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Abstract
In many classic clustering problems, we seek to sketch a massive data set of n points (a.k.a clients)
in a metric space, by segmenting them into k categories or clusters, each cluster represented concisely
by a single point in the metric space (a.k.a. the cluster’s center or its facility). The goal is to find
such a sketch that minimizes some objective that depends on the distances between the clients and
their respective facilities (the objective is a.k.a. the service cost). Two notable examples are the
k-center/k-supplier problem where the objective is to minimize the maximum distance from any
client to its facility, and the k-median problem where the objective is to minimize the sum over all
clients of the distance from the client to its facility.

In practical applications of clustering, the data set may evolve over time, reflecting an evolution
of the underlying clustering model. Thus, in such applications, a good clustering must simultaneously
represent the temporal data set well, but also not change too drastically between time steps. In this
paper, we initiate the study of a dynamic version of clustering problems that aims to capture these
considerations. In this version there are T time steps, and in each time step t ∈ {1, 2, . . . , T}, the set
of clients needed to be clustered may change, and we can move the k facilities between time steps.
The general goal is to minimize certain combinations of the service cost and the facility movement
cost, or minimize one subject to some constraints on the other. More specifically, we study two
concrete problems in this framework: the Dynamic Ordered k-Median and the Dynamic k-Supplier
problem. Our technical contributions are as follows:

We consider the Dynamic Ordered k-Median problem, where the objective is to minimize the
weighted sum of ordered distances over all time steps, plus the total cost of moving the facilities
between time steps. We present one constant-factor approximation algorithm for T = 2 and
another approximation algorithm for fixed T ≥ 3.
We consider the Dynamic k-Supplier problem, where the objective is to minimize the maximum
distance from any client to its facility, subject to the constraint that between time steps the
maximum distance moved by any facility is no more than a given threshold. When the number of
time steps T is 2, we present a simple constant factor approximation algorithm and a bi-criteria
constant factor approximation algorithm for the outlier version, where some of the clients can
be discarded. We also show that it is NP-hard to approximate the problem with any factor for
T ≥ 3.
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1 Introduction

Clustering a data set of points in a metric space is a fundamental abstraction of many practical
problems of interest and has been subject to extensive study as a fundamental problem of
both machine learning and combinatorial optimization. In particular, cluster analysis is one
of the main methods of unsupervised learning, and clustering often models facility location
problems.1 More specifically, some of the most well-studied clustering problems involve the
following generic setting. We are given a set C of points in a metric space, and our goal is to
compute a set of k centers that optimizes a certain objective function which involves the
distances between the points in C and the computed centers. Two prominent examples are
the k-median problem and the k-center problem. They are formally defined as follows. Let
S denote the computed set of k cluster centers, let d(j, S) = mini∈S d(i, j) be the minimum
distance from a point j ∈ C to S, and let D = (d(j, S))j∈C be called the service cost vector.
The k-median problem aims to minimize the L1 objective ‖D‖1 =

∑
j∈C d(j, S) over the

choices of S, and the k-center aims to minimize the L∞ objective ‖D‖∞ = maxj∈C d(j, S).
In general metric spaces and when k is not a fixed constant, both problems are APX-hard
and exhibit constant factor approximation algorithms [4, 6, 12, 23, 30]. An important
generalization is the ordered k-median problem. Here, in addition to C and k, we are given
also a non-increasing weight vector w ∈ R|C|≥0 . Letting D↓ denote the sorted version of D in
non-increasing order, the objective of ordered k-median is to minimize w ·D↓. This problem
generalizes both k-center and k-median and has attracted significant attention recently and
several constant factor approximation algorithms have been developed [3, 7, 9, 10].

In this paper, we study several dynamic versions of the classical clustering problems,
in which the points that need to be clustered may change for each time step, and we are
allowed to move the cluster centers in each time step, either subject to a constraint on the
distance moved, or by incurring a cost proportional to that distance. These versions are
motivated in general by practical applications of clustering, where the data set evolves over
time, reflecting an evolution of the underlying clustering model. Consider, for instance, a
data set representing the active users of a web service, and a clustering representing some
meaningful segmentation of the user base. The segmentation should be allowed to change
over time, but if it is changed drastically between time steps, then it is probably meaningless.
For a more concrete example, consider the following application scenario. There is a giant
construction company with several construction teams working in a city. The company has k
movable wireless base stations for their private radio communication, and each construction
team also has a terminal device. The teams need to put their devices at a certain energy
level, in order to maintain the communication channel between the device and the nearest
base station. Some construction team may finish some project and move to another place at

1 In the facility location literature, points are called clients and centers are called facilities, and we will
use these terms interchangeably.
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some time. Note that the wireless base stations are also movable at a certain expense. Our
high level objective is to have all teams covered by the base stations at all times, meanwhile
minimizing the energy cost of all teams plus the cost of moving these base stations.

We study two problems of this flavor. The first problem, a dynamic version of the ordered
k-median problem, is a very general model that captures a wide range of dynamic clustering
problems where the objective is to minimize the sum of service cost and movement cost. In
particular, it generalizes dynamic versions of k-center and k-median. The problem is defined
as follows. We are given a metric space and there are T time steps. In each time step t, there
is a set Ct of clients that we need to serve. In each time step, we can also choose the locations
for k movable facilities to serve the clients (each client is served by its closest facility). Our
goal is to minimize the total ordered service distance (i.e., the ordered k-median objective),
summed over all times steps, plus the total distances traveled by the k movable facilities.
We define the problem formally as follows.

I Definition 1 (Dynamic Ordered k-Median). We are given a metric space (X, d). An instance
of Dynamic Ordered k-Median is specified by ({Ct}Tt=1, {Ft}Tt=1, {wt ∈ R|Ct|≥0 }Tt=1, γ > 0, k ∈
N+), where T ≥ 2 is a constant integer, Ct ⊂ X is the set of clients for time t, Ft ⊂ X

is the set of candidate locations where we can place facilities. For a vector v, denote by
v↓ the vector derived from v by sorting its entries in non-increasing order. Also denote
by m(X,Y ) = minM0∈M(X,Y )

∑
(i,i′)∈M0

d(i, i′) the total weight of minimum-weight perfect
matching between two equal-sized multi-sets X,Y . We are required to compute a sequence of
multi-sets of facilities {At}Tt=1 with At ⊂ Ft, |At| = k, so that the following sum of ordered
service cost and movement cost is minimized:

T∑
t=1

wt · (d(j, At))↓j∈Ct + γ ·
T−1∑
t=1

m(At, At+1). (1)

It is also natural to formulate dynamic clustering problems where the objective is to
minimize just the service cost, subject to a constraint on the movement cost. This turns out
to be technically very different from Dynamic Ordered k-Median. Our second problem, which
we call Dynamic k-Supplier, is such a concrete problem, motivated by the above-mentioned
construction company application. In this problem the service cost is the k-supplier objective,
i.e. the maximum client service distance over all time steps, and the constraints are that any
facility cannot be moved further than a fixed value B > 0 between any two consecutive time
steps. More formally:

I Definition 2 (Dynamic k-Supplier). We are given a metric space (X, d). An instance of
Dynamic k-Supplier is specified by ({Ct}Tt=1, {Ft}Tt=1, B > 0, k ∈ N+), where T ≥ 2 is the
number of time steps, Ct ⊂ X is the set of clients for time t, Ft ⊂ X is the set of candidate
locations where we can place facilities. We are required to compute a sequence of multi-sets
of facilities {At}Tt=1, with At ⊂ Ft, |At| = k, minimizing the maximum service cost of any
client maxt maxj∈Ct d(j, At), subject to the constraint that there must exist a one-to-one
matching between At and At+1 for any t, such that the distance between each matched pair
is at most B.

In the outlier version, we are additionally given the outlier constraints {lt ∈ N}Tt=1. We
are asked to identify a sequence of multi-sets of facilities {At}Tt=1, as well as a sequence of
subsets of served clients {St ⊂ Ct}Tt=1. The goal is to minimize the maximum service cost of
any served client maxt maxj∈St d(j, At), with the constraints that At ⊂ Ft, |At| = k, |St| ≥ lt,
and there must exist a one-to-one matching between At and At+1 for any t, such that the
distance between each matched pair is at most B.

ESA 2020
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Note. The solutions for both Dynamic Ordered k-Median and Dynamic k-Supplier may be
multi-sets, since we allow multiple centers to travel to the same location.

1.1 Our Results
We first study Dynamic Ordered k-Median. We assume the number of time steps T is a
constant and all entries of the weight vector are larger than some small constant ε > 0. We
present a polynomial-time approximation on general metrics. Moreover, if T = 2 we present
a constant-factor approximation algorithm without the assumption on the entries of the
weight vectors.

I Theorem 3. 1. If T = 2, for any constant δ > 0 there exists a polynomial-time (48 +
20
√

3 + δ)-approximation for Dynamic Ordered k-Median.
2. If T ≥ 3 is a constant and all entries in {wt}Tt=1 are at least ε > 0, for any constant

δ > 0 there exists a polynomial-time (48 + 20
√

3 + δ + 6γ/ε)-approximation algorithm for
Dynamic Ordered k-Median.

Our techniques. The key idea in our algorithm is to design a surrogate relaxed LP as in [7]
and embed the fractional LP solution in a network flow instance. We then proceed to round
the fractional flow to an integral flow, thus obtaining the integral solution. The network
is constructed based on a filtering process introduced by Charikar and Li [12]. We also
adapt the oblivious clustering arguments by Byrka et al. [7], but with a slight increase in
approximation factors due to the structure of our network flow.

Our approach can also give a constant approximation to the facility-weighted minimum
total movement mobile facility location problem (facility-weighted TM-MFL), with a simpler
analysis than the previously known local-search based algorithm [1], which achieves an
approximation factor of 3 +O(

√
log log p/ log p) for a p-Swap algorithm. The following result

is also an improvement over the previously proven factor 499 in [1] when p = 1. For more
details, we direct the interested readers to the full version of the paper and [1].

I Theorem 4. There exists a polynomial-time 10-approximation algorithm for facility-
weighted minimum total movement mobile facility location problem.

As a second result, we consider Dynamic k-Supplier and its outlier version. We show
that if T ≥ 3, it is not possible to obtain efficient approximation algorithms for Dynamic
k-Supplier with any approximation factor, unless P = NP, via a simple reduction from perfect
3D matching [27]. However, for the case of T = 2, we present a flow-based 3-approximation,
which is the best possible factor since vanilla k-supplier is NP-hard to approximate within a
factor of (3− ε) for any constant ε > 0 [24].

I Theorem 5.
1. There exists a 3-approximation for Dynamic k-Supplier when T = 2.
2. There is no polynomial time algorithm for solving Dynamic k-Supplier with any approxim-

ation factor if T ≥ 3, unless P = NP .

We also study the outlier version of the problem for T = 2. In the outlier version, we can
exclude a certain fraction of the clients as outliers in each time step. We obtain a bi-criteria
approximation for the problem.

I Theorem 6. For any constant ε > 0, there exists a bi-criteria 3-approximation algorithm
for Dynamic k-Supplier with outliers when T = 2, that outputs a solution which covers at least
(1− ε)lt clients within radius 3R∗ at time t, where t = 1, 2 and R∗ is the optimal radius.
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Our techniques. We first guess a constant-size portion of facilities in the optimal solution,
remove these facilities and solve the LP relaxation of the remaining problem. This guessing
step is standard as in multi-objective optimizations in [20]. From the LP solution, we
form clusters as in Harris et al. [22], cast the outlier constraints as budget constraints
over the LP solution, and finally round the fractional LP solution to an integral solution
using the budgeted optimization methods by Grandoni et al. [20]. Note that since our
outlier constraints translate naturally to budget lower bounds, and our optimization goal
is minimization, we are only able to achieve bi-criteria approximations instead of pure
approximations. For more details, please refer to the full version of this paper.

1.2 Other Related Work
The ordered k-median problem generalizes a number of classic clustering problems like
k-center, k-median, k-facility l-centrum, and has been studied extensively in the literature.
There are numerous approximation algorithms known for its special cases. We survey here
only the results most relevant to our work (ignoring, for instance, results regarding restricted
metric spaces or fixed k). Constant approximations for k-median can be obtained via local
search, Lagrangian relaxations and the primal-dual schema, or LP-rounding [4, 6, 25, 26].
Constant approximations for k-center are obtained via greedy algorithms [23]. Aouad and
Segev [3] employ the idea of surrogate models and give the first O(logn)-approximation for
ordered k-median. Later, Byrka et al. [7], Chakrabarty and Swamy [9] both successfully design
constant-factor approximations for k-facility l-centrum and ordered k-median. Chakrabarty
and Swamy [10] subsequently improve the approximation factor for ordered k-median to
(5 + ε), using deterministic rounding in a unified framework.

The outlier setting of clustering problems, specifically for center-type clustering problems,
was introduced by Charikar et al. [11] and later further studied by Chakrabarty et al.
[8]. Many other variants of different clustering constraints are also extensively studied,
including matroid and knapsack center with outliers [13], and fair center-type problems with
outliers [22].

Our problems are closely related to the mobile facility location problems (MFL), introduced
by Demaine et al. [16]. In these problems, a static set of clients has to be served by a set
of facilities that are given initial locations and can be moved to improve the service cost
at the expense of incurring a facility movement cost. For the minimum total movement
MFL problem (TM-MFL), Friggstad and Salavatipour [18] give an 8-approximation using
LP-rounding, where all facilities have unit weights. Ahmadian et al. [1] give a local search
algorithm for TM-MFL with weighted facilities using p-swaps with an approximation ratio of
3 +O(

√
log log p/ log p), and specifically show that the approximation ratio is at most 499

for p = 1.
The dynamic formulations of our problems are closely related to the facility location

problem with evolving metrics, proposed by Eisenstat et al. [17]. In this problem, there
are also T time steps, while the facilities and clients are fixed, and the underlying metric is
changing. The total cost is the sum of facility-opening cost, client-serving cost and additional
switching costs for each client. The switching cost is paid whenever a client switches facility
between adjacent time steps. In comparison, our problem Dynamic k-Supplier considers the
cost of moving facilities instead of opening costs, and allows the number of clients to change
over time. Eisenstat et al. [17] consider the problem when the open facility set A is fixed,
and give a O(log(nT ))-approximation, where n is the number of clients. They also show a
hardness result on o(log T )-approximations. An et al. [2] consider the case when the open
facilities are allowed to evolve as well, and give a 14-approximation.

ESA 2020
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Our problem is also related to stochastic k-server [15] and the page migration problem [5,
32]. Dehghani et al. [15] first study the stochastic k-server problem. In this problem, we
also have T time steps, and the distributions {Pt}t∈[T ] are given in advance. The t-th client
is drawn from Pt, and we can use k movable servers. One variant they consider is that,
after a client shows up, its closest server goes to the client’s location and comes back, and
the optimization objective is the total distance travelled by all servers. They provide an
O(logn)-approximation for general metrics, where n is the size of the distribution support.
In expectation, their objective is the same as in Dynamic Ordered k-Median, if we consider
non-ordered weighted clients and total weights sum up to 1 for each time slot. However, we
note that our result does not imply a constant approximation for their problem. The difficulty
is that if one maps the stochastic k-server problem to our problem, the corresponding weight
coefficient γ is not necessarily a constant and our approximation ratio is proportional to
γ. Obtaining a constant factor approximation algorithm for stochastic k-server is still an
interesting open problem.

2 A Constant Approximation for Dynamic Ordered k-Median

We devise an LP-based algorithm, which generalizes the oblivious-clustering argument by
Byrka et al. [7]. At the center of our algorithm, a network flow method is used, where an
integral flow is used to represent our solution.

2.1 Flow-based Rounding of LP Solution

We first formulate the LP relaxation. By adding a superscript to every variable to indicate
the time step, we denote x(t)

ij ∈ [0, 1] the partial assignment of client j to facility i and
y

(t)
i ∈ [0, 1] the extent of opening facility location i at time step t. Moreover, denote z(t)

ii′ the
fractional movement from facility i to facility i′, between neighboring time steps t and t+ 1.

The following surrogate LP is designed using the cost reduction trick by Byrka et al. [7].
When the reduced cost functions are exactly guessed, the LP relaxation has an objective
value at most the total cost of the optimal solution, denoted by OPT. Call d′ : X×X → R≥0
a reduced cost function (not necessarily a metric) of distance function d, if for any x, y ∈ X,
d′(x, y) ≥ 0, d′(x, y) = d′(y, x), and d(x1, y1) ≤ d(x2, y2) ⇒ d′(x1, y1) ≤ d′(x2, y2). For a
sequence of reduced cost functions D = {dt}Tt=1 of d, the modified LP relaxation is defined
as follows.

minimize :
T∑
t=1

∑
j∈Ct

∑
i∈Ft

dt(i, j)x(t)
ij + γ

T−1∑
t=1

∑
i∈Ft

∑
i′∈Ft+1

d(i, i′)z(t)
ii′ LP(D)

subject to :
∑
i∈Ft

x
(t)
ij = 1, ∀j ∈ Ct, t ∈ [T ] (2)

∑
i∈Ft

y
(t)
i = k, ∀t ∈ [T ] (3)

0 ≤ x(t)
ij ≤ y

(t)
i , ∀i ∈ Ft, j ∈ Ct, t ∈ [T ] (4)∑

i′∈Ft+1

z
(t)
ii′ = y

(t)
i , ∀i ∈ Ft, t ∈ [T − 1] (5)

∑
i∈Ft

z
(t)
ii′ = y

(t+1)
i′ , ∀i′ ∈ Ft+1, t ∈ [T − 1] (6)
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Suppose we have solved the corresponding surrogate LP(D). In the optimal solution
(x, y, z), we assume that whenever x(t)

ij > 0, we have x(t)
ij = y

(t)
i , via the standard duplication

technique of facility locations (for example, see [12]). Denote Ballo(j, R) = {x ∈ X : d(x, j) <
R} the open ball centered at j with radius R, and E(t)

j = {i ∈ Ft : x(t)
ij > 0} the relevant

facilities for client j. For any specific time step t, denote d(t)
av (j) =

∑
i∈Ft d(i, j)x(t)

ij the
average unweighted service cost of client j and y(t)(S) =

∑
i∈S y

(t)(i) the amount of fractional
facilities in S ⊂ Ft. We perform a filtering-and-matching algorithm (see the full version of
this paper) to obtain a subset C ′t ⊂ Ct for each t, a bundle U (t)

j ⊂ Ft for each j ∈ C ′t, as well
as Pt a partition of C ′t, where
1. C ′t is a subset of “well-separated” clients of Ct, such that for any client in Ct\C ′t, there

exists another relatively close client in C ′t. To be more precise, for any j 6= j′ in C ′t,
d(j, j′) ≥ 4 max{d(t)

av (j), d(t)
av (j′)}, and for any j′′ ∈ Ct\C ′t, there exists j′′′ ∈ C ′t such that

d
(t)
av (j′′′) ≤ d(t)

av (j′′), d(j′′, j′′′) ≤ 4 max{d(t)
av (j′′), d(t)

av (j′′′)};
2. U (t)

j is a subset of fractionally open facility locations that are relatively close to client j;
3. Pt is a judiciously created partition of C ′t, where every subset contains either a pair of

clients, or a single client. Each pair {j, j′} in Pt is chosen such that either j or j′ is the
closest neighbor of the other, and we guarantee to open a facility location in U (t)

j or U (t)
j′ .

The filtering-and-matching algorithm is fairly standard in several LP-based methods
for median-type problems (see e.g. [7, 10, 12]). It is worth noting that, while we define
the objective value of LP(D) using reduced cost functions D with respect to the weights,
the filtering algorithm is completely oblivious of the weights and only uses the underlying
metric d.

Network construction. We construct an instance of network flow N , and embed the LP
solution as a fractional flow f̃ . The network N consists of a source s, a sink t and 6T
intermediate layers L1, L2, . . . , L6T arranged in a linear fashion.

For each time step t ∈ [T ], we create two nodes for every pair p ∈ Pt, every bundle
U (t)
j and every candidate facility location i ∈ Ft. All these nodes are contained in the

layers L6t−5, . . . , L6t. To distinguish between the two mirror nodes, we use L (·) and R(·) to
represent the nodes in {L6t−5, L6t−4, L6t−3} and the nodes in {L6t−2, L6t−1, L6t}, respectively.
The network is constructed as follows. An example figure is shown in Figure 1.

1. For all t ∈ [T ], add L (i) to L6t−5 and R(i) to L6t for each i ∈ Ft.
2. For all t ∈ [T ], add L (U (t)

j ) to L6t−4 and R(U (t)
j ) to L6t−1 for each U (t)

j .
3. For all t ∈ [T ], add L (p) to L6t−3 and R(p) to L6t−2 for each p ∈ Pt.
4. For all t ∈ [T ], j ∈ C ′t, p ∈ Pt such that j ∈ p, connect (L (U (t)

j ),L (p)), (R(p),R(U (t)
j ))

in neighboring layers with an edge of capacity
[
by(t)(U (t)

j )c, dy(t)(U (t)
j )e

]
. Let their initial

fractional flow values be f̃(L (U (t)
j ),L (p)) = f̃(R(p),R(U (t)

j )) = y(t)(U (t)
j ). The capacity

is either [0, 1] or {1}.
5. For all t ∈ [T ], p ∈ Pt, connect (L (p),R(p)) with an edge of capacity

[
by(t)(p)c, dy(t)(p)e

]
,

and define f̃(L (p),R(p)) = y(t)(p) =
∑
j∈p y

(t)(U (t)
j ). If p is a normal pair, the capacity

is either [1, 2] or {1} or {2}; if p is a singleton pair, the capacity is either [0, 1] or {1}.
6. For all t ∈ [T ], j ∈ C ′t and i ∈ U (t)

j , connect (L (i),L (U (t)
j )), (R(U (t)

j ),R(i)) in neigh-
boring layers with an edge of unit capacity. Let the initial fractional flows be f̃(L (i),
L (U (t)

j )) = f̃(R(U (t)
j ),R(i)) = y

(t)
i .

ESA 2020
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7. For all t ∈ [T ] but i ∈ Ft −
⋃
j∈C′

t
U (t)
j , connect (L (i),R(i)) with an edge of unit

capacity (across intermediate layers L6t−4, . . . , L6t−1). Let its initial fractional flow be
f̃(L (i),R(i)) = y

(t)
i .

8. For all z(t)
ii′ , i ∈ Ft, i′ ∈ Ft+1, connect (R(i),L (i′)) with an edge of unit capacity. Let its

initial fractional flow be f̃(R(i),L (i′)) = z
(t)
ii′ .

L6t−5, L6t−4, L6t−3 L6t−2, L6t−1, L6t

p
(t)
1

p
(t)
2

p
(t)
1

p
(t)
2

U(t)
j1

U(t)
j2

U(t)
j3

U(t)
j4

U(t)
j3

U(t)
j4

Ft\
⋃

j∈C′
t

U(t)
j

U(t)
j1

U(t)
j2

U(t)
j3

U(t)
j4

U(t)
j3

U(t)
j4

Ft\
⋃

j∈C′
t

U(t)
j

Figure 1 Some intermediate layers of N representing a single time step t.

Notice f̃ is naturally a flow with value k. Since the flow polytope is defined by a totally
unimodular matrix, and our capacity constraints are all integers, it is a well-known result
(see e.g. [19]) that we can efficiently and stochastically round f̃ to an integral flow f̄ , such
that f̄ is guaranteed to have value k, and E[f̄ ] = f̃ . Next, given the integral flow f̄ , we
deterministically construct the facilities to open {At}t∈[T ] as follows.

If T = 2, there are 12 layers L1, L2, . . . , L12 in the network. For each link e =
(R(i1),L (i2)) between L6 and L7 such that f̄(e) = 1, we add the original facility
corresponding to i1 to A1, and the original facility of i2 to A2.
If T ≥ 3, the integral flow f̄ may enter L6t−5 and exit from L6t at sets of different facility
locations. For illustration, denote At,1 the set in L6t−5 and At,2 the set in L6t. Notice
it may happens that |At,1

⋃
At,2| > k and we cannot open them both, so we design an

algorithm to find At ⊆ At,1
⋃
At,2 and |At| = k, and open the facilities in At for time t.

The algorithm looks at each pair (j1, j2) = p ∈ Pt, and consider the 1 or 2 units of flow f̄ on
the link (L (p),R(p)). For a facility i, if there is one unit of flow through L (i) or R(i), we
call the facility i activated. But if L (i1) and R(i2) are activated and i1, i2 ∈ Uj1 , i1 6= i2,
we only open one of them. The same is true when i1 ∈ Uj1 , i2 ∈ Uj2 , i1 6= i2.
For each unit flow, our algorithm either always choose i1 to open where L (i1) is activated,
or always choose the facility in Uj2 if j1 is not the closest neighbor of j2. As a result, we
give the following lemma estimating the movement cost, and the detailed algorithm can
be found in the full version of this paper.



S. Deng, J. Li, and Y. Rabani 37:9

I Lemma 7. Let d(A,A′) denote the cost of minimum weight matching between A,A′. If
T = 2, the expected movement cost of solution {A1, A2} satisfies

E[d(A1, A2)] =
∑
i∈F1

∑
i′∈F2

d(i, i′)z(1)
ii′ .

If T ≥ 3, the expected movement cost of solution {At}Tt=1 after rerouting satisfies

E

 ∑
t∈[T−1]

d(At, At+1)

 ≤ ∑
t∈[T−1]

∑
i∈Ft

∑
i′∈Ft+1

d(i, i′)z(t)
ii′ + 6

T∑
t=1

∑
j∈Ct

d(t)
av (j).

2.2 From Rectangular to General Cases
We first provide a lemma to bound the stochastic k-facility l-centrum cost of At for any
fixed time t. Consequently, the ordered cost can be nicely bounded as well. The proof of the
following lemma can be found in the full version of this paper.

I Lemma 8 (adapted from [7]). Fix t ∈ [T ] and let m ∈ N+, h > 0. Define rect(a, b) the
rectangular vector of length b, where the first a elements are 1s and the rest are 0s. For
At as the (random) set of activated locations returned by our algorithm, and d(Ct, At) =
(d(j, At))j∈Ct as the service cost vector, we have

EAt [rect(m, |Ct|) · d(Ct, At)↓] ≤ (24 + 10
√

3)m · h+ (24 + 10
√

3)
∑
j∈Ct

d−h
(t)
av (j),

where d−h(j, j′) = 0 if d(j, j′) < h and d−h(j, j′) = d(j, j′) otherwise. Similar to dav(j), the
average clipped service cost d−h(t)

av (j) is defined as d−hav
(t)(j) =

∑
i∈Ft d

−h(i, j)x(t)
ij .

Finally we turn to the generally-weighted case, where the weight vectors wt, t ∈ [T ] are
not necessarily rectangular ones like rect(m, |Ct|). The guessing of underlying reduced cost
functions D is exactly the same as in Byrka et al. [7], thus omitted here. We solve LP(D)
using these induced reduced cost functions and proceed accordingly. The following lemma
is similar to that of Lemma 5.1 in Byrka et al. [7], and the proof can be found in the full
version of this paper.

I Lemma 9. When T = 2, the procedure described above is a (48 + 20
√

3)-approximation
for Dynamic Ordered k-Median.

If T ≥ 3 is a constant and the smallest entry in {wt}Tt=1 is at least some constant ε > 0,
the above-described procedure is a (48 + 20

√
3 + 6γ/ε)-approximation for Dynamic Ordered

k-Median.
In both cases, the procedure makes O

(∏T
t=1 (|Ft| · |Ct|)Nt

)
calls to its subroutines, where

Nt is the number of distinct entries in the weight vector wt, t ∈ [T ].

Fix some positive parameter δ > 0 and recall the distance bucketing trick by Aouad and
Segev [3]. When T is a constant, it is possible to guess the largest service distance for each
time step by paying a polynomial factor in the running time. Then we make logarithmically
many buckets for each time step to hold the service cost values of clients. For each bucket,
its average weight is also guessed up to a small multiplicative error (1 + δ). Since there are
at most O

(
log1+δ

(
n
δ

))
= O

( 1
δ log

(
n
δ

))
buckets for each time step, where n = |F | + |C|,

guessing a non-increasing sequence of the average weights only causes another polynomial
factor exp

(
O
( 1
δ log

(
n
δ

)))
= nO(1/δ). Finally, because T is a constant, the overall number of

guesses is still bounded by a polynomial. For more details, see [3, 7].

ESA 2020



37:10 Dynamic Clustering Approximations

I Theorem 10. When T = 2, for any δ > 0 there exists a (48+20
√

3)(1+δ)-approximation al-
gorithm for Dynamic Ordered k-Median, with running time (|F1|+ |C1|)O(1/δ) ·
(|F2|+ |C2|)O(1/δ).

When T ≥ 3 is a constant, and the smallest entry in {wt}Tt=1 is at least some constant
ε > 0, for any δ > 0 there exists a

(
48 + 20

√
3 + 6γ/ε

)
(1 + δ)-approximation algorithm for

Dynamic Ordered k-Median, with running time
∏
t∈[T ] (|Ft|+ |Ct|)O(1/δ).

Proof. This is almost a direct consequence of Theorem 5.2 in [7], with the constant factor
replaced by our µ = 24+10

√
3. Notice that we need to slightly modify the way of constructing

rounded weights {w∗t }Tt=1 in the following way,

∀t ∈ [T ], r ∈ [|Ct|], w∗tr =


wt1 r = 1,

min
{

(1 + δ)dlog1+δ wtre, wt1
}

wtr ≥ εwt1/|Ct|, r 6= 1,
εwt1/|Ct| wtr < εwt1/|Ct|,

so that the perturbed weight vectors are rounded larger, but at most (1 + δ) times larger in
terms of the overall objective, and there are O(log1+δ(|Ct|/δ)) different values in w∗t .

Plugging in the approximations of individual time steps does not affect the analysis of
movement costs in the proof of Lemma 9, hence the approximation factor follows. We omit
the technical details here due to space limit. They can be be found in Appendix D of [7]. J

3 Approximating Dynamic k-Supplier

We present a flow-based algorithm that gives a 3-approximation for Dynamic k-Supplier when
T = 2, and show it is NP-hard to obtain polynomial-time approximation algorithms for
Dynamic k-Supplier with any approximation factor when T ≥ 3. We also briefly introduce our
bi-criteria approximation algorithm for Dynamic k-Supplier with outliers and T = 2, while
the detailed algorithm and analysis can be found in the full version of this paper.

3.1 A 3-Approximation for Dynamic k-Supplier, T = 2
In contrast to the NP-hardness of approximating Dynamic k-Supplier for T ≥ 3, we consider
Dynamic k-Supplier when T = 2 on general metrics and present a simple flow-based constant
approximation. Suppose we are given the client sets C1, C2 and F1, F2 as candidate facility
locations and the movement constraint is B > 0.

First, since the optimal radius R∗ is obviously the distance between some client and some
facility location, we assume we have successfully guessed the optimal radius R∗ (using binary
search). Next, we construct the following network flow instance G(V, E). V consists of 4
layers of vertices (two layers L11,L12 for t = 1, two layers L21,L22 for t = 2), a source s and
sink t. We define the layers and links in G as follows:

For each i ∈ F1, add a vertex in L12. For i′ ∈ F2, add a vertex in L21.
Repeatedly pick an arbitrary client j ∈ C1 and remove from C1 every client within
distance 2R∗ from j. Denote these clients a new cluster corresponding to j. Since we have
guessed the optimal radius R∗, it is easy to see we can get at most k such clusters. And
if there are less than k clusters, we create some extra dummy clusters to obtain exactly k
clusters, while dummy clusters do not correspond to any client. For each cluster, add a
vertex to L11. Repeat this for C2 and form L22.
The four layers are arranged in order as L11,L12,L21,L22. With a slight abuse of notation,
for u ∈ L11, v ∈ L12, connect them using a link with unit capacity if d(u, v) ≤ R∗; for
w ∈ L21, z ∈ L22, connect them using a link with unit capacity if d(w, z) ≤ R∗. For
v ∈ L12, w ∈ L21, connect them using a link with unbounded capacity if d(v, w) ≤ B.
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Connect every dummy cluster in L11 with every facility location vertex in L12. Connect
every dummy cluster in L22 with every facility location vertex in L21. Every such link
has unit capacity.
Finally, the source s is connected to every vertex in L11 and the sink t is connected to
every vertex in L22, with every edge having unit capacity.

I Lemma 11. G(V, E) admits a flow of value k. Moreover, we can obtain a feasible solution
of cost at most 3R∗ from an integral flow of value k in G(V, E).

Proof. As an optimal solution with objective R∗, there exist two multi-sets A1 ⊂ F1, A2 ⊂ F2
such that |A1| = |A2| = k and there exists a perfect matching between them. For any
i ∈ F1, i

′ ∈ F2, if the pair (i, i′) appears m times in the perfect matching, define a flow value
f(i, i′) = m over link (i, i′).

Consider the first time step. For any facility location i and clusters j, j′, either d(i, j)
or d(i, j′) is larger than R∗, otherwise d(j, j′) ≤ 2R∗, contradicting with our construction.
Because A1 also covers all j ∈ C1 with radius R∗, for every j ∈ L11, we can always find a
different element i ∈ A1 such that d(i, j) ≤ R∗, and we add a unit flow as f(j, i) = 1. The
same process is repeated for L22 and A2.

The total flow between L12 and L21 is now obviously k, since the perfect matching
between A1 and A2 has size k. After the construction of unit flows for non-dummy clusters,
we arbitrarily direct the remaining flows from facility locations to the dummy clusters, one
unit each time. Finally, for any cluster with unit flow, define the flow between it and the
source/sink to be 1. This completes an integral flow of value k on G.

For the second part, suppose we have an integral flow f̄ of value k on G. For any facility
location i ∈ F1, denote g(i) the total flow through i. We place g(i) facilities at location
i, and repeat the same procedures for i′ ∈ F2. If f̄(i, i′) = m for i ∈ F1, i

′ ∈ F2, move m
facilities from i to i′ in the transition between 2 time steps.

For any j′ ∈ C1, if j is the cluster center it belongs to, there exists a facility at most
d(j′, i) ≤ d(j′, j) + d(j, i) ≤ 3R∗ away. J

I Theorem 12. There exists a 3-approximation for Dynamic k-Supplier when T = 2.

Proof. Consider the network flow instance we construct. It only has integer constraints and
the coefficient matrix is totally unimodular. Moreover, there exists a flow of value k due to
Lemma 11, hence we can efficiently compute an integral solution f̄ of value k, thus obtaining
a 3-approximation solution. J

3.2 The Hardness of Approximating Dynamic k-Supplier, T ≥ 3
We show it is NP-hard to design approximation algorithms for Dynamic k-Supplier with any
approximation factor when T ≥ 3. The proof is via reduction from the perfect 3D matching
problem, which is known to be NP-Complete [27].

I Theorem 13. There is no polynomial time algorithm for solving Dynamic k-Supplier with
any approximation factor if T ≥ 3, unless P = NP .

Proof. We reduce an arbitrary instance of perfect 3D-matching to Dynamic k-Supplier to
show the NP-hardness. Recall for an instance of perfect 3D-matching, we are given three
finite sets A,B,C with |A| = |B| = |C|, and a triplet set T ⊂ A×B × C. Suppose |A| = n

and |T | = m, and we are asked to decide whether there exists a subset S ⊂ T , such that
|S| = n, and each element in A,B,C appears exactly once in some triplet in S. We construct
the following graph G = (V,E), where V,E are initially empty.
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For each triplet g = (a, b, c) ∈ T , add three new vertices ag, bg, cg to V correspondingly.
Connect ag, bg with an edge of length α. Connect bg, cg with an edge of length α.
Denote VA all the vertices that correspond to vertices in A. Similarly for VB and VC .
For any two vertices in VA corresponding to the same element a ∈ A, connect them with
an edge of length 1. Repeat the same procedure for VB , VC .

Assume we are able to solve Dynamic k-Supplier for T = 3 with an approximation factor
α. We solve Dynamic k-Supplier for G on its graph metric dG, with k = n and the movement
constraint B = α, where the client sets are {VA, VB , VC} and facility sets are {VA, VB , VC}
for the three time steps, respectively.

It is easy to see that the reduced Dynamic k-Supplier instance has covering radius R∗ = 1
if and only if there exists a perfect 3D-matching, otherwise the covering radius is at least
2α+1. Since our approximation factor is α, this concludes the NP-hardness of approximation
algorithms with any factor for Dynamic k-Supplier when T ≥ 3. J

3.3 A Bi-criteria Approximation for Dynamic k-Supplier with Outliers
Lastly, we present our bi-criteria approximation algorithm that solves Dynamic k-Supplier,
when T = 2 and outliers are allowed. As a useful ingredient, let us first briefly review
the m-budgeted bipartite matching problem. The input consists of a bipartite graph G =
(V,E), and each edge e ∈ E is associated with a weight w(e) ≥ 0 and m types of lengths
fi(e) ≥ 0, i = 1, . . . ,m. The problem asks for a maximum weight matching M with m

budget constraints, where the ith constraint is that the sum of all fi lengths in M is no more
than Li, i.e.

∑
e∈M fi(e) ≤ Li. When the number of constraints m is a constant, a pure

(1− ε)-approximation algorithm for any constant ε > 0 is devised by Grandoni et al. [20].

Sketch. Due to space limit, we provide a sketch here and defer the details to the full version
of this paper. Consider Dynamic k-Supplier with outliers and T = 2. In the solution, we place
k facilities for time t = 1, serving in total at least l1 clients in C1, then move each of these
facilities for a distance at most B to serve at least l2 clients in C2, and the maximum service
distance is our minimization goal. Clearly, the optimal solution R∗ only has a polynomial
number of possible values and can be guessed efficiently, so we assume that R∗ is known to
us in the following analysis.

For a fixed R∗, denote ci the number of clients that facility location i can serve within
distance R∗. We assign two lengths f1(e) = ci, f2(e) = ci′ and weight w(e) = 1 for every
candidate edge e = (i, i′), where i ∈ F1, i

′ ∈ F2. By duplicating each possible facility location
in F1 and F2 and only allowing vertices within distance B to be matched, the required
solution can be fully represented by a k-cardinality matching M between F1 and F2. Let us
temporarily assume that any client miraculously contribute only once to the total number
of clients served. Then the problem naturally translates to deciding whether there exists
a bipartite matching M between F1 and F2 (with candidate facility locations duplicated)
with weight k, such that the sum of all f1 lengths in M is at least l1, and the sum of all f2
lengths in M is at least l2.

This new problem is very similar to 2-budgeted bipartite matching, but there are still
some major differences. In the approximation algorithm in [20], every integral matching
M is obtained by first finding a feasible fractional matching M ′, which has at most 2m
edges being fractional, and then dropping these fractionally-matched edges completely. Back
to our problem where m = 2. If we obtain such a fractional solution M ′ which satisfies
the constraints and only has at most 4 fractional edges, we would like to find an integral
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matching M in a way that uses more “budget” instead of using less, so as to cover at least
as many clients as M ′ does and not violate any budget constraint (in other words, outlier
constraints), and we have to drop these fractional edges again from M ′.

Contrary to 2-budgeted bipartite matching, we want to control the portion of budget
dropped in this case. We achieve this by guessing a constant number of edges, which has
either the top-θ f1 lengths or top-θ f2 lengths in the optimal solution, using a suitably chosen
constant θ > 0. We are able to devise a bi-criteria approximation algorithm that violates
both budget constraints by any small constant ε-portion. The bi-criteria method is developed
in line with the multi-criteria approximation schemes in [20].

To fully avoid counting any served client multiple times, whenever we duplicate a facility
location, we make sure that only one copy induces non-zero lengths on edges that reside on
it. We also use a greedy algorithm to remove some facility locations in F1, F2 and form client
clusters around the remaining ones. Now, instead of defining ci as the number of clients that
facility location i can serve within distance R∗, we change ci to the number of clients that
are gathered around i. More specifically, for client set Ct and facility location set Ft, we find
a subset F ′t ⊂ Ft and a corresponding sub-partition {Ki}i∈F ′

t
of Ct (i.e., Kis are pair-wise

disjoint and their union is a subset of Ct), such that ∀j ∈ Ki, d(i, j) ≤ 3R∗ and we define
ci = |Ki| for i ∈ F ′t , ci = 0 for i ∈ Ft\F ′t . Using this method, every client is counted at most
once in all cis, hence its contribution to the total number is always at most 1. The same
filtering process can be found in [22]. See the full version of the paper for more details.

4 Future Directions

We list some interesting future directions and open problems.

1. It would be very interesting to remove the dependency of γ (the coefficient of movement
cost) and ε (the lower bound of the weight) from the approximation factor for Dynamic
Ordered k-Median in Theorem 10, or show such dependency is inevitable. We leave
it as an important open problem. We note that a constant approximation factor for
Dynamic Ordered k-Median without depending on γ would imply a constant approximation
for stochastic k-server, for which only a logarithmic-factor approximation algorithm is
known [15].

2. Our approximation algorithm for Dynamic Ordered k-Median is based on the technique
developed in Byrka et al. [7]. The original ordered k-median problem has subsequently
seen improved approximation results in [9, 10]. We did not try hard to optimize the
constant factors. Nevertheless, it is an interesting future direction to further improve the
constant approximation factors by leveraging the techniques from [9, 10] or other ideas.

3. From Theorem 13, we can see that Dynamic k-Supplier is hard to approximate when
T ≥ 3. However, it makes sense to relax the hard constraint B (we allow the distance a
facility can move be at most αB for some constant α).

It is possible to formulate other concrete problems that naturally fit into the dynamic
clustering theme and are well motivated by realistic applications, but not yet considered in
the paper. For example, one can use the k-median objective for the service cost and the
maximum distance of any facility movement as the movement cost. One can also consider
combining the cost in more general fashion like in [10], or extending the problems to the
fault-tolerant version [21, 28, 31] or the capacitated version [14, 29].
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