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Abstract

We prove that the anisotropic generating function of setfiding polygons is not a D-finite
function — proving a conjecture of Guttmann and Entind [7,Bjis result is also generalised
to self-avoiding polygons on hypercubic lattices. Using tiaruspicy techniques developed in
an earlier papei_[17], we are also able to prove the form otdedficients of the anisotropic
generating function, which was first conjectured.in [8].

1 Introduction

Figure 1: A square lattice bond animal (left) and a self-diwa polygon (right).

Lattice models of magnets and polymers in statistical pisylgiad naturally to questions about
the combinatorial objects that form their basislattice animals Despite intensive study these


http://arxiv.org/abs/math/0406450v2

objects, and the lattice models from which they arise, hamadiously resisted rigorous analysis
and much of what we know is the result of numerical studies“antl entirely rigorous” results
from conformal field theory.

Recently, Guttmann and Enting [, 8] suggested a numerrcaleplure for testing the “solv-
ability” of lattice models based on the study of the singitikes of theiranisotropic generating
functions The application of this test provides compelling evidetita the solutions of many
of these models do not lie inside the class of functions theltdes the most common functions
of mathematical physics, nametifferentiably-finiteor D-finite functions (defined below). The
main result of this paper is to sharpen this numerical evdidento proof for a particular model —
self-avoiding polygons

Let us now define some of the terms we have used abow®ndl animalis a connected union
of edges, obonds on the square lattice. The s, of square latticeself-avoiding polygonsor
SAPs, is the set of all bond animals in which every vertex leggek 2. Equivalently it is the set
of all bond animals that are the embeddings of a simple cltsga into the square lattice (see
Figurell). Self-avoiding polygons were introduced in 19§6fbmperley([18] in work on lattice
models of the phase transitions of magnets and polymersomyis this problem of considerable
interest in statistical mechanics, but is an interestinglmoatorial problem in its own right. See
[9, [15] for reviews of this topic.

While the model was introduced nearly 60 years ago, littgpess has been made towards
either an explicit, or useful implicit, solution. To datenlp subclasses of polygons have been
solved and all of these have quite strong convexity conastiwhich render the problem tractable
(seell2| 1B] for example).

We wish to enumerate SAPs according to the number of bonglth®ain; since this number
is always even it is customary to count thiealf-perimetemhich is half the number of bonds. The
generating function of these objects is then

P(x) = Z xIP1, (1)
PeP
where|P| denotes the half-perimeter of the polygén
To form the theanisotropicgenerating function we distinguish between vertical anitzoatal
bonds, and so count according to the vertical and horizdrattperimeters. This generating
function is then
Pxy) = 3 xFleyPl, 2)
PeP
where|P|., and|P|; respectively denote the horizontal and vertical halfipeters ofP. By par-
titioning P according to the vertical half-perimeter we may rewritedbeve generating function
as
Py =5y S xFle = 5 Ha(y", (3)
n>1 Peh, n>1
where 7, is the set of SAPs with r2vertical bonds, andH(x) is its horizontal half-perimeter
generating function.
The anisotropic generating function is arguably a more meable object than the isotropic.
By splitting the set of polygons into separate simpler stdyg&, we obtain smaller pieces which
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is easier to study than the whole. If one seeks to computeen gist understand thisotropic
generating function then one must somehow exaralhpossible configurations that can occur in
P; this is perhaps the reason that only families of bond arésmwéh severe topological restrictions
have been solved (such as column-convex polygons). On biee band, if we examine the gen-
erating function ofP,, then the number of different configurations that can ocs@always finite.
For example, iln = 1 all configurations are rectangles, foe= 2 all configurations are vertically
andhorizontally convex and fan = 3 all configurations are verticallyr horizontally convex. The
anisotropy allows one to study the effect that these cordignms have on the generating function
in a more controlled manner.

In a similar way, the anisotropic generating function iskemo up into separate simpler pieces,
Hn(X), that can be calculated exactly for smallBy studying the properties of these coefficients,
rather than the whole (possibly unknown) isotropic gemegaiunction, we can obtain some idea
of the properties of the generating function as a whole.

In many cases generating functions (and other formal pogrées satisfy simple linear differ-
ential equations; an important subclass of such serieditfeeentiably finitepower series; a formal
power series im variablesF (x, . . ., X,) with complex coefficients is said to loifferentiably finite
if for each variable there exists a non-trivial differential equation:

F(x)+...P1(x)iF(x)+---+Po(x)F(x):O, 4)

Pa(x) g ox

with Pj a polynomial in(xy, ..., Xn) with complex coefficients [14].

While no solution is known foP(x,y), and certainly no equation of the form of equatibh (4),
the first few coefficients of may expanded numerically [10] and the following propertiese
observed (up to the coefficient pf*):

e Hn(x) is a rational function ok,
¢ the degree of the numeratorldf(x) is equal to the degree of its denominator.

e the first few denominators ¢i,(Xx) (we denote therdy(x)) are:

Di(x) = (1-X)

Da(x) = (1-%°

D3(x) = (1-x)°

Da(x) = (1-x)'

Ds(x) = (1—%)°(1+x)?

Ds(x) = (1—x)"(1+x)*

D7(x) = (1—x)31+x)51+x+x3)

Dg(X) = (1—x)¥1+x)8(1+x+x?)3

Dg(X) (1—x)Y(1+ %101+ x+x%)°
D1o(X) (1—x) 1+ X1+ x+x2)"(1+x2).



Similar observations have been made for a large numberwédaind unsolved lattice models [7]
and it was noted that faolvedmodels the denominators appear to only contain a small aed fix
number of different factors, while faunsolvedmodels the number of different factors appears
to increase witm. Guttmann and Enting suggested that this pattern of incrgasumber of
denominator factors was the hallmark of an unsolvable prabband that it could be used as a test
of solvability.

In [17] we developed techniques to prove these observafiomnsany families of bond animals.
In particular, for families of animals that adense(a term we will define in the next Section), we
have the following Theorem (slightly restated for SAPS):

Theorem 1 (from [14]). If G(X,y) = ¥ n=0Hn(X)y" is the anisotropic generating function of some
dense family of polygong, then

e Hn(x) is a rational function,

¢ the degree of the numerator of,(X) cannot be greater than the degree of its denominator,
and

e the denominator of k{x) is a product of cyclotomic polynomials.

Remark. We remind the reader that tleyclotomic polynomialsWy(x), are the factors of the
polynomials(1—x"). More precisely(1—Xx") = [ ¥k(X).

In Section[2, we quickly review thbaruspicytechniques developed in[17] and use them
to find a multiplicative upper bounB(x) on the denominatob,(x). le we find a sequence of
polynomialsBy(X) such that they are always divisible By(x).

In SectiorB, we further refine this result to prove that gt »(X) contains exactly one factor
of Wy(x) (for k # 2). This implies that the singularities of the functidAg(x) form a dense set in
the complex plane. Consequently, the generating fun®ioety) is not differentiably finite — as
predicted by the Guttmann and Enting solvability test. Tasult is then extended to self-avoiding
polygons on hypercubic lattices.

2 Denominator Bounds

2.1 Haruspicy

The techniques developed in_[17] allow us to determine pta=eof the coefficientsHn(x),
whether or not they are known in some nice form. The basic igda reduce or squash the
set of animals down onto some sort of minimal set, and thelowsiproperties of the coefficients
may be inferred by examining the bond configurations of thogemal animals. We refer to this
approach abaruspicy the word refers to techniques of divination based on thenaxation of the
forms and shapes of the organs of animals.

We start by describing how to cut up polygons so that they negebuced or squashed in a
consistent way.
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Figure 2:Section linegthe heavy dashed lines in the left-hand figure) split thggah intopages
(as shown on the right-hand figure). Each column in a pagsés@on This polygon is split into

3 pages, each containing 2 sections; a 1-section is higblighi0 vertical bonds lie between pages
and 4 vertical bonds lie within the pages.

Definition 2. Draw horizontal lines from the extreme left and the extremgétrof the lattice
towards the animal so that the lines run through the middleagh lattice cell. These lines are
calledsection linesThe lines are terminated when they first touiehafe obstructed by) a vertical
bond (see Figuré 2).

Cut the lattice along each section line from infinity untilétminates at a vertical bond. Then
from this vertical bond cut vertically in both directionstilianother section line is reached. In this
way the polygon (and the lattice) is split inp@ages(see Figur&l2); we consider the vertical bonds
along these vertical cuts to Ieetweerpages, while the other vertical bonds\wwéhin the pages.

We call asectionthe set of horizontal bonds within a single column of a givagga Equiva-
lently, it is the set of horizontal bonds of a column of an aalifmetween two neighbouring section
lines. A section with R horizontal bonds is &section. The number d¢sections in a polygork,
is denoted by (P).

The polygon has now been divided up into smaller units, winehhave called sections. In
some sense many of these sections are superfluous and areededrto encode itshapé (in
some loose sense of the word). More specifically, if therewaoeneighbouring sections that are
the same, then we can reduce the polygon by removing one wof, thbile leaving the polygon
with essentially the same shape.

Definition 3. We say that a section is duplicate sectionf the section immediately on its left
(without loss of generality) is identical (see Figlite 3).

One can reduce polygons bgletionof duplicate sections by slicing the polygon on either side
of the duplicate section, removing it and then recombinfregpolygon, as illustrated in Figuiré 3.
By reversing the section-deletion process we dedimgicationof a section.
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We say that a set of polygon®, is densef the set is closed under section deletion and dupli-
cation.le no polygon outside the set can be produced by section delatid / or duplication from
a polygon inside the set.

duplicate sectior

Figure 3: The process of section deletion. The two indicaéstions are identical. Slice either side
of the duplicate and separate the polygon into three piddesmiddle piece, being the duplicate,
is removed and the remainder of the polygon is recombinegleRmg the steps leads to section
duplication. Also indicated is a section line which sepesahe duplicate sections from the rest of
the columns in which they lie.

The process of section-deletion and duplication leads tartagborder on the set of polygons.

Definition 4. For any two polygon®,Q € £, we writeP <5 Qif P = Q or P can be obtained from
Q by a sequence of section-deletionsséction-minimapolygon,P, is a polygon such that for all
polygonsQ with Q <s P we haveP = Q.

The lemma below follows from the above definition (see [1T]details):

Lemma 5. The binary relation<s is a partial order on the set of polygons. Further every poly-
gon reduces to a unique section-minimal polygon, and theseoaly a finite number of minimal
polygons in?,.

By considering the generating function of all polygons thia equivalent (by some sequence
of section-deletions) to a given section-minimal polyges,find thatH,(x) may be written as the
sum of simple rational functions. Theordin 1 follows dingdtbm this. Further examination of
the denominators of these functions gives the followingltes

Theorem 6 (from [17]). If Hy(x) has a denominator factdPy(x), then®, must contain a section-
minimal polygon containing a K-section for someskZ* divisible by k. Further if H(x) has
a denominator factotVy(x)%, then B, must contain a section-minimal polygon that contains
sections that are K-sections for some (possibly differént)Z* divisible by k.

This theorem demonstrates the link between the factoB;,0f) and the sections in section-
minimal polygons with 2 vertical bonds.



2.2 The number ofk-sections

In this subsection, we shall demonstrate the following iplitiative upper bound on the denomi-
nator,Dnp(x) of Hp(X):

[n/3]
Dn(x) isafactorof [ Wk(x)* %> (5)
k=1

We do this by finding an upper bound on the numbek-gkctions that a SAP withr2vertical
bonds may contain. A proof of the corresponding result foregal bond animals is given in17];
here we follow a similar line of proof, but specialise (whpassible) to the case of SAPs.

The proof consists of several steps:

1. Find the maximum number of sections in a polygon wkhv&rtical bonds.

2. Determine a lower bound on the number of vertical bondssaetions that must lie to the
left (without loss of generality) of &section. This gives a lower bound on the number of
sections that must lie to the left of the leftmdssection and to the right of the rightmost
k-section — none of these can kesections and so we obtain a lower bound on number of
sections that cannot besections.

3. From the above two facts we obtain an upper bound on the aeuaflsections in a polygon
that may bek-sections; assume that they arekaiections.

4. Theorenhkb then gives the upper bound on the exponéHi o).

Please note that for the remainder of this part of the papahatk use Sm-polygonsto denote
“section-minimal polygorisinless otherwise stated.

Lemma 7. An sm-polygon that contains p pages and v vertical bondsiéniose pages may
contain at most p- v sections.

Proof. Consider they; vertical bonds inside thB" page. Between any two sections in this page
there must be at least 1 vertical bond (otherwise the hatd@dionds in both sections would be the
same and they would be duplicate sections). Hencéthmage contains at mosi+ 1 sections.
Since every section must lie in exactly 1 page the resulbvl O

Lemma 8. The maximum number of pages in an sm-polyg@Ris 1 where R denotes the number
of rows in the sm-polygon.

Proof. See Lemma 13 in_[17]. We note that this differs from the regultbond animal since
all sections must contain an even number of horizontal bosmai$ must also lie between vertical
bonds. Consequently we are only interested in those pagekaimsidethe sm-polygon. O

Lemma 9. The maximum number of sections in an sm-polygon #tiertical bonds i2V — 1.



Proof. Consider an sm-polygon of heigRtwith 2V = 2R+ 2v vertical bonds. Of these vertical
bonds R block section lines and the remaining 2ay lie insidepages. By LemmAl 8, this sm-
polygon has at mostR— 1 pages. At most\2vertical bonds lie inside these pages and so by
LemmdY the result follows. O

The above lemma tells us the maximum number of sections in-paygon. We now deter-
mine how many of these sections lie to the left (without Ioisgemerality) of ak-section. We start
by determining how many vertical bonds lie to the left d-gection.

Lemma 10. To the left (without loss of generality) of a k-section thare at least3k — 2 vertical
bonds, of which at leagik — 1 obstruct section lines.

Hence no polygon with fewer th&@hk — 4 vertical bonds may contain a k-section. Further, it is
always possible to construct a polygon with— 4 vertical bonds and a single k-section.

Proof. Consider a vertical line drawn througlk-section (as depicted in left-hand side of Figure 4).
The line starts outside the polygon and then as it crossézambal bonds it alternates between the
inside and outside of the polygon. More precisely, therekarel segments of the line that lie
outside the polygon anklsegments that lie inside the polygon. Let us call the segsrtbat lie
within the polygon fnside gap$and those that lie outsideoutside gaps
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Figure 4: Vertical and horizontal lines drawn througk-section show the minimum number of
vertical bonds required in their construction.

Draw a horizontal line through an inside gap (as depictethéntop-right of Figurél4). If we
traverse the horizontal line from left to right, we must @@¢ least 1 vertical bond to the left of
the gap (since it is inside the polygon) and then anotherdaitiht of the gap. Hence to the left
of any inside gap there must be at least 1 vertical bond. Silmive must cross at least 1 vertical
bond to the right of any inside gap.

Draw a horizontal line through the topmost of the 1 outside gaps. Since the line need not
intersect the polygon it need not cross any vertical bonddlatSimilarly for the bottommost
outside gap.



Now draw a horizontal line through one of the other outsidesgas depicted in the bottom-
right of Figurel#). Traverse this line from the left towardi® toutside gap. If no vertical bonds
are crossed then a section line may be drawn from the lefttiremutside gap. This splits the
k-section into two smaller sections and so contradicts osmragptions. Hence we must cross at
least 1 vertical bond to block section lines. If we cross angingle vertical bond before reaching
the gap then the gap would lie inside the polygon. Hence we pross at least 2 (or any even
number) vertical bonds before reaching the gap. Similasaeiag shows that we must also cross
an even number of vertical bonds when we continue travetsitige right.

Since anyk-section containg inside gaps, a topmost outside gap, a bottommost outside gap
andk — 1 other outside gaps, there must be at léastl +2 x 0+ 2 x (k— 1) = 3k— 2 vertical
bonds to its left andB— 2 vertical bonds to its right.

Consider the polygons depicted in Figlife 5 that are corntstiuicy adding hooks. In this
way we are always able to construct an sm-polygon Wt 4) vertical bonds and exactly one
k-section. O

Figure 5: Section-minimal polygons withk6- 4 vertical bonds and a singlesection may be
constructed by concatenating su¢tobK configurations.
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Figure 6: Given an sm-polygddwe can create a new sm-polygQthat is identical td® except
for the region lying to the right of its rightmog&tsection; that region is altered to maximise the
number of sections lying to the right of thesection. We do this by stretching that portiBrihat
lies to the right of thek-section so that no two vertical bonds lie in the same vdrtioa. The
polygon is then made section-minimal again by deleting idap sections.



The next lemma shows that given an sm-polygenthat contains &-section, we are always
able to find a new sm-polygof@, with the same number of vertical bonds that hbleast3(k— 1)
sections to the left of its leftmo&tsection. This result allows us to compute how many sections
in an sm-polygon cannot Besections since they lie to the left of the leftmost or to tiglatof the
rightmostk-section.

Lemma 11. Let P be an sm-polygon that contains a k-section 2vidsertical bonds. If there are
fewer than3(k — 1) sections to the right of the rightmost k-section in P, thesrdtexists another
sm-polygon, Q, that is identical to P except that to the rigithe rightmost k-section there are at
least3(k — 1) sections. See Figulé 6.

Similarly given a polygon, Pwith fewer than3(k — 1) sections to the left of the leftmost k-
section, there exists another polygon iQentical to P except that there are at lea8{k — 1)
sections to the left of the leftmost k-section.

Proof. We prove the above result bgtfetching the portion of the sm-polygorR, to the right of
the rightmosk-section so as to obtain a new sm-polyg@n,in which the number of sections to
the right of thek-section is maximised.

Consider the example given in Figlide 6. Consider the podfdhe sm-polygon that lies to the
right of rightmostk-section (which is highlighted). Label the vertical bondsn top-rightmost
(1) to bottom-leftmost (9). We nowstretcH the horizontal bonds of the sm-polygon so that bonds
with higher labels lie to the left of those with lower labefsdeso that no two bonds lie in the same
vertical line (Figurdb, centre). To recover a section-miali polygon we now delete duplicate
sections (FigurEl6, right). We now need to determine how nsagyions remain.

Consider the stretched portion of polygon before duplisatgions are removed. If there were
originally r vertical bonds blocking section lines, then there are stikrtical bonds blocking
section lines after stretching. See Figlife 7. Since no twticed bonds lie in the same vertical
line, each page corresponds to a single vertical bond tbakbla section line (which will lie on
the right-hand edge of the page). Hence the stretched pgrbtygon containg pages (one of
which contains thé&-section). The other vertical bonds must lie within thesggsa See also the
proof of Lemma 13 in[[17].

Thus, if there were = r +mvertical bonds to the right of thesection, withr blocking section
lines, then after deleting duplicate sections there wilt pages (no pages will be removed) and
vertical bonds within those pages (with no two vertical b®imdthe same page lying in the same
vertical line). Consequently there will e m— 1 sectionsexcludingthe k-section.

By LemmalID there must be at lea$t-32 vertical bonds to the right of lesection , and so
the “stretching” procedure will produce an sm-polygon vatheast 8 — 3 sections to the right of
thek-section.

Note that this procedure does not change the number of &kktands in each row, nor the
number of vertical bonds on either side of theection. O

Since we now know the total number of sections in a sectionmahpolygon and how many
of these cannot ble-sections we can prove an upper bound on the numblesettions:

Theorem 12. A section-minimal polygon P that contaif¢ = (6k — 4+ 2M) vertical bonds may
not contain more tha@M + 1 sections that contai@k or more horizontal bonds.
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Figure 7: The pages in the stretched polygon before remaliipdjcate sections. Bystanning
from left to right we see that each page corresponds onecaebond that blocks a section line.

Proof. By Lemmal®,P may contain no more thgRV — 1) sections. We complete the proof by
assuming that the theorem is false and then reaching a dastios.

Consider an sm-polygo®, that does not have a section with2k horizontal bonds, but does
contain more thari2M + 1) k-sections. By LemmB711 we may alwaystretcH the portion of
the polygon lying to the right of the rightmoktsection to obtain a new section-minimal polygon
so that at least (& — 1) sections lie to the right of the rightmoktsection. Similarly we may
“stretch” the portion of the polygon lying to the left of thefimostk-section to obtain a new
section-minimal polygo® that has at least(8 — 1) sections lying either to the left of the leftmost
or to the right of the rightmost-sections. Consequently this new polygon contains more tha
(2M + 1) 4 (6k — 6) = 6k+ 2M — 5 sections. This contradicts Lemifda 9.

Now consider an sm-polygon that contains sections withaatlg horizontal bonds. Assume
that it does contain more tharM2+ 1 such sections. Without loss of generality consider the
leftmost section with at leastkzhorizontal bonds. By applying Lemnialll we see that one may
always construct a new section-minimal polygon so that atl&k — 1) sections lie to the left
of the leftmost such section. Repeating the argument in énagoaph above shows that one will
reach a contradiction and the proof is complete. O

Remark. It is possible to construct a section-minimal polygon withetly (6k — 4+ 2M) vertical
bonds and ®1 + 1 k-sections — see Figufé 8.

Corollary 13. The factor oty (x) in the denominator, B(x) of Hy(x) may not appear with a power
greater than2n— 6k + 5. Hence we have the following multiplicative upper bounddgfx):

b 2n—6k+5
Dn(X) |_| Wk(x) AR
k=1

Proof. This follows by combining the results of Theoref§l, 6 Bdd 12.

Remark. We note that a comparison of the above bound on the denomioiaith,(x) appears to
be quite tight when compared with series expansion dala [t@jppears to be wrong only by a
single factor of¥»(x); the exponents of other factors appear to be equal to thaediaund.
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Figure 8: To construct a polygon witivP+ 1 k-sections andi6— 4+ 2M vertical bonds, start with

a polygon with a singlé&-section and K— 4 vertical bonds as shown (top left). Cut it on the right
of thek-section. InserM copies of the pair ok-sections and recombine the polygon. This gives a
polygon with 2V + 1 k-sections and6— 4+ 2M vertical bonds.

We also note that the above result significantly reducesitfieudtly of computing the coeffi-
cients,Hn(x) of the anisotropic generating function. In particular, weWw thatH,(x) is a rational
function whose numerator degree is no greater than that déihominator. Corollafy13 gives this
denominator (up to multiplicative cyclotomic factors) aagla consequence also bounds the degree
of the numerator and hence the number of unknowns we mustutenitporder to knowH,(X).

Since the degree & (x) is no greater thak, the degree dD,(X) is no greater thaglinz/fW k(2n—
6k +5) ~ 2i7n3. Note that using similar (non-rigorous) arguments to thasgection 4.2 of{[1/7]
one can show that the degree grows %%@3. Hence the degree of the numerator (and the number
of unknowns to be computed) grows s Bounds from transfer matrix techniques (suchlas [6])
grow exponentially.

3 The nature of the generating function

3.1 Differentiably finite functions

Perhaps the most common functions in mathematical phyaro ¢ombinatorics) are those that
satisfy simple linear differential equations. A subsetiade are the differentiably finite functions
that satisfy linear differential equations with polynoirdaefficients.

Definition 14. Let F(x) be a formal power series ix with coefficients inC. It is said to be
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differentiably finiteor D-finite if there exists a non-trivial differential equation:

d
Pa(x) S gF (9 + -+ Pu(x) 2 F () + PoO)F () = O ©
with Pj a polynomial inx with complex coefficientd [14].
In this paper we consider seri€3(x,y) that are formal power series ynwith coefficients that
are rational functions of. Such a series is said to be D-finite if there exists a nomatrifferential

equation:
d

Qd<x,y>§—yde<x,y>+-~-+Q1<x,y>§ye<x,y>+Qo<x,y>e<x,y> —o, @)

with Qj a polynomial inx andy with complex coefficients

One of the main aims of this paper is to demonstrate that tise@apic generating function of
SAPs is not D-finite, and we do so by examining the singuksitif that function.

The classical theory of linear differential equations imeplthat a D-finite power series of a
single variable has only a finite number of singularitiesisTiorms a very simple “D-finiteness
test” — a function such a$(x) = 1/cogx) cannot be D-finite since it has an infinite number
of singularities. Unfortunately we know very little abotiet singularities of thésotropic SAP
generating function and cannot apply this test.

When we turn our attention to the anisotropic generatingtion (a power series with rational
coefficients) there is a similar test that examines the sangies of thecoefficients Consider the
following example:

Xn
1—-nx

f(va) = Z

n>1

y". (8)

The coefficient ofy" is singular atx = 1/n and so the set of singularities of its coefficients,
{n~1 | necz*}, is infinite and has an accumulation point at 0. In spite df this a D-finite
power series ity, since it satisfies the following partial differential egoa:

2f
xyz(l—xy)7 —y(1—xy+X%y) (—) +f=0. 9

So the set of the singularities of the coefficients of a D<iréeries may be infinite and have
accumulation points. It may not, however, have an infinitmbar of accumulation points.

Theorem 15 (from [4]). Let f(X,y) = 3 n>0Y"Hn(X) be a D-finite series in y with coefficients (1)
that are rational functions of x. For & O let S, be the set of poles of jk), and let S= U, S..
Then S has only a finite number of accumulation points.

In order to apply this theorem to the self-avoiding polyg@merating function we need to
prove that the denominators of the coefficiertgx) suggested by Corollafy 113 do not cancel
with the numerators — so that the singularities suggestetthddsye denominators really do exist.
Unfortunately, we are unable to prove such a strong reswolvever, we do not need to understand
the full singularity structure of the coefficients; the tlling result is sufficient:
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Theorem 16. For k # 2 the generating function $4_»(X) has simple poles at the zeros8§(x).
Equivalently the denominator ofsid »(X) contains a single factor d¥y(x) which does not cancel
with the numerator.

An immediate corollary of this result is that singularit@fg¢he coefficientdd,(x) are dense on
the unit circle,|x| = 1 and so the anisotropic generating function is not a D-fimiteer series ity.

3.2 2-4-2 polygons

In order to prove Theorein 116 we split the set of polygons ith— 4) vertical bonds into two
sets — polygons that contairkesection and those that do not. Let us denote those polygiihs w
(6k — 4) vertical bonds and at least okesection by%zc_». Hence we may write the generating
functionHsk_3(Xx) as

H3k_2<X) — Z X‘P|© + Z X‘P|‘i’.

PeKak—2 PEPa 2\ Kak—2

Lemma 17. The factor'¥(x) appears in the denominator of the generating function
Y Pedy o xPl= with exponent exactly equal to one if and only if it appearthi@ denominator of
Hak_2(X) with exponent exactly equal to one.

Proof. The setsKsx_» andPs_»\ Xzk_2 are trivially dense, and so by TheorEn 1 we know that the
horizontal half-perimeter generating functions of thests are rational and that their denominators
are products of cyclotomic factors. Further, sirg »\ %3_» does not contain a polygon with
k-section (or indeed, by Lemnial10, any section with more thamo2izontal bonds), it follows by
Theorenib that the denominator of the horizontal half-petengenerating function of this set is
a product of cyclotomic polynomial¥j(x) for j strictly lessthank. Consequently this generating
function is not singular at the zeros ¥%(x). By TheoreniIR, every section-minimal polygon in
Kak—2 contains exactly onk-section, and so the exponent®f(x) in in the denominator of the
horizontal half-perimeter generating function &@x_» is either one or zero (due to cancellations
with the numerator). The result follows since this denortundactor may not be cancelled by
adding the other generating function. O

NRURV >

The above Lemma shows that to prove Theokein 16 it is suffibieptove a similar result for
the set of polygonsKzk_». Let us examine this set further. In the proof of Lenimi 10 i slaown
that ak-section could be decomposed an alternating sequendesidé gapsand “outside gaps
a row containing an inside gap contained at least 2 vertimatlb and a row containing an outside
gap contained at least 4 vertical bonds (see the examplegumed). We now concentrate on
polygons containing 2 vertical bonds in very second row amdrtical bonds in every other row.

Definition 18. Number the rows of a polygoh starting from the topmost row (row 1) to the bot-
tommost (row r). Let;(P) be the number of vertical bonds in th&row of P. If (vy(P),..., v (P))
=(2,4,2,...,4,2) then we callP a2-4-2polygon. We denote the set of suzi-2polygons with
2n vertical bonds byP24%. Note that this set is empty unless 2 6k — 4 (for somek =1,2,...).

14



Lemma 19. A section-minimal polygon witt6k — 4) vertical bonds that contains one k-section
must be &-4-2polygon. On the other hand, a section-minir@ad-2 polygon need not contain a
k-section.

Proof. The first statement follows by arguments given in the prodfehmalID. The rightmost
polygon in Figuré B show that24-2polygon need not containkasection. O

o
[

L

Figure 9: Four section-minim&-4-2 polygons. The first three polygons contain a 2-section, a
3-section, and a 4-section respectively. The rightmostgmi contains only 1-sections.

Despite the fact tha2-4-2 polygons are a superset of those polygons containing &t dees
k-section, it turns out both that they are easier to analysi@ work that follows) and that a result
analogous to Lemniall7 still holds.

Lemma 20. The factorVy(x) appears in the denominator of the generating funcggg?gfgz x/Ple

with exponent exactly equal tbif and only if it appears in the denominator ofgH(x) with
exponent exactly equal to one.

Proof. Similar to the the proof of Lemniall7. O
In the next section we derive a (non-trivial) functional atjon satisfied by the generating
function of2-4-2polygons.

3.3 Counting with Hadamard products

By far the most well understood classes of square latticggaois are families ofow convex
polygons. Each row of a row convex polygon contains only twdigal bonds; this allows one to
find a construction by which polygons are builtrgv-by-row This technique is sometimes called
the Temperley methof, [19].

Since every second row of4-2 polygon contains 2 vertical bonds, we shall find a similar
construction that instead of building up the polygons romedw, we build them two rows at a
time (an idea also used ihl[5]). Like the constructions giwef®], this construction leads quite
naturally to a functional equation satisfied by the genegatiinction. One could also derive this
functional equation using the techniques describedlinH8jyever it proves more convenient in
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this case to use techniques based on the application of Hadammoducts (this idea is also used
in [3]).

We shall start by showing ho@+4-2polygons may be decomposed into smaller units we shall
call seedsandbuilding blocks Consider th&-4-2polygon in Figuré TI0. Start by highlighting each
row with 2 vertical bonds. We therduplicaté each of these rows, excepting the bottommost;
this situation is depicted in the middle polygon in Figlré BY cutting the polygon horizontally
between each pair of duplicate rows we decompose the polygiguelyinto a rectangle of unit
height and a sequence 2#4-2 polygons of height 3, such that the bottom row of each polyigon
the same length of the top row of the next in the sequence. ¥etrethis initial rectangle as the
seed blockand the subsequeBt4-2polygons of height 3 aBuilding blocks

R
=il

\_\_I_\_|_ | | |
e

I

Figure 10: Decomposing-4-2 polygons into building blocks. Highlight each row with 2 tieal
bonds. Then “duplicate” each of these rows excepting thieobwhost. By cutting along each of
these duplicated rows ea@i4-2 polygon is decomposed into a rectangle (of unit height) and a
sequence of building blocks.

This decomposition implies that ea@34-2 polygon is either a rectangle of unit height, or
may be constructed bycbmbining a (shorter)2-4-2 polygon and &-4-2 building block, so that
the bottom row of the polygon has the same length as the topofaive building block. This
construction is depicted in Figuirel11.

We will translate this construction into a recurrence $iatisby the2-4-2 polygon generating
function by using Hadamard products. We note that a simdastruction (but for different lattice
objects) appears in[LL, 12] but is phrased in terms of cahgtam integrals.

Let us start with the generating function of the buildingdis:

Lemma 21. Let T(t,s;x,y) be the generating function &-4-2 polygon building blocks, where t
and s are conjugate to the length of top and bottom rows (&spdy). Then T may be expressed
as

Tt,sxy) =2(Tt,sxy)+T(stxy)), (10)
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Figure 11: Constructing 2-4-2 polygon from a (shorter2-4-2 polygon and a2-4-2 building
block. Note that when the building block and the polygon ajeashed together, the total vertical
perimeter is reduced by 2, and the total horizontal perimsteeduced by twice the width of the
joining row.

where the generating functio‘ﬁ(t,s; X,Y) is given by

T(t,sxy) = y4<A(s,t;x)-[[stx]][[tx]]2~B(s,t;x)
+A(s,t;X) - [ stx][ st] [tx]?- B(s, t;X)
+A(s,t;X) - [st][tx]3- B(s,t;X)
+C(s,t;x) - [sx][tx]3- B(s.,t;X)

(

).
)~[[sx]][[x]][[tx]]3~B(s,t;x)>. (11)

+C(s,t;x
We have usefif | as shorthand fo%, and the generating functions A, B and C are:

A(st;x) = 1+ [x]+2[sx]+2[tx] + [sx][tx] +

[sX]+ [sx][x] + [tx]? + [tx][x] (12)
B(s,t;x) = 1+4[tx]+[X] (13)
C(st;x) = 14[sx]+[x]. (14)

Proof. Figure[I2 shows the four possible orientations of a buildilogk. Figure§14 and 15 show
how to construct the generating functidnof building blocks in one orientation. To obtain all
building blocks we must reflect the blocks countedTbgbout both horizontal and vertical lines
(as shown in FigurEZ12). Reflecting about a vertical line ipliéts T by 2. Reflecting about a
horizontal line interchanges the rolessandt. This proves the first equation.

We now findT by finding thesection-minimabuilding blocks in one orientation (that of the
top-left polygon in Figur€2). All such polygons contain@tical bonds, leg, ..., h € Z denote
thex-ordinate of these bonds. Figurd 13 shows the Hasse diagetithese numbers must satisfy:

a,b<d abc<e
de<f f <g,h

Without loss of generality we sat= 0 (to enforce translational invariance).
Consider a section-minimal building block and determire thlues ofb,...,h. We can de-
compose the building block depending on these values:
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¢ Find which ofg andh is minimal and cut the polygon along a vertical line runnihgotuigh
that vertical bond. This separates the polygon into 2 pénespart to the right is 8-frill
(see Figur&5) — there are 3 possiBlrills depending on whethgr=h, g<horg> h.

e If ¢ < d then the building block must be of the form of polygon 1, 2 om3Fgure[14.
Determine which is the greatest afb andc and cut the polygon along the vertical line
running through that vertical bond. This separates thegmiyinto 2-parts; the part to the
right is anA-frill (see Figuré5) — there are 11 possiBHrills depending on the relative
magnitudes o&, b, andc.

e If ¢ > d then the building block must be of the form of polygon 4 or 5 igUfe[14. Find
which ofa andb is greater and cut along the vertical line running througtt Wertical bond.
This separates the polygon into 2 parts; the part to the regaC-frill (see Figuré15) —
there are 3 possiblé-frills depending on the whethar=b,a<bora> b.

Using this decomposition we see that every section minineglgon is given by one of the 5

polygons given in Figure~14 together with 2 of thidls from Figure[Ib. The above equation for

T(t,s,x,y) follows. O
We note that one could firfl using the theory oP-partitions [18], and we used it to check the

result.

Figure 12: The set of building blocks has a 4-fold symmetrgla®wvn. It suffices to find all the
building blocks in one orientation and then obtain the athmrreflections.

We now define the (restricted) Hadamard product and show hmelates to the construction
of 2-4-2polygons.
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Figure 13: The vertical bonds of2za4-2polygon building block. The-ordinate of these bonds are
denotedn, b,...,h as shown. The Hasse diagram showing the constraints on likeseab, . .., h
is given on the right; an arrow from to vj implies thaty; > v;.

C

t

t

t

4

C

5

Figure 14: The section-minimal building blocks»#-2 polygons. The frills”, denotedA, B and
C are given in Figuré15.

Definition 22. Let f(t) = 3> fat" andg(t) = i~00nt" be two power series in We define the
(restricted) Hadamard produttt) & g(t) to be

ft) o gt) = %fngw

We note that iff (t) andg(t) are two power series with real coefficients such that

1/n

lim |faon| ™" < 1,
n—oco

then the Hadamard produttt) ®: g(t) will exist. For examplé1—2t)~1®; (1—3t)~* does not
exist, while(1—2t) 1@ (1-t/3)~* does exist and is equal to 3.

Below we consider Hadamard products of power serigésnhose coefficients are themselves
power series in two variables ands. These products are of the form

f(t;x) Ot T(t,8,X) = Z}fn(x)Tn(s,x). (15)
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S |

Figure 15: The frills” of the building blocks in Figuré&Z4.

Since the summands are the generating functions of certdyggns (see below) it follows that
fn(X)Ta(X) = O(sX") and so the sum converges.

Lemma 23. Let f(s;X,y) be the generating function &-4-2polygons, where s is conjugate to the
length of bottom row of the polygon. This generating functatisfies the following equation

ySX

1
f(s;x,y) = E(‘F f(t;x,y) Ot <9T(t/X,S;X,Y)) ;

where T(t, s;x,Y) is the generating function of tfe4-2building blocks.

Proof. Let us writef(s;X,y) = Sn>1 fn(X,y)S" andT (t,5,X,Y) = Sn>1 Ta(S;X,Y), Wherefn(X,y) is
the generating function d?-4-2 polygons whoséottomrow has lengtm, andT,(s;X,y) is the
generating function o2-4-2 building blocks, whos¢op row has lengtm. The above recurrence
becomes: ySX

fsxy) =15+ n; fn(%,Y)Tn(s;%,Y)/ (yx").
This follows becaus@-4-2 polygon is either a rectangle of unit height (countedib?g() or may
be constructed by combining2a4-2 polygon, whose last row is of length(counted byf,(x,y))
with a2-4-2polygon whose top row is of lengtin(counted byT(s; x,y)). To explain the factor of
1/(yxX") see Figur&d1; when the building block is joined to the poty(gentre) and the duplicated
row is “squashed(right), the total vertical half-perimeter is reduced bytdvo vertical bonds are
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removed) and the total horizontal half-perimeter is redunethe length of the join (two horizontal
bonds are removed for each cell in the join). Hence if the iiof lengthn, the perimeter weight
needs to be reduced by a factor(gk"). O

4o D> D>

While in general Hadamard products are difficult to evaluidtene of the functions is rational
then the result is quite simple. This fact allows us to tratesthe above Hadamard-recurrence into
a functional equation.

Lemma 24. Let f(t) = 5> fnt" be a power series. The following (restricted) Hadamard picid
are easily evaluated:

f(t)®t< ! ) = f(a) (16)

1-at

e () = (2
"\@=at)1) — otk

We also note that the Hadamard product is linear:
f(t) @t (9(t) +h(t)) = f(t) ©r g(t) + f(t) O (D). (18)

Proof. The second equation follows from the first by differentigtimith respect tax. The first
equation follows because

1—10(t = (%w”) Ot (%a”t”) = %fna”: f(a).

The linearity follows directly from the definition. O

: (17)

t=a

f(t) ot

NRURV >

In order to apply the above lemma, we need to rewrife/x,s;Xx,y)/y in (a non-standard)
partial fraction form:

T(t/xsxYy)/y=y

t°+sc k!ithrc 1 ot (19)
€ kZO M@ T T ost ' P1-stx|’

where thec; are rational functions of andx. We note that whes = 1 some singularities of
coalesce and we rewrife as:

T(t/x1xy)/y=y (20)

&0 66 kitk e 1
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where theg"are rational functions of. The Hadamard produdit;x,y) ©t T(t/x,s;X,y)/yis then:

> ok
FEXY) O TE/XSXN/Y=Y| ¥ Gz
k=0

(Lixy) +crf(sxy) +csf(sxxy) |,  (21)

where we have made use of the fact th¥jtf (t;x,y) = O (there are no rows of zero length).

We do not state in full the coefficients, since they are very large and, with the exception of
Cg, ot particularly relevant to the following analysis. Wdl\jist state the denominators of all the
coefficients, as well as the coefficiasgtin full. If we write the denominator of; asd;:

do= (1—x)3(1—sx°1—5)°
dr = (1—x)31—sx31—9)*
ds = (1—x)2(1—sx)(1—s)?
dg=(1-59)
25% (S22 + sx— s+ 1)
(1—sx4(1—x)2

Cg =

Whens = 1 the coalescing poles change equatiah (21) to:

6 o
Ftxy) Ot TU/X LX) /Y=Y | Y G
k=0

The coefficientsg;; become somewhat simpler and can be stated here in full:

(14 X) (22 +1)
(1-x)°
X2(1+X)(2%+x+1)
(1-x)°
L 11X 4x+1)

“=3 %3
6 1 (x+3)

—-2

8>

C=2

(22)
k ~
5tk (Lixy) +Efxxy) (23)
2 3
61:4(1+X>(X +1)x
(1-x)°
L X(14x)(2x+1)
B (1-x)*
c _ 1 (®+2x+3)
T 12 (1-x)72
Y
"7 360
08‘5:1- (24)

Lemma 25. Let f(s;x,y) be the generating function fd-4-2 polygons enumerated by bottom
row-width, half-horizontal perimeter and half-verticaépmeter (sx and y respectively). (§;X,y)

satisfies the following functional equations:

5 k
. Xy ALY .
flsxy) = 1_Sx+y3 kZOCk—HGSK(1,X,Y)+C7f(S’X,Y)+08f(SX;X,Y)] (25)
X 6 oKf A
F(Lxy) = %(ﬂﬁ Zck+1@(l:x,y>+08f(x;x,y)], (26)
k=0
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with g and¢; given above.

We rewrite the generating function agsfx,y) = Yn=1 fa(SX)y*""2, where the coefficient
fn(s;X) is the generating function foP2+2,. This allows the above functional equations to be
transformed into recurrences:

fi(sx) = 1 ixsx (27)
> ok,
fori(sx) = Z ck+1@(1;x) +c7fn(s;X) + cgfr(SX X) s#1 (28)
K=0
fara(1;x) = : Ck 1%(1'X)+égf (X X) (29)

Proof. Apply LemmalZ4 to the partial fraction form of the transitifumction for generas, and
whens= 1. O

3.4 Analysing the functional equation

By Lemmal20, we are able to prove Theorem 16 by showingfif{dtx) is singular at the zeros
of Wn(x). We do this by induction using the recurrences in Lerima 25.

Before we can do this we need to prove the following lemma eth@zeros (and hence factors)
of one of the coefficients in the recurrence:

Lemma 26. Consider the coefficienigts; x) defined above. When=sx¥, cg(x¥,x) has a single
zero on the unit circle at x —1 when k is even. When k is odg{x%, x) has no zeros on the unit
circle.

Proof. Whens = xX, cg(XX,x) is

" 2Xk+2(k2k+2+xk+l —Xk—|— 1)
Ca(X",X) = (1— XkF1)4(1— x)2

Let & be a zero otg(xk,x) that lies on the unit circle§ must be a solution of the polynomial
Pr(X) = x2KF2 4 xk+1 _xK 1 1= 0. Hence:

ghghrl = g2 divide bygk+1
1/6-1 = grtpg
Sincet lies on the unit circle we may write = &°:
ei®_1 — DB | orilkil)e
= 2cog(k+1)6).

Since the right hand-side of the above expression is realefivbhand side must also be real.
Therefore@ = 0,tand§ = +1. If £ = 1 thenpy(§) = 2. On the other hand, & = —1 then
pk(§) =4 if kis odd and is zero dfis even.
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Since the denominator o§(x¥, x) is not zero wheik is even an& = —1 the result follows. One
can verify that there are not multiple zeroscat —1 by examining the derivative of the numerator.
O

4o D> D>

Proof of Theorem[1&
This proof for SAPs was first given in [16]. A similar (but chesxr) argument for a different class
of polygons appears inl[5]. We follow the latter.

Consider the recurrence given in Lemima 25. This recurrémoesthatf,(s;x) may be written
as a rational function of andx. Since f,(1;x) is a well defined (and rational) function, the
denominator off,(s;X) does not contain any factors @ — s).

Let Cn(s;X) be the set of polynomials of the form

ﬁ Wi(X)%(1 — sX)™x, (30)

k=1

whereay andby are non-negative integers. We defiig(x) = Cn(0;X) (polynomials which are

products of cyclotomic polynomials). We first prove (by iistion onn) that f, may be written as
Nn(s; X)

(1—sX")Dp(s;X)’

fn(sX) = (31)
whereN, (s; x) andDy(s; X) are polynomials irsandx with the restriction thaby (s, X) € Cn_1(S; X).
Then we consider what happenssat 1 andx is set to a zero o).

Forn =1, equation[(31) is true, sinci(s,x) = 1%;. Now assume equatiofi{31) is true up
to n and apply the recurrence. The only term that may introducevazero into the denomina-

tor is cg(s; X) fr(sx x). By assumptionf,(s;x) = %, andDp(sx X) € Cn(s;X). Hence

equation[(31) is true fan+ 1, and so is also true for ail> 1.

NRUR > v

Let & be a zero ofWy(x). We wish to prove thaf,(1;x) is singular atx = & and we do so
by proving that fork = 1,...,n, the generating functiofi(x"%; x) is singular ax = &, and then
settingk = n. We proceed by induction dafor fixed n.

If we setk = 1, then we see thafy (x"~%;x) = 1§—nxn and so the result is true. Now lkt> 2
and assume that the result is true kor 1, ie fk_l(x”*k“;x) is singular atx = €. The recurrence
relation and equatiof (B1) together imply

USX) = o+ a5 2(5%), 32)

whereN andD are polynomials irsandx andD(s;x) € Cx_1(s;X). Settings = x"K yields

N(x"K: x)
2

(%) = 5 T

+ (XK x) i (XKL x), (33)
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and we note thaD(xX"%;x) € C_1(x). In the caseék = n the above equation is still true, since
Cg = Cgls—1.

Equation [3B) shows thafi (x") is singular atx = & only if cg(x"¥;x) f_1 (X" k1;x) is
singular atx = &. This is true (by assumption) unlesg(x"%;x) = 0 atx = &. By Lemma[ZB,
cg(x"K;x) is non-zero ak = &, except whem =k = 2.

In the casen = k = 2 this proof breaks down, and indeed we see Hgk) is not singular at
x = —1. Excluding this case‘k(x”*";x) is singular ak = & and sof,(1;x) is also singular at = €.
By Lemmd2ZDHs¢ »(X) is singular ax = &. O

4o D> D>

We can now prove that the self-avoiding polygon anisotrgicerating function is not a D-finite
function:

Corollary 27. Let § be the set of singularities of the coefficieni(k). The set S= 1S is
dense on the unit circlx| = 1. Consequently the self-avoiding polygon anisotropic-palfimeter
generating function is not a D-finite function of y.

Proof. For anyq € Q, there exist&, such thatV,(e?™) = 0. By TheoreniT6H3,_»(X) is singular
atx = €7, exceptingk = —1. Hence the sedis dense on the unit circléx| = 1. Consequentl§
has an infinite number of accumulation points andxg,y) = 3 Hn(X)y" is not a D-finite power
series iny.
O
We can easily extend this result to self-avoiding polygam&gpercubic lattices.

Corollary 28. Let Gq be the set of self-avoiding polygons on the d-dimensionataybic lattice
and let G be the anisotropic generating function

d-1
Gy(X1,..-,X4-1,Y) = Z yIP\d I—lXI_IP|7
PGy i=

where|P|; is half the number of bonds in parallel to the unit vecBrle when d= 2 we recover
the square lattice anisotropic generating function. Kd. then the generating function is equal to
zero and otherwise is a non-D-finite power series in y.

Proof. Whend = 1 then there are no self-avoiding polygons and so the gengratnction is
trivially zero. Now consided > 2. It is a standard result in the theory of D-finite power serie
that any well defined specialisation of a D-finite power seigeitself D-finite [14]. Settinge =
.- =Xg_1 = 0 in the generating functioBq(Xx,y) recovers the square lattice generating function
P(x,y). Hence ifGq4(X,y) were a D-finite power series inthen it follows thatP(x,y) would also
be D-finite. This contradicts Corollafy27, and so the refallows.

O
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4 Discussion

We have shown that the anisotropic generating function ibfaseiding polygons on the square
lattice, P(x,y), is not a D-finite function ofy. This result was then extended to prove that the
anisotropic generating function of self-avoiding polygam any hypercubic lattice is either trivial
(in one dimension) or a non-D-finite function (in dimensi@and higher).

There exists a number of non-D-finiteness results for géingrunctions of other models, such
as bargraphs enumerated by their site-perimgier [5], a puofidattice animal models related to
heaps of dimerd[4] and certain types of matchings [13]; éhesults rely upon a knowledge of
the generating function — either in closed form or via some ebrecurrence. The result for
self-avoiding polygons is, as far as we are aware, the fissiiren the D-finiteness of a completely
unsolved model!

Unfortunately we are not able to use this result to obtaiorimfation about the nature of the
isotropic generating functioR(x,X); it is all too easy to construct a two-variable function ttsat
not D-finite , that reduces to a single variable D-finite fumat For example

y"
FOoy) = Z (1—x")(1—x+1)”

n>1

(34)
is not a D-finite function ofy by TheoreniI5. Setting = x gives a rational, and hence D-finite,

function ofx:

Xn
; (1—x")(1—xnt1)

=1
1 ¥ Xn+1

- 1—xz (1—x”_1—x”+1)
X

F(x,x) =

n>1

(1-x)2

On the other hand, the anisotropisationsolvablelattice models does not alter the nature
of the generating function — rather it simply moves singitiles around in the complex plane.
Unfortunately we are unable to rigorously determine howtlié&s phenomenon extends since we
know very little about the nature of the generating functiohunsolved models.

That the self-avoiding polygon anisotropic half-perinmegenerating function is not D-finite
(Corollary[ZT) demonstrates the stark difference betwherbbnd-animal models we have been
able to solve and those we wish to solve. Solved bond-anirdkts (with the exception of spiral
walks [1]) all have D-finite anisotropic generating funciso More general (and unsolved) models,
such as bond animals and self-avoiding walks, are believegtibit the same dense pole structure
[I7,18] as self-avoiding polygons and therefore are thouglvet non-D-finite.

Two papers are in preparation to extend these results totedddéond animals, bond trees and
general bond animals. We are also investigating the pdisgibf applying these techniques to
site-animals and other combinatorial objects.
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