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Abstract

We introduced the notation of a set of prohibitions and give definitions

of a complete set and a crucial word with respect to a given set of prohi-

bitions. We consider 3 particular sets which appear in different areas of

mathematics and for each of them examine the length of a crucial word.

One of these sets is proved to be incomplete. The problem of determining

lengths of words that are free from a set of prohibitions is shown to be

NP-complete, although the related problem of whether or not a given set

of prohibitions is complete is known to be effectively solvable.

1 Introduction and Background

In defining or characterising sets of objects in discrete mathematics, ”languages
of prohibitions” are often used to define a class of objects by listing those pro-
hibited subobjects that are not contained in the objects of the class. To this end
the notion of a subobject is defined in different ways. The notion depends on
the set under consideration. These sets are subwords for partially bounded lan-
guages, subgraphs for families of graphs and so on. One of the classes of interest
that have appeared and are considered in different areas of mathematics is the
class of nonrecurrent symbolic sequences defined by prohibiting strong period-
icity in them, or, to be more exact, by prohibiting the repetition of subwords in
these symbolic sequences, for example of type XX .

In this paper we consider 3 types of ”prohibitions” connected with a gener-
alisation of the notion of nonrecurrent symbolic sequences, and for each of these
sets we consider the structure of crucial words and find their lengths. In Section
5 we investigate the problem of determining lengths of words that are free from
any given set of prohibitions. We show that this problem is NP-complete al-
though the related problem whether or not a given set of prohibitions is complete
is known to be effectively solvable.

Let A = {a1, . . . , an} be an alphabet of n letters. A word in the alphabet
A is a finite sequence of letters of the alphabet. Any i consecutive letters of a
word X generate a subword of length i. If X is a subword of a word Y , we write
X ⊆ Y .
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The set A∗ is the set of all the words in the alphabet A. Let S ⊆ A∗. Then
S is called a set of prohibited words or a set of prohibitions. A word that does
not contain any words from S as its subwords is said to be free from S. The set
of all words that are free from S is denoted by Ŝ.

Example 1. Let A = {a, b}. The set of prohibitions is S = {aa, ba}. The

word abbb is in Ŝ.

If there exists a k ∈ N such that the length of any word in Ŝ is less than k,
then S is called a complete set.

Example 2. A = {1, 2, 3, 4}. The set of prohibitions is

S = {123, 13, 14, 11, 22, 33, 44 }.

Then S is incomplete, since the word 124124 . . .124︸ ︷︷ ︸
3k

is in Ŝ for any k.

Example 3. A = {1, 2, 3}. The set of prohibitions is

S = {12, 23, 31, 32, 11, 22, 33}.

It is easy to check that S is complete.

A word X ∈ Ŝ is called a crucial word (with respect to S), if the word Xai
contains a prohibited subword for any letter ai ∈ A. This means that Xai
has the structure BBiai, where B is some word and Biai ∈ S. The subword
Bi is called the i-ending of crucial word X . If for each letter of the alphabet
we consider minimal i-ending (with respect to inclusion) we obtain a system of
included i-endings, which we will use to investigate crucial words.

Example 4. A = {a, b, c}. The set of prohibitions is S = {aa, cab, acac}.
The word abaca is crucial with respect to S.

A crucial word of minimal (maximal) length, if it exists, is called a minimal
(maximal) crucial word.

Example 5. A = {a, b, c}. The set of prohibitions is S = {aa, cab, acac}.
The word aca is a minimal crucial word with respect to S. There do not exist
any maximal crucial words, since the word b . . . b︸ ︷︷ ︸

k

aca is crucial for all k ∈ N.

Let Lmin(S) (Lmax(S)) denote of the length of a minimal (maximal) crucial
word with respect to S.

In this paper we consider three sets of prohibitions denoted Sn
1 , S

n
2 , S

n,k
3 .

Here we use n for indicating the number of letters of the alphabet under con-
sideration and k is a natural number.

We now give the definitions of these sets:
Sn
1 = {XX | X ∈ A∗}, that is, we prohibit the repetition of two equal

consecutive subwords.

2



Sn
2 = {XY | ν(X) = ν(Y )}, where ν(X) = (ν1(X), . . . , νn(X)) is the content

vector of X , in which νi(X) is the number of occurrences of the letter ai in X .
That is, we prohibit the repetition of two consecutive subwords of the same
content.

Sn,k
3 = {XY | d(X,Y ) ≤ k, |X | = |Y | ≥ k + 1, k ∈ N}, where d(X,Y ) is the

number of letters in which the words X and Y differ (Hamming metric) and |X |
is the length of the word X . That is we prohibit any two consecutive subwords
of the length greater then k such that the number of positions in which these
words differ is less then or equal to k.

The proofs of the theorems in this paper consist of the constructions of
extremal crucial words and of the proofs of their optimality, i. e. the lower
bound for Lmin(S) and the upper bound for Lmax(S).

2 The Set of Prohibitions Sn
1

Theorem 1. We have
Lmin(S

n
1 ) = 2n − 1.

Proof. We define a crucial word X by induction:

X1 = a1, Xi = Xi−1aiXi−1, X = Xn.

From this construction it follows that |X | = 2n − 1. We will prove that X
is a minimal crucial word with respect to Sn

1 .
Let U be an arbitrary minimal crucial word. We show that U coincides with

the word X up to a permutation of letters in A.
From the definition of a crucial word it follows that in the word Uai there is a

prohibited word of the form BiaiBiai, where Bi is a certain word and BiaiBiai
is the ending of the word Uai (the ending may coincide with Uai). In this case
the i-ending is the subword BiaiBi. Let ℓi = BiaiBi.

We assume that ℓ1 ⊂ ℓ2 ⊂ . . . ⊂ ℓn, since we can make such ordering
by permuting the letters of the alphabet, which obviously does not affect the
cruciality and minimality of a word.

Note that the minimal crucial word U has the form

U = BnanBn = BnanYna1,

where Yn is a certain word. Actually, if on the right of BnanBn there is a certain
word, then it contradicts the minimality of a crucial word, and if instead of a1
there stands ak (k > 1) then it contradicts ℓ1 ⊂ ℓk.

We show that ℓn−1 coincides with Bn. We have ℓn−1 = Bn−1an−1Bn−1 and
let anBn be a subword of ℓn−1. Now ℓn−1 has the form KanPan−1KanP , where
KanP = Bn−1), but then

ℓn = Pan−1KanPan−1KanP, where Pan−1KanP = Bn,
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and the word U contains the prohibited subword anPanP . This can not be the
case. It means that ℓn−1 is a subword of the word Bn, and the word U has the
form:

U = ℓn = Znℓn−1anZnℓn−1,

where Zn is a certain word. Since we explore a minimal crucial word, we have
Zn = ∅, and then Bn = ℓn−1. In the same way we can show that Bi = ℓi−1 for
each i = 2, . . . , n− 1 and B1 = ∅.

Hence the structure of a minimal crucial word U coincides with that of the
word X as required.

Remark 2. From the proof of Theorem 1 it follows that the word X is the
unique minimal crucial word to within a transposition of the letters of the
alphabet A.

3 The Set of Prohibitions Sn
2

Proposition 3. A minimal crucial (with respect to Sn
2 ) word can not have three

letters, each of which appears twice in the word.

Proof. Since the proposition is obviously true for |A| = 1, 2, 3, we will consider
the case |A| ≥ 4.

Let X be a minimal crucial word, and suppose the system of included i-
endings for it is ℓ1 ⊂ ℓ2 ⊂ . . . ⊂ ℓn = X . Suppose the letters ai1 , ai2 , ai3 occur
twice in X and that i1 < i2 < i3 < n (the fact that i1, i2, i3 do not equal n
follows from the fact that an must occur an odd number of times).

When we pass from ℓi3−1 to ℓi3 (ℓi3−1 is determined, since there are i1,
i2 < i3) there must appear a letter ai3 , and when we pass from ℓi3 to ℓi3+1 (ℓi3+1

is determined, since i3 < n) there must appear one more letter ai3 ; Hence, since
there are two letters ai3 in X , there are no letters ai3 for 2 < j < i3 in ℓj whence
there are no letters ai3 in the X to the left of ℓi2 (both letters ai3 lie to the left
respecting of ℓi2).

Obviously, the letter ai1 must be in ℓi1 . The second letter ai1 appears when
we pass from ℓi1 to ℓi2 . Since there are only two letters ai1 , there are no letters
ai1 in the word X to the left of ℓi2 .

If we write the letter ai3+1 to the right of the word X we obtain a prohibited
word (a word from Sn

2 ). Words from Sn
2 are divided into two parts which have

the same content. Obviously, the letters ai3 must be in different parts of the
prohibited word, and letters ai1 must be in different parts of the same word
which is impossible, since the letters ai3 lie strictly to the left of ai1 , and this
contradicts the assumption.

Remark 4. From the proof of proposition 1 we have that if letters ai and aj
occur twice in a word X (in which ℓ1 ⊂ ℓ2 ⊂ . . . ⊂ ℓn = X), then either i = j+1
or j = i+ 1.
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Theorem 5. For any n > 2 we have

Lmin(S
n
2 ) = 4n− 7.

Proof. Note that a natural approach to the construction of a crucial word is
possible. It consists of an algorithm of step-by-step optimisation: We ascribe to
a crucial word of an n-letter alphabet a minimum number of letters to obtain a
crucial word of an (n+ 1)-letter alphabet.

The algorithm can be written recursively in the following way:
Xn = Bn−1anBn−1

Bn−1 = Bn−3an−1Bn−3

B1 = a1, B2 = a2, B−1 = B0 = X0 = ∅.

Some initial values when implementing the algorithm are:

X1 = a1,
X2 = a1a2a1,
X3 = a2a3a1a2a1,
X4 = a1a3a1a4a2a3a1a2a1,
X5 = a2a4a2a5a1a3a1a4a2a3a1a2a1.

This is an algorithm by which the minimal crucial word Xn for the set of
prohibitions Sn

1 can be built. For Sn
2 such a construction gives an upper bound

of the form exp(n/2), or, to be more exact,

(3− (n mod 2))2⌊
n+1

2
⌋ − 3.

We now give an upper bound that is a linear function.
We introduce, as before, a system of included i-endings: ℓ1 ⊂ ℓ2 ⊂ . . . ⊂

ℓn (we permute the letters of the alphabet if it is necessary). We show that
the passage from ℓi−1 to ℓi is possible by adding only two symbols (letters of
alphabet A).

When we passed from ℓi−1 to ℓi let there appear symbols y and z. ℓi−1

may be denoted by AB, where A is a certain word, B consists of the letters
of the word A (which are somehow mixed) and B contains one letter ai−1 less
than A does. Let x be the last letter of the word A on the right. Then ℓi may
be denoted by yzKxB, where A = Kx. From the definition of ℓi we have the
equation

y ∪ z ∪K = B ∪ x ∪ ai.

which from the definition of K and B is equivalent to

2x ∪ ai = y ∪ z ∪ ai.

It follows necessarily that x = ai−1 and either y = ai−1, z = ai or y = ai, z =
ai−1. Suppose y = ai−1, z = ai.
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For example, we have the following crucial word for a 6-letter alphabet:

a4a5a3a4a2a3a1a2|a6a4a3a2a1a2a3a4a6,

(the vertical line was drawn for a more convenient visual perception of the word).
This word is crucial and its length is equal to 17.
We consider a case of an arbitrary n ≥ 3 defining the word W as

W = an−2an−1an−3an−2 . . . a1a2|anan−2an−3 . . . a2a1a2 . . . an−3an−2an.

Then |W | = 2(n− 2) + n− 1 + n− 2 = 4n− 7.
Let us verify that the word W is crucial.
If we write the letters a1, a2, an to the right of the word W we will obviously

have prohibited subwords. Let 2 < i < n. Then if we write the letters ai we
will have the prohibition

ai−1ai . . . a1a2anan−2 . . . ai|ai−1 . . . a2a1a2 . . . an−2anai,

since the composition vectors of the left and right subwords with respect to
the vertical line are equal.

Before proving that W ∈ Ŝn
2 we make the following remark.

In the word W we have ℓn ⊂ ℓ1 ⊂ . . . ⊂ ℓn−2 ⊂ ℓn−1. Substituting a1 for
an, a2 for a1, . . . , an for an−1 we obtain another word

U = an−1an . . . a2a3|a1an−1 . . . a3a2a3 . . . an−1a1,

for which ℓ1 ⊂ ℓ2 ⊂ . . . ⊂ ℓn.
In both cases (before and after substitution of letters of the alphabet) we

have the construction of a crucial word (which will be proved below) hence the
same upper bound of the length of a minimal crucial word.

For W it is more convenient to show further that W ∈ Ŝn
2 .

We rewrite W making in it the marks (1),(2), . . . ,(2n-4), which number the
gaps between letters of a word like this:

(2n− 4)an−2(2n− 5)an−1 . . . (2)a1(1)a2|anan−2 . . . a2a1a2 . . . an−2an.

In a possible prohibition we mark the left and right bounds. Note that the
length of a prohibition is an even number, and each letter must occur an even
number of times in a prohibition. The left bound of the prohibition must lie to
the right of the mark (2n-5), since the letter an−1 enters W once;

It must lie to the left of the mark (1), since to the right of the mark (1) there
is one letter a1.

Note that if m is even then (m) is not the left bound of the possible prohi-
bition. Actually in this case two variants are possible:

1) the prohibition does not cover the left letter an.
2) the prohibition covers the left letter an.
In the second case we have not a prohibition, since if the prohibition begins

from the even mark, then it can not cover the second an.
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In the first case the right bound of the prohibition lies to the left of an, hence
the letter am

2
+1 enters the prohibition only once.

Suppose the prohibition begins from the mark (m) and m is odd.
There are two possible cases.
1) The prohibition does not cover the left letter an (this case is impossible

since the letter a⌊m
2
⌋ occurs the prohibition once).

2) The prohibition covers the left an. Then it covers the right an too, and

the letter a⌊m
2
⌋ occurs an odd number of times in the prohibition. So W ∈ Ŝn

2

and hence Lmin(S
n
2 ) ≤ 4n− 7 for n > 2.

We give now a lower bound.
Since the length of a minimal crucial word must be odd, and the passage

from ℓi to ℓi+1 requires at least two letters, we have that a trivial lower bound
of the length of a minimal crucial word is 2n− 1.

Let us now improve the lower bound. Obviously a minimal crucial word in
which ℓ1 ⊂ ℓ2 ⊂ . . . ⊂ ℓn has an even number of occurrences of the letter ai for
i = 1, . . . , n− 1 and an odd number of occurrences of the letter an. The word
U has two letters a1, two letters a2, one letter an and four of any other letter.
From proposition 3 we know that there does not exist a crucial word that has
the fewer number of letters, hence the word U gives us the lower bound of the
length of a minimal crucial word.

4 The Set of Prohibitions S
n,k
3

Theorem 6. We have
Lmin(S

n,k
3 ) = 2k + 1.

Proof. For the set of prohibitions Sn,k
3 we must have |A| = |B| ≥ k + 1, where

AB is an arbitrary prohibition. So we have

Lmin(S
n,k
3 ) ≥ 2k + 1.

An upper bound is given by the construction p1p2 . . . pkxp1p2 . . . pk, where
x, pi ∈ A, i = 1, . . . , k and x 6= pi.

Remark 7. The crucial word with respect to S1,k
3 is unique and its length is

2k + 1.

Theorem 8. We have
Lmax(S

2,k
3 ) = 3k + 3.

Proof. Let

ā =

{
1, if a = 2,
2, if a = 1.
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Moreover, let us consider an arbitrary crucial word A, with respect to S2,k
3 ,

of length greater then 3k + 3. It is easy to see that if a1a2 . . . ak+1 are the first
k+1 letters of A then the next k+1 letters of A must be ā1ā2 . . . āk+1, because
otherwise the first 2k + 2 letters of A will form a prohibited subword. By the
same argument, we can show that

A = a1a2 . . . ak+1ā1ā2 . . . āk+1a1a2 . . . ak+1ā1 . . . .

Let us consider the subwords Ai of A of the length 2k + 4 which start from
the ith letter, where 1 ≤ i ≤ k:

Ai = aiai+1 . . . ak+1ā1 . . . āi︸ ︷︷ ︸
k+2

āi+1 . . . āk+1a1 . . . ai+1︸ ︷︷ ︸
k+2

If ai = āi+1 then the underbraced subwords of Ai are the same in the first and
in the last positions, so they differ in at most k positions, hence Ai is prohibited.
So we must have ai = ai+1 for i = 1, . . . , k.

Without loss of generality we can assume that a1 = 1, so

A = 11 . . .1︸ ︷︷ ︸
k+1

22 . . . 2︸ ︷︷ ︸
k+1

11 . . . 1︸ ︷︷ ︸
k+1

2 . . . .

It is easy to see that if the length of A is greater then 3k + 3 then A has a
prohibited subword of length 2k + 4:

A = 11 . . . 1︸ ︷︷ ︸
k

︷ ︸︸ ︷
1 22 . . .2︸ ︷︷ ︸

k+1

︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸

k+1

2 2 . . . .

(here and then two braces above an word show us a disposition of a prohibited
subword and, in particular, a disposition of parts of this subword that correspond
to X and Y from the definition of the set of prohibitions Sn,k

3 ).

So Lmax(S
2,k
3 ) ≤ 3k + 3.

To prove the theorem it is sufficient to check that there are no prohibited
subwords in the word A = 11 . . .1︸ ︷︷ ︸

k+1

22 . . .2︸ ︷︷ ︸
k+1

11 . . .1︸ ︷︷ ︸
k+1

.

Obviously the left end of a possible prohibition can be only in the left block
1 . . . 1︸ ︷︷ ︸
k+1

:

︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

j

2 . . . 2︸ ︷︷ ︸
i

︷ ︸︸ ︷
2 . . . 2︸ ︷︷ ︸
k−i+1

1 . . . 1︸ ︷︷ ︸
2i+j−k−1

with

j + i ≥ k + 1 (1)

Two cases are possible:
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1. j ≥ k − i+ 1

2. j < k − i+ 1

In the first case there is non-coincidence between the left and right parts
of the prohibition in the first k − i + 1 letters and in the last i letters that is
non-coincidence in k + 1 letters. So this case is impossible.

In the second case we have non-coincidence in the first j letters and in the
last 2i + j − k − 1 letters. Hence we have non-coincidence in 2(i + j) − k − 1
letters, that according to (1) is greater than or equal to k + 1.

It follows that the word 1 . . . 1︸ ︷︷ ︸
k+1

2 . . . 2︸ ︷︷ ︸
k+1

1 . . . 1︸ ︷︷ ︸
k+1

does not contain a prohibition

and thus the theorem is proved.

Theorem 9 (Incompleteness). The set of prohibitions Sn,k
3 for n ≥ 3 is in-

complete.

Proof. Since the alphabet A is finite, there is no trivial solution of the problem
(such as taking all letters of A and obtaining an infinite sequence with the

properties needed). So to prove the incompleteness of the set Sn,k
3 we have to

show the existence of an infinite word which is free from the set of prohibitions
Sn,k
3 .
We consider the case n = 3 and the alphabet A = {1, 2, 3}, since the incom-

pleteness of the set of prohibitions Sn,k
3 for the case n > 3 will follow from the

incompleteness of the set of prohibitions for the case n = 3.
Let B = {a, b, c} be an alphabet. B∗ is the set of all words of the alphabetB.
We define the mapping f as follows:

1 . . . 1︸ ︷︷ ︸
k+1

→ a, 2 . . . 2︸ ︷︷ ︸
k+1

→ b, 3 . . . 3︸ ︷︷ ︸
k+1

→ c.

The domain of the mapping f is the set of words of the alphabet

C = { 1 . . . 1︸ ︷︷ ︸
k+1

, 2 . . . 2︸ ︷︷ ︸
k+1

, 3 . . . 3︸ ︷︷ ︸
k+1

}.

The image of the mapping f is the set B∗.
Let the set of prohibitions S′ = {XX |X ∈ B∗}. Obviously, the set S′

coincides with the set Sn
2 whenever A = B.

It is known [1] that for the alphabet B there exists the infinite sequence
L′ which is free from the set of prohibitions S′. L′ is built by iteration of
morphisms:

a → abc

b → ac

c → b

9



The morphism iteration procedure is as follows.
We start from the letter a. Then we substitute this letter with abc. Then

we substitute each letter in abc by the rule above. We obtain after this step
abcacb. And so on. Executing this procedure an infinite number of times gives
us the sequence L′.

Let us prove that the sequence L = f−1(L′) does not contain words prohib-

ited by S3,k
3 .

We are going to prove the statement by considering L and all possible dis-
positions of words prohibited by S3,k

3 .
The sequence L is built up from the letters of the alphabet C or in other

words from the blocks x . . . x︸ ︷︷ ︸
k+1

, where x ∈ {1, 2, 3}. It means that there are only

three different cases for a disposition of a possible prohibition in L.

Case 1.
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k+1

. . . y . . . y︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

. . . t . . . t︸ ︷︷ ︸
k+1

;

Case 2. x . . . x︸ ︷︷ ︸
i

︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

. . . y . . . y︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

. . . t . . . t︸ ︷︷ ︸
k−i+1

t . . . t︸ ︷︷ ︸
i

, where 0 < i < k + 1;

Case 3. x . . . x︸ ︷︷ ︸
i

︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

. . . y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

. . . t . . . t︸ ︷︷ ︸
k−j+1

t . . . t︸ ︷︷ ︸
j

, where 0 ≤ i, j, l ≤

k + 1.
Now we will consider these cases and show that each of them is impossible.
Case 1. Let P denote the prohibited subword (prohibition) under consid-

eration, R and L denote the right and the left parts of P respectively.
It is obvious that L and R have the same number of blocks. Moreover, the

ith block of L (from the left to the right) is equal to the ith block of R, because
otherwise we have non-coincidence of L and R in at least k + 1 letters which
contradicts the fact that P ∈ S3,k

3 . So we have that P = WW for someW ∈ C∗.
Now, f(P) = f(W )f(W ) is a subword of L′. But f(W )f(W ) ∈ S′ which is

impossible by the properties of L′. So Case 1 is impossible.
We note that an important consequence of Case 1 is the following. If

x . . . x︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
k+1

is a subword of L then x 6= y.

Case 2. If there are no letters between x . . . x︸ ︷︷ ︸
k+1

and y . . . y︸ ︷︷ ︸
k+1

, that is

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

y . . . y︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

t . . . t︸ ︷︷ ︸
k−i+1

,

then we must have x = z, because otherwise we have x 6= z and y 6= z which
gives us that L and R differ in the first k + 1 positions, but this contradicts
P ∈ S3,k

3 .
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By the same argument we have y = t, so

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

y . . . y︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
k−i+1

.

But if we consider now f(L) = L′ then it has

P′ =
︷ ︸︸ ︷
f(x . . . x︸ ︷︷ ︸

k+1

)f(y . . . y︸ ︷︷ ︸
k+1

)
︷ ︸︸ ︷
f(x . . . x︸ ︷︷ ︸

k+1

)f(y . . . y︸ ︷︷ ︸
k+1

) .

as a subword, which is impossible since P′ ∈ S′.
So there is some non-empty subword in L between x . . . x︸ ︷︷ ︸

k+1

and y . . . y︸ ︷︷ ︸
k+1

, and P

can be written as

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

x1 . . . x1︸ ︷︷ ︸
k+1

. . . xp . . . xp︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

z1 . . . z1︸ ︷︷ ︸
k+1

. . . zp . . . zp︸ ︷︷ ︸
k+1

t . . . t︸ ︷︷ ︸
k−i+1

.

There are two possible subcases here.
1. x = z.
Since x 6= x1 we have x1 6= z. If x1 6= z1 then L and R differ in k+1 position

starting from the (k − i+ 2)th position, which is impossible since P ∈ S3,k
3 . So

x1 = z1.
In the same way, for each of x2, x3, . . . xp, y, we can obtain that

P =
︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k−i+1

z1 . . . z1︸ ︷︷ ︸
k+1

. . . zp . . . zp︸ ︷︷ ︸
k+1

t . . . t︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

z1 . . . z1︸ ︷︷ ︸
k+1

. . . zp . . . zp︸ ︷︷ ︸
k+1

t . . . t︸ ︷︷ ︸
k−i+1

which leads us to the fact that L has a subword WW for some W ∈ C∗,
hence L′ has a subword f(W )f(W ) which is impossible.

So the subcase 1 is impossible.
2. x 6= z.
If x1 6= z then L and R differ in k+1 position starting from the first position,

which is impossible since P ∈ S3,k
3 . So x1 = z.

If x2 6= z1 then L and R differ in k + 1 position starting from the (k + 2)th
position, what is impossible by the same arguments as above. So x2 = z1. And
so on.

We have

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

z . . . z︸ ︷︷ ︸
k+1

z1 . . . z1︸ ︷︷ ︸
k+1

. . . zp . . . zp︸ ︷︷ ︸
k+1

︷ ︸︸ ︷
z . . . z︸ ︷︷ ︸
k+1

z1 . . . z1︸ ︷︷ ︸
k+1

. . . zp . . . zp︸ ︷︷ ︸
k+1

t . . . t︸ ︷︷ ︸
k−i+1

.

Applying f to L gives us a subword P′ of L′,

P′ =
︷ ︸︸ ︷
f(z . . . z︸ ︷︷ ︸

k+1

)f(z1 . . . z1︸ ︷︷ ︸
k+1

) . . . f(zp . . . zp︸ ︷︷ ︸
k+1

)
︷ ︸︸ ︷
f(z . . . z︸ ︷︷ ︸

k+1

)f(z1 . . . z1︸ ︷︷ ︸
k+1

) . . . f(zp . . . zp︸ ︷︷ ︸
k+1

),
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which is prohibited in L′ by S′.
We have got that subcase 2 is impossible and hence Case 2 is impossible.
Case 3. We can assume that ℓ 6= 0 and ℓ 6= k + 1, because otherwise we

deal with either Case 1 or Case 2 which are impossible.
We suppose that i ≥ ℓ (the case i < ℓ can be considered in the same way).
If there are no letters between y . . . y︸ ︷︷ ︸

k−ℓ+1

and t . . . t︸ ︷︷ ︸
k−j+1

, then we have either

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

t . . . t︸ ︷︷ ︸
k−j+1

or

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

z . . . z︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

t . . . t︸ ︷︷ ︸
k−j+1

.

In the first of these cases we have that x 6= y and y 6= t which gives us
that L and R have non-coincidence in at least k+1 letters, but this contradicts
P ∈ S3,k

3 .
In the second case we must have z = t, because otherwise since z 6= y and

t 6= y, L and R have non-coincidence in the last k+1 letters which is impossible.
So in the second case we have

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

t . . . t︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

t . . . t︸ ︷︷ ︸
k−j+1

.

If x 6= y then L and R have non-coincidence in the first k − ℓ + 1 positions
and in the last ℓ positions, that is they have non-coincidence in at least k + 1
positions which is impossible. So x = y.

Now applying f to L gives us that L′ has a subword

P′ =
︷ ︸︸ ︷
f(x . . . x︸ ︷︷ ︸

k+1

)f(t . . . t︸ ︷︷ ︸
k+1

)
︷ ︸︸ ︷
f(x . . . x︸ ︷︷ ︸

k+1

)f(t . . . t︸ ︷︷ ︸
k+1

)

which is impossible.
So there is some non-empty subword in R between y . . . y︸ ︷︷ ︸

k−ℓ+1

and t . . . t︸ ︷︷ ︸
k−j+1

, and P

can be written in the form

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

L1 . . . Lp y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k−j+1

,

where Ls, Rm ∈ C, for 1 ≤ s ≤ p, 1 ≤ m ≤ p′, and either p = p′ or p = p′ + 1.
We define △(Ls) = xs if Ls = xs . . . xs︸ ︷︷ ︸

k+1

. In the same way we define △(Rm).

Now we have that either p = p′ or p = p′ + 1. Each of these cases has two
possible subcases: either x = y or x 6= y. Let us consider the case p = p′ + 1.

12



The other case can be considered by similar reasoning. Thus we must consider
the following subcases a) and b):

a) x = y; It must be that L1 = R1, because otherwise L and R differ in
k + 1 positions starting from the (k − i + 2)th position. Then we consider one
by one L2, L3, . . . ,Lp. One can see that in this subcase

P =
︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−i+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k−j+1

,

and L has WW as a subword, where W = y . . . y︸ ︷︷ ︸
k+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k+1

which is im-

possible.
b) x 6= y; There are two special subcases here, namely either △(L1) = y

or L1 = R1.
If △(L1) = y then

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

y . . . y︸ ︷︷ ︸
k+1

R1 . . . Rp′ y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k−j+1

,

and L has WW as a subword, where W = y . . . y︸ ︷︷ ︸
k+1

R1 . . . Rp′ which is impossible.

So L1 = R1. In this case we have

P =
︷ ︸︸ ︷
x . . . x︸ ︷︷ ︸
k−i+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k+1

y . . . y︸ ︷︷ ︸
ℓ

︷ ︸︸ ︷
y . . . y︸ ︷︷ ︸
k−ℓ+1

R1 . . . Rp′ t . . . t︸ ︷︷ ︸
k−j+1

.

Since y 6= x, y 6= △(R1) and y 6= t, L and R have non-coincidence in the
first k− l+1 positions and in the last l positions, so they have non-coincidence
in k + 1 positions which contradicts P ∈ S3,k

3 .
We have got that Case 3 is impossible.
We have proved that the infinite word L contains no word from the set S3,k

3

as a subword, therefore Sn,k
3 is incomplete for n ≥ 3.

5 The Complexity of Problems on Complete-

ness of Sets of Words

It is known [3, 4] that the complexity of deciding whether or not an arbitrary
set of prohibited words S is complete (or blocking) is O(|S| · n), where n is the
greatest length of a word in S.

It is interesting in its own right to be able to effectively (in polynomial
time) recognise whether a set is complete, but also to give a more detailed

characterisation of the set of words Ŝ, in particular to find the greatest length
of a word that is free from S. The set An is the set of all the words in the
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alphabet A whose length is equal to n. If S ⊆ An and L(n) = max
S

L(Ŝ), where

L(Ŝ) is the greatest length of a word that is free from S, then [3] we have

L(n) = |A|n−1
+ n− 2 = C(n) + n− 1.

Here C(n) is the greatest length of a single path in the de Bruijn graph of
order n that has no chords and does not go through the vertices with loops
corresponding to the constant words (x, . . . , x) where x ∈ A.

One can find all words that are free from S, in particular all crucial words,
simply by considering all words of length less than or equal to L(Ŝ) and checking
for each word, if it is free from S. Such an algorithm is not effective since it can
require considering |A|L(n) words.

The question of deciding the possible lengths of words that are free from S,
in particular of crucial words, can be formulated as a problem of recognising
properties of “languages of prohibitions” in the terminology of the theory of
NP-completeness [6].

Problem A:
Given: An arbitrary set of words S and a natural number ℓ.
The question: Does there exist a word of length at least ℓ that is free from

S?
In order to compare, we formulate the problem of completeness of a set of

words S in the same form.
Problem B:
Given: An arbitrary set of words S in an alphabet A.
The question: Does there exist ℓ ∈ N such that |X | ≤ ℓ for any word X that

is free from S?
Considering problems A and B as problems of recognising properties of finite

sets S, we observe that problem B is a question of existence of a bound on the
length of the words that are free from S. This problem, as we have already
mentioned, can be solved effectively with complexity of order |S| · n. In the
same time the problem A is a question of determining of this bound. We will
show that problem A, as opposed to problem B, is NP-complete.

The research on the problems of completeness of sets of words and languages
of prohibited subwords was begun by different authors [1, 3, 4, 5, 7, 9] in the
1970s. The interest in the general question in this area arose from considerations
of different types of special problems, in particular, in coding theory, combina-
torics of symbolic sequences, number theory and problems of Ramsey type (for
instance the arithmetic progressions in partitions of the natural row). For al-
gebraic problems it is more typical to study avoidance of infinite sets S that
are defined by prohibitions of words (called terms) in an alphabet of variables
that can themselves be words [1, 9]. Different problems on sequences without
repetitions, under variation the concept of “strong” or “weak” repetition of sub-
words, are the typical examples of problems of this class. Finally we observe
that problems A and B for infinite sets S do not make sense if one does not
consider particular constructive methods for generating a set S.
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Let A = {a1, . . . , an} be an alphabet and Aℓ be the set of all those words
on the alphabet A whose length is less than or equal to ℓ. We assume also
that the empty word belongs to Aℓ and that S1 is an arbitrary set such that
S1 ⊆ A2 \A1. We define S2 by

S2 = {xXx| x ∈ A, X ∈ An−1}.

So the set S2 contains all possible words of length less than or equal to n+1
whose first letter coincides with their last letter. Suppose S = S1 ∪ S2.

We now consider an “auxiliary” problem A′.
Problem A′:
Given: A set S of the type described above and a natural number ℓ, ℓ ≤ n.
The question: Does there exist a word of length at least ℓ that is free from

S?
In case of the problem A′, the restriction on ℓ is natural, because any word

free from S is free from S2 and therefore consists of different letters of the
alphabet, whence its length is less than or equal to n.

Checking whether a given word of length ℓ (a solution of A′ that we “guessed”)
is free from S can be done in polynomial time. Indeed, the freeness from S2 of
the word is equivalent to the absence of identical letters in the word (which can
be checked in linear time) and the freeness from S1 is recognised by considering
all subwords of length 2 (there are ℓ − 1 such subwords) and by checking for
each of them whether it belongs to S1 (polynomial checking time).

We now introduce the problem of “the longest path in a graph”, which is
known to be NP-complete (see [6]).

Problem “path”:
Given: A directed graph ~G(V,E) and a natural number ℓ, ℓ ≤ |V | = n.
The question: Does there exist a simple directed path (without self-intersections

in vertices) of length at least ℓ?
One can obtain a correspondence between problem A′ and problem “path”

as follows. We compare vertices v1, . . . , vn from V (~G) to the letters a1, . . . , an
in the alphabet A. Also we compare each edge ~vivj from E(~G) to the word aiaj .
We form the set S1 from all such words of A2 that correspond to the edges of
the graph that is the complement of ~G with respect to the complete directed
graph.

Now to any oriented simple path vi1 , . . . , viℓ of length ℓ in ~G there corre-
sponds the word ai1 . . . aiℓ of length ℓ, consecutive letters of which correspond
to vertices in the order in which the path passed through them. This word is
free from S1 because aijaij+1

6∈ S1 for any i = 1, 2, . . . , ℓ − 1. The word is free
from the set S2 as well because in the path there is no repetition of vertices (a
property of a simple path) and therefore ai1 . . . aiℓ does not contain a subword
of the form aiXai for any word X and any letter ai ∈ A.

Conversely, to any word in the alphabet A that is free from S there corre-
sponds a path in ~G(V,E) that goes through edges from E(~G) since the word is
free from S1 and that is not self-intersected since the word is free from S2.

Now NP-completeness of problem A′ and the more general problem A follows
from NP-completeness of the problem “path”.
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