Computing Weighted Subset Odd Cycle Transversals in \boldsymbol{H}-Free Graphs ${ }^{\star}$

Nick Brettell ${ }^{1}$, Matthew Johnson ${ }^{2}$, and Daniël Paulusma ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics, Victoria University of Wellington, New Zealand, nick.brettell@vuw.ac.nz
${ }^{2}$ Department of Computer Science, Durham University, UK,
\{matthew.johnson2, daniel.paulusma\}@durham.ac.uk

Abstract

For the Odd Cycle Transversal problem, the task is to find a small set S of vertices in a graph that intersects every cycle of odd length. The Subset Odd Cycle Transversal problem requires S to intersect only those odd cycles that include a vertex of a distinguished vertex subset T. If we are given weights for the vertices, we ask instead that S has small weight: this is the problem Weighted Subset Odd Cycle Transversal. We prove an almost-complete complexity dichotomy for Weighted Subset Odd Cycle Transversal for graphs that do not contain a graph H as an induced subgraph. In particular, our result shows that the complexities of the weighted and unweighted variant do not align on H-free graphs, just as Papadopoulos and Tzimas showed for Subset Feedback Vertex Set.

Keywords. odd cycle transversal, H-free graph, complexity dichotomy

1 Introduction

For a transversal problem, one seeks to find a small set of vertices within a given graph that intersects every subgraph of a specified kind. Two problems of this type are Feedback Vertex Set and Odd Cycle Transversal, where the objective is to find a small set S of vertices that intersects, respectively, every cycle and every cycle with an odd number of vertices. Equivalently, when S is deleted from the graph, what remains is a forest or a bipartite graph, respectively.

For a subset transversal problem, we are also given a vertex subset T and we must find a small set of vertices that intersects every subgraph of a specified kind that also contains a vertex of T. An (odd) T-cycle is a cycle of the graph (with an odd number of vertices) that intersects T. A set $S_{T} \subseteq V$ is a T-feedback vertex set or an odd T-cycle transversal of a graph $G=(V, E)$ if S_{T} has at least one vertex of, respectively, every T-cycle or every odd T-cycle; see also Fig. 1. A (non-negative) weighting of G is a function $w: V \rightarrow \mathbb{R}^{+}$. For $v \in V, w(v)$ is the weight of v, and for $S \subseteq V$, the weight $w(S)$ of S is the sum of the weights of the vertices in S. In a weighted subset transversal problem the task is to find a transversal whose weight is less than a prescribed bound. We can now define the following problems:

```
Weighted Subset Feedback Vertex Set
    Instance: a graph G, a subset T\subseteqV(G), a non-negative vertex weighting w of G
        and an integer }k\geq1
    Question: does G have a T-feedback vertex set ST
```

```
Weighted Subset Odd Cycle Transversal
    Instance: a graph \(G\), a subset \(T \subseteq V(G)\), a non-negative vertex weighting \(w\) of \(G\)
        and an integer \(k \geq 1\).
    Question: does \(G\) have an odd \(T\)-cycle transversal \(S_{T}\) with \(w\left(S_{T}\right) \leq k\) ?
```

[^0]Both problems are NP-complete even when the weighting function is 1 and $T=V$. We continue a systematic study of transversal problems on hereditary graph classes, focusing on the weighted subset variants. Hereditary graph classes can be characterized by a set of forbidden induced subgraphs. We begin with the case where this set has size 1: the class of graphs that, for some graph H, do not contain H as an induced subgraph; a graph in this class is said to be H-free.

1.1 Past Results

We first note some NP-completeness results for the special case where $w \equiv 1$ and $T=$ V, which corresponds to the original problems Feedback Vertex Set and Odd Cycle Transversal. These results immediately imply NP-completeness for the weighted subset problems.

By Poljak's construction [29], for every integer $g \geq 3$, Feedback Vertex Set is NPcomplete for graphs of finite girth at least g (the girth of a graph is the length of its shortest cycle). Exactly the same result holds for Odd Cycle Transversal [8]. It has also been shown that Feedback Vertex Set [22] and Odd Cycle Transversal [8] are NPcomplete for line graphs and, therefore, also for claw-free graphs. Thus the two problems are NP-complete for the class of H-free graphs whenever H contains a cycle or claw. Of course, a graph with no cycle is a forest, and a forest with no claw has no vertex of degree at least 3 . Hence, we need now only to focus on the case where H is a linear forest, that is, a collection of disjoint paths.

There is no linear forest H for which Feedback Vertex Set on H-free graphs is known to be NP-complete, but for Odd Cycle Transversal we can take $H=P_{2}+P_{5}$ or $H=P_{6}$, as the latter problem is NP-complete even for $\left(P_{2}+P_{5}, P_{6}\right)$-free graphs [12]. It is known that Subset Feedback Vertex Set [14] and Subset Odd Cycle Transversal [6], which are the special cases with $w \equiv 1$, are NP-complete for $2 P_{2}$-free graphs; in fact, these results were proved for split graphs which form a proper subclass of $2 P_{2}$-free graphs. Papadopoulos and Tzimas [28] proved the following interesting dichotomy, which motivated our research.

Theorem 1 ([28]). Weighted Subset Feedback Vertex Set on $s P_{1}$-free graphs is polynomial-time solvable if $s \leq 4$ and NP-complete if $s \geq 5$.

The unweighted version of Subset Feedback Vertex Set can be solved in polynomial time for $s P_{1}$-free graphs for every $s \geq 1$ [28]. In contrast, for many transversal problems, the complexities on the weighted and unweighted versions for H-free graphs align; see, for example Vertex Cover [16], Connected Vertex Cover [17] and (Independent) Dominating Set [20]. Thus Subset Feedback Vertex Set is one of the few known problems

Fig. 1. Two examples of a graph with the set T indicated by square vertices. The set S_{T} of black vertices forms both an odd T-cycle transversal and a T-feedback vertex set. On the left, $S_{T} \backslash T \neq \emptyset$. On the right, $S_{T} \subseteq T$.
for which, on certain hereditary graph classes, the (unweighted) problem is polynomial-time solvable, but the weighted variant is NP-complete.

Very recently, Paesani et al. [26] completed the complexity classification of Weighted Subset Feedback Vertex Set for H-free graphs by giving a polynomial-time algorithm for $2 P_{1}+P_{4}$-free graphs. Prior to this, the other known polynomial-time algorithm for Weighted Subset Feedback Vertex Set on H-free graphs was for the case where $H=P_{4}$. This latter result can be shown in several ways. First, Weighted Subset Feedback Vertex SET is polynomial-time solvable for permutation graphs [27] and also for graphs for which we can find a decomposition of constant mim-width in polynomial time [2]; both classes contain the class of P_{4}-free graphs. A linear-time algorithm can also be obtained by making the following two observations. First, P_{4}-free graphs have clique-width 1 and we can construct a 1-expression in linear time by the definition of a cograph (it is well-known that the class of P_{4}-free graphs coincides with the class of cographs). Second, the property that a subset of vertices S is a T-feedback vertex subset in a graph $G=(V, E)$ for some given set $T \subseteq V$ can be expressed in MSO_{1} monadic second-order logic (with S as the only free monadic variable). Hence, we can apply a meta-theorem of Courcelle et al. [11]. To the best of our knowledge, algorithms for Weighted Subset Odd Cycle Transversal on H-free graphs have not previously been studied.

We now mention the polynomial-time results on H-free graphs for the unweighted subset variants of the problems (which do not imply anything for the weighted subset versions). It is known that Subset Odd Cycle Transversal is polynomial-time solvable on $\left(s P_{1}+P_{3}\right)$ free graphs for every integer $s \geq 0$ [6] and on P_{4}-free graphs [6]. In Section 6 we show that the latter result can be generalized to the weighted variant in a straightforward way. Besides completing the complexity classification for the weighted version, Paesani et al. [26] also completed the complexity classification of Subset Feedback Vertex Set for H-free graphs by giving a polynomial-time algorithm for the latter problem on $\left(s P_{1}+P_{4}\right)$-free graphs for every $s \geq 0$.

We now mention the polynomial-time results on H-free graphs for the weighted variants of the two original problems (which do not imply anything for the weighted subset versions). There are no additional polynomial-time results for the unweighted versions. Abrishami et al. [1] proved that Weighted Feedback Vertex Set is polynomial-time solvable on $P_{5^{-}}$ free graphs. Paesani et al. [25] recently extended this result to $\left(s P_{1}+P_{5}\right)$-free graphs for every $s \geq 1$ [24] and also proved that Weighted Feedback Vertex Set is polynomialtime solvable on $s P_{3}$-free graphs for every $s \geq 1$ [24]. In another recent paper [15], Gartland et al. proved that Weighted Feedback Vertex Set is quasipolynomial-time solvable for P_{t}-free graphs for every $t \geq 1$. Such a result is unlikely for (Weighted) Odd Cycle Transversal due to the aforementioned NP-hardness of this problem for $\left(P_{2}+P_{5}, P_{6}\right)$-free graphs [12]. However, Weighted Odd Cycle Transversal can be solved in polynomial time on $s P_{2}$-free graphs for every $s \geq 1$; this follows from a straightforward generalization of the corresponding result for the unweighted variant given in [8]. Finally, Weighted Odd Cycle Transversal is also polynomial-time solvable for $\left(s P_{1}+P_{3}\right)$-free graphs; this follows from a straightforward adaptation of the proof for the unweighted variant given in [12]. ${ }^{3}$

1.2 Our Results

We enhance the current understanding of Weighted Subset Odd Cycle Transversal on H-free graphs. We highlight that Subset Odd Cycle Transversal is a problem whose weighted variant turns out to be harder than its unweighted variant when restricting the input to H-free graphs. In particular, we show to what extent this holds by giving the following

[^1]| | polynomial-time | unresolved | NP-complete |
| :---: | :---: | :---: | :---: |
| (W)FVS | $\begin{aligned} & H \subseteq_{i} s P_{1}+P_{5} \text { or } \\ & \quad s P_{3} \text { for } s \geq 1 \\ & \hline \end{aligned}$ | $H \supseteq_{i} P_{2}+P_{4}$ or P_{6} | none |
| (W)OCT | $\begin{aligned} & H=P_{4} \text { or } \\ & H \subseteq_{i} s P_{1}+P_{3} \text { or } \\ & \quad s P_{2} \text { for } s \geq 1 \end{aligned}$ | $\begin{aligned} & H=s P_{1}+P_{5} \text { for } s \geq 0 \text { or } \\ & H=s P_{1}+t P_{2}+u P_{3}+v P_{4} \\ & \text { for } s, t, u \geq 0, v \geq 1 \\ & \text { with } \min \{s, t, u\} \geq 1 \text { if } v=1 \text {, or } \\ & H=s P_{1}+t P_{2}+u P_{3} \text { for } s, t \geq 0, u \geq 1 \\ & \text { with } u \geq 2 \text { if } t=0 \end{aligned}$ | $H \supseteq_{i} P_{6}$ or $P_{2}+P_{5}$ |
| SFVS | $H=s P_{1}+P_{4}$ for $s \geq 0$ | none | $H \supseteq_{i} 2 P_{2}$ |
| SOCT | $\begin{aligned} & H=P_{4} \text { or } \\ & H \subseteq_{i} s P_{1}+P_{3} \text { for } s \geq 0 \end{aligned}$ | $H=s P_{1}+P_{4}$ for $s \geq 1$ | $H \supseteq_{i} 2 P_{2}$ |
| WSFVS | $H \subseteq_{i} 2 P_{1}+P_{4}$ | none | $H \supseteq_{i} 5 P_{1}$ or $2 P_{2}$ |
| WSOCT | $\begin{gathered} H \subseteq_{i} P_{4}, P_{1}+P_{3}, \text { or } \\ 3 P_{1}+P_{2} \end{gathered}$ | $H \in\left\{2 P_{1}+P_{3}, P_{1}+P_{4}, 2 P_{1}+P_{4}\right\}$ | $H \supseteq_{i} 5 P_{1}$ or $2 P_{2}$ |

Table 1. The complexity of (Weighted) Feedback Vertex Set ((W)FVS), (Weighted) Odd Cycle Transversal ((W)OCT), and their subset (S) and weighted subset (WS) variants, when restricted to H-free graphs for linear forests H. All problems are NP-complete for H-free graphs when H is not a linear forest. The two blue cases for WSOCT are the main algorithmic contributions of this paper; see also Theorem 2.
almost-complete dichotomy. We write $H \subseteq_{i} G$, or $G \supseteq_{i} H$ to say that H is an induced subgraph of G (that is, H can be obtained from G by a sequence of vertex deletions).

Theorem 2. Let H be a graph with $H \notin\left\{2 P_{1}+P_{3}, P_{1}+P_{4}, 2 P_{1}+P_{4}\right\}$. Then Weighted Subset Odd Cycle Transversal on H-free graphs is polynomial-time solvable if $H \subseteq_{i}$ $3 P_{1}+P_{2}, P_{1}+P_{3}$, or P_{4}, and is NP-complete otherwise.

As a consequence, we obtain a dichotomy analogous to Theorem 1.
Corollary 1. The Weighted Subset Odd Cycle Transversal problem on sP P_{1}-free graphs is polynomial-time solvable if $s \leq 4$ and is NP-complete if $s \geq 5$.

For the hardness part of Theorem 2 it suffices to show hardness for $H=5 P_{1}$; this follows from the same reduction used by Papadopoulos and Tzimas [28] to prove Theorem 1. The three tractable cases, where $H \in\left\{P_{4}, P_{1}+P_{3}, 3 P_{1}+P_{2}\right\}$, are all new. Out of these cases, the case $H=P_{4}$ easily follows from existing results (as we will explain) and the case $H=3 P_{1}+P_{2}$ is the most involved. For the latter case we use a different technique to that used in [28]. Just as in [28], we do reduce to the problem of finding a minimum weight vertex cut that separates two given terminals. However, our technique relies less on explicit distance-based arguments, and we devise a method for distinguishing cycles according to parity. Our technique can also be used to prove that Weighted Subset Feedback Vertex Set is polynomial-time solvable for $\left(3 P_{1}+P_{2}\right)$-free graphs. However, we omit a proof of this due to the aforementioned result of Paesani et al. [26] for the superclass of ($2 P_{1}+P_{4}$)-free graphs. Their proof for $H=2 P_{1}+P_{4}$ is based on the fact that acyclic graphs (forests) have vertices of degree 1. This is not necessarily true for odd-cycle-free (bipartite) graphs. As such, it appears their approach cannot be adapted for the Weighted Odd Cycle Transversal problem.

We refer to Table 1 for an overview of the current knowledge of the problems on H-free graphs, including the results of this paper.

2 Preliminaries

Let $G=(V, E)$ be a graph. If $S \subseteq V$, then $G[S]$ denotes the subgraph of G induced by S, and $G-S$ is the graph $G[V \backslash S]$. The path on r vertices is denoted P_{r}. We say that S is
independent if $G[S]$ has no edges, and that S is a clique and $G[S]$ is complete if every pair of vertices in S is joined by an edge.

If G_{1} and G_{2} are vertex-disjoint graphs, then the union operation + creates the disjoint union $G_{1}+G_{2}$ having vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. By $s G$, we denote the disjoint union of s copies of G. Thus $s P_{1}$ denotes the graph whose vertices form an independent set of size s.

A (connected) component of G is a maximal connected subgraph of G. The graph $\bar{G}=$ ($V,\{u v \mid u v \notin E$ and $u \neq v\}$) is the complement of G. The neighbourhood of a vertex $u \in V$ is the set $N_{G}(u)=\{v \mid u v \in E\}$. For $U \subseteq V$, we let $N_{G}(U)=\bigcup_{u \in U} N(u) \backslash U$.

Let S and T be two disjoint vertex sets of a graph G. Then S is complete to T if every vertex of S is adjacent to every vertex of T, and S is anti-complete to T if there are no edges between S and T. In the first case, S is also said to be complete to $G[T]$, and in the second case we say it is anti-complete to $G[T]$.

A graph is bipartite if its vertex set can be partitioned into at most two independent sets. A graph is complete bipartite if its vertex set can be partitioned into two independent sets X and Y such that X is complete to Y. If X or Y has size 1, the complete bipartite graph is a star; recall that $K_{1,3}$ is also called a claw.

3 General Framework of the Algorithms

We first explain our general approach with respect to odd cycle transversals. We note that our approach can be easily extended to other kinds of transversals as well (see also [7]).

So, consider an instance (G, T, w) of Weighted Subset Odd Cycle Transversal. Recall that a cycle is a T-cycle if it contains a vertex of T. A subgraph of G with no odd T-cycles is T-bipartite. Note that a subset $S_{T} \subseteq V$ is an odd T-cycle transversal if and only if $G\left[V \backslash S_{T}\right]$ is T-bipartite. A solution for (G, T, w) is an odd T-cycle transversal S_{T}. From now on, whenever S_{T} is defined, we let $B_{T}=V(G) \backslash S_{T}$ denote the vertex set of the corresponding T-bipartite graph. If $u \in B_{T}$ belongs to at least one odd cycle of $G\left[B_{T}\right]$, then u is an odd vertex of B_{T}. Otherwise, when $u \in B_{T}$ is not in any odd cycle of $G\left[B_{T}\right]$, we say that u is an even vertex of B_{T}. Note that by definition every vertex in $T \cap B_{T}$ is even. We let $O\left(B_{T}\right)$ and $R\left(B_{T}\right)$ denote the sets of odd and even vertices of B_{T} (so $B_{T}=O\left(B_{T}\right) \cup R\left(B_{T}\right)$).

A solution S_{T} is neutral if B_{T} consists of only even vertices; in this case S_{T} is an odd cycle transversal of G. We say that S_{T} is T-full if B_{T} contains no vertex of T. If S_{T} is neither neutral nor T-full, then S_{T} is a mixed solution. We can now outline our approach to finding minimum weight odd T-cycle transversals:

1. Compute a neutral solution of minimum weight.
2. Compute a T-full solution of minimum weight.
3. Compute a mixed solution of minimum weight.
4. From the three computed solutions, take one of overall minimum weight.

As mentioned, a neutral solution is a minimum-weight odd cycle transversal. Hence, in Step 1, we will use existing polynomial-time algorithms from the literature for computing such an odd cycle transversal (these algorithms must be for the weighted variant). Step 2 is trivial: we can just set $S_{T}:=T$ (as w is non-negative). So, most of our attention will go to Step 3. For Step 3, we analyse the structure of the graphs $G\left[R\left(B_{T}\right)\right]$ and $G\left[O\left(B_{T}\right)\right]$ for a mixed solution S_{T} and how these graphs relate to each other.

4 Weighted Subset Odd Cycle Transversal on (3P1 \mathbf{P}_{1})-free Graphs

We will prove that Weighted Subset Odd Cycle Transversal is polynomial-time solvable for $\left(3 P_{1}+P_{2}\right)$-free graphs using the framework from Section 3 . We let $G=(V, E)$ be
a ($3 P_{1}+P_{2}$)-free graph with a vertex weighting w, and let $T \subseteq V$. For Step 1 , we need the polynomial-time algorithm of [8] for Odd Cycle Transversal on $s P_{2}$-free graphs $(s \geq 1)$, and thus on $\left(3 P_{1}+P_{2}\right)$-free graphs (take $\left.s=4\right)$. The algorithm in [8] was for the unweighted case, but it can be trivially adapted for the weighted case of Lemma 1 which we state without proof.

Lemma 1. For every integer $s \geq 1$, Weighted Odd Cycle Transversal is polynomialtime solvable for $s P_{2}$-free graphs.

As Step 2 is trivial, we need to focus on Step 3. We will reduce to a classical problem, well known to be polynomial-time solvable by standard network flow techniques.

```
Weighted Vertex Cut
    Instance: a graph G}=(V,E)\mathrm{ , two distinct non-adjacent terminals }\mp@subsup{t}{1}{}\mathrm{ and }\mp@subsup{t}{2}{}\mathrm{ , and
        a non-negative vertex weighting w.
        Task: determine a set S\subseteqV\{\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}}\mathrm{ of minimum weight such that t}\mp@subsup{t}{1}{}\mathrm{ and }\mp@subsup{t}{2}{}
                are in different connected components of G-S.
```

For a mixed solution S_{T}, we let $O=O\left(B_{T}\right)$ and $R=R\left(B_{T}\right)$; recall that, by the definition, $O \neq \emptyset$ and $R \cap T \neq \emptyset$ (see also Figure 2). For our reduction to Weighted Vertex Cut, we need some structural results first.

4.1 Structural Lemmas

As O is nonempty, $G[O]$ has at least one connected component. We first bound the number of components of $G[O]$.

Fig. 2. The decomposition of V when S_{T} is a mixed solution. The sets $O=O\left(B_{T}\right)$ and $R=R\left(B_{T}\right)$ are the odd and even vertices of B_{T}, respectively.

Lemma 2. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph, and let $T \subseteq V$. For every mixed solution S_{T}, the graph $G[O]$ has at most two connected components.

Proof. For contradiction, assume that $G[O]$ has at least three connected components D_{1}, D_{2}, D_{3}. As each D_{i} contains an odd cycle, each D_{i} has an edge. Hence, each D_{i} must be a complete graph, otherwise one D_{i}, say D_{1} has two non-adjacent vertices, which would induce together with a vertex of D_{2} and an edge of D_{3}, a $3 P_{1}+P_{2}$.

Recall that, as S_{T} is mixed, R is nonempty. Let $u \in R$. Then u does not belong to any D_{i}. Moreover, u can be adjacent to at most one vertex of each D_{i}, otherwise u and two of its
neighbours in D_{i} would form a triangle (as D_{i} is complete) and u would not be even. As each D_{i} is a complete graph on at least three vertices, we can pick two non-neighbours of u in D_{1}, which form an edge, a non-neighbour of u in D_{2} and a non-neighbour of u in D_{3}. These four vertices, together with u, induce a $3 P_{1}+P_{2}$, a contradiction.

We now prove two lemmas that together will allow us to provide an upper bound on the size of R.

Lemma 3. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph, and let $T \subseteq V$. For every mixed solution S_{T}, if $G[O]$ is disconnected, then R is a clique with $|R| \leq 2$.

Proof. For contradiction, suppose R contains two non-adjacent vertices u_{1} and u_{2}. Let D and D^{\prime} be the two connected components of $G[O]$. Then D has an odd cycle C on vertices v_{1}, \ldots, v_{r} for some $r \geq 3$ and D^{\prime} has an odd cycle C^{\prime} on vertices w_{1}, \ldots, w_{s} for some $s \geq 3$.

Now, u_{1} and u_{2} are adjacent to at most one vertex of C, as otherwise they lie on an odd cycle in $G\left[B_{T}\right]$, which would contradict the fact that they are even vertices. Hence, as $r \geq 3$, we may assume that v_{1} is not adjacent to u_{1} nor to u_{2} (see Figure 3). Hence, at least one of u_{1} and u_{2} has a neighbour in $\left\{w_{1}, w_{2}\right\}$, otherwise $\left\{u_{1}, u_{2}, v_{1}, w_{1}, w_{2}\right\}$ would induce a $3 P_{1}+P_{2}$. Say u_{1} is adjacent to w_{1}. Similarly, one of u_{1}, u_{2} has a neighbour in $\left\{w_{2}, w_{3}\right\}$. As u_{1} already has a neighbour in C^{\prime}, we find that u_{1} cannot be adjacent to w_{2} or w_{3}, otherwise u_{1} would be in an odd cycle of $G\left[B_{T}\right]$, contradicting $u_{1} \in R$. Hence, u_{2} is adjacent to either w_{2} or w_{3}. So u_{1} and u_{2} each have a neighbour on C^{\prime} and these neighbours are not the same.

By the same reasoning, but with the roles of C and C^{\prime} reversed, we find that u_{1} and u_{2} also have (different) neighbours on C. However, we now find that there exists an odd cycle using u_{1}, u_{2} and appropriate paths P_{C} and $P_{C^{\prime}}$ between their neighbours on C and C^{\prime}, respectively. We conclude that R is a clique, and thus, as $G[R]$ is bipartite, $|R| \leq 2$.

R

O

Fig. 3. The situation in Lemma 3 where dotted lines indicate non-edges. Note that not all edges incident with u_{1} and u_{2} are drawn.

Lemma 4. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph and let $T \subseteq V$. For every mixed solution S_{T}, every independent set in $G[R]$ has size at most 4 .

Proof. Suppose that R contains an independent set $I=\left\{u_{1}, \ldots, u_{5}\right\}$ of five vertices. As S_{T} is mixed, O is nonempty. Hence, $G\left[B_{T}\right]$ has an odd cycle C. Let v_{1}, v_{2}, v_{3} be consecutive
vertices of C in that order. As G is $\left(3 P_{1}+P_{2}\right)$-free, $v_{1} v_{2} \in E$ and $\left\{u_{1}, u_{2}, u_{3}\right\}$ is independent, one of v_{1}, v_{2} is adjacent to one of u_{1}, u_{2}, u_{3}, say v_{1} is adjacent to u_{1}. Then v_{1} must be adjacent to at least two vertices of $\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$, otherwise three non-neighbours of v_{1} in $\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$, together with the edge $u_{1} v_{1}$, would induce a $3 P_{1}+P_{2}$. Hence, we may assume without loss of generality that v_{1} is adjacent to u_{2} and u_{3}.

Let $i \in\{1,2,3\}$. As u_{i} is adjacent to v_{1} and C is odd, u_{i} cannot be adjacent to v_{2} or v_{3}, otherwise u_{i} would belong to an odd cycle in $G\left[B_{T}\right]$, so u_{i} would not be even, contradicting that $u_{i} \in R$. Hence, $\left\{u_{1}, u_{2}, u_{3}, v_{2}, v_{3}\right\}$ induces a $3 P_{1}+P_{2}$, a contradiction.

Together Lemmas 3 and 4 show that we always have that $|R| \leq 8$: if $G[O]$ is disconnected, then Lemma 3 proves the stronger result that $|R| \leq 2$, and if $G[O]$ is connected, we can use Lemma 4 and the fact that $G[R]$ is bipartite.

Before we continue with our structural analysis, we first prove a simple general lemma that we will need in the next two lemmas.

Lemma 5. Let v_{1} and v_{2} be vertices in a graph G. Let P be a path from v_{1} to v_{2} and let e be an edge of P. If e belongs to an odd cycle C of G, then there is a path P^{\prime} from v_{1} to v_{2} such that the parities of P and P^{\prime} differ.

Proof. Let u_{1} be a vertex incident with e. Let u_{1}, \ldots, u_{t} be the set of vertices that belong to both P and C in the order that they are reached when traversing the path $Q=C-e$ from u_{1}. So u_{t} is also incident with e.

First suppose that, for $i=1, \ldots, t-1$, the parity of the path from u_{i} to u_{i+1} on P is the same as the parity of the path from u_{i} to u_{i+1} on Q. Then a walk W on P from u_{1} to u_{t} that visits each of u_{1}, \ldots, u_{t} in turn has the same parity as Q. Let W^{\prime} be the walk obtained from W after extending it with the edge $u_{t} u_{1}$. As W^{\prime} is a walk from a vertex back to itself it is even, since it must traverse each edge an even number of times; the same number of times in each direction. So W^{\prime} has even parity, and thus W has odd parity. However, the parity of Q is even, as Q is an odd cycle with one edge removed, a contradiction.

Thus there exists an index $i \in\{1, \ldots, t-1\}$ such that the parity of the path from u_{i} to u_{i+1} on P differs from the parity of the path from u_{i} to u_{i+1} on Q. Let P^{\prime} be the path formed from P by replacing the subpath from u_{i} to u_{i+1} with a subpath of Q.

We will now look into the ways O and R are connected to each other. We say that a vertex in O is a connector if it has a neighbour in R. Here is our first structural lemma on connectors.

Fig. 4. An illustration for the proof of Lemma 6: the white vertices induce a $3 P_{1}+P_{2}$.

Lemma 6. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph, and let $T \subseteq V$. For every mixed solution S_{T}, if $G[O]$ has two connected components D_{1} and D_{2}, then D_{1} and D_{2} each have at most one connector.

Proof. By Lemma 3, R is a clique of size at most 2. For contradiction, suppose that, say, D_{1} has two distinct connectors v_{1} and v_{2}. Then v_{1} and v_{2} each have at most one neighbour in R, else the vertices of R would be in an odd cycle in $G\left[B_{T}\right]$, as R is a clique. Let u_{1} be the neighbour of v_{1} in R, and let u_{2} be the neighbour of v_{2} in R; note that $u_{1}=u_{2}$ is possible.

By definition, v_{1} and v_{2} each belong to at least one odd cycle, which we denote by C_{1} and C_{2}, respectively. We claim that $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\emptyset$ and there is no edge between a vertex of C_{1} and a vertex of C_{2} except for possibly the edge $v_{1} v_{2}$. If not, then there would be a path from v_{1} to v_{2} in $G[O]$ with an edge that belongs to an odd cycle (C_{1} or C_{2}). By Lemma 5 applied to $G\left[D_{1}\right]$, there would be another path P^{\prime} from v_{1} to v_{2} in $G[O]$ with a different parity to P. Thus the cycles $u_{1} P u_{2} u_{1}$ and $u_{1} P^{\prime} u_{2} u_{1}$ would have different parity (whether or not u_{1} and u_{2} are distinct) and so one of them would be odd. Hence, u_{1} and u_{2} would not be even. Note also that u_{1} has no neighbours in $V\left(C_{1}\right)$ other than v_{1}; otherwise $G\left[B_{T}\right]$ would have an odd cycle containing u_{1}. Moreover, u_{1} has no neighbours in $V\left(C_{2}\right)$ either, except v_{2} if $u_{1}=u_{2}$; otherwise $G\left[B_{T}\right]$ would contain an odd cycle containing u_{1} and u_{2}.

We now let w_{1} and x_{1} be two adjacent vertices of C_{1} that are not adjacent to u_{1}. Let w_{2} be a vertex of C_{2} not adjacent to u_{1}. Then, we found that $\left\{u_{1}, w_{2}, w_{1}, x_{1}\right\}$ induces a $2 P_{1}+P_{2}$ (see Figure 4).

We continue by considering D_{2}, the other connected component of $G[O]$. By definition, D_{2} has an odd cycle C^{\prime}. As $|R| \leq 2$ and each vertex of R can have at most one neighbour on an odd cycle in $G\left[B_{T}\right]$, we find that C^{\prime} contains a vertex v^{\prime} not adjacent to any vertex of R, so v^{\prime} is not adjacent to u_{1}. As v^{\prime} and the vertices of $\left\{w_{2}, w_{1}, x_{1}\right\}$ belong to different connected components of $G[O]$, we find that v^{\prime} is not adjacent to any vertex of $\left\{w_{2}, w_{1}, x_{1}\right\}$ either. However, now $\left\{u_{1}, v^{\prime}, w_{2}, w_{1}, x_{1}\right\}$ induces a $3 P_{1}+P_{2}$ (see also Figure 4), a contradiction.

We need one more structural lemma (Lemma 7) about connectors, in the case where $G[O]$ is connected. In order to be able to make use of this lemma we need to exclude a special kind of mixed solution S_{T}. Let R consist of two adjacent vertices u_{1} and u_{2}. Let O (with $O \cap T=\emptyset$) be the disjoint union of two complete graphs K and L, each with at least three vertices, plus a single additional edge, such that:

1. u_{1} is adjacent to exactly one vertex v_{1} in K and to no vertex of L;
2. u_{2} is adjacent to exactly one vertex v_{2} in L and to no vertex of K; and
3. v_{1} and v_{2} are adjacent.

Note that $G\left[B_{T}\right]=G[O \cup R]$ is indeed T-bipartite. We call the corresponding mixed solution S_{T} a 2-clique solution (see Figure 5).

Lemma 7. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph and let $T \subseteq V$. For every mixed solution S_{T} that is not a 2-clique solution, if $G[O]$ is connected, then O has no two connectors with a neighbour in the same connected component of $G[R]$.

Proof. For some $p \geq 1$, let F_{1}, \ldots, F_{p} be the set of components of $G[R]$. For contradiction, assume O has two distinct connectors v_{1} and v_{2}, each with a neighbour in the same F_{i}, say, F_{1}. Let $u_{1}, u_{2} \in V\left(F_{1}\right)$ be these two neighbours, where $u_{1}=u_{2}$ is possible. Let Q be a path from u_{1} to u_{2} in F_{1} (see Figure 6).

By definition, v_{1} and v_{2} each belong to at least one odd cycle, which we denote by C_{1} and C_{2}, respectively. We choose C_{1} and C_{2} such that they have minimum length. As in Lemma 6 , we claim that $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\emptyset$ and there is no edge between a vertex of C_{1} and a vertex of C_{2} except for possibly the edge $v_{1} v_{2}$. If there was such an edge, then there would be a path P from v_{1} to v_{2} in $G[O]$ with an edge that belongs to an odd cycle. By Lemma 5 applied to

Fig. 5. The structure of B_{T} corresponding to a 2 -clique solution S_{T}. The subgraphs K and L are each cliques on an odd number of vertices that is at least 3 .
$G\left[D_{1}\right]$, there would be another path P^{\prime} from v_{1} to v_{2} in $G[O]$ with a different parity than P. Then one of the cycles $u_{1} P u_{2} u_{1}$ or $u_{1} P^{\prime} u_{2} u_{1}$ is odd (whether or not u_{1} and u_{2} are distinct), implying that u_{1} and u_{2} would not be even.

We also note that v_{1} is the only neighbour of u_{1} on C_{1}; otherwise u_{1} would belong to an odd cycle of $G\left[B_{T}\right]$. Similarly, v_{2} is the only neighbour of u_{2} on C_{2}. Moreover, u_{1} has no neighbour on C_{2} except v_{2} if $u_{1}=u_{2}$, and u_{2} has no neighbour on C_{1} except v_{1} if $u_{1}=u_{2}$. This can be seen as follows. For a contradiction, first suppose that, say, u_{1} has a neighbour w on C_{2} and $w \neq v_{2}$. As C_{2} is an odd cycle, there exist two vertex-disjoint paths P and P^{\prime} on C_{2} from w to v_{2} of different parity. Using the edges $u_{1} w$ and $u_{2} v_{2}$ and the path Q from u_{1} to u_{2}, this means that u_{1} and u_{2} are on odd cycle of $G\left[B_{T}\right]$. However, this is not possible as u_{1} and u_{2} are even. Hence, u_{1} has no neighbour on $V\left(C_{2}\right) \backslash\left\{v_{2}\right\}$. By the same reasoning, u_{2} has no neighbour on $V\left(C_{1}\right) \backslash\left\{v_{1}\right\}$. Now suppose that u_{1} is adjacent to v_{2} and that $u_{1} \neq u_{2}$. Then u_{1} is not adjacent to u_{2}, otherwise the vertices u_{1}, u_{2} and v_{2} would form a triangle, and consequently, u_{1} and u_{2} would not be even. Recall that $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\emptyset$ and that there is no edge between a vertex of C_{1} and a vertex of C_{2} except possibly the edge $v_{1} v_{2}$. Hence, we can now take u_{1}, u_{2}, a vertex of $V\left(C_{1}\right) \backslash\left\{v_{1}\right\}$, and two adjacent vertices of $V\left(C_{2}\right) \backslash\left\{v_{2}\right\}$ (which exist as C_{2} is a cycle) to find an induced $3 P_{1}+P_{2}$, a contradiction.

We now claim that C_{1} and C_{2} each have exactly three vertices. For contradiction, assume, without loss of generality, that C_{1} has length at least 5 . Let x and y be the two neighbours of v_{1} in C_{1}. As C_{1} has minimum length, x and y are not adjacent.

Let t_{1} and t_{2} be adjacent vertices of C_{2} distinct from v_{2}. Then $\left\{u_{1}, x, y, t_{1}, t_{2}\right\}$ induces a $3 P_{1}+P_{2}$ in G, a contradiction. Hence, C_{1} and C_{2} are triangles, say with vertices v_{1}, w_{1}, x_{1} and v_{2}, w_{2}, x_{2}, respectively.

Now suppose $G[O]$ has a path from v_{1} to v_{2} on at least 3 vertices. Let s be the vertex adjacent to v_{1} on this path. Then $s \notin\left\{w_{1}, x_{1}, w_{2}, x_{2}\right\}$ and s is not adjacent to any vertex of $\left\{w_{1}, x_{1}, w_{2}, x_{2}\right\}$ either; otherwise $G[O]$ contains two paths from v_{1} to v_{2} that are of different parity. As u_{1} and s are not adjacent (else u_{1} belongs to a triangle), we find that $\left\{s, u_{1}, w_{2}, w_{1}, x_{1}\right\}$ induces a $3 P_{1}+P_{2}$, a contradiction (see also Figure 6). We conclude that as $G[O]$ is connected, v_{1} and v_{2} must be adjacent.

So far, we found that O contains two vertex-disjoint triangles on vertex sets $\left\{v_{1}, w_{1}, x_{1}\right\}$ and $\left\{v_{2}, w_{2}, x_{2}\right\}$, respectively, with $v_{1} v_{2}$ as the only edge between them. As v_{1} is adjacent to v_{2}, we find that $u_{1} \neq u_{2}$; otherwise $\left\{u_{1}, v_{1}, v_{2}\right\}$ would induce a triangle, which is not possible as $u_{1} \in R$. Recall that u_{1} is not adjacent to any vertex of $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ except v_{1}, and similarly, u_{2} is not adjacent to any vertex of $V\left(C_{1}\right) \cup V\left(C_{2}\right)$ except v_{2}. Then u_{1} must be adjacent to u_{2}, as otherwise $\left\{u_{1}, u_{2}, w_{1}, w_{2}, x_{2}\right\}$ would induce a $3 P_{1}+P_{2}$.

Let $z \in O \backslash\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)$. Suppose u_{1} is adjacent to z. First assume z is adjacent to w_{1} or x_{1}, say w_{1}. Then $u_{1} z w_{1} x_{1} v_{1} u_{1}$ is an odd cycle. Hence, this is not possible. Now assume z is adjacent to w_{2} or x_{2}, say w_{2}. Then $u_{1} z w_{2} v_{2} u_{2} u_{1}$ is an odd cycle. This is not possible

Fig. 6. The white vertices induce a $3 P_{1}+P_{2}$.
either. Hence, z is not adjacent to any vertex of $\left\{w_{1}, x_{1}, w_{2}, x_{2}\right\}$. Moreover, z is not adjacent to u_{2}, as otherwise $\left\{u_{1}, u_{2}, z\right\}$ induces a triangle in $G\left[B_{T}\right]$. However, $\left\{u_{2}, w_{2}, z, w_{1}, x_{1}\right\}$ now induces a $3 P_{1}+P_{2}$. Hence, u_{1} is not adjacent to z. In other words, v_{1} is the only neighbour of u_{1} on O. By the same arguments, v_{2} is the only neighbour of u_{2} on O.

Let K be a maximal clique of O that contains C_{1}; note that K does not intersect C_{2} as $V\left(C_{1}\right) \cap V\left(C_{2}\right)=\emptyset$ and $v_{1} v_{2}$ is the only edge between C_{1} and C_{2}. Let L be a maximal clique of $O \backslash K$ that contains C_{2}. We note that there is no edge e from a vertex of K to a vertex of L other than $v_{1} v_{2}$; else there is an odd cycle in $G\left[B_{T}\right]$ containing e and the three edges $v_{1} u_{1} u_{2} v_{2}$; if e is incident with v_{1} (or v_{2}), then a 5 -cycle is obtained using one further edge within L (or K), and otherwise a 7 -cycle can be formed by adding two edges from K to connect e to v_{1} and one edge from L to connect e to v_{2}. We prove below that $O=K \cup L$.

For contradiction, assume that r is a vertex of O that does not belong to $K \cup L$. As u_{1} and u_{2} are adjacent vertices that have no neighbours in $O \backslash\left\{v_{1}, v_{2}\right\}$, the $\left(3 P_{1}+P_{2}\right)$-freeness of G implies that $G\left[O \backslash\left\{v_{1}, v_{2}\right\}\right]$ is $3 P_{1}$-free. As $K \backslash\left\{v_{1}\right\}$ and $L \backslash\left\{v_{2}\right\}$ induce the disjoint union of two nonempty complete graphs, this means that r is adjacent to every vertex of $K \backslash\left\{v_{1}\right\}$ or to every vertex of $L \backslash\left\{v_{2}\right\}$; assume r is adjacent to every vertex of $K \backslash\left\{v_{1}\right\}$. Then r has no neighbour r^{\prime} in $L \backslash\left\{v_{2}\right\}$, as otherwise the cycle $v_{1} u_{1} u_{2} v_{2} r^{\prime} r w_{1} v_{1}$ is an odd cycle in $G\left[B_{T}\right]$ that contains u_{1} (and u_{2}). Moreover, as K is maximal and r is adjacent to every vertex of $K \backslash\left\{v_{1}\right\}$, we find that r and v_{1} are not adjacent. Recall also that u_{2} has v_{2} as its only neighbour in O, hence u_{2} is not adjacent to r. This means that $\left\{r, v_{1}, u_{2}, w_{2}, x_{2}\right\}$ induces a $3 P_{1}+P_{2}$, which is not possible. We conclude that $O=K \cup L$.

We now consider the graph F_{1} in more detail. Suppose F_{1} contains another vertex $u_{3} \notin$ $\left\{u_{1}, u_{2}\right\}$. As F_{1} is connected and bipartite (as $V\left(F_{1}\right) \subseteq R$), we may assume without loss of generality that u_{3} is adjacent to u_{1} but not to u_{2}. If u_{3} has a neighbour in K, then $G\left[B_{T}\right]$ contains an odd cycle that uses u_{1}, u_{3} and one vertex of K (if the neighbour of u_{3} in K is v_{1}) or three vertices of K (if the neighbour of u_{3} in K is not v_{1}). Hence, u_{3} has no neighbour in K. This means that $\left\{u_{2}, u_{3}, w_{2}, w_{1}, x_{1}\right\}$ induces a $3 P_{1}+P_{2}$, so u_{3} cannot exist. Hence, F_{1} consists only of the two adjacent vertices u_{1} and u_{2}.

Now suppose that $p \geq 2$, that is, F_{2} is nonempty. Let $u^{\prime} \in V\left(F_{2}\right)$. As $u^{\prime} \in R$, we find that u^{\prime} is adjacent to at most one vertex of C_{1} and to at most one vertex of C_{2}. Hence, we may without loss of generality assume that u^{\prime} is not adjacent to w_{1} and w_{2}. Then
$\left\{u^{\prime}, w_{1}, w_{2}, u_{1}, u_{2}\right\}$ induces a $3 P_{1}+P_{2}$. We conclude that $R=\left\{u_{1}, u_{2}\right\}$. However, now S_{T} is a 2 -clique solution of G, a contradiction.

4.2 An Algorithmic Lemma

As part of our algorithm we need to be able to find a 2-clique solution of minimum weight in polynomial time. This is shown in the next lemma.

Lemma 8. Let $G=(V, E)$ be a $\left(3 P_{1}+P_{2}\right)$-free graph with a vertex weighting w, and let $T \subseteq V$. It is possible to find in polynomial time a 2-clique solution for (G, w, T) that has minimum weight.

Proof. As the cliques K and L in B_{T} have size at least 3 for a 2 -clique solution S_{T}, there are distinct vertices x_{1}, y_{1} in $K \backslash\left\{v_{1}\right\}$ and distinct vertices x_{2}, y_{2} in $L \backslash\left\{v_{2}\right\}$. The ordered 8 -tuple ($u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, y_{1}, x_{2}, y_{2}$) is a skeleton of the 2 -clique solution. We call the labelled subgraph of B_{T} that these vertices induce a skeleton graph. (see Figure 7).

Fig. 7. A skeleton graph.

In order to find a 2-clique solution of minimum weight in polynomial time, we consider all $\mathcal{O}\left(n^{8}\right)$ possible ordered 8-tuples $\left(u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, y_{1}, x_{2}, y_{2}\right)$ of vertices of G and further investigate those that induce a skeleton graph. We note that if these vertices form the skeleton of a 2-clique solution S_{T}, then $R\left(B_{T}\right)=\left\{u_{1}, u_{2}\right\}$ and $O\left(B_{T}\right)$ is a subset of

$$
V^{\prime}=\left\{v_{1}, x_{1}, y_{1}\right\} \cup\left\{v_{2}, x_{2}, y_{2}\right\} \cup\left(N\left(v_{1}\right) \cap N\left(x_{1}\right) \cap N\left(y_{1}\right)\right) \cup\left(N\left(v_{2}\right) \cap N\left(x_{2}\right) \cap N\left(y_{2}\right)\right) .
$$

We further refine the definition of V^{\prime} by deleting any vertex that cannot, by definition, belong to $O\left(B_{T}\right)$; that is, we remove every vertex that belongs to $T \cup\left(N\left(\left\{u_{1}, u_{2}\right\}\right) \backslash\left\{v_{1}, v_{2}\right\}\right)$ or is a neighbour of both a vertex in $\left\{v_{1}, x_{1}, y_{1}\right\}$ and a vertex in $\left\{v_{2}, x_{2}, y_{2}\right\}$. We write $G^{\prime}=G\left[V^{\prime}\right]$. Note that u_{1} and u_{2} are not in G^{\prime} (as they are not adjacent to any vertex in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$), whereas $v_{1}, v_{2}, x_{1}, x_{2}, y_{1}, y_{2}$ all are in G^{\prime}.

Let $K^{\prime}=\left\{v_{1}, x_{1}, y_{1}\right\} \cup\left(N\left(\left\{v_{1}, x_{1}, y_{1}\right\}\right) \cap V^{\prime}\right)$ and $L^{\prime}=\left\{v_{2}, x_{2}, y_{2}\right\} \cup\left(N\left(\left\{v_{2}, x_{2}, y_{2}\right\}\right) \cap V^{\prime}\right)$. We now show that
(i) K^{\prime} and L^{\prime} partition V^{\prime}, and
(ii) K^{\prime} and L^{\prime} are cliques.

By definition, every vertex of V^{\prime} either belongs to K^{\prime} or to L^{\prime}. By construction, $K^{\prime} \cap L^{\prime}=\emptyset$ since every vertex in $K^{\prime} \backslash\left\{v_{1}\right\}$ is a neighbour of v_{1} and every vertex in $L^{\prime} \backslash\left\{v_{2}\right\}$ is a neighbour of v_{2} and no vertex in V^{\prime} is adjacent to both v_{1} and v_{2} which are themselves distinct. This shows (i).

We now prove (ii). For a contradiction, suppose K^{\prime} is not a clique. Then K^{\prime} contains two non-adjacent vertices t and t^{\prime}. As $K^{\prime} \backslash\left\{v_{1}, x_{1}, y_{1}\right\}$ is complete to the clique $\left\{v_{1}, x_{1}, y_{1}\right\}$, we find that t and t^{\prime} both belong to $K^{\prime} \backslash\left\{v_{1}, x_{1}, y_{1}\right\}$. By construction of G^{\prime}, we find that $\left\{t, t^{\prime}\right\}$ is anti-complete to $\left\{u_{1}, u_{2}, x_{2}\right\}$. By the definition of a skeleton, $\left\{u_{1}, u_{2}\right\}$ is anti-complete to $\left\{x_{2}\right\}$. Then $\left\{u_{1}, u_{2}, t, t^{\prime}, x_{2}\right\}$ induces a $3 P_{1}+P_{2}$ in G, a contradiction. By the same arguments, L^{\prime} is a clique.

We will now continue as follows. In G^{\prime} we first delete the edge $v_{1} v_{2}$. Second, for $i \in\{1,2\}$ we replace the vertices v_{i}, x_{i}, y_{i} by a new vertex v_{i}^{*} that is adjacent precisely to every vertex that is a neighbour of at least one vertex of $\left\{v_{i}, x_{i}, y_{i}\right\}$ in G^{\prime}. This transforms the graph G^{\prime} into the graph $G^{*}=\left(V^{*}, E^{*}\right)$. Note that in G^{*} there is no edge between v_{1}^{*} and v_{2}^{*}. We give each vertex $z \in V^{*} \backslash\left\{v_{1}^{*}, v_{2}^{*}\right\}$ weight $w^{*}(z)=w(z)$, and for $i \in\{1,2\}$, we set $w^{*}\left(v_{i}^{*}\right)=w\left(v_{i}\right)+w\left(x_{i}\right)+w\left(y_{i}\right)$. See Figure 8.

The algorithm will now solve Weighted Vertex Cut on $\left(G^{*}, w^{*}\right)$ with terminals v_{1}^{*} and v_{2}^{*}; recall that this can be done in polynomial time by standard network flow techniques. Let S^{*} be the output. Then $G^{*}-S^{*}$ has two distinct connected components on vertex sets K^{*} and L^{*}, respectively, with $v_{1}^{*} \in K^{*}$ and $v_{2}^{*} \in L^{*}$. We set $K=\left(K^{*} \backslash\left\{v_{1}^{*}\right\}\right) \cup\left\{v_{1}, x_{1}, y_{1}\right\}$ and $L=\left(L^{*} \backslash\left\{v_{2}^{*}\right\}\right) \cup\left\{v_{2}, x_{2}, y_{2}\right\}$ and note that $G^{\prime}-S^{*}$ contains $G[K]$ and $G[L]$ as distinct connected components.

Fig. 8. The graph G^{\prime} and G^{*} in the proof of Lemma 8.

As K is a subset of the clique K^{\prime} and L is a subset of the clique L^{\prime} and $V^{\prime}=K^{\prime} \cup L^{\prime}$, we find that $G[K]$ and $G[L]$ are the only two connected components of $G^{\prime}-S^{\prime}$, and moreover that K and L are cliques. As no vertex of $(K \cup L) \backslash\left\{v_{1}, v_{2}\right\}$ is adjacent to u_{1} or u_{2}, this means that $S=V \backslash\left(\left\{u_{1}, u_{2}\right\} \cup K \cup L\right)$ is a 2 -clique solution for G. Moreover, as S^{*} is an optimal solution of Weighted Vertex Cut on instance $\left(G^{*}, w^{*}\right)$ with terminals v_{1}^{*} and v_{2}^{*}, we find that S has minimum weight over all 2-clique solutions with skeleton $\left(u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, y_{1}, x_{2}, y_{2}\right)$.

From all the $\mathcal{O}\left(n^{8}\right) 2$-clique solutions computed in this way, we pick one with minimum weight; note that we found this 2 -clique solution in polynomial time.

4.3 The Algorithm

We are now ready to prove the main result of the section.
Theorem 3. Weighted Subset Odd Cycle Transversal is polynomial-time solvable for $\left(3 P_{1}+P_{2}\right)$-free graphs.

Proof. Let G be a $\left(3 P_{1}+P_{2}\right)$-free graph with a vertex weighting w, and let $T \subseteq V(G)$. We describe a polynomial-time algorithm for the optimization version of the problem on input (G, T, w) using the approach of Section 3. So, in Step 1, we compute a neutral solution of minimum weight, i.e., a minimum weight odd cycle transversal, using polynomial time due
to Lemma 1 (take $s=4$). We then compute, in Step 2, a T-full solution by setting $S_{T}=T$. It remains to compute a mixed solution S_{T} of minimum weight (Step 3) and compare its weight with the two solutions found above (Step 4). By Lemma 2 we can distinguish between two cases: $G[O]$ is connected or $G[O]$ consists of two connected components. We compute a mixed solution of minimum weight for each type.

Case 1. $G[O]$ is connected.
We first compute in polynomial time a 2 -clique solution of minimum weight using Lemma 8. In the remainder of Case 1, we will compute a mixed solution S_{T} of minimum weight with connected $G[O]$ that is not a 2-clique solution.

By Lemma 4 and the fact that $G[R]$ is bipartite by definition, we find that $|R| \leq 8$. We consider all $\mathcal{O}\left(n^{8}\right)$ possibilities for R. We discard a choice for R if $G[R]$ is not bipartite. If $G[R]$ is bipartite, we compute a solution S_{T} of minimum weight such that B_{T} contains R. Let F_{1}, \ldots, F_{p} be the components of $G[R]$. By definition, $p \geq 1$. By Lemma $4 p \leq 4$. By Lemma 7, O has at most $p \leq 4$ connectors.

We now consider all $\mathcal{O}\left(n^{4}\right)$ possible choices for a set D of at most four connectors. For each set D, we first check that $G[D \cup R]$ is T-bipartite and that there are no two vertices in D with a neighbour in the same F_{i}; if one of these conditions is not satisfied, we discard our choice of D. If both conditions are satisfied we put the vertices of D in O, together with any vertex that is not in T and that is not adjacent to any vertex of R. Then, as $G[D \cup R]$ is T-bipartite and no two vertices in D are adjacent to the same component F_{i}, the graph $G[R \cup O]$ is T-bipartite. We remember the weight of $S_{T}=V \backslash(R \cup O)$.

In doing the above, we may have computed a set O that is disconnected or that contains even vertices. So we might compute some solutions more than once. However, we can compute each solution in polynomial time, and the total number of solutions we compute in Case 1 is $\mathcal{O}\left(n^{8}\right) \cdot \mathcal{O}\left(n^{4}\right)=\mathcal{O}\left(n^{12}\right)$, which is polynomial as well. Out of all the 2-clique solutions and other mixed solutions we found, we pick a solution $S_{T}=V_{T} \backslash(R \cup O)$ with minimum weight as the output for Case 1.

Case 2. $G[O]$ consists of two connected components D_{1} and D_{2}.
By Lemma 3, R is a clique of size at most 2. We consider all possible $\mathcal{O}\left(n^{2}\right)$ options for R. Each time R is a clique, we proceed as follows. By Lemma 6, both D_{1} and D_{2} have at most one connector. We consider all $\mathcal{O}\left(n^{2}\right)$ ways of choosing at most one connector from each of them. If we choose two, they must be non-adjacent. We discard the choice if the subgraph of G induced by R and the chosen connector(s) is not T-bipartite. Otherwise we continue. If we chose at most one connector v, we let O consist of v and all vertices that do not belong to T and that do not have a neighbour in R. Then $G[R \cup O]$ is T-bipartite and we store $S_{T}=V \backslash(R \cup O)$. Note that O might not induce two connected components consisting of odd vertices, so we may duplicate some work. However, $R \cup O$ induces a T-bipartite graph and we found O in polynomial time, and this is what is relevant (together with the fact that we only use polynomial time).

In the case where the algorithm chooses two (non-adjacent) connectors v and v^{\prime} we proceed as follows. We remove any vertex from $R \cup T$ and any neighbour of R other than v and v^{\prime}. Let $\left(G^{\prime}, w^{\prime}\right)$ be the resulting weighted graph (where w^{\prime} is the restriction of w to $V\left(G^{\prime}\right)$). We then solve Weighted Vertex Cut in polynomial time on G^{\prime}, w^{\prime} and with v and v^{\prime} as terminals. Let S be the output. We let $O=V\left(G^{\prime}\right)-S$.

By construction, v and v^{\prime} are in different connected components of $G[O]$ and no vertex of R is adjacent to a connected component of $G[O]$ that does not contain v or v^{\prime}. Together with the fact that $G\left[R \cup\left\{v, v^{\prime}\right\}\right]$ is T-bipartite and that $G[O]$ has no vertices of T, this implies that $G[R \cup O]$ is T-bipartite. Note that $G[O]$ might contain even vertices or more than two connected components. However, what is only relevant is that $G[R \cup O]$ is T-bipartite, and that we found O in polynomial time. We remember the solution $S_{T}=V \backslash(R \cup O)$. In the end we remember, from all the solutions we computed one with minimum weight as the output
for Case 2. Note that the number of solutions is $\mathcal{O}\left(n^{2}\right) \cdot \mathcal{O}\left(n^{2}\right)=\mathcal{O}\left(n^{4}\right)$ and we found each solution in polynomial time. Hence, processing Case 2 takes polynomial time.
Correctness and Running Time. The correctness of our algorithm follows from the correctness of Cases 1 and 2, which describe all possible mixed solutions due to Lemma 2. As processing Cases 1 and 2 takes polynomial time, we compute a mixed solution of minimum weight in polynomial time. Computing a non-mixed solution of minimum weight takes polynomial time as deduced already. Hence, the running time is polynomial.

5 Weighted Subset Odd Cycle Transversal on ($\boldsymbol{P}_{1}+\boldsymbol{P}_{3}$)-free graphs

In this section, we will prove that Weighted Subset Odd Cycle Transversal can be solved in polynomial time for ($P_{1}+P_{3}$)-free graphs (and also explain how the same result can be obtained for P_{4}-free graphs using existing machinery). We will follow the framework of Section 3 but in a less strict sense.

5.1 Auxiliary Results

We make use of an algorithm that decides the problem on P_{4}-free graphs. It can be shown that Weighted Subset Odd Cycle Transversal is polynomial-time solvable for $P_{4}{ }^{-}$ free graphs by an obvious adaptation of the proof of the unweighted variant of Subset Odd Cycle Transversal from [6]. However, we remark that, as is the case for Weighted Subset Feedback Vertex Set discussed in Section 1, the result also follows from a metatheorem of Courcelle et al. [11] that shows that on graph classes of bounded clique-width, certain optimization problems have linear time algorithms. We do not discuss the details, but it is enough to make the following two observations. First, P_{4}-free graphs have clique-width 1 and a corresponding 1 -expression can be constructed in linear time. Second, the property that a subset of vertices S is an odd T-cycle transversal in a graph $G=(V, E)$ for some given set $T \subseteq V$ can be expressed in MSO_{1} monadic second-order logic (with S as the only free monadic variable). Thus, we state without an explicit proof:

Theorem 4. Weighted Subset Odd Cycle Transversal is polynomial-time solvable for P_{4}-free graphs.

In order to prove our main result, we reduce to solving a weighted subset variant of the well-known Independent Set problem and also need the lemma below (Lemma 9). We say that $I_{T} \subseteq V(G)$ is a T-independent set of G if each vertex of $I_{T} \cap T$ is an isolated vertex in $G\left[I_{T}\right]$.

```
Weighted Subset Independent Set
    Instance: a graph G, a subset T\subseteqV(G), a non-negative vertex weighting w and
        an integer k\geq1.
    Question: does G have a T-independent set }\mp@subsup{I}{T}{}\mathrm{ with }w(\mp@subsup{I}{T}{})\geqk\mathrm{ ?
```

Lemma 9. Weighted Subset Independent Set is polynomial-time solvable for $3 P_{1}$-free graphs.

Proof. Let G be a $3 P_{1}$-free graph, and let $T \subseteq V(G)$. Suppose I_{T} is a T-independent set of G. Observe that $\left|I_{T} \cap T\right| \leq 2$: if I_{T} contained three vertices of T, then they would form an independent set of size 3 , contradicting that G is $3 P_{1}$-free. Thus to find a maximum weight T-independent set we consider each subset T^{\prime} of T of size at most 2 . The maximum weight T-independent set that contains T^{\prime} is clearly $V(G) \backslash\left(T \cup N\left(T^{\prime}\right)\right)$. Thus if we compute this collection of $\mathcal{O}\left(n^{2}\right) T$-independent sets, this collection will contain a maximum-weight T-independent set.

Finally, we need to define the complementary problem of Weighted Subset Independent Set: the weighted subset variant of Vertex Cover, which we now formally define. For a graph $G=(V, E)$ and a set $T \subseteq V$, a set $S_{T} \subseteq V$ is a T-vertex cover if S_{T} has at least contains one vertex incident to every edge that is incident to a vertex of T. Note that I_{T} is a T-independent set if and only if $V(G) \backslash I_{T}$ is a T-vertex cover.

```
Weighted Subset Vertex Cover
    Instance: a graph \(G\), a subset \(T \subseteq V(G)\), a non-negative vertex weighting \(w\) and
        an integer \(k \geq 1\).
    Question: does \(G\) have a \(T\)-vertex cover \(S_{T}\) with \(w\left(S_{T}\right) \leq k\) ?
```

We need a result on this problem for P_{4}-free graphs, which can be proven in the same way as the unweighted variant of Subset Vertex Cover in [6]. Alternatively, the property that a subset of vertices S is an T-vertex cover in a graph $G=(V, E)$ for some given set $T \subseteq V$ can be expressed in MSO_{1} monadic second-order logic (with S as the only free monadic variable) and we can use the meta-theorem of Courcelle et al. [11] again.

Lemma 10. Weighted Subset Vertex Cover can be solved in polynomial time for P_{4} free graphs.

The paw is the graph obtained from a triangle after adding a new vertex that is adjacent to only one vertex of the triangle. Alternatively, the paw is the complement of $P_{1}+P_{3}$ and is therefore denoted $\overline{P_{1}+P_{3}}$. We need the following result on paw-free graphs due to Olariu [23].

Lemma 11 ([23]). Every connected $\left(\overline{P_{1}+P_{3}}\right)$-free graph is either triangle-free or $\left(P_{1}+P_{2}\right)$ free.

5.2 The Algorithm

Let G be a graph. We say that a set $X \subseteq V(G)$ meets a subgraph H of G if $X \cap V(H) \neq \emptyset$. A subgraph H of G is a co-component of G if H is a connected component of \bar{G}. We are now ready to prove the main result of this section.

Theorem 5. Weighted Subset Odd Cycle Transversal is polynomial-time solvable for $\left(P_{1}+P_{3}\right)$-free graphs.

Proof. Let G be a $\left(P_{1}+P_{3}\right)$-free graph. We present a polynomial-time algorithm for the optimization problem, where we seek to find $S_{T} \subseteq V(G)$ such that S_{T} is a minimum-weight odd T-cycle transversal. Note that for such an S_{T}, the set $B_{T}=V(G) \backslash S_{T}$ is a maximumweight set such that $G\left[B_{T}\right]$ is a T-bipartite graph.

In \bar{G}, each connected component D is $\left(\overline{P_{1}+P_{3}}\right)$-free. By Lemma 11, D is either trianglefree or $\left(P_{1}+P_{2}\right)$-free in \bar{G}; that is, D is $3 P_{1}$-free or P_{3}-free in G. Let $D_{1}, D_{2}, \ldots, D_{\ell}$ be the co-components of G.

Let $B_{T} \subseteq V(G)$ such that $G\left[B_{T}\right]$ is a T-bipartite graph. For now, we do not require that B_{T} has maximum weight. We start by considering some properties of such a set B_{T}. Observe that $G-T$ is a T-bipartite graph, so we may have $B_{T} \cap T=\emptyset$.
Claim 1. If $B_{T} \cap T \neq \emptyset$, then $B_{T} \subseteq V\left(D_{i}\right) \cup V\left(D_{j}\right)$ for some $i, j \in\{1,2, \ldots, \ell\}$.
We prove Claim 1 as follows. Suppose $u \in B_{T} \cap T$, say $u \in V\left(D_{i}\right)$ for some $i \in\{1, \ldots, \ell\}$. The claim holds if $B_{T} \subseteq V\left(D_{i}\right)$, so suppose $v \in B_{T} \backslash V\left(D_{i}\right)$. Then $v \in V\left(D_{j}\right)$ for some $j \in\{2, \ldots, \ell\}$ with $j \neq i$. If B_{T} also contains a vertex $v^{\prime} \in D_{j^{\prime}}$ for some $j^{\prime} \in\{2, \ldots, \ell\} \backslash\{i, j\}$, then $\left\{u, v, v^{\prime}\right\}$ induces a triangle in G, since D_{i}, D_{j}, and $D_{j^{\prime}}$ are co-components. As this triangle contains $u \in T$, it is an odd T-cycle of $G\left[B_{T}\right]$, a contradiction.

Note that Claim 1 states that B_{T} meets at most two co-components of G when $B_{T} \cap T \neq \emptyset$. The next two claims consider the case when B_{T} meets precisely two co-components of G.
Claim 2. Suppose $B_{T} \cap T \neq \emptyset$ and there exist distinct $i, j \in\{1, \ldots, \ell\}$ such that $B_{T} \cap V\left(D_{i}\right) \neq \emptyset$ and $B_{T} \cap V\left(D_{j}\right) \neq \emptyset$. If $B_{T} \cap V\left(D_{i}\right)$ contains a vertex of T, then $B_{T} \cap V\left(D_{j}\right)$ is an independent set.

We prove Claim 2 as follows. Suppose that $B_{T} \cap V\left(D_{i}\right)$ contains a vertex $t \in T$ and $G\left[B_{T} \cap\right.$ $V\left(D_{j}\right)$] contains an edge $u v$. But then $\left\{u_{1}, v_{1}, t\right\}$ induces a triangle of G, since $V\left(D_{j}\right)$ is complete to $V\left(D_{i}\right)$, so $G\left[B_{T}\right]$ contains a contradictory odd T-cycle.

Claim 3. Suppose $B_{T} \cap T \neq \emptyset$ and there exist distinct $i, j \in\{1, \ldots, \ell\}$ such that $B_{T} \cap V\left(D_{i}\right) \neq \emptyset$ and $B_{T} \cap V\left(D_{j}\right) \neq \emptyset$. Either

- $B_{T} \cap V\left(D_{i}\right)$ and $B_{T} \cap V\left(D_{j}\right)$ are independent sets of G, or
- $\left|B_{T} \cap V\left(D_{i}\right)\right|=1$ and $B_{T} \cap V\left(D_{i}\right) \cap T=\emptyset$, and $B_{T} \cap V\left(D_{j}\right)$ is a T-independent set, up to swapping i and j.

We prove Claim 3 as follows. Suppose B_{T} meets D_{i} and D_{j}, but $G\left[B_{T} \cap V\left(D_{j}\right)\right]$ contains an edge $u_{1} v_{1}$. Then, by Claim $2, B_{T} \cap V\left(D_{i}\right)$ is disjoint from T. But $B_{T} \cap T \neq \emptyset$, so $B_{T} \cap V\left(D_{j}\right)$ contains some $t \in T$. Again by Claim 2, $B_{T} \cap V\left(D_{i}\right)$ is independent. It remains to show that $B_{T} \cap V\left(D_{j}\right)$ is a T-independent set and that $\left|B_{T} \cap V\left(D_{j}\right)\right|=1$. Suppose $B_{T} \cap V\left(D_{j}\right)$ contains an edge $t w_{1}$, where $t \in T$. Then for any vertex $w_{2} \in B_{T} \cap V\left(D_{i}\right)$, we have that $\left\{t, w_{1}, w_{2}\right\}$ induces a triangle, so $G\left[B_{T}\right]$ has a contradictory odd T-cycle. We deduce that each vertex of T in $B_{T} \cap V\left(D_{j}\right)$ is isolated in $G\left[B_{T} \cap V\left(D_{j}\right)\right]$. Now suppose there exist distinct $w_{2}, w_{2}^{\prime} \in B_{T} \cap V\left(D_{i}\right)$. Then $t w_{2} u_{1} v_{1} w_{2}^{\prime} t$ is an odd T-cycle, a contradiction. So $\left|B_{T} \cap V\left(D_{i}\right)\right|=1$.
We now describe the polynomial-time algorithm. Our strategy is to compute, in polynomial time, a collection of $\mathcal{O}\left(n^{2}\right)$ sets B_{T} such that $G\left[B_{T}\right]$ is T-bipartite, where a maximum-weight B_{T} is guaranteed to be in this collection. It then suffices to output a set from this collection of maximum weight.

First, we compute the co-components $D_{1}, D_{2}, \ldots, D_{\ell}$ of G. For each of the $\ell=\mathcal{O}(n)$ co-components D_{i}, we can recognise in polynomial time if D_{i} is $3 P_{1}$-free or P_{3}-free (by brute force checking all vertex triples in D_{i}). Now, for each co-component D_{i}, we solve Weighted Subset Odd Cycle Transversal for D_{i}. Note that we can do this in polynomial time by Theorem 3 if D is $3 P_{1}$-free and by Theorem 4 if D_{i} is P_{3}-free.

Now we consider each pair $\left\{D_{1}, D_{2}\right\}$ of distinct co-components. Note there are $\mathcal{O}\left(n^{2}\right)$ pairs to consider. For each pair we will compute three sets B_{T} such that $G\left[B_{T}\right]$ is T-bipartite.

1. We compute a maximum-weight independent set I_{1} of D_{1}, and a maximum-weight independent set I_{2} of D_{2}, where the weightings are inherited from the weighting w of G. Set $B_{T}=I_{1} \cup I_{2}$. Note that $G\left[I_{1} \cup I_{2}\right]$ is a complete bipartite graph, so it is certainly T-bipartite. We can compute these independent sets in polynomial time when restricted to $3 P_{1}$-free or P_{3}-free graphs (for example, see [19]).
2. We select a maximum-weight vertex v_{1} from $V\left(D_{1}\right) \backslash T$, and compute a maximum-weight T-independent set I_{2} of D_{2}. When D_{2} is $3 P_{1}$-free, we can solve this in polynomial time by Lemma 9. On the other hand, when D_{2} is P_{3}-free, we solve the complementary problem, in polynomial time, by Lemma 10 . Set $B_{T}=I_{2} \cup\left\{v_{1}\right\}$. Note that $G\left[B_{T}\right]$ is T-bipartite, since every vertex of T has degree 1 in $G\left[B_{T}\right]$ (its only neighbour is v_{1}).
3. This case is the symmetric counterpart to the previous: choose a maximum-weight vertex v_{2} of $V\left(D_{2}\right) \backslash T$, compute a maximum-weight T-independent set I_{1} of D_{1}, and set $B_{T}=$ $I_{1} \cup\left\{v_{2}\right\}$.

Finally, take the maximum-weight B_{T} among the (at most) $3\binom{\ell}{2}+\ell+1$ possibilities described, where the final possibility is that $B_{T}=V(G) \backslash T$.

To prove correctness of this algorithm, suppose B_{T} is a maximum-weight set such that $G\left[B_{T}\right]$ is T-bipartite. If $B_{T} \subseteq V(G) \backslash T$, then certainly the algorithm will either output $V(G) \backslash T$ or another solution with weight equal to $w\left(B_{T}\right)$. So we may assume that $B_{T} \cap T \neq \emptyset$. Now, by Claim $1, B_{T}$ meets one or two co-components of G. If it meets exactly one co-component D, then B_{T} is a maximum-weight set such that $D\left[B_{T}\right]$ is T-bipartite, which will be found by the algorithm in the first phase. If it meets two co-components D_{1} and D_{2}, then the correctness of the algorithm follows from Claim 3. This concludes the proof.

6 The Proof of Theorem 2

We need one new hardness result. The result is an analogue of Papadopoulos and Tzimas's hardness result for Weighted Subset Feedback Vertex Set on $5 P_{1}$-free graphs [28, Theorem 2]. The proof is omitted as it is essentially identical, as all the relevant T-cycles in the constructed Weighted Subset Feedback Vertex Set instance are odd.

Theorem 6. Weighted Subset Odd Cycle Transversal is NP-complete for $5 P_{1}$-free graphs.

We are now ready to prove Theorem 2 .
Theorem 2 (restated). Let H be a graph with $H \notin\left\{2 P_{1}+P_{3}, P_{1}+P_{4}, 2 P_{1}+P_{4}\right\}$. Then Weighted Subset Odd Cycle Transversal on H-free graphs is polynomial-time solvable if $H \subseteq_{i} 3 P_{1}+P_{2}, P_{1}+P_{3}$, or P_{4}, and is NP-complete otherwise.

Proof. We first recall the result of [8] that Odd Cycle Transversal, that is, Weighted Subset Odd Cycle Transversal where $T=\emptyset$ and $w \equiv 1$, is NP-complete on H-free graphs if H has a cycle or a claw. In the remaining case H is a linear forest. If H contains an induced $2 P_{2}$, then we use a result of [6], which states that Subset Odd Cycle TransverSAL is NP-complete for split graphs, or equivalently, $\left(C_{4}, C_{5}, 2 P_{2}\right)$-free graphs. If H contains an induced $5 P_{1}$, then we use Theorem 6. In the other cases, we use Theorems 3,5 and 4 , respectively.

7 Conclusions

We determined the complexity of Weighted Subset Odd Cycle Transversal on H free graphs except when $H \in\left\{2 P_{1}+P_{3}, P_{1}+P_{4}, 2 P_{1}+P_{4}\right\}$. In particular, our results demonstrate that the classifications of Weighed Subset Odd Cycle Transversal and Subset Odd Cycle Transversal do not coincide for H-free graphs, just as was known already for Weighted Subset Feedback Vertex Set and Subset Feedback Vertex Set [28]. In addition, our results demonstrate that so far, the complexities of Weighted Subset Feedback Vertex Set and Weighted Subset Odd Cycle Transversal do coincide on H-free graphs.

We believe that the case $H=2 P_{1}+P_{3}$ is polynomial-time solvable for both problems using the methodology of our framework and our algorithms for $H=P_{1}+P_{3}$ as a subroutine. We leave this for future research. The other two cases are open even for Odd Cycle Transversal. For these cases we first need to be able to determine the complexity of finding a maximum induced disjoint union of stars in a $\left(P_{1}+P_{4}\right)$-free graph. We refer to Table 1 for other unresolved cases in our framework and note again that our results demonstrate that the classifications of Weighed Subset Odd Cycle Transversal and Subset Odd Cycle Transversal do not coincide for H-free graphs.

We note finally that that there are other similar transversal problems that have been studied, but their complexity classifications on H-free graphs have not been settled: (SUBSET) Even Cycle Transversal [18, 21, 24], for example. Versions of the transversal problems
that we have considered that have the additional constraint that the transversal must induce either a connected graph or an independent set have also been studied for H-free graphs [4, 8, $13,17]$. An interesting direction for further research is to consider the subset variant of these problems, and, more generally, to understand the relationships amongst the computational complexities of all these problems.
Acknowledgments. We thank two anonymous reviewers for helpful comments.

References

1. Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.: Induced subgraphs of bounded treewidth and the container method. Proc. SODA 2021 pp. 1948-1964 (2021)
2. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node Multiway Cut and Subset Feedback Vertex Set on graphs of bounded mim-width. Algorithmica, to appear (2022)
3. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics 6, 181-188 (1993)
4. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex set for P_{5}-free graphs. Algorithmica 81, 1342-1369 (2019)
5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM (1999)
6. Brettell, N., Johnson, M., Paesani, G., Paulusma, D.: Computing subset transversals in H-free graphs. Theoretical Computer Science 902, 76-92 (2022)
7. Brettell, N., Johnson, M., Paulusma, D.: Computing weighted subset transversals in H-free graphs. Proc. WADS 2021, LNCS 12808, 229-242 (2021)
8. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected transversals in graphs: New hardness results and tractable cases using the price of connectivity. Theoretical Computer Science 705, 75-83 (2018)
9. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Applied Mathematics 3, 163-174 (1981)
10. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926-934 (1985)
11. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125-150 (2000)
12. Dabrowski, K.K., Feghali, C., Johnson, M., Paesani, G., Paulusma, D., Rzążewski, P.: On cycle transversals and their connected variants in the absence of a small linear forest. Algorithmica 82, 2841-2866 (2020)
13. Dabrowski, K.K., Johnson, M., Paesani, G., Paulusma, D., Zamaraev, V.: On the price of independence for vertex cover, feedback vertex set and odd cycle transversal. Proc. MFCS 2018, LIPIcs 117, 63:1-63:15 (2018)
14. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. Algorithmica 69, 216-231 (2014)
15. Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Finding large induced sparse subgraphs in $c_{>t}$-free graphs in quasipolynomial time. Proc. STOC 2021 pp. 330-341 (2021)
16. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on P_{6}-free graphs. ACM Transactions on Algorithms 18, 1-57 (2022)
17. Johnson, M., Paesani, G., Paulusma, D.: Connected Vertex Cover for $\left(s P_{1}+P_{5}\right)$-free graphs. Algorithmica 82, 20-40 (2020)
18. Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdős-Pósa property and its algorithmic applications: parity constraints, subset feedback set, and subset packing. Proc. SODA 2012 pp. 1726-1736 (2012)
19. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in P_{5}-free graphs in polynomial time. Proc. SODA 2014 pp. 570-581 (2014)
20. Lozin, V., Malyshev, D., Mosca, R., Zamaraev, V.: Independent domination versus weighted independent domination. Information Processing Letters 156, 105914 (2020)
21. Misra, P., Raman, V., Ramanujan, M.S., Saurabh, S.: Parameterized algorithms for even cycle transversal. Proc. WG 2012 pp. 172-183 (2012)
22. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discrete Mathematics 340, 12101226 (2017)
23. Olariu, S.: Paw-free graphs. Information Processing Letters 28(1), 53-54 (1988)
24. Paesani, G., Paulusma, D., Rzążewski, P.: Feedback Vertex Set and Even Cycle Transversal for H-free graphs: finding large block graphs. Proc. MFCS 2021, LIPIcs 202, 1-14 (2021)
25. Paesani, G., Paulusma, D., Rzazewski, P.: Feedback Vertex Set and Even Cycle Transversal for H-free graphs: Finding large block graphs (journal version of [24]). CoRR abs/2105.02736 (2021)
26. Paesani, G., Paulusma, D., Rzążewski, P.: Classifying Subset Feedback Vertex set for H-free graphs. CoRR abs/2201.00430 (2022)
27. Papadopoulos, C., Tzimas, S.: Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs. Discrete Applied Mathematics 258, 204221 (2019)
28. Papadopoulos, C., Tzimas, S.: Subset feedback vertex set on graphs of bounded independent set size. Theoretical Computer Science 814, 177-188 (2020)
29. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15, 307-309 (1974)

[^0]: * The paper received support from the Leverhulme Trust (RPG-2016-258). The first author was also supported by a Rutherford Foundation Postdoctoral Fellowship, administered by the Royal Society Te Apārangi. An extended abstract appeared in the proceedings of WADS 2021 [7].

[^1]: ${ }^{3}$ The result for Odd Cycle Transversal on $\left(s P_{1}+P_{3}\right)$-free graphs $(s \geq 1)$ from [12] was shown before the corresponding result for Subset Odd Cycle Transversal was proven in [6].

