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Abstract

We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite
function — proving a conjecture of Guttmann and Enting [7, 8]. This result is also generalised
to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in
an earlier paper [17], we are also able to prove the form of thecoefficients of the anisotropic
generating function, which was first conjectured in [8].

1 Introduction

Figure 1: A square lattice bond animal (left) and a self-avoiding polygon (right).

Lattice models of magnets and polymers in statistical physics lead naturally to questions about
the combinatorial objects that form their basis —lattice animals. Despite intensive study these
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objects, and the lattice models from which they arise, have tenaciously resisted rigorous analysis
and much of what we know is the result of numerical studies and“not entirely rigorous” results
from conformal field theory.

Recently, Guttmann and Enting [7, 8] suggested a numerical procedure for testing the “solv-
ability” of lattice models based on the study of the singularities of theiranisotropic generating
functions. The application of this test provides compelling evidencethat the solutions of many
of these models do not lie inside the class of functions that includes the most common functions
of mathematical physics, namelydifferentiably-finiteor D-finite functions (defined below). The
main result of this paper is to sharpen this numerical evidence into proof for a particular model —
self-avoiding polygons.

Let us now define some of the terms we have used above. Abond animalis a connected union
of edges, orbonds, on the square lattice. The set,P , of square latticeself-avoiding polygons, or
SAPs, is the set of all bond animals in which every vertex has degree 2. Equivalently it is the set
of all bond animals that are the embeddings of a simple closedloop into the square lattice (see
Figure 1). Self-avoiding polygons were introduced in 1956 by Temperley [19] in work on lattice
models of the phase transitions of magnets and polymers. Notonly is this problem of considerable
interest in statistical mechanics, but is an interesting combinatorial problem in its own right. See
[9, 15] for reviews of this topic.

While the model was introduced nearly 60 years ago, little progress has been made towards
either an explicit, or useful implicit, solution. To date, only subclasses of polygons have been
solved and all of these have quite strong convexity conditions which render the problem tractable
(see [2, 19] for example).

We wish to enumerate SAPs according to the number of bonds they contain; since this number
is always even it is customary to count theirhalf-perimeterwhich is half the number of bonds. The
generating function of these objects is then

P(x) = ∑
P∈P

x|P|, (1)

where|P| denotes the half-perimeter of the polygonP.
To form the theanisotropicgenerating function we distinguish between vertical and horizontal

bonds, and so count according to the vertical and horizontalhalf-perimeters. This generating
function is then

P(x,y) = ∑
P∈P

x|P|⇔y|P|m, (2)

where|P|⇔ and|P|m respectively denote the horizontal and vertical half-perimeters ofP. By par-
titioning P according to the vertical half-perimeter we may rewrite theabove generating function
as

P(x,y) = ∑
n≥1

yn ∑
P∈Pn

x|P|⇔ = ∑
n≥1

Hn(x)y
n, (3)

wherePn is the set of SAPs with 2n vertical bonds, andHn(x) is its horizontal half-perimeter
generating function.

The anisotropic generating function is arguably a more manageable object than the isotropic.
By splitting the set of polygons into separate simpler subsets,Pn, we obtain smaller pieces which
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is easier to study than the whole. If one seeks to compute or even just understand theisotropic
generating function then one must somehow examineall possible configurations that can occur in
P ; this is perhaps the reason that only families of bond animals with severe topological restrictions
have been solved (such as column-convex polygons). On the other hand, if we examine the gen-
erating function ofPn, then the number of different configurations that can occur is always finite.
For example, ifn = 1 all configurations are rectangles, forn = 2 all configurations are vertically
andhorizontally convex and forn= 3 all configurations are verticallyor horizontally convex. The
anisotropy allows one to study the effect that these configurations have on the generating function
in a more controlled manner.

In a similar way, the anisotropic generating function is broken up into separate simpler pieces,
Hn(x), that can be calculated exactly for smalln. By studying the properties of these coefficients,
rather than the whole (possibly unknown) isotropic generating function, we can obtain some idea
of the properties of the generating function as a whole.

In many cases generating functions (and other formal power series) satisfy simple linear differ-
ential equations; an important subclass of such series aredifferentiably finitepower series; a formal
power series inn variables,F(x1, . . . ,xn) with complex coefficients is said to bedifferentiably finite
if for each variablexi there exists a non-trivial differential equation:

Pd(x)
∂d

∂xd
i

F(x)+ . . .P1(x)
∂

∂xi
F(x)+ · · ·+P0(x)F(x) = 0, (4)

with Pj a polynomial in(x1, . . . ,xn) with complex coefficients [14].
While no solution is known forP(x,y), and certainly no equation of the form of equation (4),

the first few coefficients ofy may expanded numerically [10] and the following propertieswere
observed (up to the coefficient ofy14):

• Hn(x) is a rational function ofx,

• the degree of the numerator ofHn(x) is equal to the degree of its denominator.

• the first few denominators ofHn(x) (we denote themDn(x)) are:

D1(x) = (1−x)

D2(x) = (1−x)3

D3(x) = (1−x)5

D4(x) = (1−x)7

D5(x) = (1−x)9(1+x)2

D6(x) = (1−x)11(1+x)4

D7(x) = (1−x)13(1+x)6(1+x+x2)

D8(x) = (1−x)15(1+x)8(1+x+x2)3

D9(x) = (1−x)17(1+x)10(1+x+x2)5

D10(x) = (1−x)19(1+x)12(1+x+x2)7(1+x2).
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Similar observations have been made for a large number of solved and unsolved lattice models [7]
and it was noted that forsolvedmodels the denominators appear to only contain a small and fixed
number of different factors, while forunsolvedmodels the number of different factors appears
to increase withn. Guttmann and Enting suggested that this pattern of increasing number of
denominator factors was the hallmark of an unsolvable problem, and that it could be used as a test
of solvability.

In [17] we developed techniques to prove these observationsfor many families of bond animals.
In particular, for families of animals that aredense(a term we will define in the next Section), we
have the following Theorem (slightly restated for SAPs):

Theorem 1 (from [17]). If G(x,y) = ∑n≥0Hn(x)yn is the anisotropic generating function of some
dense family of polygons,P , then

• Hn(x) is a rational function,

• the degree of the numerator of Hn(x) cannot be greater than the degree of its denominator,
and

• the denominator of Hn(x) is a product of cyclotomic polynomials.

Remark. We remind the reader that thecyclotomic polynomials, Ψk(x), are the factors of the
polynomials(1−xn). More precisely(1−xn) = ∏k|nΨk(x).

In Section 2, we quickly review theharuspicytechniques developed in [17] and use them
to find a multiplicative upper boundBn(x) on the denominatorDn(x). Ie we find a sequence of
polynomialsBn(x) such that they are always divisible byDn(x).

In Section 3, we further refine this result to prove that thatD3k−2(x) contains exactly one factor
of Ψk(x) (for k 6= 2). This implies that the singularities of the functionsHn(x) form a dense set in
the complex plane. Consequently, the generating functionP(x,y) is not differentiably finite — as
predicted by the Guttmann and Enting solvability test. Thisresult is then extended to self-avoiding
polygons on hypercubic lattices.

2 Denominator Bounds

2.1 Haruspicy

The techniques developed in [17] allow us to determine properties of the coefficients,Hn(x),
whether or not they are known in some nice form. The basic ideais to reduce or squash the
set of animals down onto some sort of minimal set, and then various properties of the coefficients
may be inferred by examining the bond configurations of thoseminimal animals. We refer to this
approach asharuspicy; the word refers to techniques of divination based on the examination of the
forms and shapes of the organs of animals.

We start by describing how to cut up polygons so that they may be reduced or squashed in a
consistent way.
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1-section

section line

section line

page

Figure 2:Section lines(the heavy dashed lines in the left-hand figure) split the polygon intopages
(as shown on the right-hand figure). Each column in a page is asection. This polygon is split into
3 pages, each containing 2 sections; a 1-section is highlighted. 10 vertical bonds lie between pages
and 4 vertical bonds lie within the pages.

Definition 2. Draw horizontal lines from the extreme left and the extreme right of the lattice
towards the animal so that the lines run through the middle ofeach lattice cell. These lines are
calledsection lines. The lines are terminated when they first touch (ie are obstructed by) a vertical
bond (see Figure 2).

Cut the lattice along each section line from infinity until itterminates at a vertical bond. Then
from this vertical bond cut vertically in both directions until another section line is reached. In this
way the polygon (and the lattice) is split intopages(see Figure 2); we consider the vertical bonds
along these vertical cuts to liebetweenpages, while the other vertical bonds liewithin the pages.

We call asectionthe set of horizontal bonds within a single column of a given page. Equiva-
lently, it is the set of horizontal bonds of a column of an animal between two neighbouring section
lines. A section with 2k horizontal bonds is ak-section. The number ofk-sections in a polygon,P,
is denoted byσk(P).

The polygon has now been divided up into smaller units, whichwe have called sections. In
some sense many of these sections are superfluous and are not needed to encode its “shape” (in
some loose sense of the word). More specifically, if there aretwo neighbouring sections that are
the same, then we can reduce the polygon by removing one of them, while leaving the polygon
with essentially the same shape.

Definition 3. We say that a section is aduplicate sectionif the section immediately on its left
(without loss of generality) is identical (see Figure 3).

One can reduce polygons bydeletionof duplicate sections by slicing the polygon on either side
of the duplicate section, removing it and then recombining the polygon, as illustrated in Figure 3.
By reversing the section-deletion process we defineduplicationof a section.
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We say that a set of polygons,P , is denseif the set is closed under section deletion and dupli-
cation.Ie no polygon outside the set can be produced by section deletion and / or duplication from
a polygon inside the set.

duplicate sections

Figure 3: The process of section deletion. The two indicatedsections are identical. Slice either side
of the duplicate and separate the polygon into three pieces.The middle piece, being the duplicate,
is removed and the remainder of the polygon is recombined. Reversing the steps leads to section
duplication. Also indicated is a section line which separates the duplicate sections from the rest of
the columns in which they lie.

The process of section-deletion and duplication leads to a partial order on the set of polygons.

Definition 4. For any two polygonsP,Q∈ Pn, we writeP�s Q if P= Q or P can be obtained from
Q by a sequence of section-deletions. Asection-minimalpolygon,P, is a polygon such that for all
polygonsQ with Q�s P we haveP= Q.

The lemma below follows from the above definition (see [17] for details):

Lemma 5. The binary relation�s is a partial order on the set of polygons. Further every poly-
gon reduces to a unique section-minimal polygon, and there are only a finite number of minimal
polygons inPn.

By considering the generating function of all polygons thatare equivalent (by some sequence
of section-deletions) to a given section-minimal polygon,we find thatHn(x) may be written as the
sum of simple rational functions. Theorem 1 follows directly from this. Further examination of
the denominators of these functions gives the following result:

Theorem 6 (from [17]). If Hn(x) has a denominator factorΨk(x), thenPn must contain a section-
minimal polygon containing a K-section for some K∈ Z+ divisible by k. Further if Hn(x) has
a denominator factorΨk(x)α, thenPn must contain a section-minimal polygon that containsα
sections that are K-sections for some (possibly different)K ∈ Z+ divisible by k.

This theorem demonstrates the link between the factors ofDn(x) and the sections in section-
minimal polygons with 2n vertical bonds.
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2.2 The number ofk-sections

In this subsection, we shall demonstrate the following multiplicative upper bound on the denomi-
nator,Dn(x) of Hn(x):

Dn(x) is a factor of
⌈n/3⌉

∏
k=1

Ψk(x)
2n−6k+5. (5)

We do this by finding an upper bound on the number ofk-sections that a SAP with 2n vertical
bonds may contain. A proof of the corresponding result for general bond animals is given in [17];
here we follow a similar line of proof, but specialise (wherepossible) to the case of SAPs.

The proof consists of several steps:

1. Find the maximum number of sections in a polygon with 2V vertical bonds.

2. Determine a lower bound on the number of vertical bonds andsections that must lie to the
left (without loss of generality) of ak-section. This gives a lower bound on the number of
sections that must lie to the left of the leftmostk-section and to the right of the rightmost
k-section — none of these can bek-sections and so we obtain a lower bound on number of
sections that cannot bek-sections.

3. From the above two facts we obtain an upper bound on the number of sections in a polygon
that may bek-sections; assume that they are allk-sections.

4. Theorem 6 then gives the upper bound on the exponent ofΨk(x).

Please note that for the remainder of this part of the paper weshall use “sm-polygons” to denote
“section-minimal polygons” unless otherwise stated.

Lemma 7. An sm-polygon that contains p pages and v vertical bonds inside those pages may
contain at most p+v sections.

Proof. Consider thevi vertical bonds inside theith page. Between any two sections in this page
there must be at least 1 vertical bond (otherwise the horizontal bonds in both sections would be the
same and they would be duplicate sections). Hence theith page contains at mostvi +1 sections.
Since every section must lie in exactly 1 page the result follows.

Lemma 8. The maximum number of pages in an sm-polygon is2R−1 where R denotes the number
of rows in the sm-polygon.

Proof. See Lemma 13 in [17]. We note that this differs from the resultfor bond animal since
all sections must contain an even number of horizontal bonds, and must also lie between vertical
bonds. Consequently we are only interested in those pages that lie insidethe sm-polygon.

Lemma 9. The maximum number of sections in an sm-polygon with2V vertical bonds is2V −1.
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Proof. Consider an sm-polygon of heightR with 2V = 2R+2v vertical bonds. Of these vertical
bonds 2R block section lines and the remaining 2v may lie insidepages. By Lemma 8, this sm-
polygon has at most 2R− 1 pages. At most 2v vertical bonds lie inside these pages and so by
Lemma 7 the result follows.

The above lemma tells us the maximum number of sections in a sm-polygon. We now deter-
mine how many of these sections lie to the left (without loss of generality) of ak-section. We start
by determining how many vertical bonds lie to the left of ak-section.

Lemma 10. To the left (without loss of generality) of a k-section thereare at least3k−2 vertical
bonds, of which at least2k−1 obstruct section lines.

Hence no polygon with fewer than6k−4 vertical bonds may contain a k-section. Further, it is
always possible to construct a polygon with6k−4 vertical bonds and a single k-section.

Proof. Consider a vertical line drawn through ak-section (as depicted in left-hand side of Figure 4).
The line starts outside the polygon and then as it crosses horizontal bonds it alternates between the
inside and outside of the polygon. More precisely, there arek+ 1 segments of the line that lie
outside the polygon andk segments that lie inside the polygon. Let us call the segments that lie
within the polygon “inside gaps” and those that lie outside “outside gaps”.

inside gap

outside gap

Figure 4: Vertical and horizontal lines drawn through ak-section show the minimum number of
vertical bonds required in their construction.

Draw a horizontal line through an inside gap (as depicted in the top-right of Figure 4). If we
traverse the horizontal line from left to right, we must cross at least 1 vertical bond to the left of
the gap (since it is inside the polygon) and then another to the right of the gap. Hence to the left
of any inside gap there must be at least 1 vertical bond. Similarly we must cross at least 1 vertical
bond to the right of any inside gap.

Draw a horizontal line through the topmost of thek+1 outside gaps. Since the line need not
intersect the polygon it need not cross any vertical bonds atall. Similarly for the bottommost
outside gap.

8



Now draw a horizontal line through one of the other outside gaps (as depicted in the bottom-
right of Figure 4). Traverse this line from the left towards the outside gap. If no vertical bonds
are crossed then a section line may be drawn from the left intothe outside gap. This splits the
k-section into two smaller sections and so contradicts our assumptions. Hence we must cross at
least 1 vertical bond to block section lines. If we cross onlya single vertical bond before reaching
the gap then the gap would lie inside the polygon. Hence we must cross at least 2 (or any even
number) vertical bonds before reaching the gap. Similar reasoning shows that we must also cross
an even number of vertical bonds when we continue traversingto the right.

Since anyk-section containsk inside gaps, a topmost outside gap, a bottommost outside gap
andk−1 other outside gaps, there must be at leastk×1+2×0+2× (k−1) = 3k−2 vertical
bonds to its left and 3k−2 vertical bonds to its right.

Consider the polygons depicted in Figure 5 that are constructed by adding “hooks”. In this
way we are always able to construct an sm-polygon with(6k−4) vertical bonds and exactly one
k-section.

Figure 5: Section-minimal polygons with 6k− 4 vertical bonds and a singlek-section may be
constructed by concatenating such “hook” configurations.
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Figure 6: Given an sm-polygonP we can create a new sm-polygonQ that is identical toP except
for the region lying to the right of its rightmostk-section; that region is altered to maximise the
number of sections lying to the right of thek-section. We do this by stretching that portionP that
lies to the right of thek-section so that no two vertical bonds lie in the same vertical line. The
polygon is then made section-minimal again by deleting duplicate sections.
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The next lemma shows that given an sm-polygon,P, that contains ak-section, we are always
able to find a new sm-polygon,Q, with the same number of vertical bonds that hasat least3(k−1)
sections to the left of its leftmostk-section. This result allows us to compute how many sections
in an sm-polygon cannot bek-sections since they lie to the left of the leftmost or to the right of the
rightmostk-section.

Lemma 11. Let P be an sm-polygon that contains a k-section and2V vertical bonds. If there are
fewer than3(k−1) sections to the right of the rightmost k-section in P, then there exists another
sm-polygon, Q, that is identical to P except that to the rightof the rightmost k-section there are at
least3(k−1) sections. See Figure 6.

Similarly given a polygon, P′ with fewer than3(k− 1) sections to the left of the leftmost k-
section, there exists another polygon Q′ identical to P′ except that there are at least3(k− 1)
sections to the left of the leftmost k-section.

Proof. We prove the above result by “stretching” the portion of the sm-polygon,P, to the right of
the rightmostk-section so as to obtain a new sm-polygon,Q, in which the number of sections to
the right of thek-section is maximised.

Consider the example given in Figure 6. Consider the portionof the sm-polygon that lies to the
right of rightmostk-section (which is highlighted). Label the vertical bonds from top-rightmost
(1) to bottom-leftmost (9). We now “stretch” the horizontal bonds of the sm-polygon so that bonds
with higher labels lie to the left of those with lower labels and so that no two bonds lie in the same
vertical line (Figure 6, centre). To recover a section-minimal polygon we now delete duplicate
sections (Figure 6, right). We now need to determine how manysections remain.

Consider the stretched portion of polygon before duplicatesections are removed. If there were
originally r vertical bonds blocking section lines, then there are stillr vertical bonds blocking
section lines after stretching. See Figure 7. Since no two vertical bonds lie in the same vertical
line, each page corresponds to a single vertical bond that blocks a section line (which will lie on
the right-hand edge of the page). Hence the stretched portion polygon containsr pages (one of
which contains thek-section). The other vertical bonds must lie within these pages. See also the
proof of Lemma 13 in [17].

Thus, if there werev= r+mvertical bonds to the right of thek-section, withr blocking section
lines, then after deleting duplicate sections there will ber pages (no pages will be removed) andm
vertical bonds within those pages (with no two vertical bonds in the same page lying in the same
vertical line). Consequently there will ber +m−1 sectionsexcludingthek-section.

By Lemma 10 there must be at least 3k−2 vertical bonds to the right of ak-section , and so
the “stretching” procedure will produce an sm-polygon withat least 3k−3 sections to the right of
thek-section.

Note that this procedure does not change the number of vertical bonds in each row, nor the
number of vertical bonds on either side of thek-section.

Since we now know the total number of sections in a section minimal polygon and how many
of these cannot bek-sections we can prove an upper bound on the number ofk-sections:

Theorem 12. A section-minimal polygon P that contains2V = (6k−4+2M) vertical bonds may
not contain more than2M+1 sections that contain2k or more horizontal bonds.
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Figure 7: The pages in the stretched polygon before removingduplicate sections. By “scanning”
from left to right we see that each page corresponds one vertical bond that blocks a section line.

Proof. By Lemma 9,P may contain no more that(2V −1) sections. We complete the proof by
assuming that the theorem is false and then reaching a contradiction.

Consider an sm-polygon,P, that does not have a section with> 2k horizontal bonds, but does
contain more than(2M + 1) k-sections. By Lemma 11 we may always “stretch” the portion of
the polygon lying to the right of the rightmostk-section to obtain a new section-minimal polygon
so that at least 3(k− 1) sections lie to the right of the rightmostk-section. Similarly we may
“stretch” the portion of the polygon lying to the left of the leftmostk-section to obtain a new
section-minimal polygonQ that has at least 6(k−1) sections lying either to the left of the leftmost
or to the right of the rightmostk-sections. Consequently this new polygon contains more than
(2M+1)+(6k−6) = 6k+2M−5 sections. This contradicts Lemma 9.

Now consider an sm-polygon that contains sections with at least 2k horizontal bonds. Assume
that it does contain more than 2M + 1 such sections. Without loss of generality consider the
leftmost section with at least 2k horizontal bonds. By applying Lemma 11 we see that one may
always construct a new section-minimal polygon so that at least 3(k− 1) sections lie to the left
of the leftmost such section. Repeating the argument in the paragraph above shows that one will
reach a contradiction and the proof is complete.

Remark. It is possible to construct a section-minimal polygon with exactly(6k−4+2M) vertical
bonds and 2M+1 k-sections — see Figure 8.

Corollary 13. The factor ofΨk(x) in the denominator, Dn(x) of Hn(x)may not appear with a power
greater than2n−6k+5. Hence we have the following multiplicative upper bound forDn(x):

Dn(x)

∣

∣

∣

∣

∣

⌈n/3⌉

∏
k=1

Ψk(x)
2n−6k+5 .

Proof. This follows by combining the results of Theorems 1, 6 and 12.

Remark. We note that a comparison of the above bound on the denominator of Hn(x) appears to
be quite tight when compared with series expansion data [10]. It appears to be wrong only by a
single factor ofΨ2(x); the exponents of other factors appear to be equal to that of the bound.
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Figure 8: To construct a polygon with 2M+1 k-sections and 6k−4+2M vertical bonds, start with
a polygon with a singlek-section and 6k−4 vertical bonds as shown (top left). Cut it on the right
of thek-section. InsertM copies of the pair ofk-sections and recombine the polygon. This gives a
polygon with 2M+1 k-sections and 6k−4+2M vertical bonds.

We also note that the above result significantly reduces the difficultly of computing the coeffi-
cients,Hn(x) of the anisotropic generating function. In particular, we know thatHn(x) is a rational
function whose numerator degree is no greater than that of its denominator. Corollary 13 gives this
denominator (up to multiplicative cyclotomic factors) andas a consequence also bounds the degree
of the numerator and hence the number of unknowns we must compute in order to knowHn(x).

Since the degree ofΨk(x) is no greater thank, the degree ofDn(x) is no greater than∑⌈n/3⌉
k=1 k(2n−

6k+5) ∼ 1
27n3. Note that using similar (non-rigorous) arguments to thosein Section 4.2 of [17]

one can show that the degree grows like2
9π2n3. Hence the degree of the numerator (and the number

of unknowns to be computed) grows asn3. Bounds from transfer matrix techniques (such as [6])
grow exponentially.

3 The nature of the generating function

3.1 Differentiably finite functions

Perhaps the most common functions in mathematical physics (and combinatorics) are those that
satisfy simple linear differential equations. A subset of these are the differentiably finite functions
that satisfy linear differential equations with polynomial coefficients.

Definition 14. Let F(x) be a formal power series inx with coefficients inC. It is said to be

12



differentiably finiteor D-finite if there exists a non-trivial differential equation:

Pd(x)
∂d

∂xd F(x)+ · · ·+P1(x)
∂
∂x

F(x)+P0(x)F(x) = 0, (6)

with Pj a polynomial inx with complex coefficients [14].
In this paper we consider series,G(x,y) that are formal power series iny with coefficients that

are rational functions ofx. Such a series is said to be D-finite if there exists a non-trivial differential
equation:

Qd(x,y)
∂d

∂yd G(x,y)+ · · ·+Q1(x,y)
∂
∂y

G(x,y)+Q0(x,y)G(x,y) = 0, (7)

with Q j a polynomial inx andy with complex coefficients

One of the main aims of this paper is to demonstrate that the anisotropic generating function of
SAPs is not D-finite, and we do so by examining the singularities of that function.

The classical theory of linear differential equations implies that a D-finite power series of a
single variable has only a finite number of singularities. This forms a very simple “D-finiteness
test” — a function such asf (x) = 1/cos(x) cannot be D-finite since it has an infinite number
of singularities. Unfortunately we know very little about the singularities of theisotropic SAP
generating function and cannot apply this test.

When we turn our attention to the anisotropic generating function (a power series with rational
coefficients) there is a similar test that examines the singularities of thecoefficients. Consider the
following example:

f (x,y) = ∑
n≥1

xn

1−nx
yn. (8)

The coefficient ofyn is singular atx = 1/n and so the set of singularities of its coefficients,
{n−1 | n ∈ Z+}, is infinite and has an accumulation point at 0. In spite of this it is a D-finite
power series iny, since it satisfies the following partial differential equation:

xy2(1−xy)
∂2 f
∂y2 −y(1−xy+x2y)

(

∂ f
∂y

)

+ f = 0. (9)

So the set of the singularities of the coefficients of a D-finite series may be infinite and have
accumulation points. It may not, however, have an infinite number of accumulation points.

Theorem 15 (from [4]). Let f(x,y) =∑n≥0ynHn(x) be a D-finite series in y with coefficients Hn(x)
that are rational functions of x. For n≥ 0 let Sn be the set of poles of Hn(x), and let S=

⋃

nSn.
Then S has only a finite number of accumulation points.

In order to apply this theorem to the self-avoiding polygon generating function we need to
prove that the denominators of the coefficientsHn(x) suggested by Corollary 13 do not cancel
with the numerators — so that the singularities suggested bythose denominators really do exist.
Unfortunately, we are unable to prove such a strong result. However, we do not need to understand
the full singularity structure of the coefficients; the following result is sufficient:
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Theorem 16. For k 6= 2 the generating function H3k−2(x) has simple poles at the zeros ofΨk(x).
Equivalently the denominator of H3k−2(x) contains a single factor ofΨk(x) which does not cancel
with the numerator.

An immediate corollary of this result is that singularitiesof the coefficientsHn(x) are dense on
the unit circle,|x|= 1 and so the anisotropic generating function is not a D-finitepower series iny.

3.2 2-4-2 polygons

In order to prove Theorem 16 we split the set of polygons with(6k−4) vertical bonds into two
sets — polygons that contain ak-section and those that do not. Let us denote those polygons with
(6k−4) vertical bonds and at least onek-section byK3k−2. Hence we may write the generating
functionH3k−3(x) as

H3k−2(x) = ∑
P∈K3k−2

x|P|⇔ + ∑
P∈P3k−2\K3k−2

x|P|⇔.

Lemma 17. The factorΨk(x) appears in the denominator of the generating function
∑P∈K3k−2

x|P|⇔ with exponent exactly equal to one if and only if it appears inthe denominator of
H3k−2(x) with exponent exactly equal to one.

Proof. The setsK3k−2 andP3k−2\K3k−2 are trivially dense, and so by Theorem 1 we know that the
horizontal half-perimeter generating functions of these sets are rational and that their denominators
are products of cyclotomic factors. Further, sinceP3k−2 \K3k−2 does not contain a polygon with
k-section (or indeed, by Lemma 10, any section with more than 2k horizontal bonds), it follows by
Theorem 6 that the denominator of the horizontal half-perimeter generating function of this set is
a product of cyclotomic polynomialsΨ j(x) for j strictly lessthank. Consequently this generating
function is not singular at the zeros ofΨk(x). By Theorem 12, every section-minimal polygon in
K3k−2 contains exactly onek-section, and so the exponent ofΨk(x) in in the denominator of the
horizontal half-perimeter generating function ofK3k−2 is either one or zero (due to cancellations
with the numerator). The result follows since this denominator factor may not be cancelled by
adding the other generating function.

⊳ ⊳ ⋄ ⊲ ⊲

The above Lemma shows that to prove Theorem 16 it is sufficientto prove a similar result for
the set of polygons,K3k−2. Let us examine this set further. In the proof of Lemma 10 it was shown
that ak-section could be decomposed an alternating sequence of “inside gaps” and “outside gaps”;
a row containing an inside gap contained at least 2 vertical bonds and a row containing an outside
gap contained at least 4 vertical bonds (see the examples in Figure 5). We now concentrate on
polygons containing 2 vertical bonds in very second row and 4vertical bonds in every other row.

Definition 18. Number the rows of a polygonP starting from the topmost row (row 1) to the bot-
tommost (row r). Letvi(P) be the number of vertical bonds in theith row of P. If (v1(P), . . . ,vr(P))
= (2,4,2, . . . ,4,2) then we callP a 2-4-2polygon. We denote the set of such2-4-2polygons with
2n vertical bonds byP 242

n . Note that this set is empty unless 2n= 6k−4 (for somek= 1,2, . . .).
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Lemma 19. A section-minimal polygon with(6k−4) vertical bonds that contains one k-section
must be a2-4-2polygon. On the other hand, a section-minimal2-4-2polygon need not contain a
k-section.

Proof. The first statement follows by arguments given in the proof ofLemma 10. The rightmost
polygon in Figure 9 show that a2-4-2polygon need not contain ak-section.

Figure 9: Four section-minimal2-4-2 polygons. The first three polygons contain a 2-section, a
3-section, and a 4-section respectively. The rightmost polygon contains only 1-sections.

Despite the fact that2-4-2 polygons are a superset of those polygons containing at least one
k-section, it turns out both that they are easier to analyse (in the work that follows) and that a result
analogous to Lemma 17 still holds.

Lemma 20. The factorΨk(x) appears in the denominator of the generating function∑P∈P 242
3k−2

x|P|⇔

with exponent exactly equal to1 if and only if it appears in the denominator of H3k−2(x) with
exponent exactly equal to one.

Proof. Similar to the the proof of Lemma 17.
In the next section we derive a (non-trivial) functional equation satisfied by the generating

function of2-4-2polygons.

3.3 Counting with Hadamard products

By far the most well understood classes of square lattice polygons are families ofrow convex
polygons. Each row of a row convex polygon contains only two vertical bonds; this allows one to
find a construction by which polygons are built uprow-by-row. This technique is sometimes called
theTemperley method[2, 19].

Since every second row of a2-4-2 polygon contains 2 vertical bonds, we shall find a similar
construction that instead of building up the polygons row-by-row, we build them two rows at a
time (an idea also used in [5]). Like the constructions givenin [2], this construction leads quite
naturally to a functional equation satisfied by the generating function. One could also derive this
functional equation using the techniques described in [2],however it proves more convenient in
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this case to use techniques based on the application of Hadamard products (this idea is also used
in [3]).

We shall start by showing how2-4-2polygons may be decomposed into smaller units we shall
call seedsandbuilding blocks. Consider the2-4-2polygon in Figure 10. Start by highlighting each
row with 2 vertical bonds. We then “duplicate” each of these rows, excepting the bottommost;
this situation is depicted in the middle polygon in Figure 10. By cutting the polygon horizontally
between each pair of duplicate rows we decompose the polygonuniquelyinto a rectangle of unit
height and a sequence of2-4-2polygons of height 3, such that the bottom row of each polygonis
the same length of the top row of the next in the sequence. We refer to this initial rectangle as the
seed blockand the subsequent2-4-2polygons of height 3 asbuilding blocks.

Figure 10: Decomposing2-4-2polygons into building blocks. Highlight each row with 2 vertical
bonds. Then “duplicate” each of these rows excepting the bottommost. By cutting along each of
these duplicated rows each2-4-2 polygon is decomposed into a rectangle (of unit height) and a
sequence of building blocks.

This decomposition implies that each2-4-2 polygon is either a rectangle of unit height, or
may be constructed by “combining” a (shorter)2-4-2polygon and a2-4-2building block, so that
the bottom row of the polygon has the same length as the top rowof the building block. This
construction is depicted in Figure 11.

We will translate this construction into a recurrence satisfied by the2-4-2polygon generating
function by using Hadamard products. We note that a similar construction (but for different lattice
objects) appears in [11, 12] but is phrased in terms of constant term integrals.

Let us start with the generating function of the building blocks:

Lemma 21. Let T(t,s;x,y) be the generating function of2-4-2polygon building blocks, where t
and s are conjugate to the length of top and bottom rows (respectively). Then T may be expressed
as

T(t,s;x,y) = 2
(

T̂(t,s;x,y)+ T̂(s, t;x,y)
)

, (10)
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Figure 11: Constructing a2-4-2 polygon from a (shorter)2-4-2 polygon and a2-4-2 building
block. Note that when the building block and the polygon are squashed together, the total vertical
perimeter is reduced by 2, and the total horizontal perimeter is reduced by twice the width of the
joining row.

where the generating function̂T(t,s;x,y) is given by

T̂(t,s;x,y) = y4
(

A(s, t;x) · JstxKJ txK2 ·B(s, t;x)

+A(s, t;x) · JstxKJstx2KJ txK2 ·B(s, t;x)

+A(s, t;x) · JstxKJ txK3 ·B(s, t;x)

+C(s, t;x) · JsxKJ txK3 ·B(s, t;x)

+C(s, t;x) · JsxKJxKJ txK3 ·B(s, t;x)
)

. (11)

We have usedJ f K as shorthand for f
1− f , and the generating functions A, B and C are:

A(s, t;x) = 1+ JxK+2JsxK+2J txK+ JsxKJ txK+

JsxK2+ JsxKJxK+ J txK2+ J txKJxK (12)

B(s, t;x) = 1+ J txK+ JxK (13)

C(s, t;x) = 1+ JsxK+ JxK. (14)

Proof. Figure 12 shows the four possible orientations of a buildingblock. Figures 14 and 15 show
how to construct the generating functionT̂ of building blocks in one orientation. To obtain all
building blocks we must reflect the blocks counted byT̂ about both horizontal and vertical lines
(as shown in Figure 12). Reflecting about a vertical line multiplies T̂ by 2. Reflecting about a
horizontal line interchanges the roles ofsandt. This proves the first equation.

We now findT̂ by finding thesection-minimalbuilding blocks in one orientation (that of the
top-left polygon in Figure 12). All such polygons contain 8 vertical bonds, leta, . . . ,h∈ Z denote
thex-ordinate of these bonds. Figure 13 shows the Hasse diagram that these numbers must satisfy:

a,b< d a,b,c< e
d,e< f f < g,h.

Without loss of generality we seta= 0 (to enforce translational invariance).
Consider a section-minimal building block and determine the values ofb, . . . ,h. We can de-

compose the building block depending on these values:
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• Find which ofg andh is minimal and cut the polygon along a vertical line running through
that vertical bond. This separates the polygon into 2 parts;the part to the right is aB-frill
(see Figure 15) — there are 3 possibleB-frills depending on whetherg= h, g< h or g> h.

• If c < d then the building block must be of the form of polygon 1, 2 or 3 in Figure 14.
Determine which is the greatest ofa,b and c and cut the polygon along the vertical line
running through that vertical bond. This separates the polygon into 2-parts; the part to the
right is anA-frill (see Figure 15) — there are 11 possibleA-frills depending on the relative
magnitudes ofa, b, andc.

• If c≥ d then the building block must be of the form of polygon 4 or 5 in Figure 14. Find
which ofa andb is greater and cut along the vertical line running through that vertical bond.
This separates the polygon into 2 parts; the part to the rightis a C-frill (see Figure 15) —
there are 3 possibleC-frills depending on the whethera= b, a< b or a> b.

Using this decomposition we see that every section minimal polygon is given by one of the 5
polygons given in Figure 14 together with 2 of thefrills from Figure 15. The above equation for
T̂(t,s;x,y) follows.

We note that one could find̂T using the theory ofP-partitions [18], and we used it to check the
result.

⊳ ⊳ ⋄ ⊲ ⊲

Figure 12: The set of building blocks has a 4-fold symmetry asshown. It suffices to find all the
building blocks in one orientation and then obtain the others by reflections.

We now define the (restricted) Hadamard product and show how it relates to the construction
of 2-4-2polygons.
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Figure 13: The vertical bonds of a2-4-2polygon building block. Thex-ordinate of these bonds are
denoteda,b, . . . ,h as shown. The Hasse diagram showing the constraints on the valuesa,b, . . . ,h
is given on the right; an arrow fromvi to v j implies thatvi > v j .
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Figure 14: The section-minimal building blocks of2-4-2polygons. The “frills ”, denotedA, B and
C are given in Figure 15.

Definition 22. Let f (t) = ∑t≥0 fntn andg(t) = ∑t≥0gntn be two power series int. We define the
(restricted) Hadamard productf (t)⊙t g(t) to be

f (t)⊙t g(t) = ∑
n≥0

fngn.

We note that iff (t) andg(t) are two power series with real coefficients such that

lim
n→∞

| fngn|
1/n < 1,

then the Hadamard productf (t)⊙t g(t) will exist. For example(1−2t)−1⊙ t (1−3t)−1 does not
exist, while(1−2t)−1⊙ t (1− t/3)−1 does exist and is equal to 3.

Below we consider Hadamard products of power series int whose coefficients are themselves
power series in two variables,x ands. These products are of the form

f (t;x)⊙t T(t,s,x) = ∑
n≥0

fn(x)Tn(s,x). (15)
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Since the summands are the generating functions of certain polygons (see below) it follows that
fn(x)Tn(x) = O(sxn) and so the sum converges.

Lemma 23. Let f(s;x,y) be the generating function of2-4-2polygons, where s is conjugate to the
length of bottom row of the polygon. This generating function satisfies the following equation

f (s;x,y) =
ysx

1−sx
+ f (t;x,y)⊙t

(

1
y

T(t/x,s;x,y)

)

,

where T(t,s;x,y) is the generating function of the2-4-2building blocks.

Proof. Let us write f (s;x,y) = ∑n≥1 fn(x,y)sn andT(t,s;x,y) = ∑n≥1Tn(s;x,y), where fn(x,y) is
the generating function of2-4-2 polygons whosebottomrow has lengthn, andTn(s;x,y) is the
generating function of2-4-2building blocks, whosetop row has lengthn. The above recurrence
becomes:

f (s;x,y) =
ysx

1−sx
+ ∑

n≥1
fn(x,y)Tn(s;x,y)/(yxn).

This follows because2-4-2polygon is either a rectangle of unit height (counted byysx
1−sx) or may

be constructed by combining a2-4-2polygon, whose last row is of lengthn (counted byfn(x,y))
with a2-4-2polygon whose top row is of lengthn (counted byTn(s;x,y)). To explain the factor of
1/(yxn) see Figure 11; when the building block is joined to the polygon (centre) and the duplicated
row is “squashed” (right), the total vertical half-perimeter is reduced by 1(two vertical bonds are
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removed) and the total horizontal half-perimeter is reduced by the length of the join (two horizontal
bonds are removed for each cell in the join). Hence if the joinis of lengthn, the perimeter weight
needs to be reduced by a factor of(yxn).

⊳ ⊳ ⋄ ⊲ ⊲

While in general Hadamard products are difficult to evaluate, if one of the functions is rational
then the result is quite simple. This fact allows us to translate the above Hadamard-recurrence into
a functional equation.

Lemma 24. Let f(t)= ∑t≥0 fntn be a power series. The following (restricted) Hadamard products
are easily evaluated:

f (t)⊙t

(

1
1−αt

)

= f (α) (16)

f (t)⊙t

(

k!tk

(1−αt)k+1

)

=

(

∂k f

∂tk

)
∣

∣

∣

∣

t=α
. (17)

We also note that the Hadamard product is linear:

f (t)⊙t
(

g(t)+h(t)
)

= f (t)⊙t g(t)+ f (t)⊙t h(t). (18)

Proof. The second equation follows from the first by differentiating with respect toα. The first
equation follows because

f (t)⊙t
1

1−αt
=

(

∑
n≥0

fntn

)

⊙t

(

∑
n≥0

αntn

)

= ∑
n≥0

fnαn = f (α).

The linearity follows directly from the definition.

⊳ ⊳ ⋄ ⊲ ⊲

In order to apply the above lemma, we need to rewriteT(t/x,s;x,y)/y in (a non-standard)
partial fraction form:

T(t/x,s;x,y)/y= y3

[

c0 · t
0+

5

∑
k=0

ck+1
k!tk

(1− t)k+1 +c7
1

1−st
+c8

1
1−stx

]

, (19)

where theci are rational functions ofs andx. We note that whens= 1 some singularities ofT
coalesce and we rewriteT as:

T(t/x,1;x,y)/y= y3

[

ĉ0 · t
0+

6

∑
k=0

ĉk+1
k!tk

(1− t)k+1 + ĉ8
1

1− tx

]

, (20)
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where the ˆci are rational functions ofx. The Hadamard productf (t;x,y)⊙t T(t/x,s;x,y)/y is then:

f (t;x,y)⊙t T(t/x,s;x,y)/y= y3

[

5

∑
k=0

ck+1
∂k f

∂tk (1;x,y)+c7 f (s;x,y)+c8 f (sx;x,y)

]

, (21)

where we have made use of the fact that[t0] f (t;x,y) = 0 (there are no rows of zero length).
We do not state in full the coefficients,ci , since they are very large and, with the exception of

c8, not particularly relevant to the following analysis. We will just state the denominators of all the
coefficients, as well as the coefficientc8 in full. If we write the denominator ofci asdi:

d0 = (1−x)3(1−sx)6(1−s)6 d1 = (1−x)3(1−sx)5(1−s)5

d2 = (1−x)3(1−sx)3(1−s)4 d3 = (1−x)3(1−sx)3(1−s)3

d4 = (1−x)2(1−sx)(1−s)2 d5 = (1−x)(1−sx)(1−s)

d6 = (1−s) d7 = (1−sx)6(1−s)6

c8 =−
2sx2(s2x2+sx−s+1)

(1−sx)4(1−x)2 . (22)

Whens= 1 the coalescing poles change equation (21) to:

f (t;x,y)⊙t T(t/x,1;x,y)/y= y3

[

6

∑
k=0

ĉk+1
∂k f
∂tk (1;x,y)+ ĉ8 f (x;x,y)

]

(23)

The coefficients, ˆci , become somewhat simpler and can be stated here in full:

ĉ0 =−2
x3(1+x)(2x2+1)

(1−x)6 ĉ1 = 4
(1+x)(x2+1)x3

(1−x)6

ĉ2 = 2
x2(1+x)(2x2+x+1)

(1−x)5 ĉ3 =
x2(1+x)(2x+1)

(1−x)4

ĉ4 =
1
3
(1+x)(x2+x+1)

(1−x)3 ĉ5 =
1
12

(x2+2x+3)
(1−x)2

ĉ6 =
1
60

(x+3)
(1−x)

ĉ7 =
1

360

ĉ8 =−2
x3(1+x)
(1−x)6 = c8|s=1. (24)

Lemma 25. Let f(s;x,y) be the generating function for2-4-2 polygons enumerated by bottom
row-width, half-horizontal perimeter and half-vertical perimeter (s,x and y respectively). f(s;x,y)
satisfies the following functional equations:

f (s;x,y) =
sxy

1−sx
+y3

[

5

∑
k=0

ck+1
∂k f

∂sk (1;x,y)+c7 f (s;x,y)+c8 f (sx;x,y)

]

(25)

f (1;x,y) =
xy

1−x
+y3

[

6

∑
k=0

ĉk+1
∂k f

∂sk (1;x,y)+ ĉ8 f (x;x,y)

]

, (26)
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with ci andĉi given above.
We rewrite the generating function as f(s;x,y) = ∑n≥1 fn(s;x)y3n−2, where the coefficient

fn(s;x) is the generating function forP 242
3n−2. This allows the above functional equations to be

transformed into recurrences:

f1(s;x) =
sx

1−sx
(27)

fn+1(s;x) =
5

∑
k=0

ck+1
∂k fn
∂sk (1;x)+c7 fn(s;x)+c8 fn(sx;x) s 6= 1 (28)

fn+1(1;x) =
6

∑
k=0

ĉk+1
∂k fn
∂sk (1;x)+ ĉ8 fn(x;x). (29)

Proof. Apply Lemma 24 to the partial fraction form of the transitionfunction for generals, and
whens= 1.

3.4 Analysing the functional equation

By Lemma 20, we are able to prove Theorem 16 by showing thatfn(1;x) is singular at the zeros
of Ψn(x). We do this by induction using the recurrences in Lemma 25.

Before we can do this we need to prove the following lemma about the zeros (and hence factors)
of one of the coefficients in the recurrence:

Lemma 26. Consider the coefficient c8(s;x) defined above. When s= xk, c8(xk,x) has a single
zero on the unit circle at x= −1 when k is even. When k is odd c8(xk,x) has no zeros on the unit
circle.

Proof. Whens= xk, c8(xk,x) is

c8(x
k,x) =

2xk+2(k2k+2+xk+1−xk+1)
(1−xk+1)4(1−x)2 .

Let ξ be a zero ofc8(xk,x) that lies on the unit circle;ξ must be a solution of the polynomial
pk(x) = x2k+2+xk+1−xk+1= 0. Hence:

ξk−ξk+1 = ξ2k+2+1 divide byξk+1

1/ξ−1 = ξk+1+ξ−k−1.

Sinceξ lies on the unit circle we may writeξ = eiθ:

e−iθ −1 = ei(k+1)θ +e−i(k+1)θ

= 2cos((k+1)θ).

Since the right hand-side of the above expression is real theleft-hand side must also be real.
Thereforeθ = 0,π and ξ = ±1. If ξ = 1 then pk(ξ) = 2. On the other hand, ifξ = −1 then
pk(ξ) = 4 if k is odd and is zero ofk is even.
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Since the denominator ofc8(xk,x) is not zero whenk is even andx=−1 the result follows. One
can verify that there are not multiple zeros atx=−1 by examining the derivative of the numerator.

⊳ ⊳ ⋄ ⊲ ⊲

Proof of Theorem 16:
This proof for SAPs was first given in [16]. A similar (but cleaner) argument for a different class
of polygons appears in [5]. We follow the latter.

Consider the recurrence given in Lemma 25. This recurrence shows thatfn(s;x) may be written
as a rational function ofs and x. Since fn(1;x) is a well defined (and rational) function, the
denominator offn(s;x) does not contain any factors of(1−s).

Let Cn(s;x) be the set of polynomials of the form

n

∏
k=1

Ψk(x)
ak(1−sxk)bk, (30)

whereak andbk are non-negative integers. We defineCn(x) = Cn(0;x) (polynomials which are
products of cyclotomic polynomials). We first prove (by induction onn) that fn may be written as

fn(s;x) =
Nn(s;x)

(1−sxn)Dn(s;x)
, (31)

whereNn(s;x) andDn(s;x) are polynomials insandx with the restriction thatDn(s;x)∈Cn−1(s;x).
Then we consider what happens ats= 1 andx is set to a zero ofΨk.

For n = 1, equation (31) is true, sincef1(s;x) = sx
1−sx. Now assume equation (31) is true up

to n and apply the recurrence. The only term that may introduce a new zero into the denomina-
tor is c8(s;x) fn(sx;x). By assumptionfn(s;x) =

Nn(sx;x)
(1−sxn+1)Dn(sx;x)

, andDn(sx;x) ∈ Cn(s;x). Hence
equation (31) is true forn+1, and so is also true for alln≥ 1.

⊳ ⊳ ⋄ ⊲ ⊲

Let ξ be a zero ofΨk(x). We wish to prove thatfn(1;x) is singular atx = ξ and we do so
by proving that fork = 1, . . . ,n, the generating functionfk(xn−k;x) is singular atx = ξ, and then
settingk= n. We proceed by induction onk for fixedn.

If we setk = 1, then we see thatf1(xn−1;x) = xn

1−xn , and so the result is true. Now letk ≥ 2
and assume that the result is true fork−1, ie fk−1(xn−k+1;x) is singular atx= ξ. The recurrence
relation and equation (31) together imply

fk(s;x) =
N(s;x)
D(s;x)

+c8(s;x) fk−1(sx;x), (32)

whereN andD are polynomials insandx andD(s;x) ∈ Ck−1(s;x). Settings= xn−k yields

fk(x
n−k;x) =

N(xn−k;x)
D(xn−k;x)

+c8(x
n−k;x) fk−1(x

n−k+1;x), (33)
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and we note thatD(xn−k;x) ∈ Cn−1(x). In the casek = n the above equation is still true, since
ĉ8 = c8|s=1.

Equation (33) shows thatfk(xn−k) is singular atx = ξ only if c8(xn−k;x) fk−1(xn−k+1;x) is
singular atx = ξ. This is true (by assumption) unlessc8(xn−k;x) = 0 at x = ξ. By Lemma 26,
c8(xn−k;x) is non-zero atx= ξ, except whenn= k= 2.

In the casen= k = 2 this proof breaks down, and indeed we see thatH4(x) is not singular at
x=−1. Excluding this case,fk(xn−k;x) is singular atx= ξ and sofn(1;x) is also singular atx= ξ.
By Lemma 20,H3k−2(x) is singular atx= ξ.

⊳ ⊳ ⋄ ⊲ ⊲

We can now prove that the self-avoiding polygon anisotropicgenerating function is not a D-finite
function:

Corollary 27. Let Sn be the set of singularities of the coefficient Hn(x). The set S=
⋃

n≥1Sn is
dense on the unit circle|x|= 1. Consequently the self-avoiding polygon anisotropic half-perimeter
generating function is not a D-finite function of y.

Proof. For anyq∈Q, there existsk, such thatΨk(e2πiq) = 0. By Theorem 16,H3k−2(x) is singular
atx= e2πiq, exceptingx=−1. Hence the setS is dense on the unit circle,|x|= 1. ConsequentlyS
has an infinite number of accumulation points and soG(x,y) = ∑Hn(x)yn is not a D-finite power
series iny.

We can easily extend this result to self-avoiding polygons on hypercubic lattices.

Corollary 28. Let Gd be the set of self-avoiding polygons on the d-dimensional hypercubic lattice
and let Gd be the anisotropic generating function

Gd(x1, . . . ,xd−1,y) = ∑
P∈Gd

y|P|d
d−1

∏
i=1

x|P|ii ,

where|P|i is half the number of bonds in parallel to the unit vector~ei . Ie when d= 2 we recover
the square lattice anisotropic generating function. If d= 1 then the generating function is equal to
zero and otherwise is a non-D-finite power series in y.

Proof. When d = 1 then there are no self-avoiding polygons and so the generating function is
trivially zero. Now considerd ≥ 2. It is a standard result in the theory of D-finite power series
that any well defined specialisation of a D-finite power series is itself D-finite [14]. Settingx2 =
· · · = xd−1 = 0 in the generating functionGd(x,y) recovers the square lattice generating function
P(x,y). Hence ifGd(x,y) were a D-finite power series iny then it follows thatP(x,y) would also
be D-finite. This contradicts Corollary 27, and so the resultfollows.
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4 Discussion

We have shown that the anisotropic generating function of self-avoiding polygons on the square
lattice, P(x,y), is not a D-finite function ofy. This result was then extended to prove that the
anisotropic generating function of self-avoiding polygons on any hypercubic lattice is either trivial
(in one dimension) or a non-D-finite function (in dimensions2 and higher).

There exists a number of non-D-finiteness results for generating functions of other models, such
as bargraphs enumerated by their site-perimeter [5], a number of lattice animal models related to
heaps of dimers [4] and certain types of matchings [13]; these results rely upon a knowledge of
the generating function — either in closed form or via some sort of recurrence. The result for
self-avoiding polygons is, as far as we are aware, the first result on the D-finiteness of a completely
unsolved model!

Unfortunately we are not able to use this result to obtain information about the nature of the
isotropic generating functionP(x,x); it is all too easy to construct a two-variable function thatis
not D-finite , that reduces to a single variable D-finite function. For example

F(x,y) = ∑
n≥1

yn

(1−xn)(1−xn+1)
. (34)

is not a D-finite function ofy by Theorem 15. Settingy= x gives a rational, and hence D-finite,
function ofx:

F(x,x) = ∑
n≥1

xn

(1−xn)(1−xn+1)

=
1

1−x ∑
n≥1

(

xn

1−xn −
xn+1

1−xn+1

)

=
x

(1−x)2 .

On the other hand, the anisotropisation ofsolvablelattice models does not alter the nature
of the generating function — rather it simply moves singularities around in the complex plane.
Unfortunately we are unable to rigorously determine how farthis phenomenon extends since we
know very little about the nature of the generating functions of unsolved models.

That the self-avoiding polygon anisotropic half-perimeter generating function is not D-finite
(Corollary 27) demonstrates the stark difference between the bond-animal models we have been
able to solve and those we wish to solve. Solved bond-animal models (with the exception of spiral
walks [1]) all have D-finite anisotropic generating functions. More general (and unsolved) models,
such as bond animals and self-avoiding walks, are believed to exhibit the same dense pole structure
[7, 8] as self-avoiding polygons and therefore are thought to be non-D-finite.

Two papers are in preparation to extend these results to directed bond animals, bond trees and
general bond animals. We are also investigating the possibility of applying these techniques to
site-animals and other combinatorial objects.
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This work was partially funded by the Australian Research Council.

References
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