k−1
k

)n
(the exponent n comes from the fact that the algorithm will check all combinations of n310

many k-uniform vectors.). If a discrete point is found that ε-satisfies F , then the algorithm returns it,311

otherwise there is no point in the continuous domain that satisfies F according to Theorem 5.312

3.3. A theorem for non-tensor constraints313

One downside of Theorem 5 is that it requires that the formula is written down using tensor314

constraints. We have argued that every ETR formula can be written down in this way, but the translation315

introduces a new vector-variable for each group of variables that are constrained in a bounded convex316

set in the ETR formula. When we apply Theorem 5 to obtain PTASs or QPTASs we require that the317

number of vector-variables is at most polylogarithmic, and so this limits the application of the theorem318

to ETR formulas that have at most polylogarithmically many groups of variables that are under the319

same bounded domain.320

Theorem 9 is a sampling result for ε-ETR with non-tensor constraints, which is proved via some321

intermediate results. First, we will use the following theorem of Barman.322

Theorem 7 ([5]). Let c1, c2, . . . , c` ∈ Rq with maxi ‖ci‖∞ ≤ 1. For every x ∈ conv(c1, c2, . . . , c`) and323

every ε > 0 there exists an O(log `/ε2)-uniform vector x′ ∈ conv(c1, c2, . . . , c`) such that ‖x−x′‖∞ ≤ ε.324

The following lemma shows that if we take two vectors x and x′ that are close in the L∞ norm,325

then for all polynomials p the value of |p(x)− p(x′)| cannot be too large.326

We denote by consts(p) the maximum absolute coefficient in polynomial p, and by terms(p) the327

number of terms of p.328

Lemma 8. Let p(x) be a multivariate polynomial over x ∈ Rq with degree d and let ε ∈ (0, γ] for some

constant γ > 0. For every pair of vectors x, x′ ∈ [0, γ]q with ‖x− x′‖∞ ≤ ε we have:

|p(x)− p(x′)| ≤ γd−1 · (2d − 1) · consts(p) · terms(p) · ε.
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Proof. Consider a term of p(x), which can without loss of generality be written as t(x) = c·
∏
i∈[q]∑
i
di≤d

xdii ,

where di is the degree of coordinate xi (resp. x′i). We have

|t(x)− t(x′)| =

∣∣∣∣∣∣∣∣∣∣
c ·

∏
i∈[q]∑
i
di≤d

xdii − c ·
∏
i∈[q]∑
i
di≤d

(x′i)
di

∣∣∣∣∣∣∣∣∣∣
= c ·

∣∣∣∣∣∣∣∣∣∣
∏
i∈[q]∑
i
di≤d

xdii −
∏
i∈[q]∑
i
di≤d

(x′i)
di

∣∣∣∣∣∣∣∣∣∣
≤ c ·


∏
i∈[q]∑
i
di≤d

(xdii + ε)−
∏
i∈[q]∑
i
di≤d

xdii



≤ c ·



∏
i∈[q]∑
i
di≤d

xdii +

(
d

1

)
γd−1ε+

(
d

2

)
γd−2ε2 + · · ·+

(
d

d

)
γ0εd

−
∏
i∈[q]∑
i
di≤d

xdii


≤ c · ε ·

d∑
k=1

(
d

k

)
γd−1

= c · ε · γd−1 ·
d∑
k=1

(
d

k

)
= ε · c · γd−1 · (2d − 1),

where the fourth and third to last lines use the fact that xi’s, and ε are all at most γ.329

Next consider a term t(x) of p(x) of degree d′ ≤ d. This can be written similarly to the aforemen-

tioned term. Then |t(x)− t(x′)| ≤ c · ε · γd−1 · (2d′ − 1) ≤ c · ε · γd−1 · (2d− 1). Since there are terms(p)

many terms in p, we have

|p(x)− p(x′)| ≤ γd−1 · (2d − 1) · consts(p) · terms(p) · ε.

We now apply this to prove the following theorem.330
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Theorem 9. Let F be an ε-ETR instance with n vector-variables, where the i-th vector variable is

constrained over the convex hull Ci = conv(ci1, c
i
2, . . . , c

i
`) ⊂ Rq. Let γ = maxi ‖ci‖∞, let α be the

largest constant coefficient used in F , let r be the number of terms used in total in all polynomials of

F , and let d be the maximum degree of the polynomials in F . If exact(F ) has a solution in×n

i=1
Ci,

then F has a k-uniform solution in×n

i=1
Ci where

k = α2 · γ2d−2 · (2d − 1)2 · r2 · log `/ε2.

Proof. Let x be the solution to exact(F ). First we apply Theorem 7 to find a point y that is

k-uniform, where k = α2 · γ2d−2 · (2d − 1)2 · r2 · log `/ε2, such that

‖x− y‖∞ ≤ ε/(α · γd−1 · (2d − 1) · r).

Next we can apply Lemma 8 to argue that, for each polynomial p used in F , we have

|p(x)− p(y)| ≤ α · γd−1 · (2d − 1) · r ·
(

ε

α · γd−1 · (2d − 1) · r

)
= ε.

Since all constraints of F have a tolerance of ε, and since x satisfies exact(F ), we can conclude that331

F (y) is satisfied.332

The key feature here is that the number of variables, and most importantly, the number of vector-333

variables (n), does not appear in the formula for k, which allows the theorem to be applied to some334

formulas for which Theorem 5 cannot. However, since the theorem does not allow tensor constraints,335

its applicability is more limited because the number of terms r will be much larger in non-tensor336

formulas. For example, as we will see in Section 5, we can formulate bimatrix games using tensor337

constraints over constantly many vector-variables, and this gives a positive result using Theorem 5.338

No such result can be obtained via Theorem 9, because when we formulate the problem without tensor339

constraints, the number of terms r used in the inequalities becomes polynomial in the dimension.340

4. The Proof of the Main Theorem341

In this section we prove Theorem 5. Before we proceed with the technical results, let us illustrate342

via an example the crucial idea for proving that the special vectors we have defined (i.e. the k-343

uniform vectors for some k ∈ N∗) inside a discretized convex hull can be used to approximate not only344
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multilinear polynomials, but also multivariate polynomials of degree d ≥ 2. At the same time, we show345

that the discretization of the domain (points in distance at most 1/k from each other) does not need346

to be very fine in order to achieve an additive approximation ε at any point of such a function. Our347

example is in approximating the quadratic polynomial over the simplex.348

Let us provide a roadmap for this section. We begin by the detailed aforementioned example. Then349

we proceed by considering two special cases, namely Lemma 12 and Lemma 14, which when combined350

will be the backbone of the proof of the main theorem.351

Firstly, we will show how to deal with problems where every constraint of the Boolean formula352

is a multilinear polynomial, which we will define formally later. We deal with this kind of problems353

using Hoeffding’s inequality and the union bound, which is similar to how such constraints have been354

handled in prior work.355

Then, we study problems where the Boolean formula consists of a single degree d polynomial con-356

straint. We reduce this kind of problems to a constrained ε/2-ETR problem with multilinear constraints,357

so we can use our previous result to handle the reduced problem. Sampling techniques in degree d358

polynomial problems have not been considered in previous work, and so this reduction is a novel359

extension of sampling-based techniques to a broader class of ε-ETR formulas.360

Finally, we deal with the main theorem: we reduce the original ETR problem with multivariate361

constraints to a set of ε′-ETR problems with a single standard degree d constraint, and then we use the362

last result to derive a bound on k.363

As a byproduct of our main result one can get the same result as that of [19] in which a PTAS for364

fixed degree polynomial minimization over the simplex was presented. Even though the PTAS that365

follows from our result on the same optimization problem has roughly the same running time as that of366

[19], the proof presented here (which is independent of the aforementioned work) is significantly simpler.367

Nevertheless, the result in the current work generalizes previous results on polynomial optimization368

over the simplex, by providing a universal algorithm for multi-objective optimization problems, and369

showing how its running time depends on the parameters of the problem (see Theorem 6).370
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4.1. Example: A simple PTAS for quadratic polynomial optimization over the simplex371

Definition 7 (Standard quadratic optimization problem (SQP)). Given a p×pmatrix A with

entries normalized in [0, 1], find the value

v∗ := max
x∈∆p

xTAx, where ∆p is the (p− 1)− simplex.

sqp is a strongly NP-hard problem, even for the case where A has entries in {0, 1}; in a theorem of372

Motzkin and Straus [20] it is shown that if matrix A is the adjacency matrix of a graph on p vertices373

whose maximum clique has c vertices, then v∗ = 1 − 1/c. The problem of finding the size of the374

maximum clique in a general graph is known to be (strongly) NP-hard since its decision version is one375

of Karp’s 21 NP-complete problems [21]. Therefore, unless P = NP there is no Fully Polynomial Time376

Approximation Scheme for sqp and the best thing we can hope for the problem is a PTAS. We present377

a PTAS for sqp (Corollary 3), which has almost the same running time as that of [22], but we claim378

that our proof is significantly simpler.379

Let x∗ ∈ arg(v∗). Consider the set ∆p(k) of all k-uniform vectors, for k = 16 ln(3/ε)/ε2, with items380

x(i) ∈ ∆p(k), for i = 1, 2, . . . , |∆p(k)|.381

Lemma 10. There exists a multiset X of ∆p(k) with |X | = 2/ε such that for every x(i), x(j) ∈ X with

i 6= j, it is

x∗TAx∗ − x(i)TAx(j) < ε/2.

Proof. Note that although i 6= j, x(i) could be equal to x(j) since the two k-uniform vectors belong

to a multiset of ∆p(k). The proof is by the probabilistic method. Let us create the events

Ei =
{
x∗TAx∗ − x(i)TAx∗ < ε/4

}
, ∀i for which x(i) ∈ X ,

Fi,j =
{
x(i)TAx∗ − x(i)TAx(j) < ε/4

}
, ∀i, j with i 6= j, for which x(i), x(j) ∈ X ,

Gi,j =
{
x∗TAx∗ − x(i)TAx(j) < ε/2

}
, ∀i, j with i 6= j, for which x(i), x(j) ∈ X .

Observe that Ei ∩ Fi,j ⊆ Gi,j . Now, let each of k i.i.d. random variables be drawn from x∗. The

sample space for each is [p]. For any x(i), x(j) ∈ ∆p(k), the expectation of x(i)TAx∗ is x∗TAx∗, and

the expectation of x(i)TAx(j) (for fixed x(i)) is x(i)TAx∗. Let us denote r := |X | = 2/ε. By using a

18



Höffding bound [23], we get

Pr{Ei} ≤ e−kε
2/8, ∀i for which x(i) ∈ X , and

Pr{F i,j} ≤ e−kε
2/8, ∀i, j with i 6= j, for which x(i), x(j) ∈ X .

Consider now the event H that captures the condition that needs to be satisfied by the lemma. It

is

H =
⋂
i,j∈X
i 6=j

Gi,j .

Therefore

H =
⋃
i,j∈X
i6=j

Gi,j ⊆
⋃
i∈X

Ei
⋃
i,j∈X
i6=j

F i,j .

Hence

Pr{H} ≤ re−kε
2/8 + r(r − 1)e−kε

2/8

= r2e−kε
2/8

< 1.

The above strict inequality means that Pr{H} > 0, therefore, there exists a set X that satisfies the382

statement of the lemma.383

The following theorem corresponds to the general Lemma 14, for the case α = γ = 1, d = 2.384

Theorem 11. There exists a 32 ln(3/ε)
ε3 -uniform vector x, such that v∗ − xTAx < ε .385

Proof. Consider the multiset X of ∆p(k) of Lemma 10, and recall that r := |X | = 2/ε. Let us create

the vector

x :=
1

r

∑
i∈X

x(i).
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Then, it is

x∗TAx∗ − xTAx = x∗TAx∗ −

1

r

∑
x(i)∈X

x(i)T

A

1

r

∑
x(i)∈X

x(i)


= x∗TAx∗ − 1

r2

∑
x(i),x(j)∈X

x(i)TAx(j)

= x∗TAx∗ − 1

r2

 ∑
x(i),x(j)∈X

i 6=j

x(i)TAx(j) +
∑

x(i)∈X

x(i)TAx(i)



=
1

r2

r(r − 1)x∗TAx∗ −
∑

x(i),x(j)∈X
i 6=j

x(i)TAx(j) + rx∗TAx∗ −
∑

x(i)∈X

x(i)TAx(i)


<

1

r2

(
r(r − 1)

ε

2
+ r
)

≤ ε

2
+

1

r

= ε,

where the second to last inequality is implied from Lemma 10 which applies for every x(i), x(j) ∈ X386

when i 6= j, and from the fact that x∗TAx∗ − x(i)TAx(i) is upper bounded by 1 for every x(i) ∈ X387

(recall that the entries of A are in [0, 1]).388

The proof is concluded by observing that the vector x we created is a kr-uniform vector, for389

k = 16 ln(3/ε)/ε2 and r = 2/ε.390

Corollary 3. There is a PTAS for sqp.391

Proof. By Theorem 11, since the desired probability vector x that is suitable for the approximation392

is the mean of r many k-uniform vectors, x is kr-uniform. Therefore, it can be found by exhaustively393

searching through all possible multisets of [p] created by sampling with replacement kr = 32 ln(3/ε)/ε3394

times. The number of all those possible multisets is
(
p+kr−1
kr

)
∈ O(pkr). For each multiset, i.e. vector395

x that the search algorithm takes into account, it picks the one that makes xTAx maximum. This396

value is guaranteed to be ε-close to v∗ by Theorem 11.397

Hence, if we desire a (1− ε)-approximation of sqp in the weak sense according to Definition 2.2 of398

[24], the described algorithm runs in time O
(
pln( 3

ε )/ε3
)
.399
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4.2. The general proof400

4.2.1. Problems with multilinear constraints401

We begin by considering constrained ε-ETR problems where the Boolean formula F consists of ten-

sor multilinear polynomial constraints. We will use TML(A, x1, . . . , xn) to denote a tensor multilinear

polynomial with n vector-variables and coefficients defined by tensor A of size ×nj=1p. Formally,

TML(A, x1, . . . , xn) =
∑
i1∈[p]

· · ·
∑
in∈[p]

x1(i1) · . . . · xn(in) · a(i1, . . . , in).

We will use α to denote the maximum entry of tensor A in the absolute value sense and γ to denote402

the infinite norm of the convex set that constrains the variables.403

Lemma 12. Let F be a Boolean formula with n vector-variables x1, x2, . . . , xn and m TML constraints.

Also, let Ci = conv(ci1, c
i
2, . . . , c

i
`) be the domain of xi and Y =×n

i=1
Ci be the domain of the variables.

If the constrained ETR problem defined by exact(F ) and Y has a solution, then the constrained ε-ETR

problem defined by F and Y has a k-uniform solution where

k =
2 · α2 · γ2 · n2 · ln(3 · n ·m)

ε2
.

Proof. For every i ∈ [n], let x′i be a k-uniform vector sampled independently from x∗i . To prove the404

lemma, we will show that, because of the choice of k, with positive probability the sampled vectors405

satisfy every constraint of the ε-ETR problem. Then, by the probabilistic method, the lemma will406

follow.407

Let TMLj(Aj , x1, . . . , xn) be a multilinear polynomial that defines a constraint of F . For every

j ∈ [m] we define the following event

|TMLj(Aj , x
′
1, . . . , x

′
n)− TMLj(Aj , x

∗
1, . . . , x

∗
n)| ≤ ε. (4)

Observe that if x′1, . . . , x′n satisfy inequality (4) for every j ∈ [m], then the lemma follows.408

For every j ∈ [m], we replace the corresponding event (4) with n events that are linear in each vari-

able. For notation simplicity, let us denote by MLij the multilinear polynomial TMLj(Aj , x1, . . . , xn)

in which we have additionally set x1 = x′1, x2 = x′2, . . . , xi = x′i and xi+1 = x∗i+1, xi+2 = x∗i+2, . . . , xn =

x∗n. Furthermore, let ML0
j = MLj(Aj , x

∗
1, . . . , x

∗
n). Then, for every i ∈ [n] consider the event

|MLij −MLi−1
j | ≤

ε

n
. (5)
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Observe that, if for a given j ∈ [m] all n events defined in (5) are satisfied, then by the triangle409

inequality, the corresponding event (4) is satisfied as well.410

Consider now MLij . This can be seen as a random variable that depends on the choice of x′i and

takes values in [−γ · α, γ · α]. But recall that the x′i’s are sampled from x∗i using k samples, and that

they are mutually independent, so E
[
MLij

]
= MLi−1

j . Thus, we can bound the probability that a

constraint (5) is not satisfied, i.e. bound the probability that |MLij −MLi−1
j | > ε

n , using Hoeffding’s

inequality [23]. So,

Pr
(∣∣MLij −MLi−1

j

∣∣ > ε

n

)
= Pr

(∣∣MLij − E
[
MLij

]∣∣ > ε

n

)
≤ 2 · exp

(
−

2 · k2 ·
(
ε
n

)2
4 · k · γ2 · α2

)

= 2 · exp
(
− k · ε2

2 · n2 · γ2 · α2

)
. (6)

Recall, that we have n · m events of the form (5). We can bound the probability that any of those

events is violated, via the union bound. So, using (6) and the union bound, the probability that any

of these events is violated is upper bounded by

2 ·m · n · exp
(
− k · ε2

2 · n2 · γ2 · α2

)
. (7)

Hence, if the value of (7) is strictly less than 1, then there are x′1, . . . , x′m such that all of the n ·m

events of (5) are realized with positive probability, therefore the events of (4) are realized with positive

probability and thus the lemma follows. By requiring (7) to be strictly less than 1, and solving for k

we get

k >
2 · α2 · γ2 · n2 · ln(2 · n ·m)

ε2

which holds, by our choice of k.411

4.2.2. Problems with a standard degree d constraint412

We now consider constrained ε-ETR problems with exactly one tensor polynomial constraint of

standard degree d. We will use TSD(A, x, d) to denote a standard degree d tensor-polynomial with

coefficients defined by the ×dj=1p tensor A. Here, d identical vectors x are applied on A. Formally,

TSD(A, x, d) =
∑
i1∈[p]

· · ·
∑
id∈[p]

x(i1) · . . . · x(id) · a(i1, . . . , id).
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To prove the following lemma we consider the vector-variable x to be defined as the average of413

r = O(α
2·γd·d2
ε ) variables. This allows us to “break” the standard degree d tensor polynomial to414

a sum of multilinear tensor polynomials and to a sum of not-too-many multivariate polynomials.415

Then, the choice of r allows us to upper bound by ε
2 the error occurred by the sampled multivariate416

polynomials. Then, we observe that in order to prove the lemma we can write the sum of multilinear417

tensor polynomials as an ε
2 -ETR problem with r variables and roughly rd multilinear constraints. This418

allows us to use Lemma 12 to complete the proof.419

Lemma 13. Let F be a Boolean formula with a single vector-variable and a single TSD constraint of420

standard degree d, let Y be a bounded convex set, and let r = 2·α2·γd·d2
ε . If the constrained ETR problem421

exact(F ) has a solution in Y, then there exists a satisfiable constrained ε
2 -ETR problem ΠML with r422

variables, where each variable is a k-uniform vector for k = 16·α4·γd·d4
ε3 . The Boolean formula of ΠML423

is the conjunction of
∏d−1
i=0 (r − i) many TML constraints, and every solution of ΠML in Y can be424

transformed to a solution for the constrained ε-ETR problem defined by F and Y.425

Proof. Assume that x∗ ∈ Y is a solution for F . Let TSD(A, x, d) denote the tensor polynomial

of standard degree d used in F . For notation simplicity, let TSD(A, x, d) = A(xd). Create r new

k-uniform variables x1, . . . , xr ∈ Y(k) by sampling each one from x∗, where Y(k) is the discretized

set made from Y by using k-uniform vectors, and set x = 1
r (x1 + . . . + xr). Let X =

⋃r
i=1{xi} be a

multiset of Y(k) with cardinality r, meaning that multiple copies of an element of Y(k) are allowed in

X . In the sequel we will treat the elements of X as distinct, even though some might correspond to the

same element of Y(k). Then, note that A(xd) can be written as a sum of simple tensor multivariate

polynomials where some of them are multilinear and have as variables x1, . . . , xr. Now, let S be the set

of all ordered d-tuples that can be made by drawing d elements from X with replacement. Formally,

S = {(x̂1, . . . , x̂d) : x̂1, . . . , x̂d ∈ X}. Let us also define Sd to be the set of all ordered d-tuples that

can be made by drawing d elements from X without replacement. Formally, Sd = {(x̂1, . . . , x̂d) :

x̂1, . . . , x̂d ∈ X , x̂1, . . . , x̂d are pairwise different}, and observe that |Sd| =
∏d−1
i=0 (r − i). So, any

element of Sd, combined with tensor A, produces a multilinear polynomial. Hence, using the notation
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introduced, we get that |A(xd)−A(x∗
d

)| is less than or equal to the sum of the following two sums

1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣ and (8)

1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣ . (9)

Observe, |S −Sd| = rd−|Sd| and that
∣∣∣A(x̂1, . . . , x̂d)−A(x∗

d

)
∣∣∣ ≤ γd ·α for every A(x̂1, . . . , x̂d). Then,

for the sum given in (9) we get

1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣

≤
(

1− r · (r − 1) · · · (r − d+ 1)

rd

)
· γd · α

≤
(

1−
(

1− 1

r

)(
1− 2

r

)
·
(

1− d− 1

r

))
· γd · α

≤

(
1−

(
1− d− 1

r

)d−1
)
· γd · α

≤
(

1−
(

1− (d− 1)2

r

))
· γd · α (Bernoulli’s inequality)

=
(d− 1)2

r
· γd · α

≤ ε

2
.

Hence, in order for the original constraint to be satisfied, it suffices to satisfy the constraint

1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣ ≤ ε

2
. (10)

Observe that |Sd| =
∏d−1
i=0 (r − i) < rd, therefore, instead of the constraint (10), it suffices to satisfy

the following |Sd| constraints (we introduce one constraint for every (x̂1, . . . , x̂d) ∈ Sd)∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣ ≤ ε

2
. (11)

Note that each constraint (11) is the relaxed by ε/2 version of a constraint with a multilinear function426

equal to 0; multilinearity is due to the fact that x̂1, . . . , x̂d are pairwise different by definition of the427

set Sd. The proof is completed by using Lemma 12 for n = d, m = |Sd| and ε/2 instead of ε to show428

that indeed there exists a collection Sd of tuples x̂1, . . . , x̂d, where each x̂i, i ∈ [d] is a k-uniform vector429
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with k ≥ 8·α2·γ2·d2(d+2)·ln r
ε2 such that all |Sd| constraints of (11) are satisfied. The latter inequality is430

true by our choice of k and r.431

Now we can prove the following lemma.432

Lemma 14. Let F be a Boolean formula with a single vector-variable x and a single TSD constraint

of standard degree d, and let the domain of x, namely Y, be a bounded convex set. If the constrained

ETR problem defined by exact(F ) and Y has a solution, then the constrained ε-ETR problem defined by

F and Y has a k-uniform solution where

k =
32 · α6 · γ2d · d6

ε4
.

Proof. First, we use Lemma 13 to construct the constrained ε
2 -ETR problem ΠML with tensor mul-

tilinear constraints. Recall that ΠML has r = 2·α2·γd·d2
ε variables and if ΠML is satisfiable, then there

exist kr -uniform vectors x̂1 ∈ Y, . . . , x̂r ∈ Y that ε/2-satisfy ΠML. Then, let us construct the k-uniform

vector x̂ = 1
r · (x̂1 + . . .+ x̂r). Note that, according to Lemma 13, it is

|A(x̂d)−A(x∗
d

)| ≤ 1

rd

∑
(x̂1,...,x̂d)∈Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣

+
1

rd

∑
(x̂1,...,x̂d)∈S−Sd

∣∣∣A(x̂1, . . . , x̂d)−A(x∗
d

)
∣∣∣

≤ ε

2
+
ε

2

= ε.

This completes the proof of the lemma.433

4.2.3. Problems with simple multivariate constraints434

We now assume that we are given a constrained-ε-ETR problem defined by a Boolean formula F of435

simple tensor multivariate polynomial constraints and a bounded convex set Y. In the sequel, we will436

denote the maximum absolute value of a coordinate of a vector in Y by ‖Y‖∞. As before, γ = ‖Y‖∞437

and let α be the maximum absolute value of the coefficients of the constraints. We will say that the438

constraints are of maximum degree d if d is the maximum degree among all vector-variables. The439

main idea of the proof of the following lemma is to rewrite the problem as an equivalent problem with440

standard degree d constraints and then apply Lemmas 14 and 12 to derive the bound for k.441
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Lemma 15. Let F be a Boolean formula with n vector-variables x1, x2, . . . , xn and m many STM

polynomial constraints. Also, let Ci = conv(ci1, c
i
2, . . . , c

i
`) be the domain of xi and Y =×n

i=1
Ci be

the domain of the variables. If the constrained ETR problem defined by exact(F ) and Y has a solution,

then the constrained ε-ETR problem defined by F and Y has a k-uniform solution where

k =
512 · α6 · γ2d+2 · n6 · d6 · ln(2 · α′ · γ′ · d · n ·m)

ε5
,

where α′ := max(α, 1), γ′ := max(γ, 1).442

Proof. Let x∗1, . . . , x∗n be a solution for exact(F ) and let x′i, i ∈ [n] be a k-uniform vector-variable443

sampled from x∗i . We will prove that if k equals at least the quantity of the statement of the lemma,444

then there exist vectors x′1, . . . , x′n that constitute a solution to the constrained ε-ETR problem defined445

by F and Y.446

Consider the j-th constraint where j ∈ [m] defined by the simple tensor multivariate polynomial

STM(Aj , x
dj1
1 , . . . , x

djn
n ). We will use the same technique we used in Lemma 12 to create n constraints,

where constraint i ∈ [n] is defined via a simple degree dji polynomial. Again, for notation simplicity

for every i ∈ [m] we use STMi
j to denote the polynomial STM(Aj , x

dj1
1 , . . . , x

djn
n ) where we set x1 =

x′1, . . . , xi = x′i and xi+1 = x∗i+1, . . . , xn = x∗n. Let STM0
j := STM(Aj , (x

∗
1)dj1 , . . . , (x∗n)djn). Then, for

every j ∈ [m] we define the following n constraints

|STMi
j −STMi−1

j | ≤ ε

n
. (12)

Observe that for some j ∈ [m], every constraint i of the form (12) defines a simple degree dji447

polynomial with respect to variable x′i. Furthermore, observe that if every such constraint is satisfied,448

then the initial constraint defined by STM(Aj , x
dj1
1 , . . . , x

djn
n ) is satisfied too. Then, we convert each449

such constraint to a set of
∏d−1
i=0 (r − i) multilinear constraints with r = 2·α2·γd·d2

ε variables, using450

Lemma 13 where we demand that every multilinear constraint is ε
2n -satisfied (we restrict the current451

ε
n to half of it in order to use Lemma 13). The proof is then completed by using Lemma 12 where we452

observe that we have r · n = 2·α2·γd·d2·n
ε variables and

∏d−1
i=0 (r − i) · n ·m < rd · n ·m constraints and453

we set ε to ε
2n .454

To arrive to the actual size k of the required uniform vector, we start from the size k′ prescribed455

by Lemma 12 and sequentially set proper values for the parameters as dictated by our method for456

transforming the constraints. We have457
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k′ =
2 · α2 · γ2 · n2 · ln(3 · n ·m)

ε2

=
8 · α6 · γ2d+2 · n2 · d4 · ln(6 · α2 · γd · d2 · n ·m/ε)

ε4
(n← n · r)

=
8 · α6 · γ2d+2 · n2 · d4 · ln(6 · α2d+2 · γd2+d · d2d+2 · n2 ·m/εd+1)

ε4
(m← rd · n ·m)

=
128 · α6 · γ2d+2 · n6 · d4 · ln(6 · 2d+1 · α2d+2 · γd2+d · d2d+2 · nd+3 ·m/εd+1)

ε4
(ε← ε

2n
)

≤ 128 · α6 · γ2d+2 · n6 · d4 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m/ε)4d2

ε4
(for any d ≥ 1)

=
512 · α6 · γ2d+2 · n6 · d6 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m/ε)

ε4

≤ 512 · α6 · γ2d+2 · n6 · d6 · ln(2 ·max(α, 1) ·max(γ, 1) · d · n ·m)

ε5
.

We want k ≥ k′, therefore it suffices to bound from below k by the upper bound of k′. This completes458

the proof.459

4.2.4. Putting everything together460

Proof. For the final step of the proof of Theorem 5, assume that x∗1, . . . , x∗n ∈ Y is a solution for

exact(F ). Consider now a multivariate constraint i ∈ [m] of F defined by TMVi(x1, . . . , xn). First,

we replace this constraint by

|TMVi(x1, . . . , xn)− TMVi(x
∗
1, . . . , x

∗
n)| ≤ ε. (13)

Then, replace constraint (13) by t constraints of the form

|STMi,j(x1, . . . , xn)− STMi,j(x
∗
1, . . . , x

∗
n)| ≤ ε

t
(14)

where STMi,1(x1, . . . , xn), . . . , STMi,t(x1, . . . , xn) are the simple tensor multivariate polynomials461

TMVi(x1, . . . , xn) consists of. By the triangle inequality we get that if all t constraints given by (14)462

hold, then constraint (13) holds as well. Hence, we can reduce the problem to an equivalent problem463

with the same n variables and m · t constraints that all of them are simple tensor multivariate polyno-464

mials. So, we can apply Lemma 15 where we replace m with m · t and ε with ε
t . This completes the465

proof of the theorem.466
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5. Applications467

We now show how our theorems can be applied to derive new approximation algorithms for a468

variety of problems. In order to conclude that Corollary 1 provides a PTAS or QPTAS for some given469

problem, one has to carefully determine the actual input size of the problem and show that the running470

time of the corollary’s algorithm satisfies the PTAS or QPTAS definition.471

5.1. Constrained approximate Nash equilibria472

A constrained Nash equilibrium is a Nash equilibrium that satisfies some extra constraints, like473

specific bounds on the payoffs of the players. Constrained Nash equilibria attracted the attention of474

many authors, who proved NP-completeness for two-player games [25, 26, 10] and ETR-completeness for475

three-player games [10, 11, 12, 13, 14] for constrained exact Nash equilibria.476

Constrained approximate equilibria have been studied, but so far only lower bounds have been477

derived [27, 28, 16, 17, 8]. It has been observed that sampling methods can give QPTASs for finding478

constrained approximate Nash equilibria for certain constraints in two player games [17].479

By applying Theorem 5, we get the following result for games with number of players up to480

polylogarithmic in the number of pure strategies (here n is the number of players): Any property481

of an approximate equilibrium that can be formulated in ε-ETR where α, γ, d, t and n are up to482

polylogarithmic in the number of pure strategies has a QPTAS. This generalises past results to a much483

broader class of constraints, and provides results for games with more than two players, which had not484

previously been studied in this setting.485

A game is defined by the set of players, the set of actions for every player, and the payoff function486

of every player. In normal form games, the payoff function is given by a multilinear function on487

a tensor of appropriate size. Consider an n-player game where every player has ` many actions,488

and let Aj denote the payoff tensor of player j with elements in [0, 1]; Aj has size ×ni=1`. The489

interpretation of the tensor Aj is the following: the element Aj(i1, . . . , in) of the tensor corresponds490

to the payoff of player j when Player 1 chooses action i1, Player 2 chooses action i2, and so on. To491

play the game, every player j chooses a probability distribution xj ∈ ∆`, a.k.a. a strategy, over their492

actions. A collection of strategies is called strategy profile. The expected payoff of player j under the493

strategy profile (x1, . . . , xn) is given by ML(Aj , x1, . . . , xn). For notation simplicity, let uj(xj , x−j) :=494

ML(Aj , x1, . . . , xn), where x−j is the strategy profile of all players except player j. A strategy profile495
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(x∗1, . . . , x
∗
n) is a Nash equilibrium if for every player j it holds that uj(x∗j , x∗−j) ≥ uj(xj , x

∗
−j) for496

every xj ∈ ∆`, or equivalently uj(x∗j , x∗−j) ≥ uj(sp, x
∗
−j) for every possible sp, where sp denotes the497

probability distribution of player j where her p-th action has probability 1.498

Our framework formally describes a broad family of constrained Nash equilibrium problems for499

which we can get a QPTAS.500

Theorem 16. Let Γ be an n-player `-action normal form game Γ. Furthermore, let F be a Boolean501

formula with c ∈ poly(`) TMV constraints of degree d. If n, d ∈ poly log(`), then in quasi-polynomial502

time we can compute an approximate NE of Γ constrained by F , or decide that no such constrained503

approximate NE exists.504

Proof. Observe that we can write the problem of the existence of a constrained Nash equilibrium as

an ETR problem. The constraints of the problem will be the constraints of F plus the constraint

uj(sp, x−j)− uj(xj , x−j) ≤ 0

for every player i ∈ [m] and every action sp of player j.505

Thus, we can use Theorem 5 and complete the proof since we produced an ε-ETR problem with506

m = c+ n · ` = poly(`) constraints, which is polynomial in the input size; d and t are polylogarithmic507

in ` by assumption (it always holds that t ≤ d); γ = 1 since every variable is a probability distribution;508

α = 1 by the definition of normal form games.509

5.2. Shapley games510

Shapley’s stochastic games [29] describe a two-player infinite-duration zero-sum game. The game511

consists of N states. Each state specifies a two-player M × M bimatrix game where the players512

compete over: (1) a reward (which may be negative) that is paid by player two to player one, and (2) a513

probability distribution over the next state of the game. So each round consists of the players playing514

a bimatrix game at some state s, which generates a reward, and the next state s′ of the game. The515

reward in round i is discounted by λi−1, where 0 < λ < 1 is a discount factor. The overall payoff to516

player 1 is the discounted sum of the infinite sequence of rewards generated during the course of the517

game.518

Shapley showed that these games are determined, meaning that there exists a value vector v,519

where vs is the value of the game starting at state s. A polynomial time algorithm has been devised520
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for computing the value vector of a Shapley game when the number of states N is constant [30].521

However, since the values may be irrational, this algorithm needs to deal with algebraic numbers, and522

the degree of the polynomial is O(N)N
2

, so if N is even mildly super-constant, then the algorithm is523

not polynomial.524

Furthermore, Shapley showed that the value vector is the unique solution of a system of polynomial525

optimality equations, which can be formulated in ETR. Any approximate solution of these equations526

gives an approximation of the value vector, and applying Theorem 5 gives us a QPTAS. This algorithm527

works when N ∈ O( 6
√

logM), which is a value of N that prior work cannot handle. The downside of528

our algorithm is that, since we require the solution to be bounded by a convex hull defined by finitely529

many points, the algorithm only works when the value vector is reasonably small. Specifically, the530

algorithm takes a constant bound B ∈ R, and either finds the approximate value of the game, or531

verifies that the value is strictly greater than B.532

To formally define a Shapley game, we use N to denote the number of states, and M to denote the533

number of actions. The game is defined by the following two functions.534

• For each s ≤ N and j, k ≤M the function r(s, j, k) gives the reward at state s when player one535

chooses action j and player two chooses action k.536

• For each s, s′ ≤ N and j, k ≤ M the function p(s, s′, j, k) gives the probability of moving from537

state s to state s′ when player one chooses action j and player two chooses action k. It is required538

that
∑N
s′=1 p(s, s

′, j, k) = 1 for all s, j, and k.539

The game begins at a given starting state. In each round of the game the players are at a state s,540

and play the matrix game at that state by picking an action from the set {1, 2, . . . ,M}. The players541

are allowed to use randomization to make this choice. Supposing that the first player chose action j542

and the second player chose the action k, the first player receives the reward r(s, j, k), and then a new543

state s′ is chosen according to the probability distribution given by p(s, ·, j, k).544

The reward in future rounds is discounted by a factor of λ where 0 < λ < 1 in each round. So545

if r1, r2, . . . is the infinite sequence of rewards, the total reward paid by player two to player one is546 ∑∞
i=1 λ

i−1 · ri, which, due to the choice of λ, is always a finite value.547

The two players play the game by specifying a probability distribution at each state, which rep-

resents their strategy for playing at that state. Let ∆M denote the M -dimensional simplex, which
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represents the strategy space for both players at a single state. For each x, y ∈ ∆M , we overload

notation by defining the expected reward and next state functions.

r(s, x, y) =

M∑
j=1

M∑
k=1

x(j) · y(k) · r(s, i, j),

p(s, s′, x, y) =

M∑
j=1

M∑
k=1

x(j) · y(k) · p(s, s′, i, j).

Shapley showed that these games are determined [29], meaning that there is a unique vector v ∈ RN

such that vs is the value of the game starting at state s: player one has a strategy to ensure that the

expected reward is at least v(s), while player two has a strategy to ensure that the expected reward

is at most v(s). Furthermore, Shapley showed that this value vector is the unique solution of the

following optimality equations [29]. For each state s we have the equation

v(s) = min
x∈∆M

max
y∈∆M

(
r(s, x, y) + λ ·

N∑
s′=1

p(s, s′, x, y) · vs′
)
. (15)

In other words, vs must be the value of the one-shot zero-sum game at s, where the payoffs of this548

zero-sum game are determined by the values of the other states given by vs′ .549

Theorem 17. Let Γ be a Shapley game with N ∈ O( 6
√

logM), unbounded number of actions per550

state, and rewards in [−c, c] for every state-action combination, where c is a constant. Furthermore,551

let s be the starting state of the game. Let B ∈ R be a constant. In quasi-polynomial time we can552

approximately compute the value of Γ starting from s, if the value of every state is less than or equal553

to B, or decide that at least one of these values is greater than or equal to B.554

Proof. Let v = (v(1), v(2), . . . , v(N)), and for every state s let xs and ys denote the strategy player

one and player two choose at state s respectively. Observe that r(s, xs, ys) is an STM polynomial with

variables x and y of the form

STM(As1, xs, ys) =

M∑
j=1

M∑
k=1

xs(j) · ys(k) · as1(j, k)

where as1(i, j, k) = r(s, j, k).555

Observe also that λ ·
∑N
s′=1 p(s, s

′, xs, ys) · vs′ can be written as an STM polynomial with variables
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x, y and v of the form

STM(As2, x, y, v) =

M∑
j=1

M∑
k=1

N∑
l=1

xs(j) · ys(k) · v(l) · as2(j, k, l)

where as2(i, j, k) = λ · p(s, l, j, k).556

Let us define TMVs(xs, ys, v) = STM(As1, xs, ys)+STM(As2, xs, ys, v); TMVs(xs, ys, v) has length557

2 and degree 1.558

Note that we can replace equation (15) with the following 2 ·M TMV polynomial constraints

TMV(xs, ys, v)− TMV(j, ys, v) ≤ 0 for every action j ≤M of player one

TMV(xs, k, v)− TMV(xs, ys, v) ≥ 0 for every action k ≤M of player two.

So, to approximate v(s) it suffices to solve the ε-ETR problem defined by the 2 ·M ·N constraints559

defined as above for every state s ≤ N . Observe, the ε-ETR problem has: 2N + 1 variables (x1560

through xN , y1 through yN , and v); 2 · M · N TMV constraints; γ = max
{

1,maxs v(s)
}
; α =561

max
{
c, λ · maxs,s′,j,k p(s, s

′, j, k)
}

= max{c, 1}, since λ < 1 and maxs,s′,j,k p(s, s
′, j, k) < 1. So, if562

N ∈ O( 6
√

logM), maxs v(s) is constant, and c is a constant, we can use Theorem 5 and derive a563

QPTAS for (15).564

Finally, we note that an approximate solution to (15) gives an approximation of the value vector565

itself. This is because Shapley has shown that, when v is treated as a variable, the optimality equation566

given in (15) is a contraction map. The value vector is a fixed point of this contraction map, and the567

uniqueness of the value vector is guaranteed by Banach’s fixed point theorem. Our algorithm produces568

an approximate fixed point of the optimality equations. It is easy to show, using the contraction map569

property, that an approximate fixed point must be close to an exact fixed point.570

5.3. Approximate consensus halving571

In this section we show that an approximate solution to the consensus halving problem can be572

found in quasi-polynomial time when each agent’s valuation function is a single polynomial of constant573

or even polylogarithmic degree. We will do so by formulating the problem as a constrained ε-ETR574

instance, and then applying Theorem 5.575

In the consensus halving problem, typically, we consider n agents, each having a valuation function576

fi : [0, 1] 7→ R over the interval [0, 1]. We often consider an equivalent version of the problem whose577
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input consists of the cumulative valuations Fi instead, i.e. Fi(x) :=
∫ x

0
f(y)dy. A solution to the578

problem is given by a k-cut, i.e., a partition of [0, 1] into k + 1 sub-intervals, and a labeling of each as579

“+′′ or “−′′, such that the total valuation of each agent in her positive parts A+ equals that of the580

negative parts A−. In other words, we should have Fi(A+) = Fi(A−) for every i ∈ [n]. It was proven581

in [31] that there is always such a solution for k = n, and it is also easy to check that in the worst582

case that many cuts are necessary: consider each of the valuations of the agents having support that583

is a single sub-interval, and all the agents’ sub-intervals are disjoint. In the approximate version of the584

problem, for a given ε > 0, we are asking for a cut and a labeling such that |Fi(A+)− Fi(A−)| ≤ ε.585

The result of this section first appeared in [32, 33] and implies that instances in which each agent’s586

valuation function is a single polynomial, can be solved approximately using a polylogarithmic number587

of cuts. Furthermore, the cuts have a special form, that is, they are k-uniform. We note that this588

is one of the most general classes of instances for which we could hope to prove such a result: any589

instance in which n agents desire completely disjoint portions of the object can only be solved by an590

n-cut, and piecewise linear functions are capable of producing such a situation. So in a sense, we are591

exploiting the fact that this situation cannot arise when the agents have non-piecewise polynomial592

valuation functions.593

Lemma 18. For every Consensus Halving instance with n agents, and every ε > 0, if each agent’s594

valuation function Fi is a single polynomial of degree at most O(poly log n), then there exists a k-cut,595

where k := O(poly log n)/ε5, and parts A+ and A− such that:596

• every cut point is a multiple of 1/k = ε5

O(poly logn) ;597

• |Fi(A+)− Fi(A−)| ≤ ε, for every agent i.598

Proof. Since each agent i has a polynomial valuation function, there is a d ∈ O(log n) and constants599

a0, a1, . . . , ad such that each function Fi can be written as Fi(t) =
∑d
j=0 aj · tj .600

To prove the lemma, we will formulate the problem as a constrained ε-ETR instance, and apply

Theorem 5, which proves the claim. We first write a simple ETR formula for consensus halving with

polynomial valuation functions. If a consensus halving instance has a solution, then it also has one in
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which the cuts are strictly alternating, meaning that

Fi(A+) =

bn/2c∑
j=1

(
Fi(t2j)− Fi(t2j−1)

)
,

Fi(A−) =

dn/2e∑
j=1

(
Fi(t2j−1)− Fi(t2j−2)

)
,

where the cut is the tuple (t1, t2, . . . , tn), with 0 ≤ t1 ≤ · · · ≤ tn ≤ 1 and t0 := 0, tn+1 := 1.601

In this encoding, we have no need to encode which set a particular cut belongs to, and so we can

encode an n-cut as an element of the n-simplex x := (x1, x2, . . . , xn+1) ∈ ∆n+1, where xi := ti − ti−1.

From the latter, it is easy to see that

ti :=
i∑

j=1

xj . (16)

For j ∈ {0, 1, . . . , n}, let us denote by 1j and 0j a j-tuple of 1’s and 0’s respectively. Let us also

define the n-dimensional vector vj := (0j , 1n−j). Now observe that any n-cut t := (t1, t2, . . . , tn) can

be represented by an n-dimensional point which is in fact a convex combination of the n + 1 vectors

vj , j ∈ {0, 1, . . . , n}. In particular, from (16) it is easy to see that

t := (t1, t2, . . . , tn) =

n+1∑
j=1

xj · vj−1.

Hence, we can encode the problem as an ETR formula

∃t ·

(
n∧
i=1

Fi(A+) = Fi(A−)

)
∧ t ∈ C,

where C is the convex hull of the vectors v0, v1, . . . , vn. This formula has n constraints, one for each602

agent, and a single constraint bounding the variables in the convex set C which can be expressed by603

n+ 1 vectors, namely vj , j ∈ {0, 1, . . . , n}.604

Theorem 5 allows us to leave the constraint t ∈ C unchanged, but insists that we weaken the others.605

Specifically each constraint is weakened so that only Fi(A+)−Fi(A−) ≤ ε and Fi(A+)−Fi(A−) ≥ −ε606

are enforced, which implies that |Fi(A+) − Fi(A−)| ≤ ε. This is sufficient to encode an approximate607

solution to the problem.608
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The constructed ε-ETR instance has one vector-variable t ∈ C and 2n constraints. Let us now

study one of the constraints of the ε-ETR instance.

bn/2c∑
j=1

(
Fi(t2j)− Fi(t2j−1)

)
−
dn/2e∑
j=1

(
Fi(t2j−1)− Fi(t2j−2)

)
≤ ε.

Using the representation of Fi, we can write down a constraint as
∑d
k=0 ak ·hk(t1, t2, . . . , tn) ≤ ε, where609

hk(t1, t2, . . . , tn) is a sum of monomials, each one of degree d. Fi depends on t0 and tn+1 as well, but610

recall that these are 0 and 1 respectively.611

The term ak ·hk(t1, t2, . . . , tn) is a simple tensor multivariate polynomial with one variable of degree612

k, which we will denote by STM(Hk, t
k). Under this notation Hk is a k-dimensional tensor where613

vector t is applied k times. Hence, every constraint is a sum of d + 1 simple tensor multivariate614

polynomials, i.e. a TMV polynomial of maximum degree d constructed by d + 1 STM polynomials.615

Furthermore, ||vj ||∞ ≤ 1 for all j ∈ {0, 1, . . . , n}, and for every constraint, the maximum absolute616

coefficient is constant by definition, and the degree d is O(poly log n). Hence, we can apply Theorem617

5 and get the claimed result.618

As a consequence, we can perform a brute force search over all possible k-cuts to find an approximate619

solution, which can be carried out in nO(poly logn/ε5) time.620

Theorem 19. Consensus Halving admits a QPTAS when the valuation function of every agent is621

a single polynomial of degree O(poly log n).622

5.4. Optimization problems623

Our framework can provide approximation schemes for optimization problems with one vector-

variable x ∈ Rp with polynomial constraints over bounded convex sets. Formally,

max h(x)

s.t. h1(x) ≥ 0, . . . , hm(x) ≥ 0

x ∈ conv(c1, . . . , c`)

where h(x), h1(x), . . . , hm(x) are polynomials with respect to vector x; for example h(x) = xTAx,624

where A is a p× p matrix, subject to h1(x) = xTx− 1
10 ≥ 0 and x ∈ ∆p. We will call the polynomials625
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hi solution-constraints. Optimization problems of this kind received a lot of attention over the years [24,626

34, 35, 36].627

For optimization problems, we sample from the solution that achieves the maximum when we628

apply Theorem 5, in order to prove that there is a k-uniform solution that is close to the maximum.629

Our algorithm enumerates all k-uniform profiles, and outputs the one that maximizes the objective630

function. Using this technique, Theorem 5 gives the following results.631

1. There is a PTAS if h(x) is a STM polynomial of maximum degree independent of p, the number632

of solution-constraints is independent of p, and ` = poly(p).633

2. There is QPTAS if h(x) is a STM polynomial of maximum degree up to poly log p, the number634

of solution-constraints is poly(p), and ` = poly(p).635

To the best of our knowledge, the second result is new. The first result was already known, however636

it was proven using completely different techniques: in [22] it was proven for the special case of degree637

two, in [36] it was extended to any fixed degree, and alternative proofs of the fixed degree case were638

also given in [34, 35]. We highlight that in all of the aforementioned results solution constraints were639

not allowed. Note that unless NP = ZPP there is no FPTAS for quadratic programming even when the640

variables are constrained in the simplex [24]. Hence, our results can be seen as a partial answer to the641

important question posed in [24]: What is a complete classification of functions that allow a PTAS?642

Furthermore, as shown in Theorem 6 this technique yields a generalized algorithm for multi-643

objective optimization problems which, to the best of our knowledge, is a completely new result.644

5.5. Tensor problems645

Our framework provides quasi-polynomial time algorithms for deciding the existence of approximate646

eigenvalues and approximate eigenvectors of tensors in Rp×p×p, where the elements are bounded by647

a constant, where the solutions are required to be in a bounded convex set. In [37] it is proven that648

there is no PTAS for these problems when the domain is unrestricted. To the best of our knowledge649

this is the first positive result for the problem even in this, restricted, setting.650

Definition 8. The nonzero vector x ∈ Rp is an eigenvector of tensor A ∈ Rp×p×p if there exists an
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eigenvalue λ ∈ R such that for every k ∈ [p] it holds that

n∑
i

n∑
j

a(i, j, k) · x(i) · x(j) = λ · x(k). (17)

Theorem 20. Let A be an Rp×p×p tensor with entries in [−c, c], where c is a constant. Furthermore,651

let B ∈ R be a constant and let Y be a bounded convex set where ‖Y‖∞ is a constant. In a quasi-652

polynomial time we can compute an eigenvalue-eigenvector pair (λ, x) that approximately satisfy (17)653

such that λ ≤ B and x ∈ Y, or decide that no such pair exists.654

Proof. Observe that
∑n
i

∑n
j a(i, j, k) ·x(i) ·x(j) can be written as an STM polynomial STM(A1, x

2)655

where a1(i, j) = a(i, j, k). Furthermore, let ` be a p-dimensional vector. Then, λ · x(k) can be written656

as an STM polynomial STM(A2, x, `), where a2(k, 1) = 1 and zero otherwise.657

So, Equation (17) can be written as an TMV polynomial constraint of degree 2 and length 2,658

with two vector variables, x and `. So, the problem of computing an eigenvalue-eigenvector pair that659

approximately satisfy (17) can be written as an ε-ETR problem with p TMV polynomial constraints of660

degree 2 and length 2 and two vector variables. Hence, we can use Theorem 5 with γ = ‖Y‖∞ which661

is constant, α = c, n = 2, t = 2, d = 2, and m = p to find an approximate solution if an exact one662

exists, or decide that no exact solution exists.663

5.6. Computational geometry664

Finally, we note that our theorem can be applied to problems in computational geometry, al-665

though the results are not as general as one may hope. Many problems in this field are known to be666

ETR-complete, including, for example, the Steinitz problem for 4-polytopes, inscribed polytopes and667

Delaunay triangulations, polyhedral complexes, segment intersection graphs, disk intersection graphs,668

dot product graphs, linkages, unit distance graphs, point visibility graphs, rectilinear crossing number,669

and simultaneous graph embeddings. We refer the reader to the survey of Cardinal [38] for further670

details.671

All of these problems can be formulated in ε-ETR, and indeed our theorem does give results for672

these problems. However, our requirement that the bounding convex set be given explicitly limits673

their applicability. Most computational geometry problems are naturally constrained by a cube, so674

while Corollary 2 does give NP algorithms, we do not get QPTASs unless we further restrict the convex675
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set. Here we formulate QPTASs for the segment intersection graph and the unit disk intersection676

graph problems when the solutions are restricted to lie in a simplex. While it is not clear that either677

problem has natural applications that are restricted in this way, we do think that future work may be678

able to derive sampling theorems that are more tailored towards the computational geometry setting.679

5.6.1. Segment intersection graphs680

Definitions.. Let G be an undirected graph with vertex set {v1, v2, . . . , vn}. We say that G is a segment681

graph if there are straight segments s1, s2, . . . , sn in the plane such that, for every i, j, 1 ≤ i < j ≤ n,682

the segments si and sj intersect if and only if {vi, vj} ∈ E(G).683

By a suitable rotation of the co-ordinate system we can achieve that none of the segments is vertical.

Then the segment si representing vertex vi can be algebraically described as the set {(x, y) ∈ R2 : y =

aix+ bi, ci ≤ x ≤ di} for some real numbers ai, bi, ci, di. We say that G is a simplex K segment graph

if the real numbers ai, bi, ci, di, i = 1, 2, . . . n are under the constraints

ai, bi, ci, di ≥ 0, for every i = 1, 2, . . . n, and
n∑
i=1

(ai + bi + ci + di) = K, where K > 0 is a given constant.

We let SIM-K-SEG denote the class of all simplex K segment graphs with parameter K > 0.684

The problem ε-RECOG(SIM-K-SEG) is defined as follows. Given an abstract undirected graph G,685

does it belong with tolerance ε to SIM-K-SEG?686

Formulation of ε-RECOG(SIM-K-SEG).. We first give a description for the problem with ε = 0 and687

then we generalize for arbitrary ε ≥ 0. The formulation is taken from [39].688

Letting li be the line containing si, we note that si ∩ sj 6= ∅ if li and lj intersect in a single point689

whose x-coordinate lies in both the intervals [ci, di] and [cj , dj ]. It is easy to see that the x-coordinate690

equals bj−bi
ai−aj .691

Now we turn to the general case where ε ≥ 0. Let us introduce variables Ai, Bi, Ci, Di representing

the unknown quantities ai, bi, ci, di, i = 1, 2, . . . , n. By the problem’s definition we require the vector

(A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) to be in the (4n−1)-simplex with parameter K. Then si∩sj 6= ∅
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can be expressed by the following predicate:

INTS(Ai, Bi, Ci, Di,Aj , Bj , Cj , Dj) =

(Ai >ε Aj ∧ Ci(Ai −Aj) ≤ε Bj −Bi ≤ε Di(Ai −Aj)

∧ Cj(Ai −Aj) ≤ε Bj −Bi ≤ε Dj(Ai −Aj))

∨(Ai <ε Aj ∧ Ci(Ai −Aj) ≥ε Bj −Bi ≥ε Di(Ai −Aj)

∧ Cj(Ai −Aj) ≥ε Bj −Bi ≥ε Dj(Ai −Aj))

(this is only correct if we “globally” assume that Ci ≤ε Di for all i). The existence of a SEG-

representation of G can then be expressed by the formula

(∃A1B1C1D1 . . . AnBnCnDnK)

(
n∧
i=1

Ci ≤ε Di

)

∧

 ∧
{i,j}∈E

INTS(Ai, Bi, Ci, Di, Aj , Bj , Cj , Dj)


∧

 ∧
{i,j}/∈E

¬INTS(Ai, Bi, Ci, Di, Aj , Bj , Cj , Dj)

 .

Theorem 21. There is an algorithm that runs in time nO(K2·logn/ε2) and either finds a vector692

(A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) that is a solution to ε-RECOG(SIM-K-SEG), or determines that693

there is no solution to 0-RECOG(SIM-K-SEG).694

Proof. We set x = (A1, B1, C1, D1, . . . , An, Bn, Cn, Dn) and F (x) to be the above formula that we695

constructed. Their combination makes an ε-ETR instance. Vector x is constrained over the convex hull696

defined by the vertices of the (4n − 1)-simplex, i.e. vectors vi ∈ R4n, i ∈ {1, 2, . . . 4n} with their i-th697

element equal to K and the rest equal to 0. Therefore the cardinality of our convex set is m = 4n,698

and γ = K. By looking at the formula we can conclude that a = 1, t = 4, and d = 2. By Theorem 9699

the result follows.700

5.6.2. Unit disk intersection graphs701

Definitions.. Let G be an undirected graph with vertex set {v1, v2, . . . , vn}. We say that G is a unit702

disk intersection graph or unit disk graph if there are disks d1, d2, . . . , dn (in the plane) with radius 1703
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such that, for every i, j, 1 ≤ i < j ≤ n, the disks di and dj intersect at more than one points (i.e., their704

perimeters have two points in common) if and only if {vi, vj} ∈ E(G).705

The disk di representing vertex vi can be algebraically described as the set {(x, y) ∈ R2 : (x −

xi)
2 + (y − yi)2 ≤ 1} for some real numbers xi, yi that determine the centre of the disk. We say that

G is a simplex K unit disk graph if the real numbers xi, yi, i = 1, 2, . . . n are under the constraints

xi, yi ≥ 0, for every i = 1, 2, . . . n, and
n∑
i=1

(xi + yi) = K, where K > 0 is a given constant.

We let SIM-K-UDG denote the class of all simplex K unit disk graphs with parameter K > 0.706

The problem ε-RECOG(SIM-K-UDG) is defined as follows. Given an abstract undirected graph707

G, does it belong with tolerance ε to SIM-K-UDG?708

Formulation of ε-RECOG(SIM-K-UDG).. Let us introduce variables Xi, Yi representing the unknown

quantities xi, yi, i = 1, 2, . . . , n. We require the vector (X1, Y1, . . . , Xn, Yn) to be in the (2n−1)-simplex

with parameter K. Then we consider an ε-intersection di ∩ε dj 6= ∅ to happen if:√
(Xi −Xj)2 + (Yi − Yj)2 < 2 + ε,

and an ε-non-intersection di ∩ε dj = ∅ to happen if:√
(Xi −Xj)2 + (Yi − Yj)2 ≥ 2− ε.

The existence of a UDG-representation of G can then be expressed by the formula

(∃X1Y1 . . . XnYn) ∧
{i,j}∈E

(Xi −Xj) · (Xi −Xj) + (Yi − Yj) · (Yi − Yj) < 4 + 2ε+ ε2


∧

 ∧
{i,j}/∈E

(Xi −Xj) · (Xi −Xj) + (Yi − Yj) · (Yi − Yj) ≥ 4− 2ε+ ε2

 .

Theorem 22. There is an algorithm that runs in time nO(K2·logn/ε2) and either finds a vector709

(X1, Y1, . . . , Xn, Yn) that is a solution to ε-RECOG(SIM-K-UDG), or determines that there is no710

solution to 0-RECOG(SIM-K-UDG).711
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Proof. We set x = (X1, Y1, . . . , Xn, Yn) and F (x) to be the above formula that we constructed.712

Their combination makes an ε-ETR instance. Vector x is constrained over the convex set defined by the713

vertices of the (2n − 1)-simplex, i.e. vectors vi ∈ R2n, i ∈ {1, 2, . . . 2n} with their i-th element equal714

to K and the rest equal to 0. Therefore the cardinality of our convex set is m = 2n, and γ = K. By715

looking at the formula we can conclude that a = 2, t = 7, and d = 2. By Theorem 9 the result follows.716

6. Discussion and Open Problems717

It seems that ETR is a class which captures decision problems that are a lot harder than these718

in NP (under standard complexity assumptions) because either they do not have truth certificates of719

polynomial length or because the certificate cannot be checked in polynomial time. One can think720

of ETR and thus Function ETR (FETR) and Total Function ETR (TFETR) as being the analogues of721

NP, FNP and TFNP respectively in the Blum-Shub-Smale (BSS) model of computation [18], in which722

computing functions over real numbers is as costly as is computing functions over rational numbers in723

Turing machines.724

In this paper we provide a general framework for approximation schemes, a framework designed for725

problems in a subclass of ETR (or more precisely, FETR). In particular, since some function problems in726

TFNP or, in general, FNP (whose corresponding decision problems are in NP), have polynomial or quasi-727

polynomial time approximation schemes (PTAS/QPTAS), we study harder problems in TFETR or FETR,728

and seek similar approximation schemes. In a beautiful turn of events, we show that PTASs and QP-729

TASs exist for a wide class of problems in FETR. By extending the well-known Lipton-Markakis-Mehta730

(LMM) technique that yields the best possible algorithm (under standard complexity assumptions)731

for computing approximate Nash equilibria in bimatrix games, we provide a general framework that732

gives in a standardized way, approximation algorithms of the same quality as the state of the art for733

some problems, while for some other problems these algorithms are the first to achieve an efficient734

approximation. Interestingly, approximation techniques that work inside FNP, transcend it, and reach735

FETR.736

For a given constrained ε-ETR instance whose variables’ domain is the convex hull of ` vectors,737

we presented an algorithm which runs in time min{`O(kn), kO(`n)}, for k indicated in Theorem 5, that738

either computes a solution or responds that a solution to the exact instance does not exist. This739

algorithm is a QPTAS or PTAS for many well-known problems. However, our algorithm, being an740
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extension of the LMM algorithm, for some problems does not have better running time than the state741

of the art algorithms that are tailored to these problems. The most important open problem is to make742

the quantity k depend logarithmically on crucial parameters, such as the number of variables n and743

the degree of the polynomials d, instead of polynomially. This would generalize many algorithms, such744

as the PTAS for computing an ε-Nash equilibrium in anonymous games [40] and the best algorithm745

for computing an ε-Nash equilibrium in general multi-player normal form games [4].746
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