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Abstract
For a family of graphs G, the G-Contraction problem takes as an input a graph G and an integer k,
and the goal is to decide if there exists F ⊆ E(G) of size at most k such that G/F belongs to G. Here,
G/F is the graph obtained from G by contracting all the edges in F . In this article, we initiate the
study of Grid Contraction from the parameterized complexity point of view. We present a fixed
parameter tractable algorithm, running in time ck · |V (G)|O(1), for this problem. We complement
this result by proving that unless ETH fails, there is no algorithm for Grid Contraction with
running time co(k) · |V (G)|O(1). We also present a polynomial kernel for this problem.
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1 Introduction

Graph modification problems are one of the central problems in graph theory that have
received a lot of attention in theoretical computer science. Some of the important graph
modification operations are vertex deletion, edge deletion, and edge contraction. For graph
G, any graph that can be obtained from G by using these three types of modifications is
called a minor of G. If only the first two types of modification operations are allowed then
resulting graph is said to a subgraph of G. If the only third type of modification is allowed
then the resulting graph is called a contraction of G.

For two positive integer r, q, the (r × q)-grid is a graph in which every vertex is assigned
a unique pair of the form (i, j) for 1 ≤ i ≤ r and 1 ≤ j ≤ l. A pair of vertices (i1, j1) and
(i2, j2) are adjacent with each other if and only if |i1 − i2|+ |j1 − j2| = 1. There has been
considerable attention to the problem of obtaining a grid as a minor of the given graph. We
find it surprising that the very closely related question of obtaining a grid as a contraction
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23:2 On the Parameterized Complexity Of Grid Contraction

did not receive any attention. In this article, we initiate a study of this problem from the
parameterized complexity point of view.

The contraction of edge uv in simple graph G deletes vertices u and v from G, and replaces
them by a new vertex, which is made adjacent to vertices that were adjacent to either u or
v. Note that the resulting graph does not contain self-loops and multiple edges. A graph
G is said to be contractible to graph H if H can be obtained from G by edge contractions.
Equivalently, G is contractible to H if V (G) can be partitioned into |V (H)| many connected
sets, called witness sets, and these sets can be mapped to vertices in H such that adjacency
between witness sets is consistent with their mapped vertices in H. If such a partition of
V (G) exists then we call it H-witness structure of G. A graph G is said to be k-contractible
to H if H can be obtained from G by k edge contractions. For a family of graphs G, the
G-Contraction problem takes as an input a graph G and an integer k, and the objective is
to decide if G is k-contractible to a graph H in G.
Related Work : Early papers of Watanabe et al. [21, 22], Asano and Hirata [3] showed
G-Contraction is NP-Complete for various class of graphs like planar graphs, outer-planar
graphs, series-parallel graphs, forests, chordal graphs. Brouwer and Veldman proved that it is
NP-Complete even to determine whether a given graph can be contracted to a path of length
four or not [5]. In the realm of parameterized complexity, G-Contraction has been studied
with the parameter being the number of edges allowed to be contracted. It is known that
G-Contraction admits an FPT algorithm when G is set of paths [15], trees [15], cactus [18],
cliques [6], planar graphs [12] and bipartite graphs [14, 13]. For a fixed integer d, let H≥d,H≤d
and H=d denote the set of graphs with minimum degree at least d, maximum degree at most
d, and d-regular graphs, respectively. Golovach et al. [11] and Belmonte et al. [4] proved that
G-Contraction admits an FPT algorithm when G ∈ {H≥d,H≤d,H=d}. When G is split
graphs or chordal graphs, the G-Contraction is known to be W[1]-hard [2] and W[2]-hard
[19, 6], respectively. To the best of our knowledge, it is known that G-Contraction admits
a polynomial kernel only when G is a set of paths [15] or set of paths or cycle i.e. H≤2 [4]. It
is known that G does not admit a polynomial kernel, under standard complexity assumptions,
when G is set of trees [15], cactus [17], or cliques [6].
Our Contribution : In this article we study parameterized complexity of Grid Contrac-
tion problem. We define the problem as follows.

Grid Contraction Parameter: k
Input: Graph G and integer k
Question: Is G k-contractible to a grid?
To the best of our knowledge, the computation complexity of the problem is not known

nor it is implied by the existing results regarding edge contraction problems. We prove
that the problem is indeed NP-Complete (Theorem 27). We prove that there exists an FPT
algorithm which given an instance (G, k) of Grid Contraction runs in time 46k · |V (G)|O(1)

and correctly concludes whether it is a Yes instance or not (Theorem 22). We complement
this result by proving that unless ETH fails there is no algorithm for Grid Contraction
with running time 2o(k) · |V (G)|O(1) (Theorem 27). We present a polynomial kernel with
O(k4) vertices and edges for Grid Contraction (Theorem 34).
Our Methods : Our FPT algorithm for Grid Contraction is divided into two phases.
In the first phase, we introduce a restricted version of Grid Contraction problem called
Bounded Grid Contraction. In this problem, along with a graph G and an integer k, an
input consists of an additional integer r. The objective is to determine whether graph G can
be k-contracted to a grid with r rows. We present an FPT algorithm parameterized by (k+ r)



Saurabh, Souza, and Tale 23:3

for this problem. This algorithm is inspired by the exact exponential algorithm for Path
Contraction in [1]. It is easy to see that an instance (G, k) is a Yes instance of Grid
Contraction if and only if (G, k, r) is a Yes instance of Bounded Grid Contraction
for some r in {1, 2, . . . , |V (G)|}. In the second phase, given an instance (G, k) of Grid
Contraction we produce polynomially many instances of Bounded Grid Contraction
such that – (a) the input instance is a Yes instance if and only if at least one of the produced
instances is a Yes instance and (b) for any produced instance, say (G′, k′, r), we have k′ = k

and r ∈ {1, 2, . . . , 2k + 5}. We prove that all these instances can be produced in time
polynomial in the size of the input. An FPT algorithm for Grid Contraction is a direct
consequence of these two results. We use techniques presented in the second phase to obtain
a polynomial kernel for Grid Contraction.

We present a brief overview of the FPT algorithm for Bounded Grid Contraction.
Boundary vertices of a subset S of V (G) are the vertices in S which are adjacent to at least
one vertex in V (G) \ S. A subset S of V (G) is nice if both G[S], G− S are connected, and
G[S] can be contracted to a (r × q)-grid with all boundary vertices in S in an end-column
for some integer q. In other words, a subset S of V (G) is nice if it is a union of witness
sets appearing in first few columns in some grid witness structure of G. See Definition 11.
The objective is to keep building a special partial solution for some nice subsets. In this
special partial solution, all boundary vertices of a particular nice subset are contained in bags
appearing in an end-column. This partial solution is then extended to the remaining graph.
The central idea is – for a nice subset S of graph G, if G[S] can be contracted to a grid such
that all boundary vertices of S are in an end bag then how one contract G[S] is irrelevant.
This allows us to store one solution for G[S] and build a dynamic programming table nice
subsets of vertices. The running time of such an algorithm depends on the following two
quantities (i) the number of possible entries in the dynamic programming table, and (ii)
time spent at each entry. We prove that to bound both these quantities as a function of k, it
is sufficient to know the size of neighborhood of S and the size of the union of witness sets in
an end-column in a grid contraction of G[S] which contains all boundary vertices of S.

In the second phase, we first check whether a given graph G can be k-contracted to a
grid with r rows for r ∈ {1, 2, . . . , 2k + 5} using the algorithm mentioned in the previous
paragraph. If for any value of r it returns Yes then we can conclude that (G, k) is a Yes
instance of Grid Contraction. Otherwise, we argue that there exists a special separator
S in G which induces a (2× q) grid for some positive integer p. We prove that it is safe to
contract q vertical edges in G[S]. Let G′ be the graph obtained from G by contracting these
parallel edges. Formally, we argue that G is k-contractible to a (r′ × q)-grid if and only if G′
is k-contractible to ((r′ − 1)× q)-grid. We keep repeating the process of finding a special
separator and contracting parallel edges in it until one of the following things happens – (a)
The resultant graph is k-contractible to a (r′× q)-grid for some r′ < 2k+ 5. (b) The resultant
graph does not contain a special separator. We argue that in Case (b), it is safe to conclude
that (G, k) is a No instance for Grid Contraction.

Organization of the paper : We present some preliminary notations which will be used
in rest of the paper in Section 2. We present a crucial combinatorial lemma in Section 3.
As mentioned earlier, this algorithm is divided into two phases. We present the first and
the second phase in Section 4 and 5, respectively. Section 5 also contains an FPT algorithm
for Grid Contraction. We prove that the dependency on the parameter in the running
time of this algorithm is optimal, up to a constant factor, unless ETH fails in Section 6. In
Section 7, we present a polynomial kernel for Grid Contraction problem. We conclude
the paper with an open question in Section 8.
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2 Preliminaries

For a positive integer k, [k] denotes the set {1, 2, . . . , k}.

2.1 Graph Theory

In this article, we consider simple graphs with a finite number of vertices. For an undirected
graph G, sets V (G) and E(G) denote its set of vertices and edges respectively. Two vertices
u, v in V (G) are said to be adjacent if there is an edge uv in E(G). The neighborhood
of a vertex v, denoted by NG(v), is the set of vertices adjacent to v and its degree dG(v)
is |NG(v)|. The subscript in the notation for neighborhood and degree is omitted if the
graph under consideration is clear. For a set of edges F , set V (F ) denotes the collection of
endpoints of edges in F . For a subset S of V (G), we denote the graph obtained by deleting
S from G by G− S and the subgraph of G induced on the set S by G[S]. For two subsets
S1, S2 of V (G), we say S1, S2 are adjacent if there exists an edge with one endpoint in S1
and other in S2. For a subset S of V (G), let Φ(S) denotes set of vertices in S which are
adjacent with at least one vertex outside S. Formally, Φ(S) = {s ∈ S| N(s) \ S 6= ∅}. These
are also called boundary vertices of S.

A path P = (v1, . . . , vl) is a sequence of distinct vertices where every consecutive pair of
vertices is adjacent. For two vertices v1, v2 in G, dist(v1, vl) denotes the length of a shortest
path between these two vertices. A graph is called connected if there is a path between
every pair of distinct vertices. It is called disconnected otherwise. A set S of V (G) is said
to be a connected set if G[S] is connected. For two vertices v1, v2 in G, a set S is called
(v1-v2)-separator, if any v1-v2 paths intersects S. If a set is a (v1-v2)-separator as well as
(v3-v4)-separator then we write it as {(v1-v2), (v3-v4)}-separator.

For two positive integer r, q, the (r × q)-grid is a graph on r · q vertices. The vertex set
of this graph consists of all pairs of the form (i, j) for 1 ≤ i ≤ r and 1 ≤ j ≤ q. A pair of
vertices (i1, j1) and (i2, j2) are adjacent with each other if and only if |i1 − i2|+ |j1 − j2| = 1.
We say that such a graph is a grid with r rows and q columns. It is called a (r × q)-grid
and is denoted by �r×q. We use � to denote a grid with an unspecified number of rows
and columns. The vertices in grid � are denoted by �[i, j] or simply by [i, j]. Note that the
grid with exactly one row is a path. To remove some corner cases, we consider grids that
have at least two rows and two columns. Any grid contains exactly four vertices that have
degree two. These vertices are called corner vertices. Let t1 = [1, 1], t2 = [1, q], t3 = [r, q],
and t4 = [r, 1] be the corner vertices in grid �r×q.

B Observation 2.1. If Ŝ is a connected {(t1-t4), (t2-t3)}-separator in �r×q then its size is at
least q. Moreover, if |Ŝ| = q then it corresponds to a row in �r×q.

Proof. Without loss of generality, we assume that t1 ≡ [1, 1], t2 ≡ [1, q], t3 ≡ [r, q], and
t4 ≡ [r, 1]. Consider the (t1 − t4) path which contains vertices in the first column of the
grid and the (t2 − t3) path which contains all vertices in the last column. Since Ŝ separates
t1 from t4 and t2 from t3, it contains at least two vertices of the form [i, 1] and [i′, q] for
some i, i′ in {1, 2, . . . , r}. Since Ŝ is connected then it contains a path connecting these two
vertices. As any path connecting these two vertices contains at least q − 1 + |i− i′|+ 1 ≤ q
vertices, the size of Ŝ is at least q. If |Ŝ| = q then |i− i′| = 0. This implies two endpoints of
a row are contained in Ŝ. Since Ŝ is of size q, vertices that are present in Ŝ are from one
row. This proves the second part of the observation. J
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2.2 Graph Contraction
The contraction of edge uv in G deletes vertices u and v from G, and adds a new vertex,
which is made adjacent to vertices that were adjacent to either u or v. Notice that no
self-loop or parallel edge is introduced in this process. The resulting graph is denoted
by G/e. For a given graph G and edge e = uv, we formally define G/e in the following
way: V (G/e) = (V (G) ∪ {w})\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)}∪{wx| x ∈ NG(u)∪NG(v)}. Here, w is a new vertex which was not in V (G). An edge
contraction reduces the number of vertices in a graph by exactly one. Several edges might
disappear due to one edge contraction. For a subset of edges F in G, graph G/F denotes
the graph obtained from G by contracting each connected component in the sub-graph
G′ = (V (F ), F ) to a vertex.

I Definition 1 (Graph Contraction). A graph G is said to be contractible to graph H if there
exists an onto function ψ : V (G)→ V (H) such that following properties hold.

For any vertex h in V (H), graph G[W (h)] is connected and not empty, where set W (h) :=
{v ∈ V (G) | ψ(v) = h}.
For any two vertices h, h′ in V (H), edge hh′ is present in H if and only if there exists
an edge in G with one endpoint in W (h) and another in W (h′).

We say graph G is contractible to H via mapping ψ. For a vertex h in H, set W (h) is
called a witness set associated with/corresponding to h. We define H-witness structure of
G, denoted by W, as a collection of all witness set. Formally, W = {W (h) | h ∈ V (H)}. A
witness structure W is a partition of vertices in G. If a witness set contains more than one
vertex then we call it big witness-set, otherwise it is small/singleton witness set.

If graph G has a H-witness structure then graph H can be obtained from G by a series of
edge contractions. For a fixed H-witness structure, let F be the union of spanning trees of all
witness sets. By convention, the spanning tree of a singleton set is an empty set. To obtain
graph H from G, it is necessary and sufficient to contract edges in F . We say graph G is
k-contractible to H if cardinality of F is at most k. In other words, H can be obtained from
G by at most k edge contractions. The following observations are immediate consequences of
definitions.

B Observation 2.2. If graph G is k-contractible to graph H via mapping ψ then following
statements are true.
1. |V (G)| ≤ |V (H)|+ k.
2. Any H-witness structure of G has at most k big witness sets.
3. For a fixed H-witness structure, the number of vertices in G which are contained in big

witness sets is at most 2k.
4. If S is a (x1 − x2)-separator in G then ψ(S) is a (ψ(s1)− ψ(s2))-separator in H.
5. If S is a separator in G such that there are at least two connected components of G \ S

which has at least k + 1 vertices, then ψ(S) is a separator in H.

Proof. The proof of (1), (2) and (3) follows directly from the definitions.

(4) Consider any (x1−x2)-path P in G. Note that ψ(P ) corresponds to a (ψ(x1)-ψ(x2))-path
in H (with possible repetition of vertices). Since S is a (x1 − x2)-separator, every (x1 − x2)-
path intersects with S. This implies that ψ(P ) intersects ψ(S). Since P is an arbitrary
(x1 − x2)-path in G, we can conclude that every (ψ(x1)− ψ(x2))-path in H intersects ψ(S).
Hence ψ(S) is a (ψ(s1)− ψ(s2))-separator in H.

CVIT 2016
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(5) Let Ca and Cb be two connected components of G \ S which has at least k + 1 vertices.
Since, G is k-contractible to H, there exists a vertex va in Ca (similarly, vb in Cb) such
that ψ(va) 6= ψ(S) (similarly, ψ(vb) 6= ψ(S)). Hence, ψ(S) is a (ψ(va)− ψ(vb))-separator in
H. J

2.3 Preliminary Result Regarding Grid Contraction
Suppose we are given a graph G with a mapping ψ such that G is k-contractible to �r×q via
ψ. We define a notation of partible row in �r×q using mapping ψ. We argue that if �r×q
contains a partible row then one can un-contract all vertices in this row to obtain a larger
grid from G.

I Definition 2 (Partible row). Consider a graph G which is k-contractible to �r×q via
mapping ψ. The itho row in �r×q is said to be partible if for every j in [q], set ψ−1([io, j])
can be partitioned into non empty sets Uj and Vj which satisfy following properties:

G[Uj ] and G[Vj ] are connected.
Uj and Vj′ are adjacent if and only if j = j′.
Uj and Uj′ (similarly Vj and Vj′) are adjacent if and only if |j − j′| = 1.
Let U =

⋃
j∈[q] Uj and V =

⋃
j∈[q] Vj. If sets U, V are adjacent with Cb, Cf , respectively,

then sets U,Cf (sets V,Cb) are not adjacent.
Here, Cb := {x ∈ V (G)| ψ(x) = [i, j] for some i < io and j ∈ [q]}; Cf := {x ∈ V (G)| ψ(x) =
[i, j] for some i > io and j ∈ [q]}.

I Lemma 3. Consider a graph G which is k-contractible to �r×q via mapping ψ. If �r×q
has a partible row then G is (k − q) contractible to �(r+1)×q.

Proof. Let itho row be a partible row in �r×q. For j in [q], let Uj and Vj be the partition of
ψ−1([io, j]) which satisfy properties mentioned in Definition 2. Also, let U =

⋃
j∈[q] Uj and

V =
⋃
j∈[q] Vj . Let set Cb (set Cf ) be the collection of vertices in G which are mapped to

vertices in rows {1, 2, . . . , io−1} (in rows {io+1, . . . , r}). Formally, Cb = {x ∈ V (G)| ψ(x) =
[i, j] for some i < io and j ∈ [q]} and Cf = {x ∈ V (G)| ψ(x) = [i, j] for some i > io and j ∈
[q]}. Without loss of generality, we can assume that U, V are adjacent with Cb, Cf , respectively.
Since set U (set V ) is a separator in G, sets U,Cf (sets V,Cb) are not adjacent with each other.
Note that {Cb, U, V, Cf} is a partition of V (G). We define a function φ : V (G)→ �(r+1)×q
on V (G) as follows: for every x ∈ Cb, φ(x) = ψ(x); for every x ∈ Cf , if ψ(s) = [i, j] then
φ(x) = [i′ + 1, j]; for every x ∈ Uj , φ(x) = [io, j]; and for every x ∈ Vj , φ(x) = [io + 1, j].
Since Uj , Vj are non-empty sets and ψ is an onto function, φ is also an onto function. We
argue that φ satisfy both the properties mentioned in Definition 1.

For every vertex [i, j] in �r×q, set ψ−1([i, j]) is connected in G. Since G[Uj ], G[Vj ] are
connected, for every [i, j] in �(r+1)×q, set φ−1([i, j]) is connected in G. This proves the first
property in Definition 1. To prove the second property, we argue that any two vertices, say
[i1, j1] and [i2, j2], in �(r+1)×q are adjacent with each other if and only if φ−1([i1, j1]) and
φ−1([i2, j2]) are adjacent with each other. Without loss of generality, we can assume that
i1 ≤ i2. Depending on the position of these two vertices in �(r+1)×q, we consider following
five cases: (i) i1, i2 < io, (ii) i1 < io and i2 ∈ {io, io + 1}, (iii) {i1, i2} ⊆ {io, io + 1}, (iv)
i1 ∈ {io, io + 1} and i2 > i0 + 1, and (v) i1, i2 > io + 1.

Consider Case (i). By definition of φ, for i1, i2 < io we have φ−1([i1, j1]) = ψ−1([i1, j1])
and φ−1([i2, j2]) = ψ−1([i2, j2]). For i1, i2 < io, by the properties of ψ, there is an edge
between [i1, j1] and [i2, j2] if and only if there is an edge between ψ−1([i1, j1]) and ψ−1([i2, j2])
in G. Hence we can conclude that for i1, i2 < io there is an edge between [i1, j1] and [i2, j2]
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if and only if there is an edge between φ−1([i1, j1]) and φ−1([i2, j2]) in G. We can argue
Case (v) by similar arguments on ψ−1([i, j]) and φ−1([i+ 1, j]). Consider Case (iii). Since
Uj , Vj′ are adjacent with each other if and only if j = j′ and Uj , Uj′ (similarly Vj , Vj′) are
adjacent with each other if and only if |j − j′| = 1. Hence, the second property is satisfied.

We now argue Case (ii). By the definition of φ, we have φ−1([i1, j1]) = ψ−1([i1, j1]) and
φ−1([i2, j2]) ⊆ ψ−1([i2, j2]). If there is an edge between [i1, j1] and [i2, j2] in �(r+1)×q then
i1 = io − 1, i2 = io, and j1 = j2 = j (say). By the property of ψ, there is an edge between
ψ−1([i1, j]) and ψ−1([i2, j]). Since Cb is adjacent with U and non adjacent with V , we know
that φ−1([i1, j]) (⊆ Cb) is adjacent with Uj (⊆ U) and non-adjacent with Vj (⊆ V ). As Uj =
φ−1([io, j]) = φ−1([i2, j2]), we can conclude that there exists an edge between φ−1([i1, j1])
and φ−1([i2, j2]). In reverse direction, suppose there exists an edge between φ−1([i1, j1]) and
φ−1([i2, j2]). Since φ−1([i1, j1]) = ψ−1([i1, j1]) and φ−1([i2, j2]) ⊆ ψ−1([i2, j2]), this implies
there exists an edge between ψ−1([i1, j1]) and ψ−1([i2, j2]). By the property of ψ, vertices
[i1, j1] and [i2, j2] are adjacent with each other in �r×q. Since i1 < io and i2 ∈ {io, io + 1},
we can conclude that i2 − i1 = 1 and j1 = j2. This implies [i1, j1], [i2, j2] are adjacent with
each other in �(r+1)×q. We can argue Case (iv) using similar arguments.

Hence φ : V (G) → �(r+1)×q satisfies both the properties mentioned in Definition 1.
This implies graph G is contractible to �(r+1)×q via φ. As G is k-contractible to �r×q and
|V (�r×q)| + q = |V (�(r+1)×q)|, we can conclude that graph G is (k − q)-contractible to
�(r+1)×q. J

2.4 Parameterized Complexity
An instance of a parameterized problem comprises of an input I, which is an input of the
classical instance of the problem and an integer k, which is called as the parameter. A
problem Π is said to be fixed-parameter tractable or in FPT if given an instance (I, k) of Π,
we can decide whether or not (I, k) is a Yes instance of Π in time f(k) · |I|O(1). Here, f(·)
is some computable function whose value depends only on k. We say that two instances,
(I, k) and (I ′, k′), of a parameterized problem Π are equivalent if (I, k) ∈ Π if and only if
(I ′, k′) ∈ Π. A reduction rule, for a parameterized problem Π is an algorithm that takes an
instance (I, k) of Π as input and outputs an instance (I ′, k′) of Π in time polynomial in |I|
and k. If (I, k) and (I ′, k′) are equivalent instances then we say the reduction rule is safe. A
parameterized problem Π admits a kernel of size g(k) (or g(k)-kernel) if there is a polynomial
time algorithm (called kernelization algorithm) which takes as an input (I, k), and in time
|I|O(1) returns an equivalent instance (I ′, k′) of Π such that |I ′|+ k′ ≤ g(k). Here, g(·) is
a computable function whose value depends only on k. For more details on parameterized
complexity, we refer the reader to the books of Downey and Fellows [8], Flum and Grohe [9],
Niedermeier [20], and the more recent books by Cygan et al. [7] and Fomin et al. [10].

3 Combinatorial Lemma

We introduce the notion of r-slabs which can be thought of as connected components with
special properties. A r-slab is a connected set that can be partitioned into r connected
subsets such that the adjacency between these parts and their neighbourhood follows a
certain pattern. For an integer r and a set A, an ordered r-partition is a list of subsets of A
whose union is A. We define r-slab as follows.

I Definition 4 (r-Slab). A r-slab in G is an ordered r-partition of a connected set A, say
A1, A2, . . . , Ar, which satisfy following conditions.
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Figure 1 An example of a 4-slab. See Definition 4. For Q = {q1, q2, q3, q4, q5} and its partition
P4(Q) = {{q1}, {q2}, {q3}, {q4, q5}}, A is an (P4(Q), α, β)-4-slab.

For every i in [r], set Ai is a non-empty set and G[Ai] is connected.
For i 6= j in [r], sets Ai, Aj are adjacent if and only if |i− j| = 1.
For every i in [r], define Bi = N(Ai) \ A. For i 6= j in [r], sets Bi, Bj are mutually
disjoint and if Bi and Bj are adjacent then |i− j| = 1.

We denote a r-slab by 〈A1, A2, . . . , Ar〉. For a r-slab 〈A1, A2, . . . , Ar〉, set A denotes union
of all Ais. We note that every connected subset of G is an 1-slab.

For positive integers α, β, a connected set A in graph G is called an (α, β)-connected set
if |A| ≤ α and |N(A)| ≤ β. For a non-empty set Q ⊆ V (G) a connected set A in G is a
(Q)-connected set if Q ⊆ A. We generalize these notations for r-slab as follows.

I Definition 5 ((α, β)-r-slab). For a graph G and integers α, β, a r-slab 〈A1, A2, . . . , Ar〉 is
said to be an (α, β)-r-slab if |A| ≤ α and |N(A)| ≤ β.

For a set Q, let Pr(Q) = {Q1, Q2, . . . , Qr} denotes its ordered r-partition. An ordered
r-partition is said to be valid if for any two vertices u ∈ Qi and v ∈ Qj , u, v are adjacent
implies |i− j| ≤ 1.

I Definition 6 (Pr(Q)-r-slab). For a graph G, a subset Q of V (G) and its ordered valid
partition Pr(Q) = {Q1, Q2, . . . , Qr}, a r-slab 〈A1, A2, . . . , Ar〉 in G is said to be a Pr(Q)-r-
slab if Qi is a subset of Ai for every i in [r].

See Figure 1 for an example. We combine properties mentioned in previous two definition to
define specific types of r-slabs.

I Definition 7 ((Pr(Q), α, β)-r-slab). For a graph G, a non-empty subset Q of V (G), its
ordered valid partition Pr(Q) = {Q1, Q2, . . . , Qr}, and integers α, β, a r-slab 〈A1, A2, . . . , Ar〉
in G is a (Pr(Q), α, β)-r-slab if it is an (α, β)-r-slab as well as a Pr(Q)-r-slab.

We mention following two observations which are direct consequences of the definition.

B Observation 3.1. Let 〈A1, A2, . . . , Ar〉 be a (Pr(Q), α, β)-r-slab in graph G. If a vertex v
is in N(A) then 〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β − 1)-r-slab in graph G− {v}.

For a graph G, consider a vertex v and let G′ = G−{v}. For a non-empty subset Q′ of V (G′),
its ordered partition Pr(Q′) = {Q′1, Q′2, . . . , Q′r}, and integers α, β, let 〈A′1, A′2, . . . , A′r〉 be a
(Pr(Q′), α, β)-r-slab in G′.

B Observation 3.2. If vertex v satisfy following two properties then 〈A′1, A′2, . . . , A′r〉 is a
(Pr(Q′), α, β + 1)-r-slab in G.
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Vertex v is adjacent with exactly one part, say A′i, of the r-slab
For any vertex u in N ′G(A′j) \A′, if u and v are adjacent in G then |i− j| ≤ 1.

Definition 7 generalizes the notation of (Q,α, β)-connected set defined in [1]. In the same
paper, authors proved that there is an algorithm that given a graph G on n vertices, a
non-empty set Q ⊆ V (G), and integers α, β, enumerates all (Q,α, β)-connected sets in G in
time 2α−|Q|+β · nO(1). We present similar combinatorial lemma for (Pr(Q), α, β)-r-slabs.

I Lemma 8. There is an algorithm that given a graph G on n vertices, a non-empty set
Q ⊆ V (G), its ordered partition Pr(Q) = {Q1, Q2, . . . , Qr}, and integers α, β, enumerates
all (Pr(Q), α, β)-r-slabs in G in time 4α−|Q|+β · nO(1).

Proof. Let N(Q) = {v1, v2, . . . , vp}. Arbitrarily fix a vertex vl in N(Q). We partition
(Pr(Q), α, β)-r-slabs in G based on whether vl is contained in it or not. In later case, such
(Pr(Q), α, β)-r-slab is also a (Pr(Q), α, β − 1)-r-slab in G− {v}. We now consider the first
case. Let i be the smallest integer in [r] such that vl is adjacent with Qi. Note that, by
definition, if vl is present in a Pr(Q)-r-slab then it can be part of either Ai−1, Ai or Ai+1. We
encode this fact by moving vl to either Qi−1, Qi or Qi+1. Let Pi−1

r (Q ∪ {vl}),Pir(Q ∪ {vl})
and Pi+1

r (Q ∪ {vl}) be r-partitions of Q ∪ {vl} obtained from Pr(Q) by adding vl to set
Qi−1, Qi and Qi+1, respectively. Formally, these three sets are defined as follows.
- Pi−1

r (Q ∪ {vl}) := {Q1, . . . , Qi−1 ∪ {vl}, Qi, Qi+1, . . . , Qr}
- Pir(Q ∪ {vl}) := {Q1, . . . , Qi−1, Qi ∪ {vl}, Qi+1, . . . , Qr}
- Pi+1

r (Q ∪ {vl}) := {Q1, . . . , Qi−1, Qi, Qi+1 ∪ {vl}, . . . , Qr}

Algorithm : We present a recursive enumeration algorithm which takes (G,Pr(Q), α, β) as
an input and outputs a set, say A, of all (Pr(Q), α, β)-r-slab in G. The algorithm initializes
A to an empty set. The algorithm returns A if one of the following statements is true: (i)
Pr(Q) is not a valid partition of Q, (ii) α−|Q| < 0 or β < 0, (iii) there is a vertex vl in N(Q)
which is adjacent with Qi and Qj for some i, j in [r] such that |i− j| ≥ 2. If α− |Q|+ β = 0,
the the algorithm checks if Pr(Q) is a (Pr(Q), 0, 0)-r-slabs in G. If it is the case then the
algorithm returns singleton set containing Pr(Q) otherwise it returns an empty set. If there
is a vertex vl in N(Q) which is adjacent with Qi−1, Qi and Qi+1 for some i in [r] then the
algorithm calls itself on instance (G,Pir(Q ∪ {vl}), α, β) where Pir(Q ∪ {v}) is r-partition
as defined above. It returns the set obtained on this recursive call as the output. If there
are no such vertices in N(Q), then for some l ∈ {1, . . . , |N(Q)|}, the algorithm creates four
instances viz (G− {vl},Pr(Q), α, β − 1) and (G,Pi0r (Q ∪ {vl}), α, β) for i0 ∈ {i− 1, i, i+ 1}.
The algorithm calls itself recursively on these four instances. Let Avl ,A

i−1
l ,Ail, and Ai+1 be

the set returned, respectively, by the recursive call of the algorithm. The algorithm adds all
elements in Ai−1

l ∪ Ail ∪ A
i+1
l to A. For every (Pr(Q), α, β − 1)-r-slabs 〈A′1, A′2, . . . , A′r〉 in

Avl , the algorithm checks whether it is a (Pr(Q), α, β)-r-slabs in G using Observation 3.2. If
it is indeed a (Pr(Q), α, β)-r-slabs in G then it adds it to A. The algorithm returns A at the
end of this process.

We now argue the correctness of the algorithm. For every input instance (G,Pr(Q), α, β)
we define its measure as µ((G,Pr(Q), α, β)) = α − |Q| + β. We proceed by the induction
hypothesis that the algorithm is correct on any input whose measure is strictly less than
α − |Q| + β. Consider the base cases α − |Q| + β = 0. In this case, the only possible
(Pr(Q), α, β)-r-slab is Pr(Q). The algorithm checks this and returns the correct answer
accordingly. We consider the case when α − |Q| + β ≥ 1. Every (Pr(Q ∪ {vl}), α, β)-r-
slab is also a (Pr(Q), α, β)-r-slab. The algorithm adds a r-slab in Avl to A only if it is a
(Pr(Q), α, β)-r-slabs in G. Hence the algorithm returns a set of (Pr(Q), α, β)-r-slabs in G.
In remaining part we argue that every (Pr(Q), α, β)-r-slabs is enumerated by the algorithm.
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By Definition 4, no vertex in closed neighbhorhood of a r-slab can be adjacent to two
non-adjacent parts of a r-slab. Hence, if there is a vertex vl in N(Q) which is adjacent with
Qi and Qj for some i, j in [r] such that |i− j| ≥ 2 then the algorithm correctly returns an
empty set. Suppose there exists a vertex v in N(Q) which is adjacent with Qi−1, Qi and Qi+1
for some i in [r]. By Definition 4, any r-slab containing Pr(Q) must contains v in it. In this
case, the number of (Pr(Q), α, β)-r-slab is same as the number of (Pir(Q ∪ {v}), α, β)-r-slab
where Pir(Q∪{v}) is the r-partition of Q∪{v} obtained from Pr(Q) by adding v to Qi. The
measure for input instance (G,Pir(Q ∪ {v}), α, β) is strictly smaller than α− |Q|+ β. Hence
by induction hypothesis, the algorithm correctly computes all (Pr(Q), α, β)-r-slab.

Consider the case when there is no vertex which is adjacent with Qi−1, Qi and Qi+1 for
any i in [r]. Let vl be a vertex in N(Q) and there is an integer i in [p] such that i is the
smallest integer, and vl is adjacent with Qi. As mentioned earlier, either vl is a part of
(Pr(Q), α, β)-r-slab or not. In first case, by Definition 4, vl can be part of Ai−1, Ai or Ai+1
in any Pr(Q)-r-slab. The measure of input instance (G,Pi0r (Q∪{v}), α, β) is α− |Q|+β− 1.
Hence by induction hypothesis, the algorithm correctly enumerates all (Pi0r (Q∪ {v}), α, β)-r-
slabs in Gl. Consider a (Pr(Q), α, β)-r-slab 〈A1, A2, . . . , Ar〉 in G which does not contain vl.
By Observation 3.1, 〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β − 1)-r-slab in G− {v}. By induction
hypothesis, the algorithm correctly computes all (Pr(Q), α, β − 1)-r-slabs in G− {v}. Since
〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β)-r-slab in G, vertex vl satisfy both the properties mentioned
in Observation 3.2. Hence algorithm adds 〈A1, A2, . . . , Ar〉 to the set Al. Hence, we can
conclude that the algorithm correctly enumerates all (Pr(Q), α, β)-r-slabs in G

Using the induction hypothesis that the algorithm correctly outputs the set of all
(Pr(Q), α, β)-r-slabs in time 4α−|Q|+β · nO(1), the running time of the algorithm follows.
This concludes the proof of the lemma. J

We use following corollary of Lemma 8.

I Corollary 9. There is an algorithm that given a graph G on n vertices and integers α, β,
enumerates all (α, β)-r-slab in G in time 4α+β · nO(1).

4 An FPT algorithm for Bounded Grid Contraction

In this section, we present an FPT algorithm for Bounded Grid Contraction. We
formally define the problem as follows.

Bounded Grid Contraction Parameter: k, r
Input: Graph G and integers k, r
Question: Is G k-contractible to a grid with r rows?

We start with a definition of nice subsets mentioned in the Introduction section. As
mentioned before, vertices of a nice subset correspond to witness sets in the first few columns
of a grid-witness structure of the input graph. Hence boundary vertices of a nice set
correspond to witness sets in some column of a grid. Note that we are interested in the grids
that have exactly r-rows. Hence, we use the notation of r-slab defined in previous section to
formally define nice sets. Consider a r-slab 〈D1, D2, . . . , Dr〉 which corresponds to a column
in some grid that can be obtained from the input graph with at most k edge contraction.
By Observation 2.2, an edge contraction reduces the number of vertices by exactly one. As
there are 3r many vertices in three adjacent rows in a grid, the size of a closed neighborhood
of D in G is at most k + 3r. Thus, we can focus our attention on r-slabs with the bounded
closed neighborhood. We define k-potential r-slabs as follows.
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Figure 2 All sets with smooth (non-rectangular) boundary are connected. Set A is a possible
extension of nice subset S. In other words, A is an element in A|A|,|B|[(S,Pr(D))]. See paragraph
before Lemma 13.

I Definition 10 (k-Potential r-Slab). For a given graph G and integers k, r, a r-slab
〈D1, D2, . . . , Dr〉 is said to be a k-potential r-slab of G if it satisfies following two con-
ditions:
|D|+ |N(D)| ≤ k + 3r; and
G−D has at most two connected components.

Here, D = D1 ∪D2 ∪ · · · ∪Dr.

I Definition 11 (Nice Subset). A subset S of V (G) is said to be a nice subset of G if there
exists a k-potential r-slab, say 〈D1, D2, . . . , Dr〉, such that D is a subset of S and G[S \D] is
one of the connected components of G−D. We say that r-slab 〈D1, D2, . . . , Dr〉 is responsible
for nice subset S.

Since 〈D1, D2, . . . , Dr〉 is a k-potential r-slab, both G[S] and G− S are connected. There
may be more than one k-potential r-slabs responsible for a nice subset. We define a pair of
nice sets and k-potential r-slabs responsible for it.

I Definition 12 (Valid Tuple). A tuple (S,Pr(D)) is called a valid tuple if S is a nice subset
and Pr(D) ≡ 〈D1, D2, . . . , Dr〉 is a k-potential r-slab responsible for it.

Let Vk be the set of all valid tuples. For a valid tuple (S,Pr(D)) in Vk, we define a
collection of k-potential r-slabs which is denoted by A[(S,Pr(D))]. This set can be thought
of as a collection of “potential column extenders” for S. See Figure 2. In other words, we
can append a k-potential-r-slab in A[(S,Pr(D))] to get a grid witness structure of a larger
graphs containing S. Let Pr(A) be a k-potential-r-slab in A[(S,Pr(D))]. Intuitively speaking,
Pr(A) is the “new” column to be “appended” to a grid witness structure of G[S], to obtain
a grid witness structure for G[S ∪ A]. Hence if G[S] can be k′-contracted to a grid then
G[S ∪A] can be k′+ (|A| − r)-contracted to a grid. For improved analysis, we concentrate on
subset Aa,b[(S,Pr(D))] of A[(S,Pr(D))] defined for integers a, b. The set Aa,b[(S,Pr(D))] is
a collection of k-potential r-slabs of size at most a which have at most b neighbors outside
S. We impose additional condition that a+ b+ |D| is at most k + 3r for improved analysis.
Formally, Aa,b[(S,Pr(D))] = {〈A1, A2, . . . , Ar〉 | |A| ≤ a, |N(A) \ S| ≤ b, where A = A1 ∪
A2 ∪ · · · ∪Ar and for every Di in Pr(D), (N(Di) \ S) ⊆ Ai, and a+ b+ |D| ≤ k + 3r}.

Algorithm : The algorithm takes a graph G on n vertices and integers k, r as input and
outputs either True or False. The algorithm constructs a dynamic programming table Γ in
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which there is an entry corresponding to every index [(S,Pr(D)); k′] where (S,Pr(D)) is a
valid tuple in Vk and k′ is an integer in {0} ∪ [k]. It initialize values corresponding to all
entries to False.
(for-loop Initialization) For a tuple (S,Pr(D)) ∈ Vk such that S = D and k′ ≥ |S|−r = |D|−r,
the algorithm sets Γ[(S,Pr(D)); k′] = True.
(for-loop Table) The algorithm processes indices in the table in chronologically increasing
order. It first checks the size of S, then the size of D, followed by k. Ties are broken
arbitrarily. At table index [(S,Pr(D)); k′], if Γ[(S,Pr(D)); k′] is False then the algorithm
continues to next tuple. If Γ[(S,Pr(D)); k′] is True then it runs the following for-loop at this
index.
(for-loop at Index) The algorithm computes the set Aa,b[(S,Pr(D))] for every pair of integers
a (≥ r), b (≥ 0) which satisfy following properties (1) a+ b+ |D| ≤ k+ 3r, (2) k′+ a− r ≤ k,
and (3) |N(S)| ≤ a. For every k-potential r-slab Pr(A) in Aa,b[(S,Pr(D))], the algorithm
sets Γ[(S ∪A,Pr(A)); k1] to True for every k1 ≥ k′ + (a− r).
If Γ[(V (G),Pr(D)); k′] is set to True for some Pr(D) and k′ then the algorithm returns True
otherwise it returns False. This completes the description of the algorithm.

Recall that for a given connected subset S of V (G), Φ(S) denotes its boundary vertices
i.e. set of vertices in S which are adjacent with at least one vertex outside S.

I Lemma 13. For every tuple (S,Pr(D)) in Vk and integer k′ in {0} ∪ [k], the algorithm
assign Γ[(S,Pr(D)); k′] = True if and only if k′ + |N(S)| − r ≤ k and there is a (r × q)-grid
witness structure of G[S], for some integer q, such that Pr(D) is collection of witness sets in
an end-column and Φ(S) is in D.

Proof. We prove the lemma by induction on |S| + k′ for indices ((S,Pr(D)); k′) in the
dynamic programming table. For the induction hypothesis, we assume that for a positive
integer z the algorithm computes Γ[(S,Pr(D)); k′] correctly for each (S,Pr(D)) in Vk and k′
in 0 ∪ [k] for which |S|+ k′ ≤ z.

Consider the base case when |S| = |D| = r and k′ = 0. Since D ⊆ S, we have S = D.
This implies Pr(S) = Pr(D) is a r-slab. Any connected subset of a graph can be contracted
to a vertex by contracting a spanning tree. Hence, G[S] can be contracted to a (r × 1)-grid
by contracting |D| − r many edges. This implies that the values assigned by the algorithm
in (for-loop Initialization) are correct. We note that once the algorithm sets a particular
value to True, it does not change it afterwards.

Assuming induction hypothesis, we now argue that the computation of Γ[·] for indices of
the form [(S1,Pr(D1)); k1] where |S1|+ k1 = z+ 1 are correct. Note that if [(S1,Pr(D1)); k1]
is an entry in the table then (S1,Pr(D1)) is a valid tuple in Vk and k1 is an integer in the
set {0} ∪ [k].

(⇒) Assume that G[S1] is k1-contractible to a (r × q)-grid such that all vertices in Φ(S1)
are in an end-column Pr(D1) and k1 + |N(S1)| − r ≤ k. We argue that the algorithm
sets Γ[(S1,Pr(D1); k1] to True. Let G[S1] be k1-contractible to a (r × q)-grid. If q = 1
then D1 = S1 and in this case algorithm correctly computes Γ[(S1,Pr(D)); k1]. Consider
the case when q ≥ 2. Let W = {Wij | (i, j) ∈ [r] × [q]} be a (r × q)-grid structure of G
such that Pr(D) is collection of witness sets in an end-column and Φ(S1) is a subset of
D. Define W c

j as union of all witness sets in column j. Formally, W c
j =

⋃r
i=1 Wij . Hence,

W = W c
1 ∪W c

2 ∪· · ·∪W c
q−1∪W c

q and Pr(D) = W c
q . Consider set S0 = W c

1 ∪W c
2 ∪· · ·∪W c

q−1.
Since q ≥ 2, S0 is an non-empty set. Let k0 = k1− (|W c

q |−r). We argue that [(S0,W
c
q−1); k0]

is an index in the table and |S0|+ k0 ≤ z. As W is a k1-grid witness structure, |W c
q | − r ≤ k1

and hence k0 is a non-negative integer. Since G[W c
q ] is a connected graph, G−W c

q−1 has
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exactly two connected components viz G[W c
1 ∪ · · · ∪W c

q−2] and the component containing
W c
q . As W is a k1-grid witness structure, |W c

q−2| + |W c
q−1| + |W c

q | ≤ k1 + 3r ≤ k + 3r
and N(W c

q−1) ⊆ W c
q−2 ∪ W c

q . (We note that W c
q−2 may not exists but this does not

change the argument. For the sake of clarity, we do not consider this as separate case.) Since
|W c

q−1|+|N(W c
q−1)| ≤ k+3r and G−W c

q−1 has at most two connected components,W c
q−1 is a

k-potential r-slab. Note that 〈W1j ,W2j , . . . ,Wrj〉 is the r-partition of k-potential r-slabW c
q−1.

Hence (S0,W
c
q−1) is a tuple in Vk and ((S0,W

c
q−1); k0) is an index in the table. Since W c

q is
not an empty set, |S0|+k0 ≤ |S1|−|W c

q |+k1−(|W c
q |−r) ≤ z+1+r−2|W c

q | as |S1|+k1 = z+1.
Since |W c

q | ≥ r ≥ 1, we conclude |S0|+ k0 ≤ z. Note that W \{W c
q } is a (k1− |Wq|+ r)-grid

witness structure for G[S0]. This implies that G[S0] is k0-contractible to a grid with W c
q−1 as

collection of bags in an end-column and k0 + |N(S0)| − r ≤ k1 ≤ k. Moreover, S0 = S1 \W c
q ,

Φ(S0) is contained in W c
q−1. By the induction hypothesis, the algorithm has correctly set

Γ[(S0,W
c
q−1); k0] to True. Let x0 = |W c

q−1|, a = |W c
q | and b = |W c

q \N(S0)| = |N(S1)|. We
first claim that x0 + a+ b ≤ k + 3r. Note that |W c

q−1|+ |W c
q | ≤ k1 + 2r and k1 + b ≤ k + r.

Hence |W c
q−1| + |W c

q | + b = x0 + a + b ≤ k + 3r. At index [(S0,W
c
q−1); k0], the algorithm

computes Aa,b[(S0,W
c
q−1)]. Clearly, W c

q is one of the sets in Aa,b[(S0,W
c
q−1)] as for every

i in [r], N(Wi,q−1) \ S0 is contained in Wiq and G[Wiq] is a connected graph. Hence the
algorithm sets Γ[(S1,W

c
q ), k1] = Γ[(S1,Pr(D)), k1] to True.

(⇐) To prove other direction, we assume that the algorithm sets Γ[(S1,Pr(A)); k1] to
True. We argue that G[S1] is k1-contractible to a grid such that Pr(A) is a collection of
witness sets in an end-column in a witness structure; Φ(S1) is in A; and k1 + |N(S1)| − r ≤ k.
If Γ[(S1,Pr(A)); k1] is set to True in the (for-loop Initialization) then, as discussed in first
paragraph, this is correct. Consider the case when the value at Γ[(S1,Pr(A)); k1] is set
to True when the algorithm was processing at index [(S0,Pr(D)); k0]. Note that value at
[(S0,Pr(D)); k0] has been set True by the algorithm as otherwise, it will not change any
value while processing this index. Note that |A| = a and |N(S1)| = b. Since a is a positive
integer and k0 + a− r ≤ k1 (because (for-loop at Index) updates only for such values), we
know |S0|+ k0 ≤ |S1|+ k1 − 2a+ r = z + 1− 2a+ r. Since a ≥ r ≥ 1, we get |S0|+ k0 ≤ z.
By the induction hypothesis, algorithm has correctly computed value at [(S0,Pr(D)); k0].
Hence G[S0] can be k0-contracted to a grid such that Φ(S0) is in D and there exists a grid
witness structure, say W0, such that Pr(D) is a collection of witness sets in an end-column.
The induction hypothesis also implies and k0 + |N(S0)| − r ≤ k + 3r.

Let Pr(A) = 〈A1, A2, . . . , Ar〉 be the r-partition of A in Aa,b[(S0,Pr(A))] at which for-
loop at Index changes the value at Γ[(S1,Pr(A)); k1]. By construction, every Di in Pr(D),
Di is contained in Ai. Since Φ(S0) is contained in D, no vertex in S0 \D is adjacent with
any vertex in A. Since Pr(A) is a r-slab, W0 ∪ {A1, A2, . . . , Ar} is a grid witness structure
of G[S1]. Moreover, since N(S0) is in A, Φ(S1) is contained in A. Hence, G[S1] can be
k1-contractible to a grid with all vertices in Φ(S) in a A and there exists a witness structure
for which Pr(A) is a collection of witness sets in an end-columns. It remains to argue that
k1 + |N(S1)|−r ≤ k. We prove this for the case k1 = k0 +a−r as k1 > k0 +a−r case follows
from the definition of k1-contratibility. Let x0 = |D|. As x0 is the size of an end-column in
W0, we have x0 − r ≤ k0. As algorithm only considers a, b such that x0 + a + b ≤ k + 3r,
substituting a = k1 − k0 + r and b = |N(S1)| we get x0 + k1 − k0 + r + |N(S1)| ≤ k + 3r.
Using x0 − r ≤ k0, we get the desired bound.

This completes the proof of the lemma. J

I Lemma 14. Given a graph G on n vertices and integers k, r, the algorithm terminates in
time 4k+3r · nO(1).
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Proof. We first describe an algorithm that given a graph G on n vertices and integers
k, r, enumerates all valid tuples in time 4k+3r · nO(1). The algorithm computes all r-slabs
in G which satisfy first property in Definition 10 using Corollary 9. For every r-slabs, it
checks whether it satisfy the second property in Definition 10 to determine whether it is a
k-potential r-slab or not. For a k-potential r-slab Pr(D) ≡ 〈D1, D2, . . . , Dr〉, if G−D has
exactly one connected component, say C1, the it adds (V (C1) ∪D,Pr(D)) and (D,Pr(D))
to set of valid tuples. If G − D has two connected components, say C1, C2, then it adds
(V (C1) ∪D,Pr(D)) and (V (C2) ∪D,Pr(D)) to the set of valid tuples. This completes the
description of the algorithm. Note that the algorithm returns a set of valid tuples. For a
k-potential r-slab Pr(D) ≡ 〈D1, D2, . . . , Dr〉, G−D has at most two connected components.
Hence any k-potential r-slab is responsible for at most two nice subsets. By definition of nice
subsets, for any nice subset there exists a k-potential r-slab responsible for it. Hence the
algorithm constructs the set of all valid tuples. The algorithm spends polynomial time for
each r-slab it constructs. Hence, the running time of the algorithm follows from Corollary 9.

The algorithm can computes the table and completes for-loop Initialization in time
4k+3r · nO(1) using the algorithm mentioned in above paragraph. We now argue that the
for-loop Table takes 4k+3r · nO(1) time to complete. We partition the set of valid tuples Vk
using the sizes of the neighborhood of connected component and size of r-slab in a tuple.
For two fixed integers x, y, define Vx,yk := {(S,Pr(D)) ∈ Vk| |D| ≤ x and |N(S)| ≤ y}. In
other words, Vx,yk collection of all nice subsets whose neighborhood is of size y and there
is a k-potential r-slab of size x responsible for it. Alternatively, Vx,yk is a collection of
k-nice subsets for which there is a (x, y)-r-slab is responsible for it. Since the number of
(x, y)-r-slabs are bounded (Corollary 9) and each k-potential r-slab is responsible for at most
two nice subsets, |Vx,yk | is bounded by 4x+y · nO(1).

For each (S,Pr(D)) ∈ Vx,yk , the algorithm considers every pair of integers a(> 0), b(≥ 0),
such that x+ a+ b ≤ k + 3 and |N(S)| = y ≤ a, and computes the set Aa,b[(S,Pr(D))]. By
Lemma 8, set Aa,b[(S,Pr(D))] can be computed in time 4a+b−|N(S)| · nO(1). The algorithm
spends time proportional to |Aa,b[(S,Pr(D))]| for for-loop at Index. Hence for two fixed
integers x, y, algorithm spends∑

a,b
x+a+b≤k+3r

4x+y · 4a+b−y · nO(1) =
∑
a,b

x+a+b≤k+3r

4x+a+b · nO(1) = 4k+3r · nO(1)

time to process all valid tuples in Vx,yk . Since there are at most O(k2) feasible values for
x, y, the overall running time of algorithm is bounded by 4k+3r · nO(1). This concludes the
proof. J

The following theorem is implied by Lemmas 13, 14, and the fact that (V (G),Pr(D)) is
a tuple in Vk for some D.

I Theorem 15. There exists an algorithm which given an instance (G, k, r) of Bounded
Grid Contraction runs in time 4k+3r ·nO(1) and correctly determines whether it is a Yes
instance or not. Here, n is the number of vertices in G.

5 An FPT algorithm for Grid Contraction

In this section, we present an FPT algorithm for Grid Contraction. Given instance
(G, k) of Grid Contraction is a Yes instance if and only if (G, k, r) is a Yes instance of
Bounded Grid Contraction for some r in {1, 2, . . . , |V (G)|}. For r < 2k + 5, we can use
algorithm presented in Section 4 to check whether given graph can be contracted to grid
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with r rows or not in FPT time. A choice of this threshold will be clear in the latter part of
this section. If algorithm returns Yes then we can conclude that (G, k) is a Yes instance of
Grid Contraction. If not then we can correctly conclude that if G is k-contractible to
a grid then the resulting grid has at least 2k + 5 rows. This information allows us to find
two rows in G which can safely be contracted. We need the following generalized version of
Grid Contraction to state these results formally.

Annotated Bounded Grid Contraction Parameter: k, r
Input: Graph G, integers k, r, q, and a tuple (x1, x2, x3, x4) of four different vertices in
V (G)
Question: Is G k-contractible to �r×q such that there is a �r×q-witness structure of
G in which the witness sets containing x1, x2, x3, and x4 correspond to four corners in
�r×q?

Assume that G is k-contractible to �r×q with desired properties via mapping ψ. Let
t1, t2, t3, and t4 be corners in �r×q such that t1 ≡ [1, 1], t2 ≡ [1, q], t3 ≡ [r, q], and t4 ≡ [r, 1].
There are 4! ways in which vertices in {x1, x2, x3, x4} can be uniquely mapped to corners
{t1, t2, t3, t4}. For the sake of simplicity, we assume that we are only interest in the case in
which x1, x2, x3, x4 are mapped to t1, t2, t3, and t4 respectively. In other words, ψ(xi) = ti
for all i ∈ {1, 2, 3, 4}.

We can modify the algorithm presented in Section 4 obtain an algorithm for Annotated
Bounded Grid Contraction problem which is fixed parameter tractable when paramet-
erized by (k + r). The modified algorithm only initializes tuple (S,Pr(D)) ∈ Vk such that
S = D, k′ ≥ |S| − r = |D| − r, and x1, x2 are in first and last parts in Pr(D) in the (for-loop
Initialization) step. Recall that the algorithm in Section 4 set Γ[(S,Pr(D)); k′] = True if
and only if k′ + |N(S)| − r ≤ k and there is a (r × q′)-grid witness structure of G[S], for
some integer q′, such that Pr(D) is collection of witness sets in an end-column and Φ(S) is
in D. Instead of storing True or False, the modified algorithm stores q′ if it is True and 0
otherwise. With these simple modifications, we obtain the following result.

I Lemma 16. There exists an algorithm which given an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction runs in time 4k+3r · nO(1) and correctly
determines whether it is a Yes instance or not. Here, n is the number of vertices in G.

In the case, when r < 2k + 5 the algorithm mentioned in the above lemma is fixed
parameter tractable when the parameter is k alone. When r ≥ 2k + 5, we argue that if
(G, k, r, q, (x1, x2, x3, x4)) is a Yes instance then there exists a horizontal decomposition of
G (Lemma 18). We formally define horizontal decomposition as follows.

I Definition 17 (Horizontally-Decomposable). Consider an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction. A graph G is said to be horizontally-
decomposable if V (G) can be partitioned into four non-empty parts C12, Su, Sv, and C34
which satisfies following properties.

The graphs G[C12], G[C34] are connected and x1, x2 ∈ C12, x3, x4 ∈ C34.
The graph G[Su ∪ Sv] is a 2× q grid with Su, Sv correspond to vertices in its two rows.
C12 and C34 are the two connected components of G \ (Su ∪ Sv).
N(C12) = Su and N(C34) = Sv.

I Lemma 18. Consider an instance (G, k, r, q, (x1, x2, x3, x4)) of Annotated Bounded
Grid Contraction such that 2k + 5 ≤ r. If it is a Yes instance then there exists a
horizontal decomposition of G.

CVIT 2016



23:16 On the Parameterized Complexity Of Grid Contraction

Proof. Assume that G is k-contractible to �r×q with desired properties via mapping ψ. By
Observation 2.2, there are at most k big-witness sets. This implies that there are at most k
rows in �r×q which contain vertices corresponding to big-witness sets. Since there are at
least 2k + 5 rows in �r×q, there exists io in {2, 3, . . . , r − 2} such that no vertex in itho and
(io + 1)th row corresponds to a big witness set. Define C12, Su, Sv, C34 as follows.

C12 := {x ∈ V (G)| ψ(x) = [i, j] for some i < io and j ∈ [q]}
Su := {x ∈ V (G)| ψ(x) = [io, j] for some j ∈ [q]}.
Sv := {x ∈ V (G)| ψ(x) = [io + 1, j] for some j ∈ [q]}
C34 := {x ∈ V (G)| ψ(x) = [i, j] for some i > io + 1 and j ∈ [q]}

It is easy to verify that (C12, Su, Sv, C34) is a horizontal decomposition of G. J

Consider an instance (G, k, r, q, (x1, x2, x3, x4)), let (C12, Su, Sv, C34) be a horizontal
decomposition of G. Reduction Rule 5.1 contracts all the edges across Su, Sv. Note that in
the resulting instance, r is decreased by one.

B Reduction Rule 5.1. For an instance (G, k, r, q, (x1, x2, x3, x4)), let (C12, Su, Sv, C34) be a
horizontal decomposition of G. Let Su(= {u1, u2, . . . , uq}) and Sv(= {v1, v2, . . . , vq}). Let
G′ be the graph obtained from G by contracting all the edges in {ujvj | j ∈ [q]}. Return
instance (G′, k, r − 1, q, (x1, x2, x3, x4)).

As Su, Sv are {(x1−x4), (x2−x3)}-separators in G, by Observation 2.2, sets ψ(Su), ψ(Sv)
are {(t1 − t4), (t2 − t3)}-separators in �r×q. We argue that ψ(Su) and ψ(Sv) correspond to
two consecutive rows and it was safe to contract edges across Su, Sv.

I Lemma 19. Reduction Rule 5.1 is safe.

Proof. Note that �(r−1)×q can be obtained from �r×q by contracting all edges across any
two consecutive rows. Also, this operation does not remove any vertex from witness sets
corresponding to corner vertices in grid.

(⇒) Assume G is k-contractible to �r×q via mapping ψ with desired properties. We argue
that G′ is k-contractible �(r−1)×q with desired properties. Let t1, t2, t3, and t4 be the four
corners of �r×q such that ψ(xi) = ti for all i ∈ {1, 2, 3, 4}. By Observation 2.2, ψ(Su), ψ(Sv)
are {(t1, t4), (t2, t3)}-separators in �r×q. By Observation 2.1, |ψ(Su)|, |ψ(Sv)| ≥ q. By the
property of mapping ψ, we have |ψ(Su)| ≤ |Su| and |ψ(Sv)| ≤ |Sv|. Since |Su| = |Sv| = q, we
have |ψ(Su)| = |ψ(Sv)| = q. Hence, by Observation 2.1, ψ(Su) and ψ(Sv) corresponding to
rows in �r×q. Let ψ(Su) and ψ(Sv) correspond to rows i1, i2. Since there are multiple edges
across Su, Sv, we have |i1 − i2| ≤ 1. As G is k-contractible to �r×q, if |i1 − i2| = 1 then G′
is k-contractible to �(r−1)×q. If |i1 − i2| = 0 then G′ is (k − q)-contractible to �r×q as G is
k-contractible to �r×q and G′ = G/{vjuj | j ∈ [q]}. Hence, G′ is k-contractible to �(r−1)×q.

(⇐) Let So = {s1, s2, . . . , sq} be the set vertices in G′ which are obtained by contracting
edges ujvj in G. In other words, for j in [q], let sj be the new vertex added while contracting
edge ujvj . Note that So is {(x1 − x4), (x2 − x3)}-separator in G′.

Assume that G′ is k-contractible to �(r−1)×q with the desired properties via mapping φ.
Let t1, t2, t3, and t4 be the four corners of �(r−1)×q such that φ(xi) = ti for i ∈ {1, 2, 3, 4}.
By Observation 2.2, φ(So) is a {(t1, t4), (t2, t3)}-separators in �(r−1)×q. By Observation 2.1,
|φ(So)| ≥ q. By the property of mapping φ, we have |φ(So)| ≤ |So|. Since |So| = q, we have
|φ(So)| = q. Hence, by Observation 2.1, φ(So) corresponding to a row, say ro, in �(r−1)×q.

As G is q-contractible to G′ (which is k-contractible to �(r−1)×q), we know that G is
(k + q)-contractible to �(r−1)×q. A mapping ψ : V (G) → �r×q as follows corresponds to
this contraction. For every x in V (G) \ (Su ∪ Sv), define ψ(x) = φ(x) and for every x in
{uj , vj}, define ψ(x) = φ(si). We argue that rtho row in �(r−1)×q is partible. For every j in
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[q], we define a partition Uj , Vj of ψ−1([i1, j]) which satisfy all the properties mentioned in
Definition 2.

For j in [q], let Xj = ψ−1([io, j]). As sj was present in φ−1([io, j]), vertices uj , vj are
present in Xj . By the property of φ, set φ−1([io, j]) is connected in G′. Since vertex sj is
obtained from contracting edge ujvj in G, graph G[Xj ] is connected. Since φ(So) corresponds
to a row of with q vertices and |So| = q, vertices uj′ , vj′ are present in Xj if and only if
j′ = j. In other words, Xj ∩ (Su ∪ Sv) = {uj , vj}. Define Uj := (Xj ∩ C12) ∪ {uj} and
Vj := (Xj ∩ C34) ∪ {vj}. Since (C12, Su, Sv, C34) is a horizontal decomposition of G, sets
Uj , Vj is a non-empty partition of Xj . We argue that Uj , Vj satisfy all the properties in
Definition 2. As N(C12) = Su, no vertex in Uj \ {uj} is adjacent with Sv ∪ C34. By similar
arguments, no vertex in Vj \ {vj} is adjacent with Sv ∪ C34. As G[Xj ] is connected and
Uj ⊆ Su ∪C12;Vj ⊆ Sv ∪C34, graphs G[Uj ], G[Vj ] are connected. Moreover, for j′ ∈ [q], sets
Uj , Vj′ are adjacent if and only if uj , vj′ are adjacent. Since G[S1 ∪ S2] is a (2× q)-grid, uj
and vj′ are adjacent if and only if j = j′. Hence Uj and Vj′ are adjacent if and only if j = j′.
Since Uj ⊆ Xj and Uj′ ⊆ Xj′ , Uj and Uj′ are non adjacent if |j − j′| > 1. If |j − j′| = 1
then Uj , Uj′ are adjacent as they contain uj and uj′ . Hence Uj , Uj′ are adjacent if and only
|j − j′| = 1. By similar arguments, Vj , Vj′ are adjacent if and only if |j − j′| = 1. As no
vertex in Uj is adjacent with C34 and no vertex in Vj is adjacent with C12, we can conclude
that partition Uj , Vj satisfy all the properties in Definition 2.

Since rtho row in �(r−1)×q is partible, Lemma 3 implies that G is k-contractible to �r×q.
This concludes the proof of reverse direction.

Hence (G, k, r, q, (x1, x2, x3, x4)) is a Yes instance of Annotated Bounded Grid
Contraction if and only if (G′, k, r − 1, q, (x1, x2, x3, x4)) is a Yes instance. J

It remains to argue that Reduction Rule 5.1 can be implemented in polynomial time. In
Lemma 21, we argue there exists an algorithm that can find a horizontal decomposition, if
exists, in polynomial time. We use the following structural lemma to prove the previous
statement.

I Lemma 20. Given two adjacent vertices u1, v1 in G, there is at most one subset S of
V (G) such that (a) G[S] is a (2× q) grid, (b) u1, v1 are two vertices in the first column of
G[S], and (c) each row in S is a separator in G. Moreover, if such a subset exists then it
can be found in polynomial time.

Proof. For the sake of a contradiction, assume that there are two such subsets, say S, S′,
of V (G). Let Su, Sv and S′u, S′v be the two rows in G[S] and G[S′], respectively. Let j be
the first column in which vertices in S, S′ differs. As the first columns in S, S′ are same,
j ≥ 2. Let uj , vj and u′j , v′j be the vertices in jth row of S and S′ respectively. Without loss
of generality, assume uj 6= u′j . Since uj , u′j both are adjacent with uj−1 and uj ∈ Su, we can
conclude u′j 6∈ Su. The only vertex in Sv which is adjacent with uj−1 is vj−1 and u′j 6= vj−1,
we have u′j 6∈ Sv. By similar argument, we can prove that v′j 6∈ Su. As vj−1 is in Sv, we have
vj−1 6∈ Su. To summarize, we can conclude that u′j 6∈ Sv and u′j , vj−1, v

′
j 6∈ Su.

Consider separators Su, Sv in graph G. Let C be a connected component of G−Su which
contains Sv. Since Sv is also a separator, the only vertices in C which are adjacent with
Su are in Sv. This implies that vertex u′j which is adjacent with Su can not be in C \ Sv.
Since u′j 6∈ Sv, we can conclude that u′j and Sv are in different connected components of
G − Su. This implies u′j and vj−1 are in different connected component of G − Su. But,
u′j , vj−1, v

′
j 6∈ Su and there exists a path (u′j , v′j , vj−1) in G. This leads to a contraction

to the fact that u′j and vj−1 are in different connected components of G− Su. Hence our
assumption is wrong and there exists at most one such set.
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Given u1, v1 and the uniqueness of a subset with the desired property, if there exists such
subgraph then there are unique choices for vertices in the second column. In other words,
a subset S with desired properties exists if and only if there is a unique pair of adjacent
vertices, say u2, v2, in graph G which satisfy following conditions – (1) u1u2, v1v2 ∈ E(G)
and (2) u1v2, v1u2 6∈ E(G). One can stepwise add new columns in S while checking G[S]
remains a grid with two rows until no more columns can be added. This algorithm terminates
in polynomial time and either returns a subset with desired properties or correctly concludes
that no such subgraph exists. J

I Lemma 21. There exists an algorithm which given an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction runs in polynomial time and either returns
a horizontal decomposition of G or correctly concludes that no such decomposition exits.

Proof. For every pair of adjacent vertices u1, v1 in G, the algorithm tries to find a subset of
V (G) with the properties mentioned in the statement of Lemma 20. If such a subset exists,
say S, then the algorithm checks whether S and connected components of G− S satisfy the
conditions mentioned Definition 17. The algorithm returns a horizontal decomposition if it
finds one. As the algorithm exhaustively searches for all possible (2× q)-grids which are also
separators, if it does not return a horizontal decomposition then the graph does not admit
a horizontal decomposition. The running time of the algorithm is implied by the fact that
algorithm runs over all edges in the input graph, conditions in Definition 17 can be checked
in polynomial time, and by Lemma 20. J

We are now in a position to present main result of this section.

I Theorem 22. There exists an algorithm which given an instance (G, k) of Grid Con-
traction runs in time 46k · nO(1) and correctly determines whether it is a Yes instance or
not. Here, n is the number of vertices in G.

Proof. The algorithm starts with checking whether graph G is k-contractible to a path using
the algorithm in [15]. If it is then the algorithm returns Yes else it creates polynomially many
instances of Annotated Bounded Grid Contraction by guessing all possible values of
r, q, x1, x2, x3, x4. It processes these instances with increasing values of r. Ties are broken
arbitrarily. For r < 2k + 5, the algorithm check whether (G, k, r, q, (x1, x2, x3, x4)) is a Yes
instance of Annotated Bounded Grid Contraction using Lemma 16. For r ≥ 2k + 5,
the algorithm checks whether there exists a horizontal decomposition of G using Lemma 21.
If there exists a horizontal decomposition of G then the algorithm applies Reduction Rule 5.1
to obtain another instance of Annotated Bounded Grid Contraction with a smaller
value of r. The algorithm repeats the above step until r < 2k + 5 or the graph in a reduced
instance does not have a horizontal decomposition. In the first case, it checks whether a
reduced instance is a Yes instance or not using Lemma 16. In the second case, it continues
to the next instance created at the start of the algorithm. The algorithm returns Yes if at
least one of the instances of Annotated Bounded Grid Contraction is a Yes instance.

It is easy to see that an instance (G, k) of Grid Contraction is a Yes instance
if and only if there exists integers r, q in {1, 2, . . . , |V (G)|} and four vertices x1, x2, x3, x4
in V (G) such that (G, k, r, q, (x1, x2, x3, x4)) is a Yes instance of Annotated Bounded
Grid Contraction. Lemma 19 implies the correctness of the step where the algorithm
repeatedly applies Reduction Rule 5.1 and check whether the reduced instance is a Yes
instance of Annotated Bounded Grid Contraction or not. Consider an instance
(G, k, r, q, (x1, x2, x3, x4)) such that r > 2k + 5 and there is no horizontal decomposition of
G. By Lemma 18, the algorithm correctly concludes that it is a No instance and continues
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to the next instance. This implies the correctness of the algorithm. The running time of
the algorithm is implied by Lemmas 16, 21 and the fact that the algorithm presented in [15]
runs in time 2k+o(k) · nO(1). J

6 NP-Completeness and Lower Bounds

In this section, we prove that Grid Contraction problem is NP-Complete. We also
argue that the dependency on the parameter in the running time of the algorithm presen-
ted in Section 5 is optimal, up to constant factors in the exponent, under a widely be-
lieved hypothesis. We define the problems mentioned in this paragraph in the latter parts.
Brouwer and Veldman presented a reduction from Hypergraph 2-Colorability problem
to H-Contraction problem [5]. We present a reduction from NAE-SAT problem to
Hypergraph 2-Colorability problem. We argue that the reduction used by Brouwer
and Veldman can be used to reduce the Hypergraph 2-Colorability problem to Grid
Contraction problem. Using these reductions and the fact there is no sub-exponential
time algorithm for NAE-SAT, we obtain desired results.

We start with the definition of Hypergraph 2-Colorability problem. An hyper-edge
is called monochromatic if all vertices in this edge has the same color. In Hypergraph
2-Colorability problem, an input is a hypergraph H and the objective is to partition
V (H) into two colors such that every edge in E(H) is monochromatic. For a fixed graph H,
the H-Contraction problem takes a graph G as an input and the objective is to determine
whether G can be contracted to H or not. Brouwer and Veldman proved the following result.

I Proposition 23 (Theorem 9 [5]). If H is a connected triangle free graph other then a star
then H-Contraction is NP-Complete.

We are interested in the case when H is a cycle on four vertices (which is denoted by C4).
We present the reduction that is used to prove the above proposition in [5]. For the sake of
simplicity, we restrict the reduction to the case when H = C4. Without loss of generality, we
can assume that any instance H of Hypergraph 2-Colorability contains at least two
edges and has a hyper-edge which contains all vertices in H.

Reduction-(1): Given a hypergraph H the reduction produces a graph G, an instance of
C4-Contraction, as follows:

For every vertex x in V (H), it adds vertex vx. LetX be the set of all vertices corresponding
to vertices in the hypergraph.
For every hyper-edge e in E(H), it adds two vertices e1 and e2. Let E1, E2 be the
collection of e1s and e2s for all edges in the hypergraph.
It adds two special vertices v1 and v2.
It adds all edges between every pair of vertices in X. In other words, the algorithm
converts X into a clique.
It adds all edges between every pair of vertices (e1, e

′
2). In other words, the algorithm

converts G[E1 ∪ E2] into a complete bipartite graph with E1, E2 as its two maximal
independent sets.
For a vertex vx in X and a vertex ei in Ei, if edge e contains vertex x then the algorithm
adds edge vxei. Here, i ∈ {1, 2}.
It adds edges to make v1 adjacent with every vertex in E1 and v2 adjacent with every
vertex in E2.
It adds edge v1v2.
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In the following claim, we argue that the above reduction can be used to prove a reduction
from Hypergraph 2-Colorability to Grid Contraction.

B Claim 24. Let G be the graph returned by Reduction (1). Graph G is a Yes instance of
C4-Contraction if and only if (G, |V (G)| − 4) is a Yes instance of Grid Contraction.

Proof. As C4 is a (2× 2)-grid, the forward direction of the lemma is true. Observe that the
diameter of G is two. Let k = |V (G)| − 4. As an edge contraction reduces the number of
vertices by exactly one, if G is k-contractible to a grid then the resulting grid has at least
four vertices. Moreover, for any graph G′ and an edge e in it, the diameter of G′/e is at
most the diameter of G. Hence, G is k-contractible to a grid that has at least four vertices
and has a diameter two. Only a (2× 2)-grid satisfy both of these properties. This proves the
forward direction and completes the proof of the claim. J

Using Proposition 23 and Claim 24, we obtain the following result.

I Lemma 25. Assume that Reduction (1) constructs graph G when an input is hypergraph H.
Then, H is a Yes instance of Hypergraph 2-Colorabiltiy if and only if (G, |V (G)| − 4)
is a Yes instance of Grid Contraction.

In the remaining section, we present a reduction from NAE-SAT to Hypergraph
2-Colorability. In SAT, we are given a conjective normal formula and the objective is
to find an assignment that evaluates the formula to True. 3-SAT is a restricted version of
SAT in which every clause contains at most three variables. In NAE-SAT variation of the
problem, the objective is to find a satisfying assignment of variables such that for any clause
all of its variables are not set to True. A simple reduction from 3-SAT to NAE-SAT is as
follows: Given an instance φ of 3-SAT, add a new variable, say x, and replace every clause
C in φ by C ∧ x. Add a clause (x̄) to φ to obtain an instance φ′ of NAE-SAT. It is easy to
verify that φ is a Yes instance of 3-SAT if and only if φ′ is a Yes instance of NAE-SAT.
Moreover, the summation of the number of variables and the number of clauses in φ′ is two
more than the sum of the number of variables and the number of clauses in NAE-SAT.
Let N,M be the number of variables and the number of a clause, respectively. It is know
that unless Exponential Time Hypothesis (ETH) fails 3-SAT problem can not be solved in
time 2o(N+M) [16]. The above reduction implies that unless ETH fails NAE-SAT can not
be solved in time 2o(N+M). We now present a reduction from NAE-SAT to Hypergraph
2-Colorability.

Reduction-(2): Given an instance φ of NAE-SAT, the reduction algorithm constructs
a hypergraph, say H, as follows: For every variable x, add two vertices xpos, xneg. For
every variable x, add a hyper-edge {xpos, xneg}. For every clause, add a hyper-edge between
the literals present in the clause. For example, for a clause x ∧ ȳ ∧ z̄ ∧ w add hyper-edge
{xpos, yneg, zneg, wpos}.

I Lemma 26. Assume that Reduction (2) constructs hypergraph H when an input is formula φ.
Then, φ is a Yes instance of NAE-SAT if and only if H is a Yes instance of Hypergraph
2-Colorabiltiy.

Proof. In forward direction, let ψ be a satisfying assignment of variables in φ such that
for any clause in φ, not all the literals are set to True. We construct a coloring function
λ : V (H)→ {0, 1} as follows: For a variable x, if ψ assigns x to True then λ(xpos) = 1 and
λ(xneg) = 0. If ψ assigns x to False then λ(xpos) = 0 and λ(xneg) = 1. Every edge of the
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type {xpos, xneg}, contains a vertex which is colored 0 and 1. For every edge corresponding
to a clause has a vertex which is colored 1 (as ψ is a satisfying assignment) and a vertex
colored 0 (as ψ does not set all literals to True). This implies that H is a Yes instance of
Hypergraph 2-Colorability.

In reverse direction, let λ : V (H)→ {0, 1} be a 2-coloring of V (H) such that every edge
contains vertices with both colors. We construct an assignment ψ for formula φ. For a
vertex xpos, if λ(xpos) = 1 then ψ assigns x to True. If λ(xpos) = 0 then ψ assigns x to
False. We first argue that ψ is a proper assignment for variables in φ. Consider a hyper-edge
{xpos, xneg}. Since every edge has vertices with both colors, if λ(xpos) then λ(xneg) = 0.
This implies if ψ assign x to True at some point, then it never assigns it to False. Consider
a hyper-edge corresponding to a clause. Since there is a vertex with color 1 in this edge, φ
assigned True to at least one literal appearing in the clause. Similarly, since there is a vertex
with color 0 in this edge, φ assigned False to at least one literal appearing in the clause.
Hence, ψ is a satisfying assignment for φ and there is no clause in φ for which ψ assigns all
literals to True. This implies that φ is a Yes instance of NAE-SAT. J

Observe that given an instance φ of NAE-SAT with N variable and M clauses, Re-
duction (2) constructs a graph H with 2N vertices and M +N edges. This implies unless
ETH fails, Hypergraph 2-Colorability can not be solved in time 2o(n′+m′), where n′,m′
are the number of vertices and the number of edges in an input graph. Note that given a
hyper-graph H on n′ vertices and m′ hyper-edges, the Reduction (1) constructs a graph on
n′ + 2m′ + 2 vertices. This leads to the main result of this section.

I Theorem 27. Grid Contraction is NP-Complete. Moreover, unless ETH fails, it can
not be solved in time 2o(n), where n is the number of vertices in an input graph.

7 Kernelization

In this section, we present a polynomial kernel for the Grid Contraction problem. In
Section 5, we reduced an instance of Grid Contraction to polynomially many instances of
Annoted Bounded Grid Contraction such that the original instance is a Yes instance
if and only one of these instances is a Yes instance. One can argue that exhaustively
application of Reduction Rule 5.1 leads to a Turing Compression1 of the size O(k2). We use
a similar approach, but with weaker bounds, to obtain a kernel of size O(k4).

If the input graph is not connected then we can safely conclude that we are working with
a No instance. The following reduction rule checks two more criteria in which it is safe to
return a No instance.

B Reduction Rule 7.1. For an instance (G, k), if
there exists a vertex in G whose degree is more than k + 5, or
there are 6k + 1 vertices in G whose degrees are more than 5,

then return a trivial No instance.

I Lemma 28. Reduction Rule 7.1 is safe.

Proof. The maximum degree of a vertex in a grid is four. An edge contraction can reduce
the number of vertices by one. If a vertex has a degree more than k + 5 in G then even after

1 Please see, for example, [10, Chapter 22] for formal definition.
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k edge contractions, its degree is at least five. Hence, in this case, G is not k-contractible to
a grid.

Every vertex of degree five or more in G is either in a big-witness set or it is a singleton
witness set which is adjacent with a big witness set. By Observation 2.2, there are at most k
big witness sets which contains at most 2k vertices. The big witness sets can be adjacent
with at most 4k singleton witness set. Hence G can have at most 6k vertices which has a
degree more than five. J

We define ko = (4k + 8) · (k + 1) + 1 . Consider an instance (G, k) on which Reduction
Rule 7.1 is not applicable. If G has at most k2

o + k + 1 vertices then we can argue that we
have a kernel of the desired size. Consider a case when |V (G)| ≥ k2

o + k + 1. We argue that
in this case, if (G, k) is a Yes instance then there exits a large grid separator in a graph G
(Lemma 30).

I Definition 29 ((p×t)-grid-separator). Consider an instance (G, k) of Grid Contraction.
A subset S of V (G) is called a (p× t)-grid-separator of G if it has following three properties.

G[S] = Γp×t.
Graph G− S has exactly two connected components, say C1 and C2.
|V (C1)|, |V (C2)| ≥ k + 1 and N(C1) = R1, N(C2) = Rp, where R1, Rp are the first and
last row in G[S].

I Lemma 30. Consider an instance (G, k) of Grid Contraction such that |V (G)| ≥
k2
o + k + 1. If (G, k) is a Yes instance then there exists a ((4k + 6)× t)-grid-separator in G

for some integer t.

Proof. Assume that G is k-contractible to �r×q via mapping ψ. Without loss of generality,
we can assume that r ≥ q. Since any edge contraction can reduce number of vertices in G
by one, the number of vertices in �r×q is at least k2

o + 1. This implies r · q ≥ k2
o + 1. Since

r ≥ q, we have r ≥ ko. We show that there exists a partition of V (G) into C1, S, C2 such
that these sets satisfy properties mentioned in Definition 29.

To satify the cardinality condition, we include all vertices in first (k + 1) many rows in
C1 and last (k + 1) many rows in C2. Note that there are still at least k0 − 2(k + 1) =
(4k + 6) · (k + 1) + 1 rows in the middle. By Observation 2.2, there are at most k big-witness
sets. This implies that there are at most k rows in �r×q which contain vertices corresponding
to big-witness sets. Hence, there are at least (4k + 5) · (k + 1) + 1 rows which does not
contain any big witness set. The rows with big witness set partition the rows without any
big witness set into at most (k + 1) parts such that each part is connected. At least one of
these parts must have (4k + 6) rows. Hence, there exists io in {k + 2, k + 3, . . . , r − (k + 2)}
such that no vertex in itho to (io + 4k + 6)th rows corresponds to a big witness set. Define
C1, S, C2 as follows.

C1 := {x ∈ V (G)| ψ(x) = [i, j] for some i < io and j ∈ [q]}
S := {x ∈ V (G)| ψ(x) = [i, j] for some i ∈ {io, io + 1, . . . , io + 4k + 6} and j ∈ [q]}.
C2 := {x ∈ V (G)| ψ(x) = [i, j] for some i > io + 4k + 6 and j ∈ [q]}

It is easy to verify that C1, S, C2 satisfy all the properties mentioned in Definition 29. J

In the following lemma, we argue that the existence of such a large grid separator in a
graph implies certain restrictions on the grid to which the graph can be contracted.

I Lemma 31. Consider an instance (G, k) of Grid Contraction. Let S be a ((4k+5)×t)-
grid-separator of G. If G is k-contractible to a grid �r×q then q = t.
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Proof. Assume that G is k-contractible to �r×q via mapping ψ. Note that this implies G
is k-contractible to �q×r via mapping ψ′. Rows (and corresponding witness sets) in �r×q
correspond to columns (and corresponding witness sets) in �q×r and vice-versa.

By Observation 2.2, there are at most k big-witness sets. This implies that there are at
most 2k rows in G[S] ≡ �(4k+5)×t which contain vertices which are part of big-witness sets.
Since there are (4k + 5) rows, there exists io in {2, 3, . . . , 4k + 5 − 2} such that no vertex
in itho and (io + 1)th row corresponds to a big witness set. Let Rio(= {u1, u2, . . . , ut}) and
Rio+1(= {v1, v2, . . . , vt}) be the itho and (io + 1)th rows in G[S]. Since no edge incident on
vertices in Rro

∪Rro+1 is begin contracted, we can conclude following two things: (a) For j, j′
in [t], vertices ψ(uj) and ψ(uj′) (similarly, ψ(vj) and ψ(vj′)) are adjacent with each other if
and only if |j − j′| = 1. (b) For j, j′ in [t], vertices ψ(uj) and ψ(vj′) are adjacent with each
other if and only if j = j′. This implies that ψ(Rio) and ψ(Rio+1) are the vertices contained
in two consecutive rows or columns in �r×q. If ψ(Rio) and ψ(Rio+1) are in two consecutive
columns then we repeats the arguments with mapping ψ′. Becuase of symmetry, we can
assume that vertices in ψ(Rio) and ψ(Rio+1) are in two consecutive rows in �r×q. Let i′ and
i′ + 1 be the rows in �r×q which contains vertices in ψ(Rio) and ψ(Rio+1), respectively. We
argue that no vertices (i′)th and (i′ + 1)th rows is outside ψ(Rio) ∪ ψ(Rio+1). Note that Ri0
(similarly Rro+1) is a separators in G such that there are at least two connected components
of G − Ri0 (similarly G − Rro+1) which has at least k + 1 vertices. By Observation 2.2,
ψ(Rio) and ψ(Rro+1) are two separators in �r×q. If ψ(Rio) or ψ(Rro+1) are proper subset
of vertices in (ro)th or (ro + 1)th row then it can not be a separator in �r×q. This implies
ψ(Rio) and ψ(Rro+1) correspond to two rows in �r×q. Hence the number of columns in
�r×q is equal to |ψ(Rio)| = |Rio | = q. J

We argue that if there is a large grid that is a separator in G then we can safely contract
two consecutive rows in this grid.

B Reduction Rule 7.2. For an instance (G, k), let S be a ((4k + 6)× t)-grid-separator of G
for some integer t. Let Su(= {u1, u2, . . . , ut}) and Sv(= {v1, v2, . . . , vt}) be two consecutive
internal rows in S. Let G′ be the graph obtained from G by contracting all the edges in
{ujvj | j ∈ [q]}. Return instance (G′, k).

We prove that the reduction rule is safe along the same line as that of Lemma 19.

I Lemma 32. Reduction Rule 7.2 is safe.

Proof. Note that contracting all edges across any two consecutive rows in a grid results in
another grid.

(⇒) Assume G is k-contractible to �r×q via mapping ψ for some positive integers r, q.
By Lemma 31, q = t. We argue that G′ is k-contractible to �(r−1)×q. As argued in the proof
of Lemma 31, there exists two consecutive rows Rio and Rio+1 in G[S] such that ψ(Rio)
and ψ(Rro+1) correspond to two rows in �r×q. Since Su, Sv are also rows in G[S], we can
conclude that ψ(Su) and ψ(Sv) correspond to rows in �r×q. Let ψ(Su) and ψ(Sv) correspond
to rows i1, i2. Since there are multiple edges across Su, Sv, we have |i1 − i2| ≤ 1. As G is
k-contractible to �r×q, if |i1 − i2| = 1 then G′ is k-contractible to �(r−1)×q. If |i1 − i2| = 0
then as G is k-contractible to �r×q and G′ = G/{vjuj | j ∈ [q]}, G′ is k-contractible to
�(r−1)×q.

(⇐) Let So = {s1, s2, . . . , sq} be the set vertices in G′ which are obtained by contracting
edges ujvj in G. In other words, for j in [q], let sj be the new vertex added while contracting
edge ujvj . Since S is a ((4k + 6)× t)-grid-separator in G, set S′ = (S ∪ So) \ (Su ∪ Sv) is
((4k + 5)× t)-grid-separator in G′.
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Assume that G′ is k-contractible to �(r−1)×q via mapping φ. By Lemma 31, q = t.
We argue that G is k-contractible to �r×q. By similar arguments as in previous part,
φ(So) corresponding to a row, say io, in �(r−1)×q. As G is q-contractible to G′ (which is
k-contractible to �(r−1)×q), we know that G is (k + q)-contractible to �(r−1)×q. We define
a mapping ψ : V (G) → �r×q corresponding to this contraction as follows: For every x in
V (G) \ (Su ∪ Sv), define ψ(x) = φ(x) and for every x in {uj , vj}, define ψ(x) = φ(si). We
argue that itho row in �(r−1)×q is partible. For every j in [q], we define a partition Uj , Vj of
ψ−1([io, j]) which satisfy all the properties mentioned in Definition 2. Since S is a (p× t)-grid
separator of G, G−S has two connected component C1, C2 as specified in Definition 29. Note
that G− (Su ∪ Sv) also has exactly two connected components, say Y1, Y2, which contain
C1, C2, respectively.

For j in [q], let Xj = ψ−1([io, j]). As sj was present in φ−1([io, j]), vertices uj , vj are
present in Xj . By the property of φ, set φ−1([io, j]) is connected in G′. Since vertex
sj is obtained from contracting edge ujvj in G, graph G[Xj ] is connected. Since φ(So)
corresponds to a row of with q vertices and |So| = q, vertices uj′ , vj′ are present in Xj if
and only if j′ = j. In other words, Xj ∩ (Su ∪ Sv) = {uj , vj}. Define Uj := (Xj ∩ Y1) ∪ {uj}
and Vj := (Xj ∩ Y2) ∪ {vj}. Since (Y1, Su, Sv, Y2) is a partition of V (G), sets Uj , Vj is a
non-empty partition of Xj . We argue that Uj , Vj satisfy all the properties in Definition 2.

As N(Y1) = Su, no vertex in Uj \ {uj} is adjacent with Sv ∪Y2. By similar arguments, no
vertex in Vj \ {vj} is adjacent with Sv ∪ Y1. As G[Xj ] is connected and Uj ⊆ Su ∪ Y1;Vj ⊆
Sv ∪ Y2, graphs G[Uj ], G[Vj ] are connected. Moreover, for j′ ∈ [q], sets Uj , Vj′ are adjacent if
and only if uj , vj′ are adjacent. Since G[S1 ∪ S2] is a (2× q)-grid, uj and vj′ are adjacent if
and only if j = j′. Hence Uj and Vj′ are adjacent if and only if j = j′. Since Uj ⊆ Xj and
Uj′ ⊆ Xj′ , Uj and Uj′ are non adjacent if |j− j′| > 1. If |j− j′| = 1 then Uj , Uj′ are adjacent
as they contain uj and uj′ . Hence Uj , Uj′ are adjacent if and only |j − j′| = 1. By similar
arguments, Vj , Vj′ are adjacent if and only if |j− j′| = 1. As no vertex in Uj is adjacent with
Y2 and no vertex in Vj is adjacent with Y1, we can conclude that partition Uj , Vj satisfy all
the properties in Definition 2. Since itho row in �(r−1)×q is partible, Lemma 3 implies that G
is k-contractible to �r×q. This concludes the proof of reverse direction. J

The following lemma, which is analogous to Lemma 21, is essential to argue that Reduction
Rule 7.2 can be applied in polynomial time.

I Lemma 33. There exists an algorithm which given an instance (G, k) of Grid Contrac-
tion and integers p, t runs in polynomial time and either returns a (p× t)-grid-separator of
G or correctly concludes that no such separator exits.

Proof. The algorithm guesses the two vertices in the first column which are in first and last
row of a potential (p× t)-grid-separator of the graph. It considers all pairs of vertices u1, up
in G which are at distance p from each other and there is a unique shortest path between
u1 and up. Let (u1, u2, . . . , up) be the unique shorted path. For i ∈ {1, 3, . . . , p − 1}, the
algorithm tries to find a subset Si of V (G) which has following properties: (a) G[Si] is a
(2 × t) grid, (b) ui, ui+1 are two vertices in the first column of G[Si], and (c) each row in
Si is a separator in G. If such subset exists for every i then the algorithm checks if G− S,
where S =

⋃
i Si, has two connected component each with at least k + 1 vertices. If it is the

case then the algorithm returns S. If not it moves to the next pair of vertices. If it does
not find such a set for any pair of vertices, it concludes that the graph does not contain a
(p× t)-grid-separator.

The algorithm returns a (p× t)-grid separators only it had found one. Now, suppose that
the graph has (p× t)-grid separator S. Let G[S] = �p×t, u1 = [1, 1], and up = [p, 1]. The
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vertices in the first row form a unique shortest path of length p between u1, up. Moreover,
every consecutive two rows in G[S] satisfies the three conditions mentioned in the above
paragraph. Hence, if the graph has a (p× t)-grid separator then the algorithm returns it. It
remains to argue the running time of the algorithm. The algorithm runs over all pairs of
vertices which are at distance p. It can find all such pairs exhaustively within polynomial
time. The algorithm then uses Lemma 20 to find the desired sets for p pair of vertices. The
running time of the overall algorithm is implied by Lemma 20 and the fact that all other
steps in it can be executed in polynomial time. J

We are now in a position to present the main result of the section.

I Theorem 34. Grid Contraction admits a kernel with O(k4) vertices and edges.

Proof. Recall that k0 = (4k+ 8)(k+ 1) + 1. We assume that the input graph is connected as
otherwise it is safe to conclude that we are working with a No instance. Given an instance
of Grid Contraction, the kernelization algorithm exhaustively applies Reduction Rule 7.1.
Let (G, k) be the resultant instance. If k ≤ 0 and G is not a grid then the algorithm returns
a No instance. If the number of vertices in the resulting instance is at most than k2

0 + k + 1
then the algorithm returns it as a kernel. Consider a case when the number of vertices in the
resulting instance is more than k2

0 + k + 1. The algorithm uses Lemma 33 to find the largest
value of t that is smaller than |V (G)| and there exists a ((4k+ 6)× t)-grid-separator in G. If
no such t exists then the algorithm returns a No instance. It then applies Reduction Rule 7.2
to obtain a smaller instance. The algorithm repeats the process until the number of vertices
in the reduces graph is at most k2

o + k + 1 or it can not find a ((4k + 6)× t)-grid-separator.
In the first case, it returns the reduced instance as a kernel while in another case it returns a
No instance.

By Lemma 30, if (G,K) is a Yes instance there exists a ((4k + 6) × t)-grid-separator
in G for some integer t. This, along with Lemma 28 and 19 imply the correctness of the
algorithm. The algorithms run in polynomial time by Lemma 33 and the fact that each
application of Reduction Rule reduces the number of vertices by t. As Reduction Rule 7.2 is
not applicable, the reduced graph has O(k4) vertices. Since Reduction Rule 7.1 does not
apply to the reduced instance, there are at most 6k vertices whose degree is more than 5
and less than k + 5. The number of edges incident on these vertices is O(k2). As remaining
vertices have a degree at most 4, the number of edges in the reduced graph is O(k4). This
implies the reduced graph has the desired number of vertices and edges. J

8 Conclusion

In this article, we study the parameterized complexity of Grid Contraction. We present
an FPT algorithm running that given an instance (G, k) of the problem runs in time 46k ·nO(1)

and correctly determines whether it is a Yes instance. We present a notation of r-slab which
is a generalization of a connected component of a graph. We believe this or similar notation
might be useful to get FPT or Exact Exponential Algorithms. We prove that unless ETH
fails, there is no algorithm for Grid Contraction that runs in time 2o(k) · nO(1). Finally,
we prove that problem admits a kernel with O(k4) vertices and edges.

To the best of our knowledge, Grid Contraction is the only problem that admits a
polynomial kernel when target graph class has unbounded path-width. It is an interesting
question to find another graph class G such that G has an unbounded width-parameter and
G-Contraction admits a polynomial kernel.
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