FINITE FORM OF THE QUINTUPLE PRODUCT IDENTITY

WILLIAM Y. C. CHEN - WENCHANG CHU - NANCY S. S. GU

Center for Combinatorics: LPMC
Nankai University, Tianjin 300071
People's Republic of China

Abstract

The celebrated quintuple product identity follows surprisingly from an almost-trivial algebraic identity, which is the limiting case of the terminating q-Dixon formula.

The celebrated quintuple product identity discovered by Watson [3] (cf. [2, P 147] also) states that

$$
\begin{equation*}
\sum_{k=-\infty}^{+\infty}\left(1-x q^{k}\right) q^{3\binom{k}{2}}\left(q x^{3}\right)^{k}=[q, x, q / x ; q]_{\infty}\left[q x^{2}, q / x^{2} ; q^{2}\right]_{\infty} \quad \text { for } \quad|q|<1 \tag{1}
\end{equation*}
$$

where the q-shifted factorial is defined by

$$
(x ; q)_{0}=1 \quad \text { and } \quad(x ; q)_{n}=(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right) \quad \text { for } \quad n=1,2, \cdots
$$

with the following abbreviated multiple parameter notation

$$
[\alpha, \beta, \cdots, \gamma ; q]_{\infty}=(\alpha ; q)_{\infty}(\beta ; q)_{\infty} \cdots(\gamma ; q)_{\infty}
$$

This identity has several important applications in combinatorial analysis, number theory and special functions. For the historical note, we refer the reader to the paper [1]. In this short note, we shall show that identity (1) follows surprisingly from the following algebraic identity.

Theorem (Finite form of the quintuple product identity). For a natural number m and a variable x, there holds an algebraic identity:

$$
1 \equiv \sum_{k=0}^{m}\left(1+x q^{k}\right)\left[\begin{array}{c}
m \tag{2}\\
k
\end{array}\right] \frac{(x ; q)_{m+1}}{\left(q^{k} x^{2} ; q\right)_{m+1}} x^{k} q^{k^{2}}
$$

In fact, performing parameter replacements $m \rightarrow m+n, x \rightarrow-q^{-m} x$ and $k \rightarrow k+m$ and then simplifying the result through factorial-fraction relation

$$
\begin{aligned}
& \frac{\left(-q^{-m} x ; q\right)_{m+n+1}}{\left(q^{k-m} x^{2} ; q\right)_{m+n+1}}=\frac{\left(-q^{-m} x ; q\right)_{m}(-x ; q)_{1+n}}{\left(q^{k-m} x^{2} ; q\right)_{m-k}\left(x^{2} ; q\right)_{1+n+k}} \\
= & (-1)^{m-k} q^{\binom{k}{2}-m k} x^{2 k-m} \times \frac{(-q / x ; q)_{m}(-x ; q)_{1+n}}{\left(q / x^{2} ; q\right)_{m-k}\left(x^{2} ; q\right)_{1+n+k}}
\end{aligned}
$$

we may restate the algebraic identity displayed in the theorem as the finite bilateral series identity

$$
1 \equiv \sum_{k=-m}^{n}\left(1-x q^{k}\right)\left[\begin{array}{c}
m+n \tag{3}\\
m+k
\end{array}\right] \frac{(-x ; q)_{1+n}(-q / x ; q)_{m}}{\left(x^{2} ; q\right)_{1+n+k}\left(q / x^{2} ; q\right)_{m-k}} x^{3 k} q^{k^{2}+\binom{k}{2}}
$$

Letting $m, n \rightarrow \infty$ in this equation and applying the relation

$$
(q ; q)_{\infty} \frac{\left(x^{2} ; q\right)_{\infty}\left(q / x^{2} ; q\right)_{\infty}}{(-x ; q)_{\infty}(-q / x ; q)_{\infty}}=[q, x, q / x ; q]_{\infty}\left[q x^{2}, q / x^{2} ; q^{2}\right]_{\infty}
$$

we derive immediately the quintuple product identity displayed in (1).
In terms of basic hypergeometric series, we remark that the finite sum identity (2) is just the limiting case $M \rightarrow \infty$ of the terminating q-Dixon formula (cf. [2, II-14]):

$$
{ }_{4} \phi_{3}\left[\left.\begin{array}{cc}
x^{2}, & -q x, \\
-x, q^{1+m}, & x^{-m}, q x^{2} / M
\end{array} \right\rvert\, q ; \frac{q^{1+m} x}{M}\right]=\frac{\left(q x^{2} ; q\right)_{m}(q x / M ; q)_{m}}{(q x ; q)_{m}\left(q x^{2} / M ; q\right)_{m}} .
$$

References

[1] L. Carlitz - M. V. Subbarao, A simple proof of the quintuple product identity, Proc. Amer. Math. Society 32:1 (1972), 42-44.
[2] G. Gasper - M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, 2004.
[3] G. N. Watson, Theorems stated by Ramanujan VII: Theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48.

Acknowledgement: This work was done under the auspices of the "973" Project on Mathematical Mechanization, the National Science Foundation, the Ministry of Education, and the Ministry of Science and Technology of China.

