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Abstract

In Ziegler (2002), the second author presented a lower bound for the chromatic num-
bers of hypergraphs KGr

sssS, “generalized r-uniform Kneser hypergraphs with inter-
section multiplicities sss.” It generalized previous lower bounds by Kř́ıž (1992/2000)
for the case sss = (1, . . . , 1) without intersection multiplicities, and by Sarkaria (1990)

for S =
([n]
k

)

. Here we discuss subtleties and difficulties that arise for intersection
multiplicities si > 1:
1. In the presence of intersection multiplicities, there are two different versions of a

“Kneser hypergraph,”depending on whether one admits hypergraph edges that are
multisets rather than sets. We show that the chromatic numbers are substantially
different for the two concepts of hypergraphs. The lower bounds of Sarkaria (1990)
and Ziegler (2002) apply only to the multiset version.

2. The reductions to the case of prime r in the proofs by Sarkaria and by Ziegler
work only if the intersection multiplicities are strictly smaller than the largest
prime factor of r. Currently we have no valid proof for the lower bound result in
the other cases.

We also show that all uniform hypergraphs without multiset edges can be represented
as generalized Kneser hypergraphs.

1 Introduction

The “generalized Kneser hypergraphs with intersection multiplicities,” as studied in [10],
arose from the graphs (implicitly) studied by Kneser [4] in several subsequent generalization
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steps. They do form a large class of hypergraphs — indeed, we will show in Section 3 that
every uniform hypergraph without multiplicities can be represented in this model.

When writing [10], the second author overlooked that the edges of the generalized
Kneser hypergraph KGr

sssS with intersection multiplicities sss = (s1, . . . , sn) could be multisets
if si > 1: Their edges can have repeated elements, as pointed out in [7]. Thus KGr

sssS is
not a hypergraph in the traditional sense of Berge [2], where the edges have to be sets. If
one does not allow for repeated elements in the edges, then this yields a sub-hypergraph
without multiplicities,

kgrsss(S) ⊆ KGr
sss(S).

Both for kgrsss(S) and for KGr
sss(S) we are faced with the problem to determine the chromatic

number: How many colors are needed for the sets in S if monochromatic hypergraph edges
are forbidden? Clearly we have χ(kgrsssS) ≤ χ(KGr

sssS), but the two values can be far apart,
as we will see below.

In this note, we discuss the chromatic numbers of generalized Kneser hypergraphs with
intersection multiplicities, in view of some main topics and results from [10]. This includes
errata and clarifications announced in [11]:

[10, Lemma 3.1] described an explicit coloring for the special case of S =
(

[n]
k

)

and
constant sss = (s, ..., s). This coloring is valid for generalized Kneser hypergraphs with
multiplicies, which yields

χ(kgrs
(

n

k

)

) ≤ χ(KGr
s

(

n

k

)

) ≤ 1 +
⌈

1

⌊
r−1
s

⌋

ns−rk+1
s

⌉

.

[10, Theorem 5.1] states a lower bound

⌈ 1
r−1

cdr
sssS⌉ ≤ χ(KGr

sssS)

for the generalized Kneser hypergraphs. This lower bound holds for generalized
Kneser hypergraphs with multiplicities and is not valid for χ(kgrsssS) as we will see
in Section 4.
Moreover, Karsten Vogel (Magdeburg) has noticed that the reduction to the prime
case in the proof of [10, Theorem 5.1] fails when the intersection multiplicities are
not smaller than the prime factors of r. As we will analyze in Section 5, we get only
the following theorem (with a combinatorial proof):
Theorem 1.1. Let S ⊆ 2[n] be a set family, and let the intersection multiplicities
si ≥ 1 be smaller than the largest prime factor of r ≥ 2. Then

χ(KGr
sssS) ≥ ⌈ 1

r−1
cdr

sssS⌉.

In particular, the conditions of this theorem are satisfied
• if there are no intersection multiplicities, sss = (1, ..., 1). In this case kgr(1,...,1)S =
KGr

(1,...,1)S, and Theorem 1.1 reduces to the main result of Kř́ıž [5, 6], and
• in the case when r is prime, for arbitrary si < r.
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We still believe that the theorem is valid for arbitrary si < r, as stated by [10,
Thm. 5.1], but we have no proof for this generality — not even for the “complete
uniform” case when S =

(

[n]
k

)

; indeed, we will see in Section 5 that the induction
proof by Sarkaria [9] for this case is not valid, either.

[10, Example 7.2] analyzed some Kneser hypergraphs without multiplicities, including a
computation of χ(kg4(2,...,2)

(

[n]
2

)

). Thus in Section 4 we discuss families of hypergraphs

that include KG4
(2,...,2)

(

[n]
2

)

. We also collect evidence towards the conjecture that the

upper bound χ(KGr
(s,...,s)

(

n

k

)

) ≤ 1 +
⌈

1

⌊
r−1
s

⌋

ns−rk+1
s

⌉

is tight in general.

2 Preliminaries

In this section we review the fundamental concepts for this study; compare [10, Sect. 2].
Let n ≥ 1 and denote [n] := {1, . . . , n}. By sss we denote a vector of positive integers
sss = (s1, . . . , sn). Throughout r ≥ 2 denotes an integer. We write sss < r if si < r for all i.

Definition 2.1 (sss-disjoint sets). Subsets S1, . . . , Sr of [n] are sss-disjoint if each i ∈ [n]
occurs in at most si of the sets Sk. Note that here equalities Sk = Sℓ are possible.

To illustrate this definition consider n = 3 and sss = (3, 2, 1). The subsets {1, 2}, {1, 2},
and {2, 3} are not sss-disjoint because 2 occurs in all three sets. On the other hand, {1, 2},
{1, 2}, and {1, 3} are sss-disjoint, and so are {1, 2}, {1, 3}, and {2}.

Definition 2.2 (sss-disjoint rrr-colorability defect [10, p. 673]). Let [n]sss denote the
multiset in which the element i ∈ [n] occurs with multiplicity si. We denote the cardinality
of [n]sss counting multiplicities by n.

The sss-disjoint r-colorability defect cdr
sssS of a set S ⊆ 2[n] is the minimal number of

elements one has to remove from the multiset [n]sss such that the remaining multiset can be
covered by r subsets of [n] that do not contain any element from S:

cdr
sssS = n−max

{

r
∑

j=1

|Rj|

∣

∣

∣

∣

∣

R1, . . ., Rr ⊆ [n] sss-disjoint subsets
and S 6⊆ Rj for all S ∈ S and all j

}

.

Here the sets Rℓ need not be distinct, and they may be empty. Note for further reference
that cdr

sss∅ > 0 if si > r for some i.
As example we consider n = 3, sss = (3, 2, 1), and S = {S1} where S1 = {2, 3}. We

are therefore never allowed to pick {1, 2, 3} or {2, 3} as one of the sets Rj . For r = 1,
R1 = {1, 2} is a possible choice of largest cardinality, thus cd1

(3,2,1)S = 6 − 2 = 4. For
r = 2, we may pick R1 = {1, 2} and R2 = {1, 3} as examples that maximize |R1| + |R2|,
hence cd2

(3,2,1)S = 2. For r = 3, the value |R1| + |R2| + |R3| is maximized by R1 = {1, 2},

R2 = {1, 2}, and R3 = {1, 3}, so cd3
(3,2,1)S = 0.

Definition 2.3 (rrr-uniform hypergraphs with/without multiplicities). An r-multi-
subset X of [n] is an unordered collection of r elements x1, . . . , xr of [n] that need not be
distinct. We denote it by X = {{x1, . . ., xr}}.
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An r-uniform hypergraph in the sense of Berge [2] (without multiplicities) is a pair (V,E)
that consists of a finite set of vertices V and a set E of edges, which are r-subsets of V .

An r-uniform hypergraph with multiplicities is a pair (V,E) that consists of a finite set
of vertices V and a set E of edges, which are r-multisubsets of V .

A hypergraph (with multiplicities) is loop-free if every edge has at least two distinct
elements (vertices). In the following, all hypergraphs are supposed to be loop-free.

According to this definition, hypergraphs do not have multiple edges; this makes sense
for our purposes, since multiple edges are irrelevant for coloring.

The loop-free r-uniform hypergraph analog of the complete graph Kn on n vertices is
denoted by Kr

n. The vertex set of Kr
n is [n], and the edges are all the r-multisubsets of [n]

that contain at least two distinct vertices. Thus Kr
n has

((

n

r

))

− n =
(

n+r−1
r

)

− n edges. The
analogous complete r-uniform hypergraph kr

n without multiplicities has
(

n

r

)

edges.

Definition 2.4 (rrr-uniform sss-disjoint Kneser hypergraphs). For any finite set S =
{S1, . . . , Sm} of non-empty subsets of [n], the r-uniform sss-disjoint Kneser hypergraph KGr

sssS
with multiplicities has the vertex set S and the edge set

E(KGr
sssS) := { all sss-disjoint r-multisets whose elements are sets Si ∈ S }.

If si < r for all i ∈ [n] then KGr
sssS is loop-free.

The r-uniform sss-disjoint Kneser hypergraph kgrsssS without multiplicities has the same
vertex set S, but all of its edges are sets rather than multisets:

E(kgrsssS) := { all sss-disjoint r-subsets of S }.

The generalized Kneser hypergraphs kgrsS are loop-free for any sss.

We use KGr
sS as a shorthand for KGr

(s,...,s)S in the case of constant intersection multi-
plicity sss = (s, ..., s), and similarly we write kgrsS and cdr

sS.

The previously defined complete r-uniform hypergraphs Kr
n and kr

n are examples of
r-uniform sss-disjoint Kneser hypergraphs. We have Kr

n = KGr
r−1

(

[n]
1

)

, kr
n = kgrr−1

(

[n]
1

)

, and

in this particular situation KGr
1

(

[n]
1

)

= kgrr−1

(

[n]
1

)

.

We can obtain kgrsssS from KGr
sssS by discarding edges. In this sense, kgrsssS is a subhy-

pergraph of KGr
sssS. In the special case that si ≡ 1 we have KGr

sS = kgrsS since pairwise
disjoint non-empty sets are distinct. In particular, for r = 2 and si ≡ 1 both definitions
specialize to the generalized Kneser graph of S ⊆ 2[n].

Definition 2.5 (hypergraph colorings [3]). A coloring of an r-uniform hypergraph H

(multiplicity-free or not) with m colors is a map c : V (H) → [m] that assigns to each
vertex of H a color such that no edge is monochromatic, that is, for each e ∈ E(H) we
have | {c(x) | x ∈ e} | ≥ 2. Any coloring c of H by m colors induces a homomorphism
H → Kr

m of hypergraphs. The chromatic number χ(H) is the smallest number m such
that there is a coloring of H with m colors.
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3 How general are generalized Kneser hypergraphs?

Matoušek & Ziegler [8, p. 76] observed that every (finite, simple) graph can be represented
as a Kneser graph: For any G = (V,E) there is a set system S = {Sv | v ∈ V } ⊆ 2[m],
for some m, such that Sv ∩ Sw = ∅ if and only if {v, w} ∈ E. Thus it is natural to
ask which hypergraphs (with or without multiplicities) can be represented as generalized
Kneser hypergraphs. The following proposition collects our answers to this question.

For this, call a hypergraph up-monotone if for e, e′ ∈
((

[n]
r

))

with e ∈ E we also have
e′ ∈ E whenever the support of e′ contains that of e. Every r-uniform hypergraph without
multiplicities is up-monotone, as is every generalized Kneser hypergraph KGr

r−1S.
A hypergraph H = ([n], E) is convex if every integral weight vector (a1, . . . , an) in the

convex hull of multiplicity vectors of edges of H (thus 0 ≤ ai < r) is the multiplicity vector
of an edge of H .

Proposition 3.1.
(1) There are r-uniform hypergraphs without multiplicities that cannot be represented as a

Kneser hypergraph KGr
1S.

(2) An r-uniform hypergraph H = ([n], E) with multiplicities can be represented as KGr
r−1S

if and only if it is up-monotone.
In particular, every r-uniform hypergraph without multiplicities can be represented as
a Kneser hypergraph KGr

r−1S.
(3) If an r-uniform hypergraph is representable by a generalized Kneser hypergraph with

intersection multiplicities then it is convex. (The converse is not true.)
In particular, there are r-uniform hypergraphs with multiplicities that cannot be repre-
sented as a Kneser hypergraph KGr

sssS.

Proof. (1). Consider ([4], {124, 134, 234}). If KG3
1{S1, . . . , S4} has {S1, S2, S4}, {S1, S3, S4}

and {S2, S3, S4} as edges, then each of the triples of sets is pairwise disjoint, so in particular
S1, S2, S3 are pairwise disjoint. Thus also {S1, S2, S3} is an edge in the Kneser hypergraph.

(2). The following construction generalizes the construction for graphs in [8]. Let H =
([n], E) be up-monotone, and let H̄ = ([n], Ē) be the complementary hypergraph of H , i.e.
the hypergraph that has the same vertices as H and all edges of Kr

n that are not edges
of H . Define the set system S = {Si | i ∈ [n]} by

Si := {i} ∪
{

ē ∈ Ē
∣

∣ i ∈ ē
}

.

The Si are clearly distinct. If e = {{i1, . . . , ir}} is an edge of H , then

Si1 ∩ · · · ∩ Sir = {i1} ∩ · · · ∩ {ir} ∩
{

ē ∈ Ē
∣

∣ i1, . . . , ir ∈ ē
}

,

where the first part is empty since H does not have loops (so the ik cannot all be equal)
and the last set is empty since H is up-monotone. Thus Si1 ∩ · · · ∩ Sir is an edge of the
Kneser hypergraph. Conversely, if Si1 ∩· · ·∩Sir = ∅, then in particular it does not contain
the element e = {i1 . . . , ir}, so e ∈ E.

5



(3). The intersection multiplicities si define the hypergraph KGr
sssS as a subgraph of Kr

m,
for m = |S|, by linear conditions on the multiplicity vectors of the edges.

For an example consider ([3], {113, 223}). If KG3
sss{S1, S2, S3}, with S1, S2, S3 ⊆ [m], does

not have {S1, S2, S3} as an edge, then there is some i ∈ [m] such that S1, S2, S3 contain i

more than si times. However, that cannot be if both {{S1, S1, S3}} and {{S2, S2, S3}} are
edges, so S1, S1, S3 and S2, S2, S3 contain i at most si times.

An example of a convex uniform hypergraph with multiplicities that cannot be repre-
sented as a generalized Kneser hypergraph is ([3], {112, 223}).

For the purpose of coloring, any hypergraph H = (V,E) with multiplicities can be re-
placed by an up-monotone uniform hypergraph with multiplicities, on the same ground set,
and with the same chromatic number: For this replace each edge e by all multisets of cardi-
nality r which contain the support of e, for some large enough r. By Proposition 3.1(2), the
resulting r-uniform hypergraph with multiplicities H ′ can be represented as a generalized
Kneser graph, which yields topological lower bounds for χ(H) in terms of the colorability
defect of H ′. In particular, this applies to (non-uniform) hypergraphs in the sense of Berge.

4 Two counterexamples

The purpose of this section will be to show that the lower bound χ(KGr
sssS) ≥ ⌈ 1

r−1
cdr

sS⌉
of Theorem 1.1 is not valid for kgrsS. Indeed, the proof for [10, Thm. 5.1] is valid only if
multiplicities are included: The argument at [10, p. 679] yields p subsets S1, . . . , Sp of [n]
that are sss-disjoint, but they need not be pairwise different.

Example 4.1. For n ≥ 5 and r ≥ 4 with n ≥ r−1, let S := {12, 13, . . . , 1n, 23, 45} ⊂
(

[n]
2

)

.
Then all edges of kgrr−2S are of the form {1i1, . . . , 1ir−2, 23, 45}, so they contain both 23
and 45. Thus χ(kgrr−2S) = 2. A straightforward argument (cf. [7, p. 83] for details) shows
that cdr

r−2S = 3r − 10. For r > 8 this yields cdr
r−2S > (r − 1)χ(kgrr−2S).

The next example shows that for Kneser hypergraphs without multiplicities, the col-
orability defect lower bound does not even hold in the special case of S =

(

[n]
k

)

. (Sarkaria [9]
speaks of “p-tuples of S-subsets”, so his treatment clearly concerns the Kneser hypergraphs
KGr

s

(

[n]
k

)

with multisets as hypergraph edges.)

Example 4.2. For n, r ≥ 4 the hypergraph kgrr−1

(

[n]
2

)

has a greedy (n − 2)-coloring, by
c : S 7→ min{minS, n−2}. (The hypergraph is non-empty if r ≤

(

n

2

)

. Its chromatic number
will be computed in Example 6.2.)

On the other hand, cdr
r−1

(

[n]
2

)

= max{n(r − 1) − r, 0} = (n − 1)(r − 1) − 1 by [10,
Lemma 3.2]. Thus

(r − 1)χ(kgrr−1

(

[n]
2

)

) < cdr
r−1

(

[n]
2

)

.
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5 The induction to non-prime cases

For the case of Theorem 1.1 when p is a prime Ziegler [10] has given a combinatorial proof;
an alternative topological proof was given by Lange [7, Sect. 4.4]. The special case when
S =

(

[n]
k

)

is due to Sarkaria [9].
In this section, we show that the reductions of the situation with general r to the case

of prime r by Sarkaria [9] and by Ziegler [10] are both incomplete. We also argue that
argument given in [10] suffices to establish the result in the generality of Theorem 1.1.

Sarkaria’s proof [9, (3.2)] starts with the assumption that KGp
j−1

(

[N ]
S

)

has anM-coloring,

with (p − 1)M < N(j − 1) − p(S − 1) = cdp
j−1

(

[N ]
S

)

, for some non-prime p = p1p2. Then

one constructs a coloring of KGp1
j−1

(

[N ]
N ′

)

with

N ′ := M(p2 − 1) + p2(S − 1) + 1,

and tries to get a monochromatic (j−1)-disjoint p1-tuple ofN
′-subsets of [N ]. The argument

fails if N ′ is larger than N , so there won’t be any N ′-subsets of [N ]. Concrete parameters
where this happens are p = 4, p1 = p2 = 2, j = 4, S = 2, M = N − 2, which yields
N ′ = M + 3 = N + 1. (The problem does not occur for j ≤ 3, so in particular the proof
specializes correctly to the case j = 2 treated by Alon, Frankl & Lovász [1].)

Ziegler’s reduction to the prime case in [10, pp. 679-680] is an extension of Kř́ıž’ proof [6],
which in turn generalizes the argument of Alon, Frankl and Lovász. Let r = r′r′′ with
r′ ≤ r′′. The goal is to derive a contradiction if we assume that cdr

sssS > (r− 1)χ(KGr
sssS). A

crucial ingredient is the set

T :=
{

N ⊆ [n]
∣

∣

∣
cdr′

1 S|N > (r′ − 1)χ(KGr
sssS)

}

where S|N denotes the elements of S that are subsets of N . One then wants to argue that

(r′′ − 1)χ(KGr′′

sss T ) ≥ cdr′′

sss T

But this can be concluded by induction only if sss < r′′. Moreover, it definitely fails if si > r′′

for some i and T = ∅: In this situation χ(KGr′′

sss ∅) = 0 since there are no vertices to color,
but cdr′′

sss ∅ > 0 since at least si − r′′ elements have to be removed removed from [n]sss to
cover the remaining elements with r′′ subsets of [n]). The case T = ∅ can occur, as we
have seen above for the special case of S =

(

[N ]
S

)

.
Thus, [10, Thm. 5.1] can currently only be established in the generality given above as

Theorem 1.1. To establish this, one uses the induction given at [10, pp. 679-680], factoring
non-prime r = r′r′′ so that r′′ is the largest prime number that divides r.

6 More Examples

In [10, Sect. 7] the second author had raised the question whether the upper bound of [10,
Lemma 3.1]

χ(KGr
s)
(

[n]
k

)

≤ 1 +
⌈

1

⌊ r−1

s
⌋
ns−rk+1

s

⌉

(∗)

7



is always tight, for n ≥ k ≥ 2, r > s ≥ 2, rk ≤ sn. In [10, Example 7.2] he had claimed that
(∗) is not sharp for KG4

2

(

[n]
2

)

. However, this is not true: The analysis given there referred
to the corresponding Kneser hypergraph without multiplicities, that is, it established that

χ(kg42
(

[n]
2

)

) = n−
⌊

√

2n+ 1
4
− 1

2

⌋

.

Thus the tightness question is open for now. By Theorem 1.1, (∗) is tight if s is smaller
than the largest prime factor of r, and divides r − 1 (cf. [10, Cor. 7.1]). The following
example yields more cases where (∗) is tight, including the case of KG4

2

(

[n]
2

)

.

Example 6.1. Assume that k = 2 and ⌊ r−1
s
⌋ = 1, i.e. r

2
≤ s < r − 1. Then

χ(KGr
s

(

[n]
2

)

) = 1 +
⌈

ns−2r+1
s

⌉

= 1 + n−
⌊

2r−1
s

⌋

.

Indeed, the vertices of H = KGr
s

(

[n]
2

)

are the edges of a complete graph Kn. By s ≥ ⌈ r
2
⌉, an

edge of H cannot contain two disjoint edges from Kn. Thus the edges of H are supported
only on stars or on triangles — the latter is permitted if s ≥ 2r

3
. Thus the possible color

classes C ⊂ E(Kn) are stars, or they are triangles — the latter is permitted if s < 2r
3
. In

either case the greedy colorings that provide the upper bound are optimal: n−1 colors are
needed for 2r

3
≤ s ≤ r − 1, while n− 2 colors are needed for r

2
≤ s < 2r

3
.

Example 6.2. The Kneser hypergraphs without multiplicities kgrr−1

(

[n]
2

)

have chromatic
numbers

χ(kgrr−1

(

[n]
2

)

) =

{

⌈ 1
r−1

(

n

2

)

⌉ n < r,

n− ⌊ r
2
⌋ 2 ≤ r ≤ n.

Indeed, any edge of this hypergraph forms an r-set of edges in Kn that is not a star. Thus
for a color class we can use any star, or any set of at most r−1 edges. An optimal coloring
in case of 2 ≤ r ≤ n uses n − r stars, and then ⌈ 1

r−1

(

r

2

)

⌉ = ⌈ r
2
⌉ edge sets of size at most

r − 1 to cover the remaining uncolored subgraph Kr. If n < r, an optimal colouring uses
⌈ 1
r−1

(

n

2

)

⌉ sets of size at most r − 1.

In summary, we see that

n− ⌊ r
2
⌋ = χ(kgrr−1

(

[n]
2

)

) ≪ χ(KGr
r−1

(

[n]
2

)

) = n− 1
and

n−
⌊

√

2n+ 1
4
− 1

2

⌋

= χ(kg42
(

[n]
2

)

) ≪ χ(KG4
2

(

[n]
2

)

) = n− 1

for sufficiently large n and r. This shows a huge difference between the chromatic numbers
of generalized Kneser hypergraphs with and without multiplicities.
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