
Computing Weighted Subset Odd Cycle Transversals
in H-Free Graphs?

Nick Brettell1, Matthew Johnson2, and Daniël Paulusma2

1 School of Mathematics and Statistics, Victoria University of Wellington,
New Zealand, nick.brettell@vuw.ac.nz

2 Department of Computer Science, Durham University, UK,
{matthew.johnson2,daniel.paulusma}@durham.ac.uk

Abstract. For the Odd Cycle Transversal problem, the task is to find a small
set S of vertices in a graph that intersects every cycle of odd length. The Subset
Odd Cycle Transversal problem requires S to intersect only those odd cycles
that include a vertex of a distinguished vertex subset T . If we are given weights for
the vertices, we ask instead that S has small weight: this is the problem Weighted
Subset Odd Cycle Transversal. We prove an almost-complete complexity di-
chotomy for Weighted Subset Odd Cycle Transversal for graphs that do not
contain a graph H as an induced subgraph. In particular, our result shows that the
complexities of the weighted and unweighted variant do not align on H-free graphs,
just as Papadopoulos and Tzimas showed for Subset Feedback Vertex Set.
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1 Introduction

For a transversal problem, one seeks to find a small set of vertices within a given graph
that intersects every subgraph of a specified kind. Two problems of this type are Feedback
Vertex Set and Odd Cycle Transversal, where the objective is to find a small set S
of vertices that intersects, respectively, every cycle and every cycle with an odd number
of vertices. Equivalently, when S is deleted from the graph, what remains is a forest or a
bipartite graph, respectively.

For a subset transversal problem, we are also given a vertex subset T and we must find
a small set of vertices that intersects every subgraph of a specified kind that also contains a
vertex of T . An (odd) T -cycle is a cycle of the graph (with an odd number of vertices) that
intersects T . A set ST ⊆ V is a T -feedback vertex set or an odd T -cycle transversal of a graph
G = (V,E) if ST has at least one vertex of, respectively, every T -cycle or every odd T -cycle;
see also Fig. 1. A (non-negative) weighting of G is a function w : V → R+. For v ∈ V , w(v)
is the weight of v, and for S ⊆ V , the weight w(S) of S is the sum of the weights of the
vertices in S. In a weighted subset transversal problem the task is to find a transversal whose
weight is less than a prescribed bound. We can now define the following problems:

Weighted Subset Feedback Vertex Set
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weighting w of G

and an integer k ≥ 1.
Question: does G have a T -feedback vertex set ST with w(ST ) ≤ k?

Weighted Subset Odd Cycle Transversal
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weighting w of G

and an integer k ≥ 1.
Question: does G have an odd T -cycle transversal ST with w(ST ) ≤ k?

? The paper received support from the Leverhulme Trust (RPG-2016-258). The first author was
also supported by a Rutherford Foundation Postdoctoral Fellowship, administered by the Royal
Society Te Apārangi. An extended abstract appeared in the proceedings of WADS 2021 [7].
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Both problems are NP-complete even when the weighting function is 1 and T = V . We
continue a systematic study of transversal problems on hereditary graph classes, focusing
on the weighted subset variants. Hereditary graph classes can be characterized by a set of
forbidden induced subgraphs. We begin with the case where this set has size 1: the class of
graphs that, for some graph H, do not contain H as an induced subgraph; a graph in this
class is said to be H-free.

1.1 Past Results

We first note some NP-completeness results for the special case where w ≡ 1 and T =
V , which corresponds to the original problems Feedback Vertex Set and Odd Cycle
Transversal. These results immediately imply NP-completeness for the weighted subset
problems.

By Poljak’s construction [29], for every integer g ≥ 3, Feedback Vertex Set is NP-
complete for graphs of finite girth at least g (the girth of a graph is the length of its short-
est cycle). Exactly the same result holds for Odd Cycle Transversal [8]. It has also
been shown that Feedback Vertex Set [22] and Odd Cycle Transversal [8] are NP-
complete for line graphs and, therefore, also for claw-free graphs. Thus the two problems are
NP-complete for the class of H-free graphs whenever H contains a cycle or claw. Of course,
a graph with no cycle is a forest, and a forest with no claw has no vertex of degree at least 3.
Hence, we need now only to focus on the case where H is a linear forest, that is, a collection
of disjoint paths.

There is no linear forest H for which Feedback Vertex Set on H-free graphs is known
to be NP-complete, but for Odd Cycle Transversal we can take H = P2+P5 or H = P6,
as the latter problem is NP-complete even for (P2+P5, P6)-free graphs [12]. It is known that
Subset Feedback Vertex Set [14] and Subset Odd Cycle Transversal [6], which
are the special cases with w ≡ 1, are NP-complete for 2P2-free graphs; in fact, these results
were proved for split graphs which form a proper subclass of 2P2-free graphs. Papadopoulos
and Tzimas [28] proved the following interesting dichotomy, which motivated our research.

Theorem 1 ([28]). Weighted Subset Feedback Vertex Set on sP1-free graphs is
polynomial-time solvable if s ≤ 4 and NP-complete if s ≥ 5.

The unweighted version of Subset Feedback Vertex Set can be solved in polynomial
time for sP1-free graphs for every s ≥ 1 [28]. In contrast, for many transversal problems,
the complexities on the weighted and unweighted versions for H-free graphs align; see, for
example Vertex Cover [16], Connected Vertex Cover [17] and (Independent) Dom-
inating Set [20]. Thus Subset Feedback Vertex Set is one of the few known problems

Fig. 1. Two examples of a graph with the set T indicated by square vertices. The set ST of black
vertices forms both an odd T -cycle transversal and a T -feedback vertex set. On the left, ST \T 6= ∅.
On the right, ST ⊆ T .

.
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for which, on certain hereditary graph classes, the (unweighted) problem is polynomial-time
solvable, but the weighted variant is NP-complete.

Very recently, Paesani et al. [26] completed the complexity classification of Weighted
Subset Feedback Vertex Set forH-free graphs by giving a polynomial-time algorithm for
2P1+P4-free graphs. Prior to this, the other known polynomial-time algorithm for Weighted
Subset Feedback Vertex Set on H-free graphs was for the case where H = P4. This
latter result can be shown in several ways. First, Weighted Subset Feedback Vertex
Set is polynomial-time solvable for permutation graphs [27] and also for graphs for which we
can find a decomposition of constant mim-width in polynomial time [2]; both classes contain
the class of P4-free graphs. A linear-time algorithm can also be obtained by making the
following two observations. First, P4-free graphs have clique-width 1 and we can construct a
1-expression in linear time by the definition of a cograph (it is well-known that the class of
P4-free graphs coincides with the class of cographs). Second, the property that a subset of
vertices S is a T -feedback vertex subset in a graph G = (V,E) for some given set T ⊆ V can
be expressed in MSO1 monadic second-order logic (with S as the only free monadic variable).
Hence, we can apply a meta-theorem of Courcelle et al. [11]. To the best of our knowledge,
algorithms for Weighted Subset Odd Cycle Transversal on H-free graphs have not
previously been studied.

We now mention the polynomial-time results on H-free graphs for the unweighted subset
variants of the problems (which do not imply anything for the weighted subset versions). It is
known that Subset Odd Cycle Transversal is polynomial-time solvable on (sP1 +P3)-
free graphs for every integer s ≥ 0 [6] and on P4-free graphs [6]. In Section 6 we show
that the latter result can be generalized to the weighted variant in a straightforward way.
Besides completing the complexity classification for the weighted version, Paesani et al. [26]
also completed the complexity classification of Subset Feedback Vertex Set for H-free
graphs by giving a polynomial-time algorithm for the latter problem on (sP1+P4)-free graphs
for every s ≥ 0.

We now mention the polynomial-time results on H-free graphs for the weighted variants
of the two original problems (which do not imply anything for the weighted subset versions).
There are no additional polynomial-time results for the unweighted versions. Abrishami et
al. [1] proved that Weighted Feedback Vertex Set is polynomial-time solvable on P5-
free graphs. Paesani et al. [25] recently extended this result to (sP1 + P5)-free graphs for
every s ≥ 1 [24] and also proved that Weighted Feedback Vertex Set is polynomial-
time solvable on sP3-free graphs for every s ≥ 1 [24]. In another recent paper [15], Gartland
et al. proved that Weighted Feedback Vertex Set is quasipolynomial-time solvable
for Pt-free graphs for every t ≥ 1. Such a result is unlikely for (Weighted) Odd Cycle
Transversal due to the aforementioned NP-hardness of this problem for (P2+P5, P6)-free
graphs [12]. However, Weighted Odd Cycle Transversal can be solved in polynomial
time on sP2-free graphs for every s ≥ 1; this follows from a straightforward generalization
of the corresponding result for the unweighted variant given in [8]. Finally, Weighted Odd
Cycle Transversal is also polynomial-time solvable for (sP1+P3)-free graphs; this follows
from a straightforward adaptation of the proof for the unweighted variant given in [12].3

1.2 Our Results

We enhance the current understanding of Weighted Subset Odd Cycle Transversal
on H-free graphs. We highlight that Subset Odd Cycle Transversal is a problem whose
weighted variant turns out to be harder than its unweighted variant when restricting the input
to H-free graphs. In particular, we show to what extent this holds by giving the following

3 The result for Odd Cycle Transversal on (sP1 +P3)-free graphs (s ≥ 1) from [12] was shown
before the corresponding result for Subset Odd Cycle Transversal was proven in [6].
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polynomial-time unresolved NP-complete
(W)FVS H ⊆i sP1 + P5 or

sP3 for s ≥ 1
H ⊇i P2 + P4 or P6 none

(W)OCT H = P4 or
H ⊆i sP1 + P3 or

sP2 for s ≥ 1

H = sP1 + P5 for s ≥ 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u ≥ 0, v ≥ 1
with min{s, t, u} ≥ 1 if v = 1, or
H = sP1 + tP2 + uP3 for s, t ≥ 0, u ≥ 1
with u ≥ 2 if t = 0

H ⊇i P6 or P2+P5

SFVS H = sP1 + P4 for s ≥ 0 none H ⊇i 2P2

SOCT H = P4 or
H ⊆i sP1 + P3 for s ≥ 0

H = sP1 + P4 for s ≥ 1 H ⊇i 2P2

WSFVS H ⊆i 2P1 + P4 none H ⊇i 5P1 or 2P2

WSOCT H ⊆i P4, P1 + P3, or
3P1 + P2

H ∈ {2P1 + P3, P1 + P4, 2P1 + P4} H ⊇i 5P1 or 2P2

Table 1. The complexity of (Weighted) Feedback Vertex Set ((W)FVS), (Weighted) Odd
Cycle Transversal ((W)OCT), and their subset (S) and weighted subset (WS) variants, when
restricted toH-free graphs for linear forestsH. All problems are NP-complete forH-free graphs when
H is not a linear forest. The two blue cases for WSOCT are the main algorithmic contributions of
this paper; see also Theorem 2.

almost-complete dichotomy. We write H ⊆i G, or G ⊇i H to say that H is an induced
subgraph of G (that is, H can be obtained from G by a sequence of vertex deletions).

Theorem 2. Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}. Then Weighted
Subset Odd Cycle Transversal on H-free graphs is polynomial-time solvable if H ⊆i

3P1 + P2, P1 + P3, or P4, and is NP-complete otherwise.

As a consequence, we obtain a dichotomy analogous to Theorem 1.

Corollary 1. The Weighted Subset Odd Cycle Transversal problem on sP1-free
graphs is polynomial-time solvable if s ≤ 4 and is NP-complete if s ≥ 5.

For the hardness part of Theorem 2 it suffices to show hardness forH = 5P1; this follows from
the same reduction used by Papadopoulos and Tzimas [28] to prove Theorem 1. The three
tractable cases, where H ∈ {P4, P1 + P3, 3P1 + P2}, are all new. Out of these cases, the case
H = P4 easily follows from existing results (as we will explain) and the case H = 3P1+P2 is
the most involved. For the latter case we use a different technique to that used in [28]. Just as
in [28], we do reduce to the problem of finding a minimum weight vertex cut that separates two
given terminals. However, our technique relies less on explicit distance-based arguments, and
we devise a method for distinguishing cycles according to parity. Our technique can also be
used to prove that Weighted Subset Feedback Vertex Set is polynomial-time solvable
for (3P1 + P2)-free graphs. However, we omit a proof of this due to the aforementioned
result of Paesani et al. [26] for the superclass of (2P1 + P4)-free graphs. Their proof for
H = 2P1 + P4 is based on the fact that acyclic graphs (forests) have vertices of degree 1.
This is not necessarily true for odd-cycle-free (bipartite) graphs. As such, it appears their
approach cannot be adapted for the Weighted Odd Cycle Transversal problem.

We refer to Table 1 for an overview of the current knowledge of the problems on H-free
graphs, including the results of this paper.

2 Preliminaries

Let G = (V,E) be a graph. If S ⊆ V , then G[S] denotes the subgraph of G induced by S,
and G − S is the graph G[V \ S]. The path on r vertices is denoted Pr. We say that S is
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independent if G[S] has no edges, and that S is a clique and G[S] is complete if every pair of
vertices in S is joined by an edge.

If G1 and G2 are vertex-disjoint graphs, then the union operation + creates the disjoint
union G1 + G2 having vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). By sG, we
denote the disjoint union of s copies of G. Thus sP1 denotes the graph whose vertices form
an independent set of size s.

A (connected) component of G is a maximal connected subgraph of G. The graph G =
(V, {uv | uv 6∈ E and u 6= v}) is the complement of G. The neighbourhood of a vertex u ∈ V
is the set NG(u) = {v | uv ∈ E}. For U ⊆ V , we let NG(U) =

⋃
u∈U N(u) \ U .

Let S and T be two disjoint vertex sets of a graph G. Then S is complete to T if every
vertex of S is adjacent to every vertex of T , and S is anti-complete to T if there are no edges
between S and T . In the first case, S is also said to be complete to G[T ], and in the second
case we say it is anti-complete to G[T ].

A graph is bipartite if its vertex set can be partitioned into at most two independent sets.
A graph is complete bipartite if its vertex set can be partitioned into two independent sets X
and Y such that X is complete to Y . If X or Y has size 1, the complete bipartite graph is a
star; recall that K1,3 is also called a claw.

3 General Framework of the Algorithms

We first explain our general approach with respect to odd cycle transversals. We note that
our approach can be easily extended to other kinds of transversals as well (see also [7]).

So, consider an instance (G,T,w) of Weighted Subset Odd Cycle Transversal.
Recall that a cycle is a T -cycle if it contains a vertex of T . A subgraph of G with no odd
T -cycles is T -bipartite. Note that a subset ST ⊆ V is an odd T -cycle transversal if and only if
G[V \ST ] is T -bipartite. A solution for (G,T,w) is an odd T -cycle transversal ST . From now
on, whenever ST is defined, we let BT = V (G)\ST denote the vertex set of the corresponding
T -bipartite graph. If u ∈ BT belongs to at least one odd cycle of G[BT ], then u is an odd
vertex of BT . Otherwise, when u ∈ BT is not in any odd cycle of G[BT ], we say that u is an
even vertex of BT . Note that by definition every vertex in T ∩BT is even. We let O(BT ) and
R(BT ) denote the sets of odd and even vertices of BT (so BT = O(BT ) ∪R(BT )).

A solution ST is neutral if BT consists of only even vertices; in this case ST is an odd
cycle transversal of G. We say that ST is T -full if BT contains no vertex of T . If ST is neither
neutral nor T -full, then ST is a mixed solution. We can now outline our approach to finding
minimum weight odd T -cycle transversals:
1. Compute a neutral solution of minimum weight.
2. Compute a T -full solution of minimum weight.
3. Compute a mixed solution of minimum weight.
4. From the three computed solutions, take one of overall minimum weight.
As mentioned, a neutral solution is a minimum-weight odd cycle transversal. Hence, in Step 1,
we will use existing polynomial-time algorithms from the literature for computing such an
odd cycle transversal (these algorithms must be for the weighted variant). Step 2 is trivial:
we can just set ST := T (as w is non-negative). So, most of our attention will go to Step 3.
For Step 3, we analyse the structure of the graphs G[R(BT )] and G[O(BT )] for a mixed
solution ST and how these graphs relate to each other.

4 Weighted Subset Odd Cycle Transversal on (3P1 + P2)-free
Graphs

We will prove that Weighted Subset Odd Cycle Transversal is polynomial-time
solvable for (3P1+P2)-free graphs using the framework from Section 3. We let G = (V,E) be
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a (3P1 + P2)-free graph with a vertex weighting w, and let T ⊆ V . For Step 1, we need the
polynomial-time algorithm of [8] for Odd Cycle Transversal on sP2-free graphs (s ≥ 1),
and thus on (3P1+P2)-free graphs (take s = 4). The algorithm in [8] was for the unweighted
case, but it can be trivially adapted for the weighted case of Lemma 1 which we state without
proof.

Lemma 1. For every integer s ≥ 1, Weighted Odd Cycle Transversal is polynomial-
time solvable for sP2-free graphs.

As Step 2 is trivial, we need to focus on Step 3. We will reduce to a classical problem, well
known to be polynomial-time solvable by standard network flow techniques.

Weighted Vertex Cut
Instance: a graph G = (V,E), two distinct non-adjacent terminals t1 and t2, and

a non-negative vertex weighting w.
Task: determine a set S ⊆ V \ {t1, t2} of minimum weight such that t1 and t2

are in different connected components of G− S.

For a mixed solution ST , we let O = O(BT ) and R = R(BT ); recall that, by the definition,
O 6= ∅ and R ∩ T 6= ∅ (see also Figure 2). For our reduction to Weighted Vertex Cut,
we need some structural results first.

4.1 Structural Lemmas

As O is nonempty, G[O] has at least one connected component. We first bound the number
of components of G[O].

ST BT

T ST ∩ T R ∩ T 6= ∅

ST \ T R \ T

O 6= ∅

R

Fig. 2. The decomposition of V when ST is a mixed solution. The sets O = O(BT ) and R = R(BT )
are the odd and even vertices of BT , respectively.

Lemma 2. Let G = (V,E) be a (3P1 + P2)-free graph, and let T ⊆ V . For every mixed
solution ST , the graph G[O] has at most two connected components.

Proof. For contradiction, assume that G[O] has at least three connected components D1,
D2, D3. As each Di contains an odd cycle, each Di has an edge. Hence, each Di must be a
complete graph, otherwise one Di, say D1 has two non-adjacent vertices, which would induce
together with a vertex of D2 and an edge of D3, a 3P1 + P2.

Recall that, as ST is mixed, R is nonempty. Let u ∈ R. Then u does not belong to any Di.
Moreover, u can be adjacent to at most one vertex of each Di, otherwise u and two of its
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neighbours in Di would form a triangle (as Di is complete) and u would not be even. As each
Di is a complete graph on at least three vertices, we can pick two non-neighbours of u in D1,
which form an edge, a non-neighbour of u in D2 and a non-neighbour of u in D3. These four
vertices, together with u, induce a 3P1 + P2, a contradiction. ut

We now prove two lemmas that together will allow us to provide an upper bound on the size
of R.

Lemma 3. Let G = (V,E) be a (3P1 + P2)-free graph, and let T ⊆ V . For every mixed
solution ST , if G[O] is disconnected, then R is a clique with |R| ≤ 2.

Proof. For contradiction, suppose R contains two non-adjacent vertices u1 and u2. Let D
and D′ be the two connected components of G[O]. Then D has an odd cycle C on vertices
v1, . . . , vr for some r ≥ 3 and D′ has an odd cycle C ′ on vertices w1, . . . , ws for some s ≥ 3.

Now, u1 and u2 are adjacent to at most one vertex of C, as otherwise they lie on an
odd cycle in G[BT ], which would contradict the fact that they are even vertices. Hence, as
r ≥ 3, we may assume that v1 is not adjacent to u1 nor to u2 (see Figure 3). Hence, at least
one of u1 and u2 has a neighbour in {w1, w2}, otherwise {u1, u2, v1, w1, w2} would induce a
3P1+P2. Say u1 is adjacent to w1. Similarly, one of u1, u2 has a neighbour in {w2, w3}. As u1

already has a neighbour in C ′, we find that u1 cannot be adjacent to w2 or w3, otherwise u1

would be in an odd cycle of G[BT ], contradicting u1 ∈ R. Hence, u2 is adjacent to either w2

or w3. So u1 and u2 each have a neighbour on C ′ and these neighbours are not the same.
By the same reasoning, but with the roles of C and C ′ reversed, we find that u1 and u2

also have (different) neighbours on C. However, we now find that there exists an odd cycle
using u1, u2 and appropriate paths PC and PC′ between their neighbours on C and C ′,
respectively. We conclude that R is a clique, and thus, as G[R] is bipartite, |R| ≤ 2. ut

C′C

R

O

u1 u2

v1

v2

v3

w1

w2

w3

Fig. 3. The situation in Lemma 3 where dotted lines indicate non-edges. Note that not all edges
incident with u1 and u2 are drawn.

Lemma 4. Let G = (V,E) be a (3P1 + P2)-free graph and let T ⊆ V . For every mixed
solution ST , every independent set in G[R] has size at most 4.

Proof. Suppose that R contains an independent set I = {u1, . . . , u5} of five vertices. As ST

is mixed, O is nonempty. Hence, G[BT ] has an odd cycle C. Let v1, v2, v3 be consecutive
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vertices of C in that order. As G is (3P1+P2)-free, v1v2 ∈ E and {u1, u2, u3} is independent,
one of v1, v2 is adjacent to one of u1, u2, u3, say v1 is adjacent to u1. Then v1 must be
adjacent to at least two vertices of {u2, u3, u4, u5}, otherwise three non-neighbours of v1 in
{u2, u3, u4, u5}, together with the edge u1v1, would induce a 3P1+P2. Hence, we may assume
without loss of generality that v1 is adjacent to u2 and u3.

Let i ∈ {1, 2, 3}. As ui is adjacent to v1 and C is odd, ui cannot be adjacent to v2 or v3,
otherwise ui would belong to an odd cycle in G[BT ], so ui would not be even, contradicting
that ui ∈ R. Hence, {u1, u2, u3, v2, v3} induces a 3P1 + P2, a contradiction. ut

Together Lemmas 3 and 4 show that we always have that |R| ≤ 8: if G[O] is disconnected,
then Lemma 3 proves the stronger result that |R| ≤ 2, and if G[O] is connected, we can use
Lemma 4 and the fact that G[R] is bipartite.

Before we continue with our structural analysis, we first prove a simple general lemma
that we will need in the next two lemmas.

Lemma 5. Let v1 and v2 be vertices in a graph G. Let P be a path from v1 to v2 and let e
be an edge of P . If e belongs to an odd cycle C of G, then there is a path P ′ from v1 to v2
such that the parities of P and P ′ differ.

Proof. Let u1 be a vertex incident with e. Let u1, . . . , ut be the set of vertices that belong to
both P and C in the order that they are reached when traversing the path Q = C − e from
u1. So ut is also incident with e.

First suppose that, for i = 1, . . . , t− 1, the parity of the path from ui to ui+1 on P is the
same as the parity of the path from ui to ui+1 on Q. Then a walk W on P from u1 to ut

that visits each of u1, . . . , ut in turn has the same parity as Q. Let W ′ be the walk obtained
from W after extending it with the edge utu1. As W ′ is a walk from a vertex back to itself it
is even, since it must traverse each edge an even number of times; the same number of times
in each direction. So W ′ has even parity, and thus W has odd parity. However, the parity of
Q is even, as Q is an odd cycle with one edge removed, a contradiction.

Thus there exists an index i ∈ {1, . . . , t − 1} such that the parity of the path from ui

to ui+1 on P differs from the parity of the path from ui to ui+1 on Q. Let P ′ be the path
formed from P by replacing the subpath from ui to ui+1 with a subpath of Q. ut

We will now look into the ways O and R are connected to each other. We say that a
vertex in O is a connector if it has a neighbour in R. Here is our first structural lemma on
connectors.

R

O

D1 D2

u1 u2

C2C1 C′v1 v2

w1
x1 w2 v′

Fig. 4. An illustration for the proof of Lemma 6: the white vertices induce a 3P1 + P2.
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Lemma 6. Let G = (V,E) be a (3P1 + P2)-free graph, and let T ⊆ V . For every mixed
solution ST , if G[O] has two connected components D1 and D2, then D1 and D2 each have
at most one connector.

Proof. By Lemma 3, R is a clique of size at most 2. For contradiction, suppose that, say,
D1 has two distinct connectors v1 and v2. Then v1 and v2 each have at most one neighbour
in R, else the vertices of R would be in an odd cycle in G[BT ], as R is a clique. Let u1 be the
neighbour of v1 in R, and let u2 be the neighbour of v2 in R; note that u1 = u2 is possible.

By definition, v1 and v2 each belong to at least one odd cycle, which we denote by C1 and
C2, respectively. We claim that V (C1)∩ V (C2) = ∅ and there is no edge between a vertex of
C1 and a vertex of C2 except for possibly the edge v1v2. If not, then there would be a path
from v1 to v2 in G[O] with an edge that belongs to an odd cycle (C1 or C2). By Lemma 5
applied to G[D1], there would be another path P ′ from v1 to v2 in G[O] with a different
parity to P . Thus the cycles u1Pu2u1 and u1P

′u2u1 would have different parity (whether or
not u1 and u2 are distinct) and so one of them would be odd. Hence, u1 and u2 would not be
even. Note also that u1 has no neighbours in V (C1) other than v1; otherwise G[BT ] would
have an odd cycle containing u1. Moreover, u1 has no neighbours in V (C2) either, except v2
if u1 = u2; otherwise G[BT ] would contain an odd cycle containing u1 and u2.

We now let w1 and x1 be two adjacent vertices of C1 that are not adjacent to u1. Let w2

be a vertex of C2 not adjacent to u1. Then, we found that {u1, w2, w1, x1} induces a 2P1+P2

(see Figure 4).
We continue by considering D2, the other connected component of G[O]. By definition,

D2 has an odd cycle C ′. As |R| ≤ 2 and each vertex of R can have at most one neighbour on
an odd cycle in G[BT ], we find that C ′ contains a vertex v′ not adjacent to any vertex of R, so
v′ is not adjacent to u1. As v′ and the vertices of {w2, w1, x1} belong to different connected
components of G[O], we find that v′ is not adjacent to any vertex of {w2, w1, x1} either.
However, now {u1, v

′, w2, w1, x1} induces a 3P1 +P2 (see also Figure 4), a contradiction. ut

We need one more structural lemma (Lemma 7) about connectors, in the case where G[O]
is connected. In order to be able to make use of this lemma we need to exclude a special
kind of mixed solution ST . Let R consist of two adjacent vertices u1 and u2. Let O (with
O ∩ T = ∅) be the disjoint union of two complete graphs K and L, each with at least three
vertices, plus a single additional edge, such that:

1. u1 is adjacent to exactly one vertex v1 in K and to no vertex of L;
2. u2 is adjacent to exactly one vertex v2 in L and to no vertex of K; and
3. v1 and v2 are adjacent.

Note that G[BT ] = G[O∪R] is indeed T -bipartite. We call the corresponding mixed solution
ST a 2-clique solution (see Figure 5).

Lemma 7. Let G = (V,E) be a (3P1 + P2)-free graph and let T ⊆ V . For every mixed
solution ST that is not a 2-clique solution, if G[O] is connected, then O has no two connectors
with a neighbour in the same connected component of G[R].

Proof. For some p ≥ 1, let F1, . . . , Fp be the set of components of G[R]. For contradiction,
assume O has two distinct connectors v1 and v2, each with a neighbour in the same Fi, say,
F1. Let u1, u2 ∈ V (F1) be these two neighbours, where u1 = u2 is possible. Let Q be a path
from u1 to u2 in F1 (see Figure 6).

By definition, v1 and v2 each belong to at least one odd cycle, which we denote by C1 and
C2, respectively. We choose C1 and C2 such that they have minimum length. As in Lemma 6,
we claim that V (C1)∩V (C2) = ∅ and there is no edge between a vertex of C1 and a vertex of
C2 except for possibly the edge v1v2. If there was such an edge, then there would be a path
P from v1 to v2 in G[O] with an edge that belongs to an odd cycle. By Lemma 5 applied to



10 N. Brettell, M. Johnson, D. Paulusma

R

O

u1 u2

v1 v2

K L

Fig. 5. The structure of BT corresponding to a 2-clique solution ST . The subgraphs K and L are
each cliques on an odd number of vertices that is at least 3.

G[D1], there would be another path P ′ from v1 to v2 in G[O] with a different parity than P .
Then one of the cycles u1Pu2u1 or u1P

′u2u1 is odd (whether or not u1 and u2 are distinct),
implying that u1 and u2 would not be even.

We also note that v1 is the only neighbour of u1 on C1; otherwise u1 would belong to
an odd cycle of G[BT ]. Similarly, v2 is the only neighbour of u2 on C2. Moreover, u1 has no
neighbour on C2 except v2 if u1 = u2, and u2 has no neighbour on C1 except v1 if u1 = u2.
This can be seen as follows. For a contradiction, first suppose that, say, u1 has a neighbour w
on C2 and w 6= v2. As C2 is an odd cycle, there exist two vertex-disjoint paths P and P ′ on
C2 from w to v2 of different parity. Using the edges u1w and u2v2 and the path Q from u1

to u2, this means that u1 and u2 are on odd cycle of G[BT ]. However, this is not possible as
u1 and u2 are even. Hence, u1 has no neighbour on V (C2) \ {v2}. By the same reasoning, u2

has no neighbour on V (C1) \ {v1}. Now suppose that u1 is adjacent to v2 and that u1 6= u2.
Then u1 is not adjacent to u2, otherwise the vertices u1, u2 and v2 would form a triangle, and
consequently, u1 and u2 would not be even. Recall that V (C1) ∩ V (C2) = ∅ and that there
is no edge between a vertex of C1 and a vertex of C2 except possibly the edge v1v2. Hence,
we can now take u1, u2, a vertex of V (C1) \ {v1}, and two adjacent vertices of V (C2) \ {v2}
(which exist as C2 is a cycle) to find an induced 3P1 + P2, a contradiction.

We now claim that C1 and C2 each have exactly three vertices. For contradiction, assume,
without loss of generality, that C1 has length at least 5. Let x and y be the two neighbours
of v1 in C1. As C1 has minimum length, x and y are not adjacent.

Let t1 and t2 be adjacent vertices of C2 distinct from v2. Then {u1, x, y, t1, t2} induces a
3P1 + P2 in G, a contradiction. Hence, C1 and C2 are triangles, say with vertices v1, w1, x1

and v2, w2, x2, respectively.
Now suppose G[O] has a path from v1 to v2 on at least 3 vertices. Let s be the vertex

adjacent to v1 on this path. Then s /∈ {w1, x1, w2, x2} and s is not adjacent to any ver-
tex of {w1, x1, w2, x2} either; otherwise G[O] contains two paths from v1 to v2 that are of
different parity. As u1 and s are not adjacent (else u1 belongs to a triangle), we find that
{s, u1, w2, w1, x1} induces a 3P1 + P2, a contradiction (see also Figure 6). We conclude that
as G[O] is connected, v1 and v2 must be adjacent.

So far, we found that O contains two vertex-disjoint triangles on vertex sets {v1, w1, x1}
and {v2, w2, x2}, respectively, with v1v2 as the only edge between them. As v1 is adjacent to
v2, we find that u1 6= u2; otherwise {u1, v1, v2} would induce a triangle, which is not possible
as u1 ∈ R. Recall that u1 is not adjacent to any vertex of V (C1) ∪ V (C2) except v1, and
similarly, u2 is not adjacent to any vertex of V (C1) ∪ V (C2) except v2. Then u1 must be
adjacent to u2, as otherwise {u1, u2, w1, w2, x2} would induce a 3P1 + P2.

Let z ∈ O \ (V (C1) ∪ V (C2)). Suppose u1 is adjacent to z. First assume z is adjacent to
w1 or x1, say w1. Then u1zw1x1v1u1 is an odd cycle. Hence, this is not possible. Now assume
z is adjacent to w2 or x2, say w2. Then u1zw2v2u2u1 is an odd cycle. This is not possible
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F1

O

u1 u2

v1 v2

Q

w1 x1 w2 x2

s

Fig. 6. The white vertices induce a 3P1 + P2.

either. Hence, z is not adjacent to any vertex of {w1, x1, w2, x2}. Moreover, z is not adjacent
to u2, as otherwise {u1, u2, z} induces a triangle in G[BT ]. However, {u2, w2, z, w1, x1} now
induces a 3P1 + P2. Hence, u1 is not adjacent to z. In other words, v1 is the only neighbour
of u1 on O. By the same arguments, v2 is the only neighbour of u2 on O.

Let K be a maximal clique of O that contains C1; note that K does not intersect C2

as V (C1) ∩ V (C2) = ∅ and v1v2 is the only edge between C1 and C2. Let L be a maximal
clique of O \K that contains C2. We note that there is no edge e from a vertex of K to a
vertex of L other than v1v2; else there is an odd cycle in G[BT ] containing e and the three
edges v1u1u2v2; if e is incident with v1 (or v2), then a 5-cycle is obtained using one further
edge within L (or K), and otherwise a 7-cycle can be formed by adding two edges from K
to connect e to v1 and one edge from L to connect e to v2. We prove below that O = K ∪L.

For contradiction, assume that r is a vertex of O that does not belong to K ∪ L. As u1

and u2 are adjacent vertices that have no neighbours in O \ {v1, v2}, the (3P1 +P2)-freeness
of G implies that G[O \ {v1, v2}] is 3P1-free. As K \ {v1} and L \ {v2} induce the disjoint
union of two nonempty complete graphs, this means that r is adjacent to every vertex of
K \ {v1} or to every vertex of L \ {v2}; assume r is adjacent to every vertex of K \ {v1}.
Then r has no neighbour r′ in L \ {v2}, as otherwise the cycle v1u1u2v2r

′rw1v1 is an odd
cycle in G[BT ] that contains u1 (and u2). Moreover, as K is maximal and r is adjacent to
every vertex of K \ {v1}, we find that r and v1 are not adjacent. Recall also that u2 has v2
as its only neighbour in O, hence u2 is not adjacent to r. This means that {r, v1, u2, w2, x2}
induces a 3P1 + P2, which is not possible. We conclude that O = K ∪ L.

We now consider the graph F1 in more detail. Suppose F1 contains another vertex u3 /∈
{u1, u2}. As F1 is connected and bipartite (as V (F1) ⊆ R), we may assume without loss of
generality that u3 is adjacent to u1 but not to u2. If u3 has a neighbour in K, then G[BT ]
contains an odd cycle that uses u1, u3 and one vertex of K (if the neighbour of u3 in K is
v1) or three vertices of K (if the neighbour of u3 in K is not v1). Hence, u3 has no neighbour
in K. This means that {u2, u3, w2, w1, x1} induces a 3P1 +P2, so u3 cannot exist. Hence, F1

consists only of the two adjacent vertices u1 and u2.
Now suppose that p ≥ 2, that is, F2 is nonempty. Let u′ ∈ V (F2). As u′ ∈ R, we

find that u′ is adjacent to at most one vertex of C1 and to at most one vertex of C2.
Hence, we may without loss of generality assume that u′ is not adjacent to w1 and w2. Then
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{u′, w1, w2, u1, u2} induces a 3P1 + P2. We conclude that R = {u1, u2}. However, now ST is
a 2-clique solution of G, a contradiction. ut

4.2 An Algorithmic Lemma

As part of our algorithm we need to be able to find a 2-clique solution of minimum weight
in polynomial time. This is shown in the next lemma.

Lemma 8. Let G = (V,E) be a (3P1 + P2)-free graph with a vertex weighting w, and let
T ⊆ V . It is possible to find in polynomial time a 2-clique solution for (G,w, T ) that has
minimum weight.

Proof. As the cliques K and L in BT have size at least 3 for a 2-clique solution ST , there
are distinct vertices x1, y1 in K \ {v1} and distinct vertices x2, y2 in L \ {v2}. The ordered
8-tuple (u1, u2, v1, v2, x1, y1, x2, y2) is a skeleton of the 2-clique solution. We call the labelled
subgraph of BT that these vertices induce a skeleton graph. (see Figure 7).

u1 u2

v1 v2

x1
y1 x2

y2

Fig. 7. A skeleton graph.

In order to find a 2-clique solution of minimum weight in polynomial time, we consider
all O(n8) possible ordered 8-tuples (u1, u2, v1, v2, x1, y1, x2, y2) of vertices of G and further
investigate those that induce a skeleton graph. We note that if these vertices form the skeleton
of a 2-clique solution ST , then R(BT ) = {u1, u2} and O(BT ) is a subset of

V ′ = {v1, x1, y1} ∪ {v2, x2, y2} ∪ (N(v1) ∩N(x1) ∩N(y1)) ∪ (N(v2) ∩N(x2) ∩N(y2)).

We further refine the definition of V ′ by deleting any vertex that cannot, by definition, belong
to O(BT ); that is, we remove every vertex that belongs to T ∪ (N({u1, u2}) \ {v1, v2}) or is a
neighbour of both a vertex in {v1, x1, y1} and a vertex in {v2, x2, y2}. We write G′ = G[V ′].
Note that u1 and u2 are not in G′ (as they are not adjacent to any vertex in {x1, x2, y1, y2}),
whereas v1, v2, x1, x2, y1, y2 all are in G′.

Let K ′ = {v1, x1, y1}∪(N({v1, x1, y1})∩V ′) and L′ = {v2, x2, y2}∪(N({v2, x2, y2})∩V ′).
We now show that

(i) K ′ and L′ partition V ′, and
(ii) K ′ and L′ are cliques.

By definition, every vertex of V ′ either belongs to K ′ or to L′. By construction, K ′ ∩L′ = ∅
since every vertex in K ′\{v1} is a neighbour of v1 and every vertex in L′\{v2} is a neighbour
of v2 and no vertex in V ′ is adjacent to both v1 and v2 which are themselves distinct. This
shows (i).



Computing Weighted Subset Odd Cycle Transversals in H-Free Graphs 13

We now prove (ii). For a contradiction, suppose K ′ is not a clique. Then K ′ contains two
non-adjacent vertices t and t′. As K ′ \ {v1, x1, y1} is complete to the clique {v1, x1, y1}, we
find that t and t′ both belong to K ′ \ {v1, x1, y1}. By construction of G′, we find that {t, t′}
is anti-complete to {u1, u2, x2}. By the definition of a skeleton, {u1, u2} is anti-complete to
{x2}. Then {u1, u2, t, t

′, x2} induces a 3P1+P2 in G, a contradiction. By the same arguments,
L′ is a clique.

We will now continue as follows. In G′ we first delete the edge v1v2. Second, for i ∈ {1, 2}
we replace the vertices vi, xi, yi by a new vertex v∗i that is adjacent precisely to every
vertex that is a neighbour of at least one vertex of {vi, xi, yi} in G′. This transforms the
graph G′ into the graph G∗ = (V ∗, E∗). Note that in G∗ there is no edge between v∗1 and v∗2 .
We give each vertex z ∈ V ∗ \ {v∗1 , v∗2} weight w∗(z) = w(z), and for i ∈ {1, 2}, we set
w∗(v∗i ) = w(vi) + w(xi) + w(yi). See Figure 8.

The algorithm will now solve Weighted Vertex Cut on (G∗, w∗) with terminals v∗1
and v∗2 ; recall that this can be done in polynomial time by standard network flow techniques.
Let S∗ be the output. Then G∗ − S∗ has two distinct connected components on vertex sets
K∗ and L∗, respectively, with v∗1 ∈ K∗ and v∗2 ∈ L∗. We set K = (K∗ \ {v∗1}) ∪ {v1, x1, y1}
and L = (L∗ \ {v∗2})∪ {v2, x2, y2} and note that G′ − S∗ contains G[K] and G[L] as distinct
connected components.

G′

v1 v2

x1 y1 x2 y2

K′ L′

G∗

v∗1 v∗2

Fig. 8. The graph G′ and G∗ in the proof of Lemma 8.

As K is a subset of the clique K ′ and L is a subset of the clique L′ and V ′ = K ′ ∪L′, we
find that G[K] and G[L] are the only two connected components of G′−S′, and moreover that
K and L are cliques. As no vertex of (K∪L)\{v1, v2} is adjacent to u1 or u2, this means that
S = V \ ({u1, u2}∪K ∪L) is a 2-clique solution for G. Moreover, as S∗ is an optimal solution
of Weighted Vertex Cut on instance (G∗, w∗) with terminals v∗1 and v∗2 , we find that S
has minimum weight over all 2-clique solutions with skeleton (u1, u2, v1, v2, x1, y1, x2, y2).

From all the O(n8) 2-clique solutions computed in this way, we pick one with minimum
weight; note that we found this 2-clique solution in polynomial time. ut

4.3 The Algorithm

We are now ready to prove the main result of the section.

Theorem 3. Weighted Subset Odd Cycle Transversal is polynomial-time solvable
for (3P1 + P2)-free graphs.

Proof. Let G be a (3P1 + P2)-free graph with a vertex weighting w, and let T ⊆ V (G). We
describe a polynomial-time algorithm for the optimization version of the problem on input
(G,T,w) using the approach of Section 3. So, in Step 1, we compute a neutral solution of
minimum weight, i.e., a minimum weight odd cycle transversal, using polynomial time due
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to Lemma 1 (take s = 4). We then compute, in Step 2, a T -full solution by setting ST = T .
It remains to compute a mixed solution ST of minimum weight (Step 3) and compare its
weight with the two solutions found above (Step 4). By Lemma 2 we can distinguish between
two cases: G[O] is connected or G[O] consists of two connected components. We compute a
mixed solution of minimum weight for each type.

Case 1. G[O] is connected.
We first compute in polynomial time a 2-clique solution of minimum weight using Lemma 8.
In the remainder of Case 1, we will compute a mixed solution ST of minimum weight with
connected G[O] that is not a 2-clique solution.

By Lemma 4 and the fact that G[R] is bipartite by definition, we find that |R| ≤ 8. We
consider all O(n8) possibilities for R. We discard a choice for R if G[R] is not bipartite. If
G[R] is bipartite, we compute a solution ST of minimum weight such that BT contains R.
Let F1, . . . , Fp be the components of G[R]. By definition, p ≥ 1. By Lemma 4 p ≤ 4. By
Lemma 7, O has at most p ≤ 4 connectors.

We now consider all O(n4) possible choices for a set D of at most four connectors. For
each set D, we first check that G[D ∪ R] is T -bipartite and that there are no two vertices
in D with a neighbour in the same Fi; if one of these conditions is not satisfied, we discard
our choice of D. If both conditions are satisfied we put the vertices of D in O, together with
any vertex that is not in T and that is not adjacent to any vertex of R. Then, as G[D ∪ R]
is T -bipartite and no two vertices in D are adjacent to the same component Fi, the graph
G[R ∪O] is T -bipartite. We remember the weight of ST = V \ (R ∪O).

In doing the above, we may have computed a set O that is disconnected or that contains
even vertices. So we might compute some solutions more than once. However, we can compute
each solution in polynomial time, and the total number of solutions we compute in Case 1
is O(n8) · O(n4) = O(n12), which is polynomial as well. Out of all the 2-clique solutions and
other mixed solutions we found, we pick a solution ST = VT \ (R∪O) with minimum weight
as the output for Case 1.

Case 2. G[O] consists of two connected components D1 and D2.
By Lemma 3, R is a clique of size at most 2. We consider all possible O(n2) options for R.
Each time R is a clique, we proceed as follows. By Lemma 6, both D1 and D2 have at most
one connector. We consider all O(n2) ways of choosing at most one connector from each of
them. If we choose two, they must be non-adjacent. We discard the choice if the subgraph
of G induced by R and the chosen connector(s) is not T -bipartite. Otherwise we continue. If
we chose at most one connector v, we let O consist of v and all vertices that do not belong
to T and that do not have a neighbour in R. Then G[R ∪ O] is T -bipartite and we store
ST = V \ (R ∪ O). Note that O might not induce two connected components consisting of
odd vertices, so we may duplicate some work. However, R ∪ O induces a T -bipartite graph
and we found O in polynomial time, and this is what is relevant (together with the fact that
we only use polynomial time).

In the case where the algorithm chooses two (non-adjacent) connectors v and v′ we proceed
as follows. We remove any vertex from R ∪ T and any neighbour of R other than v and v′.
Let (G′, w′) be the resulting weighted graph (where w′ is the restriction of w to V (G′)). We
then solve Weighted Vertex Cut in polynomial time on G′, w′ and with v and v′ as
terminals. Let S be the output. We let O = V (G′)− S.

By construction, v and v′ are in different connected components of G[O] and no vertex of
R is adjacent to a connected component of G[O] that does not contain v or v′. Together with
the fact that G[R ∪ {v, v′}] is T -bipartite and that G[O] has no vertices of T , this implies
that G[R ∪ O] is T -bipartite. Note that G[O] might contain even vertices or more than two
connected components. However, what is only relevant is that G[R ∪ O] is T -bipartite, and
that we found O in polynomial time. We remember the solution ST = V \ (R∪O). In the end
we remember, from all the solutions we computed one with minimum weight as the output
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for Case 2. Note that the number of solutions is O(n2) · O(n2) = O(n4) and we found each
solution in polynomial time. Hence, processing Case 2 takes polynomial time.

Correctness and Running Time. The correctness of our algorithm follows from the cor-
rectness of Cases 1 and 2, which describe all possible mixed solutions due to Lemma 2. As
processing Cases 1 and 2 takes polynomial time, we compute a mixed solution of minimum
weight in polynomial time. Computing a non-mixed solution of minimum weight takes poly-
nomial time as deduced already. Hence, the running time is polynomial. ut

5 Weighted Subset Odd Cycle Transversal on (P1 +P3)-free graphs

In this section, we will prove that Weighted Subset Odd Cycle Transversal can be
solved in polynomial time for (P1 + P3)-free graphs (and also explain how the same result
can be obtained for P4-free graphs using existing machinery). We will follow the framework
of Section 3 but in a less strict sense.

5.1 Auxiliary Results

We make use of an algorithm that decides the problem on P4-free graphs. It can be shown
that Weighted Subset Odd Cycle Transversal is polynomial-time solvable for P4-
free graphs by an obvious adaptation of the proof of the unweighted variant of Subset Odd
Cycle Transversal from [6]. However, we remark that, as is the case for Weighted
Subset Feedback Vertex Set discussed in Section 1, the result also follows from a meta-
theorem of Courcelle et al. [11] that shows that on graph classes of bounded clique-width,
certain optimization problems have linear time algorithms. We do not discuss the details, but
it is enough to make the following two observations. First, P4-free graphs have clique-width 1
and a corresponding 1-expression can be constructed in linear time. Second, the property
that a subset of vertices S is an odd T -cycle transversal in a graph G = (V,E) for some given
set T ⊆ V can be expressed in MSO1 monadic second-order logic (with S as the only free
monadic variable). Thus, we state without an explicit proof:

Theorem 4. Weighted Subset Odd Cycle Transversal is polynomial-time solvable
for P4-free graphs.

In order to prove our main result, we reduce to solving a weighted subset variant of the
well-known Independent Set problem and also need the lemma below (Lemma 9). We say
that IT ⊆ V (G) is a T -independent set of G if each vertex of IT ∩ T is an isolated vertex
in G[IT ].

Weighted Subset Independent Set
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weighting w and

an integer k ≥ 1.
Question: does G have a T -independent set IT with w(IT ) ≥ k?

Lemma 9. Weighted Subset Independent Set is polynomial-time solvable for 3P1-free
graphs.

Proof. Let G be a 3P1-free graph, and let T ⊆ V (G). Suppose IT is a T -independent set
of G. Observe that |IT ∩ T | ≤ 2: if IT contained three vertices of T , then they would form
an independent set of size 3, contradicting that G is 3P1-free. Thus to find a maximum
weight T -independent set we consider each subset T ′ of T of size at most 2. The maximum
weight T -independent set that contains T ′ is clearly V (G)\ (T ∪N(T ′)). Thus if we compute
this collection of O(n2) T -independent sets, this collection will contain a maximum-weight
T -independent set. ut
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Finally, we need to define the complementary problem of Weighted Subset Independent
Set: the weighted subset variant of Vertex Cover, which we now formally define. For a
graph G = (V,E) and a set T ⊆ V , a set ST ⊆ V is a T -vertex cover if ST has at least
contains one vertex incident to every edge that is incident to a vertex of T . Note that IT is
a T -independent set if and only if V (G) \ IT is a T -vertex cover.

Weighted Subset Vertex Cover
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weighting w and

an integer k ≥ 1.
Question: does G have a T -vertex cover ST with w(ST ) ≤ k?

We need a result on this problem for P4-free graphs, which can be proven in the same way as
the unweighted variant of Subset Vertex Cover in [6]. Alternatively, the property that a
subset of vertices S is an T -vertex cover in a graph G = (V,E) for some given set T ⊆ V can
be expressed in MSO1 monadic second-order logic (with S as the only free monadic variable)
and we can use the meta-theorem of Courcelle et al. [11] again.

Lemma 10. Weighted Subset Vertex Cover can be solved in polynomial time for P4-
free graphs.

The paw is the graph obtained from a triangle after adding a new vertex that is adjacent
to only one vertex of the triangle. Alternatively, the paw is the complement of P1 + P3

and is therefore denoted P1 + P3. We need the following result on paw-free graphs due to
Olariu [23].

Lemma 11 ([23]). Every connected (P1 + P3)-free graph is either triangle-free or (P1 + P2)-
free.

5.2 The Algorithm

Let G be a graph. We say that a set X ⊆ V (G) meets a subgraph H of G if X ∩ V (H) 6= ∅.
A subgraph H of G is a co-component of G if H is a connected component of G. We are now
ready to prove the main result of this section.

Theorem 5. Weighted Subset Odd Cycle Transversal is polynomial-time solvable
for (P1 + P3)-free graphs.

Proof. Let G be a (P1 + P3)-free graph. We present a polynomial-time algorithm for the
optimization problem, where we seek to find ST ⊆ V (G) such that ST is a minimum-weight
odd T -cycle transversal. Note that for such an ST , the set BT = V (G) \ ST is a maximum-
weight set such that G[BT ] is a T -bipartite graph.

In G, each connected component D is (P1 + P3)-free. By Lemma 11, D is either triangle-
free or (P1 + P2)-free in G; that is, D is 3P1-free or P3-free in G. Let D1, D2, . . . , D` be the
co-components of G.

Let BT ⊆ V (G) such that G[BT ] is a T -bipartite graph. For now, we do not require that
BT has maximum weight. We start by considering some properties of such a set BT . Observe
that G− T is a T -bipartite graph, so we may have BT ∩ T = ∅.
Claim 1. If BT ∩ T 6= ∅, then BT ⊆ V (Di) ∪ V (Dj) for some i, j ∈ {1, 2, . . . , `}.

We prove Claim 1 as follows. Suppose u ∈ BT ∩ T , say u ∈ V (Di) for some i ∈ {1, . . . , `}.
The claim holds if BT ⊆ V (Di), so suppose v ∈ BT \ V (Di). Then v ∈ V (Dj) for some
j ∈ {2, . . . , `} with j 6= i. If BT also contains a vertex v′ ∈ Dj′ for some j′ ∈ {2, . . . , `}\{i, j},
then {u, v, v′} induces a triangle in G, since Di, Dj , and Dj′ are co-components. As this
triangle contains u ∈ T , it is an odd T -cycle of G[BT ], a contradiction. �
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Note that Claim 1 states that BT meets at most two co-components of G when BT ∩ T 6= ∅.
The next two claims consider the case when BT meets precisely two co-components of G.

Claim 2. Suppose BT∩T 6= ∅ and there exist distinct i, j ∈ {1, . . . , `} such that BT∩V (Di) 6= ∅
and BT∩V (Dj) 6= ∅. If BT∩V (Di) contains a vertex of T , then BT∩V (Dj) is an independent
set.

We prove Claim 2 as follows. Suppose that BT ∩ V (Di) contains a vertex t ∈ T and G[BT ∩
V (Dj)] contains an edge uv. But then {u1, v1, t} induces a triangle of G, since V (Dj) is
complete to V (Di), so G[BT ] contains a contradictory odd T -cycle. �

Claim 3. Suppose BT∩T 6= ∅ and there exist distinct i, j ∈ {1, . . . , `} such that BT∩V (Di) 6= ∅
and BT ∩ V (Dj) 6= ∅. Either

– BT ∩ V (Di) and BT ∩ V (Dj) are independent sets of G, or
– |BT ∩ V (Di)| = 1 and BT ∩ V (Di) ∩ T = ∅, and BT ∩ V (Dj) is a T -independent set, up

to swapping i and j.

We prove Claim 3 as follows. Suppose BT meets Di and Dj , but G[BT ∩V (Dj)] contains an
edge u1v1. Then, by Claim 2, BT ∩V (Di) is disjoint from T . But BT ∩T 6= ∅, so BT ∩V (Dj)
contains some t ∈ T . Again by Claim 2, BT ∩ V (Di) is independent. It remains to show
that BT ∩ V (Dj) is a T -independent set and that |BT ∩ V (Dj)| = 1. Suppose BT ∩ V (Dj)
contains an edge tw1, where t ∈ T . Then for any vertex w2 ∈ BT ∩ V (Di), we have that
{t, w1, w2} induces a triangle, so G[BT ] has a contradictory odd T -cycle. We deduce that
each vertex of T in BT ∩ V (Dj) is isolated in G[BT ∩ V (Dj)]. Now suppose there exist
distinct w2, w

′
2 ∈ BT ∩ V (Di). Then tw2u1v1w

′
2t is an odd T -cycle, a contradiction. So

|BT ∩ V (Di)| = 1. �

We now describe the polynomial-time algorithm. Our strategy is to compute, in polynomial
time, a collection of O(n2) sets BT such that G[BT ] is T -bipartite, where a maximum-weight
BT is guaranteed to be in this collection. It then suffices to output a set from this collection
of maximum weight.

First, we compute the co-components D1, D2, . . . , D` of G. For each of the ` = O(n)
co-components Di, we can recognise in polynomial time if Di is 3P1-free or P3-free (by brute
force checking all vertex triples in Di). Now, for each co-component Di, we solve Weighted
Subset Odd Cycle Transversal for Di. Note that we can do this in polynomial time by
Theorem 3 if D is 3P1-free and by Theorem 4 if Di is P3-free.

Now we consider each pair {D1, D2} of distinct co-components. Note there areO(n2) pairs
to consider. For each pair we will compute three sets BT such that G[BT ] is T -bipartite.

1. We compute a maximum-weight independent set I1 of D1, and a maximum-weight in-
dependent set I2 of D2, where the weightings are inherited from the weighting w of G.
Set BT = I1 ∪ I2. Note that G[I1 ∪ I2] is a complete bipartite graph, so it is certainly
T -bipartite. We can compute these independent sets in polynomial time when restricted
to 3P1-free or P3-free graphs (for example, see [19]).

2. We select a maximum-weight vertex v1 from V (D1)\T , and compute a maximum-weight
T -independent set I2 of D2. When D2 is 3P1-free, we can solve this in polynomial time by
Lemma 9. On the other hand, when D2 is P3-free, we solve the complementary problem,
in polynomial time, by Lemma 10. Set BT = I2 ∪ {v1}. Note that G[BT ] is T -bipartite,
since every vertex of T has degree 1 in G[BT ] (its only neighbour is v1).

3. This case is the symmetric counterpart to the previous: choose a maximum-weight vertex
v2 of V (D2) \ T , compute a maximum-weight T -independent set I1 of D1, and set BT =
I1 ∪ {v2}.

Finally, take the maximum-weight BT among the (at most) 3
(
`
2

)
+`+1 possibilities described,

where the final possibility is that BT = V (G) \ T .
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To prove correctness of this algorithm, suppose BT is a maximum-weight set such that G[BT ]
is T -bipartite. If BT ⊆ V (G) \T , then certainly the algorithm will either output V (G) \T or
another solution with weight equal to w(BT ). So we may assume that BT ∩ T 6= ∅. Now, by
Claim 1, BT meets one or two co-components of G. If it meets exactly one co-component D,
then BT is a maximum-weight set such that D[BT ] is T -bipartite, which will be found by the
algorithm in the first phase. If it meets two co-components D1 and D2, then the correctness
of the algorithm follows from Claim 3. This concludes the proof. ut

6 The Proof of Theorem 2

We need one new hardness result. The result is an analogue of Papadopoulos and Tzimas’s
hardness result for Weighted Subset Feedback Vertex Set on 5P1-free graphs [28,
Theorem 2]. The proof is omitted as it is essentially identical, as all the relevant T -cycles in
the constructed Weighted Subset Feedback Vertex Set instance are odd.

Theorem 6. Weighted Subset Odd Cycle Transversal is NP-complete for 5P1-free
graphs.

We are now ready to prove Theorem 2.

Theorem 2 (restated). Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}. Then
Weighted Subset Odd Cycle Transversal on H-free graphs is polynomial-time solv-
able if H ⊆i 3P1 + P2, P1 + P3, or P4, and is NP-complete otherwise.

Proof. We first recall the result of [8] that Odd Cycle Transversal, that is, Weighted
Subset Odd Cycle Transversal where T = ∅ and w ≡ 1, is NP-complete on H-free
graphs if H has a cycle or a claw. In the remaining case H is a linear forest. If H contains an
induced 2P2, then we use a result of [6], which states that Subset Odd Cycle Transver-
sal is NP-complete for split graphs, or equivalently, (C4, C5, 2P2)-free graphs. If H contains
an induced 5P1, then we use Theorem 6. In the other cases, we use Theorems 3, 5 and 4,
respectively. ut

7 Conclusions

We determined the complexity of Weighted Subset Odd Cycle Transversal on H-
free graphs except when H ∈ {2P1 + P3, P1 + P4, 2P1 + P4}. In particular, our results
demonstrate that the classifications of Weighed Subset Odd Cycle Transversal and
Subset Odd Cycle Transversal do not coincide for H-free graphs, just as was known
already for Weighted Subset Feedback Vertex Set and Subset Feedback Vertex
Set [28]. In addition, our results demonstrate that so far, the complexities of Weighted
Subset Feedback Vertex Set and Weighted Subset Odd Cycle Transversal do
coincide on H-free graphs.

We believe that the case H = 2P1 + P3 is polynomial-time solvable for both problems
using the methodology of our framework and our algorithms for H = P1 + P3 as a subrou-
tine. We leave this for future research. The other two cases are open even for Odd Cycle
Transversal. For these cases we first need to be able to determine the complexity of finding
a maximum induced disjoint union of stars in a (P1 + P4)-free graph. We refer to Table 1
for other unresolved cases in our framework and note again that our results demonstrate
that the classifications of Weighed Subset Odd Cycle Transversal and Subset Odd
Cycle Transversal do not coincide for H-free graphs.

We note finally that that there are other similar transversal problems that have been
studied, but their complexity classifications onH-free graphs have not been settled: (Subset)
Even Cycle Transversal [18, 21, 24], for example. Versions of the transversal problems
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that we have considered that have the additional constraint that the transversal must induce
either a connected graph or an independent set have also been studied for H-free graphs [4, 8,
13, 17]. An interesting direction for further research is to consider the subset variant of these
problems, and, more generally, to understand the relationships amongst the computational
complexities of all these problems.

Acknowledgments. We thank two anonymous reviewers for helpful comments.
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