
EKR TYPE INEQUALITIES FOR 4-WISE INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

ABSTRACT. Let 1 ≤ t ≤ 7 be an integer and letF be ak-uniform hypergraph onn
vertices. Suppose that|A∩B∩C∩D| ≥ t holds for allA,B,C,D ∈ F . Then we have
|F | ≤ (n−t

k−t

)
if | kn− 1

2|< ε holds for someε > 0 and alln > n0(ε). We apply this result to
get EKR type inequalities for “intersecting and union families” and “intersecting Sperner
families.”

1. INTRODUCTION

A family F ⊂ 2[n] is called r-wise t-intersecting if|F1∩ ·· · ∩ Fr | ≥ t holds for all
F1, . . . ,Fr ∈F . Let us definer-wiset-intersecting familiesFi(n,k, r, t) as follows:

Fi(n,k, r, t) = {F ∈
(

[n]
k

)
: |F ∩ [t + ri ]| ≥ t +(r−1)i}.

Let m(n,k, r, t) be the maximal size ofk-uniform r-wise t-intersecting families onn ver-
tices. Can we extend the Erdős–Ko–Rado Theorem in the following way?

Conjecture 1. m(n,k, r, t) = maxi |Fi(n,k, r, t)|.
Ahlswede and Khachatrian[1] proved the caser = 2, which extended the earlier results by
Erdős–Ko–Rado[3], Frankl[6] and Wilson[25]. Frankl proved the caset = 1 as follows.

Theorem 1([4]). m(n,k, r,1) =
(n−1

k−1

)
for (r−1)n≥ rk.

The casesr ≥ 3 andt ≥ 2 seem to be much more difficult and only a few results are
known.

Theorem 2([9, 10]). m(n,k,3,2) =
(n−2

k−2

)
for k

n < 0.501andn > n0.

Theorem 3([23]). m(n,k,3, t) =
(n−t

k−t

)
for t ≥ 26, k

n ≤ 2√
4t+9−1

andn > n0(t).

Theorem 4([22]). m(n,k, r, t) =
(n−t

k−t

)
if p = k

n satisfiesp < r−2
r ,

(1− p)p
t

t+1(r−1)− p
t

t+1 + p < 0

andn > n0(r, t, p).
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Our main result in this paper is the following.

Theorem 5. Let t be an integer with1≤ t ≤ 7. Then there existsε > 0 andn0 = n0(ε)
such thatm(n,k,4, t) =

(n−t
k−t

)
holds for| kn− 1

2| < ε andn > n0. MoreoverF0(n,k,4, t) is
the only optimal configuration (up to isomorphism).

There is a possibility to improve the range fort in the above theorem fromt ≤ 7
to t ≤ 10, but the theorem fails fort ≥ 11. In fact, by simple computation, one finds
|F1(n,k,4, t)|> |F0(n,k,4, t)| if k

n > 1
2 andt = 11, or k

n ≥ 1
2 andt ≥ 12.

A family F ⊂2[n] is calledr-wiset-union if |F1∪·· ·∪Fr | ≤n−t holds for allF1, . . . ,Fr ∈
F . This is equivalent to the property thatF c = {[n]−F : F ∈F} is r-wiset-intersecting.
What is the maximal size ofr-wise t-intersecting andq-wise t-union k-uniform family?
The caser ≥ 4, q≥ 4 andt = 1 was settled as follows.

Theorem 6 ([16, 2]). Let r ≥ 4, q ≥ 4 and F ⊂ ([n]
k

)
. Suppose thatF is r-wise 1-

intersecting andq-wise1-union, and

n−1
q

+1≤ k≤ r−1
r

(n−1).

Then we have|F | ≤ (n−2
k−1

)
.

The caser = q = 3 and t = 1 is more difficult and still open. As a special case the
following is known.

Theorem 7 ([11]). Let F ⊂ ([2n]
n

)
be a3-wise1-intersecting and3-wise1-union family.

Then we have|F | ≤ (2n−2
n−1

)
. Equality holds iffF ∼= {F ∈ ([2n−1]

n

)
: 1∈ F}.

In [21] the caser = q = 4 andt = 2 was considered. Using Theorem 5 we extend the
result as follows.

Theorem 8. Let t be an integer with1≤ t ≤ 4, and letF ⊂ ([2n]
n

)
be a4-wiset-intersecting

and4-wise t-union family. Then we have|F | ≤ (2n−2t
n−t

)
for n > n0. Equality holds iff

F ∼= {F ∈ ([2n−t]
n

)
: [t]⊂ F}.

A family F ⊂ 2[n] is called a Sperner family ifF 6⊂ G holds for all distinctF,G ∈
F . What is the maximum size ofr-wise t-intersecting families? The caser = 2 was
determined by Milner in [19], and the maximum is given by the simple formula

( n
d(n+t)/2e

)
.

For the casesr ≥ 3, the situation becomes more complicated. Frankl[4] and Gronau[12,
13, 14, 15] considered the caser = 3 andt = 1, and it is known that forn≥ 53 the only
optimal families are

F = {F ∪{n} : F ∈ ([n−1]
n/2

)}∪{[n−1]} n even,

F = {F ∪{n} : F ∈ ( [n−1]
(n−1)/2

)} n odd.

The caser = 3 andt = 2 was solved in [9, 10] as follows.



EKR TYPE INEQUALITIES FOR4-WISE INTERSECTING FAMILIES 3

Theorem 9. Let F ⊂ 2[n] be a3-wise2-intersecting Sperner family. Then,

|F | ≤
{ ( n−2

(n−2)/2

)
if n even,( n−2

(n−1)/2

)
+2 if n odd,

holds forn≥ n0. The extremal configurations are

F = {{1,2}∪F : F ∈ ( [3,n]
(n−2)/2

)} n even,

F = {{1,2}∪F : F ∈ ( [3,n]
(n−1)/2

)}∪{[n]−{1}}∪{[n]−{2}} n odd.

In this paper we consider the caser = 4 and1≤ t ≤ 7 and we prove the following.

Theorem 10. Let 1≤ t ≤ 7 and letF ⊂ 2[n] be a4-wise t-intersecting Sperner family.
Then we have|F | ≤ ( n−t

d n−t
2 e

)
for n> n0. Equality holds iffF ∼= {F ∈ ([n]

k

)
: [t]⊂ F} where

k = t + dn−t
2 e or k = t + bn−t

2 c.
We present the proofs of Theorem 5, Theorem 8 and Theorem 10 in Section 3, Section 4

and Section 5, respectively. In the next section we review some basic tools for those proofs.

2. TOOLS

For integers1≤ i < j ≤ n and a familyF ⊂ ([n]
k

)
, define the(i, j)-shift Si j as follows.

Si j (F ) = {Si j (F) : F ∈F},
where

Si j (F) =
{

(F−{ j})∪{i} if i 6∈ F , j ∈ F , (F−{ j})∪{i} 6∈F ,
F otherwise.

A family F ⊂ ([n]
k

)
is called shifted ifSi j (F ) = F for all 1≤ i < j ≤ n. For a given

family F , one can always obtain a shifted familyF ′ from F by applying shifting toF
repeatedly. Then we have|F ′|= |F | because shifting preserves the size of the family. It
is easy to check that ifF is r-wiset-intersecting thenSi j (F ) is alsor-wiset-intersecting.
Therefore ifF is an r-wise t-intersecting family then we can find a shifted familyF ′
which is alsor-wiset-intersecting with|F ′|= |F |. See [7] for more details.

We use the random walk method originated from [5, 6] by Frankl. Let us introduce a
partial order in

([n]
k

)
by using shifting. ForF,G∈ ([n]

k

)
, defineF Â G if G is obtained by

repeating a shifting toF . The following fact follows immediately from the definition.

Fact 1. Let F ⊂ ([n]
k

)
be a shifted family. IfF ∈F andF ÂG, thenG∈F .

For F ∈ ([n]
k

)
we define the corresponding walk onZ2, denoted bywalk(F), in the

following way. The walk is from(0,0) to (n−k,k) with n steps, and ifi ∈ F (resp.i 6∈ F)
then thei-th step is one unit up (resp. one unit to the right). The following fact is useful
(see [5, 7, 21]).
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Fact 2. Let F ⊂ ([n]
k

)
be a shiftedr-wise t-intersecting family. Then for allF ∈ F ,

walk(F) must touch the lineL : y = (r−1)x+ t.

The next result (Corollary 8 in [21]) enables us to upper bound the number of walks
which touch a given line.

Proposition 11. Let p∈Q, r,s,u,v∈N be fixed constants withr ≥ 2 andp< r−1
r+1, and let

n andk be positive integers withp = k
n. Let α ∈ (p,1) be the unique root of the equation

(1− p)xr −x+ p = 0 and letg(n) be the number of walks from(u,v) to (n−k,k) which
touch the liney = (r−1)(x−u)+v+s. Then for anyε > 0 there existsn0 such that

g(n)(n−u−v
k−v

) ≤ (1+ ε)αs

holds for alln > n0. Moreover ifu = 0 then we can chooseε = 0.

To prove Theorem 8 we use a dual version of Fact 2.

Fact 3. Let F ⊂ ([n]
k

)
be a shiftedq-wise s-union family. Then for allF ∈F , walk(F)

must touch the lineL2 : y = 1
q−1(x−n+k+s)+k.

Then we can extend Proposition 11 as follows (Corollary 9 in [21]).

Proposition 12. Let q, r,s, t,u,v∈N be fixed constants withq≥ 4, r ≥ 4 andt +(r−1)u−
v > 0. Let α j ∈ (1

2,1) be the unique root of the equation1
2x j −x+ 1

2 = 0. Let h(n) be the
number of walks from(u,v) to (n,n) which touch both of the linesL1 : y = (r −1)x+ t
andL2 : y = 1

q−1(x−n+s)+n. Then for anyε > 0 there existsn0 such that

h(n)(2n−u−v
n−v

) ≤ (1+ ε)α t+(r−1)u−v
r αs

q

holds for alln > n0.

To prove Theorem 10, we need a basic fact about shadow. For a familyF ⊂ 2[n] and a
positive integer̀ < n, let us define thè-th shadow ofF , denoted by∆`(F ), as follows.

∆`(F ) = {G∈
(

[n]
`

)
: G⊂ ∃F ∈F}.

We use the following version of the Kruskal–Katona Theorem [18, 17, 8].

Proposition 13. Suppose thatF ⊂ ([n]
k

)
and|F | ≤ (m

k

)
. Then we have

|∆`(F )| ≥ |F |
(

m
`

)
/

(
m
k

)
.

Equality holds only ifF =
(Y

k

)
, |Y|= m.
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3. MULTIPLY INTERSECTING FAMILIES

In this section we prove Theorem 5. Note that|F0(n,k, r, t)| = (n−t
k−t

) ≈ pt
(n

k

)
, and

|F1(n,k, r, t)|= (t + r)
( n−t−r

k−t−r+1

)
+

(n−t−r
k−t−r

)≈ (
(t + r)pt+r−1− (t + r−1)pt+r

)(n
k

)
, where

we denotea≈ b iff limn→∞ a/b = 1. Let pr,t ∈ (0,1) be the root of the equation1 = (t +
r)xr−1− (t + r−1)xr . Then|F0(n,k, r, t)| > |F1(n,k, r, t)| holds if p≤ pr,t . Throughout
this section, we assume that0 < p≤ pr,t and letq = 1− p. We start with the following
somewhat cumbersome statement, which will imply Theorem 5 as a special case after
some refinement (see Proposition 15).

Proposition 14. Let r, t ∈ N and p ∈ Q be given. Suppose thatr ≥ 3 and p ∈ (0,0.55).
Let α ∈ (p,1) be the root of the equationqxr −x+ p = 0. Suppose thatr, t, p satisfy all of
the following inequalities:

(C1) (α/p)t − t(1−α r−1)pr−1q2 +α r−1q+ p−2 < 0,

(C2) (α/p)t −1− 1−α r−1

α2r−2 q
(
1− (p/α)

)
< 0,

(C3)
α2(r−1)

t(1−α r−1)q

t+r−2

∑
j=0

( j +1)(α/p)t+r−1− j −1 < 0.

Thenm(n,k, r, t) =
(n−t

k−t

)
holds forp = k

n andn > n0(r, t, p). MoreoverF0(n,k, r, t) is the
only optimal configuration (up to isomorphism).

We prove Proposition 14 in section 3.1 and we will show that we can replace(C1) by
weaker conditions in section 3.2 (see Proposition 15). Then Theorem 5 will follow from
Proposition 15 easily.

3.1. Proof of Proposition 14. Let p∈Q with 0< p≤ 0.55be given. Letα = αp∈ (p,1)
be the root of the equationqxr −x+ p = 0.

Let H ⊂ ([n]
k

)
be a shiftedr-wise t-intersecting family and suppose thatp = k

n. Then
by Fact 2walk(H) hits the lineL : y = (r−1)x+ t for all H ∈H . Thus by Proposition 11
(settingu = v = 0, s= t) we have|H | ≤ α t

(n
k

)
. Our goal is to prove that|H |< (n−t

k−t

)≈
pt

(n
k

)
unlessH ∼= F0(n,k, r, t).

For0≤ i ≤ b k−t
r−1c let us define

Gi = {G∈
(

[n]
k

)
: |G∩ [t + r`]| ≥ t +(r−1)` first holds at̀ = i}.

In other words,G∈ Gi iff walk(G) reaches the lineL at (i,(r−1)i + t) for the first time.
SetHi = H ∩Gi .

Next we will defineAi ∈ G0 andBi ∈ G1. As in the following picture, starting from
the origin,walk(Ai) passes(0, t) and(i, t), and then from(i, t) walk(Ai) is the maximal
walk (in the shifting poset) that does not touch the lineLi : y = (r−1)(x− i)+(t + r−1),
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while walk(Bi) passes(0, t−1), (1, t−1), (1, t + r −1), and(i + 1, t + r −1), then from
(i +1, t + r−1) walk(Bi) is the maximal walk that does not touch the lineLi .

(0,0)

(i, t)

walk(Ai)

(0,0)

(1, t−1)

(i +1, t + r−1)

walk(Bi)
Li Li

Li : y = (r−1)(x− i +1)+ t

Formal definitions are as follows. For an infinite setA = {a1,a2, . . .} ⊂ N with a1 < a2 <
· · · , let us defineFirstk(A) = {a1,a2, . . . ,ak}. Set

T(i) = {i, i + r, i +2r, . . .}= {i + r j : j ≥ 0},
A∗i = [t]∪ (

⋃
{T(t + i +s) : 1≤ s≤ r, s 6= r−1})

=
(
[t]∪ [t + i +1,∞]

)−
∞⋃

j=0

{t + i + r−1+ r j},

B∗i = [t−1]∪ [t +1, t + r]∪ (
⋃
{T(t + i +s+ r) : 1≤ s≤ r, s 6= r−1})

=
(
[t−1]∪ [t +1, t + r]∪ [t + i + r +1,∞)

)−
∞⋃

j=1

{t + i + r−1+ r j}

and defineAi = Firstk(A∗i ), Bi = Firstk(B∗i ). We will use only smalli so thatAi ,Bi ∈
([n]

k

)
,

and then we haveAi ∈ G0 andBi ∈ G1. Note thatAi+1Â Ai andBi+1Â Bi .
We consider three cases according to the structure ofH . If H is similar toF0(n,k, r, t)

then we compareH with F0(n,k, r, t) and this is Case 2. In Case 3 we compareH with
F1(n,k, r, t). If H is neither similar toF0 nor F1 then it is less likely thatH has large
size, but in this case we do not have an appropriate comparison object, which makes it
difficult to bound the size ofH . We deal with this situation in Case 1, and we will refine
the estimation for this case in the next subsection again.

Case 1.A1 6∈H andB1 6∈H .
Suppose thatH ∈ H0. Then after passing the point(0, t), walk(H) goes to(0, t + 1) or

(1, t). So we can divideH0 = H
(0,t+1)

0 ∪H
(1,t)

0 according to the next point to(0, t) in
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the walk. ForH (0,t+1)
0 we use a trivial bound

|H (0,t+1)
0 | ≤

(
n− (t +1)
k− (t +1)

)
≈ pt+1

(
n
k

)
. (1)

If H ∈ H
(1,t)

0 thenwalk(H) must touch the lineL : y = (r −1)x+ t after passing(1, t).
Otherwise we getH Â A1, which meansH 6∈H by Fact 1, a contradiction. Here we used
the fact thatA1 is the minimal set (in the shifting order poset) whose walk does not touch
the lineL after passing(1, t). Thus by Proposition 11 (settingu = 1, v = t, s= r−1) we
have

|H (1,t)
0 | ≤ (1+ ε)α r−1

(
n− (t +1)

k− t

)
≈ α r−1ptq

(
n
k

)
. (2)

Next suppose thatH ∈H1. Then after passing(1, t + r−1), walk(H) goes to(1, t + r)
or (2, t + r −1). So we can divideH1 = H

(1,t+r)
1 ∪H

(2,t+r−1)
1 . Noting that there aret

ways of walking from(0,0) to (1, t + r) which avoid passing(0, t), we have

|H (1,t+r)
1 | ≤ t

(
n− (t + r +1)

k− (t + r)

)
≈ t pt+rq

(
n
k

)
. (3)

If H ∈H
(2,t+r−1)

1 , thenwalk(H) must touchL after passing(2, t + r−1). Otherwise we
getH Â B1, which meansH 6∈H , a contradiction. Thus by Proposition 11 (settingu= 2,
v = t + r−1, s= r−1) we have

|H (2,t+r−1)
1 | ≤ (1+ ε)tα r−1

(
n− (t + r +1)
k− (t + r−1)

)
≈ tα r−1pt+r−1q2

(
n
k

)
. (4)

Finally we count the number ofH in
⋃

i≥2Hi ⊂ ⋃
i≥2Gi . By Proposition 11 (setting

u = v = 0, s= r) we have|⋃i≥0Gi | ≤ α t
(n

k

)
and so

|
⋃

i≥2

Hi | ≤ |
⋃

i≥0

Gi |− |G0|− |G1|

≤ α t
(

n
k

)
−

(
n− t
k− t

)
− t

(
n− (t + r)

k− (t + r−1)

)

≈ (α t − pt − t pt+r−1q)
(

n
k

)
. (5)

Therefore by (1), (2), (3), (4) and (5) we have

|H |(n
k

) ≤ (1+o(1))(pt+1 +α r−1ptq+ t pt+rq+ tα r−1pt+r−1q2 +α t − pt − t pt+r−1q)

asn→ ∞. Consequently|H |< (n−t
k−t

)≈ pt
(n

k

)
follows from

pt+1 +α r−1ptq+ t pt+rq+ tα r−1pt+r−1q2 +α t − pt − t pt+r−1q < pt ,

which is equivalent to(C1).
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Case 2.A1 ∈H .
If [t] ⊂ H holds for allH ∈ H then it follows that|H | ≤ (n−t

k−t

)
and equality holds iff

H ∼= F0(n,k, r, t). Thus we may assume that[t] 6⊂ H holds for someH ∈ H and in
particular we may assume thatD′ = [k+1]−{t} ∈H becauseH is shifted.

We shall show thatAi 6∈ H holds for somei. Our plan is to choose a “witness”
{A′,C′1, . . . ,C′r−2} for beingAi 6∈H so that

Ai Â A′ ÂC′1ÂC′2Â ·· · ÂC′r−2, (6)

and
A′∩C′1∩C′2∩·· ·∩C′r−2∩D′ = [t−1]. (7)

Suppose that we have chosen the witness. IfAi ∈H then (6) and Fact 1 implyA′,C′1, . . . ,C
′
r−2∈

H , and thus (7) contradicts thatH is r-wiset-intersecting. The following picture shows
an example of a witness for the caser = 5, t = 3, i = 2 andk = 23. Lines connecting the
discs show thatA′ ÂC′1ÂC′2ÂC′3.

A′
C′1
C′2

C′r−2

D′

t t + i z(1, i) a(i)
Before giving a formal description of the witness, let us explain how to findi (see (13))

by considering a bit more rough situation. Here we consider infinite sets for simplicity.
Let

A′′ = [t]∪ [t + i +1,∞)−{t + i + r j + r−1 : j ≥ 0}.
We try to findC′′1 , . . . ,C′′r−2 so that

A′′ ÂC′′1 ÂC′′2 Â ·· · ÂC′′r−2, (8)

A′′∩C′′1 ∩C′′2 ∩·· ·∩C′′r−2 = [t]. (9)

To do so, we maintain

|A′′∩{ j}|+ |C′′1 ∩{ j}|+ · · ·+ |C′′r−2∩{ j}|= r−2 (10)

for all j > t + i by using a cyclic pattern. More formally, setz(u, i) = t + i +u(r−2)r, and
for 1≤ `≤ r−2 setC′′` = [1,∞)−Z`(i), where

Z1(i) =
⋃

u≥0

({z(u, i)+1,z(u, i)+ r}∪{z(u, i)+(r−1)v : 2≤ v≤ r−2}),

andZ`(i) = {t + i + `}∪ (r + Z`−1(i)) for 2≤ ` ≤ r −2. Here we denote the set{r + z :
z∈ Z} by r +Z. In [t + i +1,∞), the setsA′′,C′′1 , . . . ,C′′r−2 are periodic of periodr(r−2).
Due to (10), we have (9). But (8) is not satisfied. So we will find an integera such that

Firsta(A′′)Â Firsta(C′′1)Â Firsta(C′′2)Â ·· · Â Firsta(C′′r−2), (11)
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It is necessary that
|A′′∩ [a]|= |C′′` ∩ [a]| (12)

holds for all1≤ ` ≤ r−2. We need to adjust the excess|C′′` ∩ [t + i]|− |A′′∩ [t + i]| = i.
We note that

A′′∩ [t + i +1, t + i + r(r−2)] = (r−1)(r−2),
C′′` ∩ [t + i +1, t + i + r(r−2)] = (r−1)(r−2)−1,

and
A′′∩ [t + i +1, t + i +(2r−3)] = 2r−4,
C′′` ∩ [t + i +1, t + i +(2r−3)] = 2r−5.

Thus we find that

a = t + i +(i−1)r(r−2)+(2r−3) = t +(r−1)((r−1)i− r +3)

satisfies (12). We leave the reader to check thata defined above satisfy (11), actually this
is the maximum integer satisfying (11). We requirea≥ k+1, which givesi ≥ i0 where

i0 =
⌈

k+1− t +(r−1)(r−3)
(r−1)2

⌉
. (13)

Now we are ready to define the witnessA′,C′1, . . . ,C
′
r−2. Set

Ã = [t]∪ ([t + i0 +1,a(i0)]−{t + i0 + r j + r−1 : j ≥ 0})∪ [a(i0)+1,∞)
= (Ai0∩ [a(i0)])∪ [a(i0)+1,∞)

wherea(i) = t− (r−1)(r−3)+(r−1)2i and defineA′ = Firstk(Ã). Set

C̃` = ([a(i0)]−Z`(i0))∪ [a(i0)+1,∞)

and defineC′` = Firstk(C̃`) for 1≤ ` ≤ r−2. Then the witness satisfies (6) and (7). Thus
we haveA′ 6∈H , and sinceAi Â A′ for i ≥ i0 we also haveAi 6∈H if i ≥ i0.

Now let 1≤ i < i0 be such thatAi ∈H but Ai+1 6∈H . (ThenA j ∈H iff j ≤ i.) For
1≤ `≤ r−2 setR̀ (i) = (Ai + `)− [a(i)] and

C∗` = ([a(i)]−Z`(i))∪ R̀ (i)

and let
D∗ = ([a(i)]−{t})∪Rr−1(i).

Finally setC` = Firstk(C∗` ), D = Firstk(D∗). The following picture shows an example of
the caser = 4, t = 3, i = 2 andk = 21.

t t + i a(i)

Ai

C1
Cr−2

D
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Then we haveC` ∈ H becauseAi ∈ H andAi Â C1 Â C2 Â ·· · Â Cr−2. SinceH
is r-wise t-intersecting andAi ∩C1∩C2∩ ·· · ∩Cr−2∩D = [t − 1] we can conclude that
D 6∈ H . Sincea(i)− (r −2) ≡ t + i−1 (mod r) we haveAi 63 a(i)− (r −2), and thus
Rr−1(i)∪ [a(i)] = Ai +(r−1) 63 a(i)+1. This means that after passing(0, t−1) and(1, t−
1), walk(D) is the maximal walk that does not touch the lineL : y = (r−1)(x−1)+a(i).

Let H ∈ H . First suppose thatwalk(H) does not pass(0, t), i.e., H ∩ [t] 6= [t]. Then
walk(H) must go through at least one of the points in

P = {(1,0),(1,1), . . . ,(1, t−1)}.

Let (1, j) (0≤ j ≤ t−1) be the first point inP thatwalk(H) hits. In other words, we have
H ∩ [ j +1] = [ j]. From the point(1, j), walk(H) must touch the lineL, otherwise we get
H Â D andD ∈H , which is a contradiction.

L

walk(D)

(1, j)

(1,a(i))

(0, t)

We estimate the number of walks from(1, j) to (n− k,k) which touch the lineL. By
Proposition 11 (settingu = 1, v = j, s= a(i)− j) the number is at most

(1+ ε)αa(i)− j
(

n− ( j +1)
k− j

)
.

Therefore the number ofH ∈H such thatH ∩ [t] 6= [t] is at most

(1+ ε)
t−1

∑
j=0

αa(i)− j
(

n− ( j +1)
k− j

)
. (14)

Next suppose thatwalk(H) passes(0, t), i.e.,H∩ [t] = [t]. The number of corresponding
walks is at most

(n−t
k−t

)
, but we need to refine this estimation. Suppose thatwalk(H) passes

(i +1, t). Then from this pointwalk(H) must touch the lineL′ : y = (r−1)(x− (i +1))+
t + r−1, otherwise we getH Â Ai+1 andAi+1 ∈H , which is a contradiction.
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L′

walk(Ai+1)

(i +1, t)

(i +1, t + r−1)

The trivial upper bound for the number of walks from(i+1, t) to (n−k,k) is
(n−(t+i+1)

k−t

)
,

but those walks inH touch the lineL′ and so by Proposition 11 we will get an improved
upper bound. To apply the proposition, it is convenient to neglect the firsti + t + 1 steps
of the walks, in other words, we shift the origin to(i + 1, t), and replacen and k by
n′ = n− (t + i + 1) and k′ = k− t. ThenL′ becomesy = (r − 1)x+ r − 1 in the new
coordinates, and by settingu = v = 0 ands = r − 1, Proposition 11 gives an improved
upper boundα r−1

p′
(n′

k′
)

wherep′ = k′
n′ ≈ k

n−i andαp′ ∈ (p′,1) be the root of the equation
(1− p′)xr −x+ p′ = 0. Therefore the number ofH ∈H such thatH ∩ [t] = [t] is at most

(
n− t
k− t

)
− (1−α r−1

p′ )
(

n′

k′

)
. (15)

We shall show|H |< (n−t
k−t

)
. By (14) and (15) it suffices to prove that

(1+ ε)
t−1

∑
j=0

αa(i)− j
(

n− ( j +1)
k− j

)
− (1−α r−1

p′ )
(

n′

k′

)
< 0,

or equivalently,

(1+ ε)
t−1

∑
j=0

α t−(r−1)(r−3)− j
(

n− ( j +1)
k− j

)
<

1−α r−1
p′

α(r−1)2i

(
n′

k′

)
=: f (i). (16)

Claim 1. f (i) is an increasing function ofi.

Proof. To show f (i−1) < f (i), let p′′ = k−t
n−(t+(i−1)+1) = k′

n′+1. Then we need to show

1−α r−1
p′′

α(r−1)2(i−1)

(
n′+1

k′

)
<

1−α r−1
p′

α(r−1)2i

(
n′

k′

)
,

which is equivalent to

1−α r−1
p′′

1−α r−1
p′

<
1

α(r−1)2

(
n′

k′

)
/

(
n′+1

k′

)
=

1

α(r−1)2 ·
n′+1−k′

n′+1
.
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Using (13) we haven′+1−k
n′+1 = n−k−i

n−t−i ≥ n−k−i0
n−t−i0

≈ (1− p− p
(r−1)2)/(1− p

(r−1)2) > (p+

pr)(r−1)2
> α(r−1)2

for p < 0.55andr ≥ 3. Thus we can chooseδ > 0 so small that

1+δ <
1

α(r−1)2 ·
n′+1−k′

n′+1

holds forn > n0(δ ). On the other hand, since1p′′ = 1
p′ +

1
k′ we havep′′ ≈ p′ and hence

1−α r−1
p′′

1−α r−1
p′

< 1+δ

for n > n1(δ ). ¤
Thus it suffices to show the inequality (16) fori = 1. Noting thatp′ ≈ p,

(n−( j+1)
k− j

) ≈
p jq

(n
k

)
and

(n−(t+2)
k−t

) ≈ ptq2
(n

k

)
, we find that the target inequality follows from(C2) by

choosingε = ε(r, t, p) sufficiently small.

Case 3.B1 ∈H .
Let D′ = [k+ 2]−{t + r − 1, t + r}. If D′ 6∈ H then the shiftedness ofH implies that
H ⊂F1(n,k, r, t) and we are done. (Recall that we have|F1(n,k, r, t)|< |F0(n,k, r, t)|=(n−t

k−t

)
for 0< p≤ pr,t .) Thus we may assume thatD′ ∈H . Let i0 = dk+r2−5r+5−t

(r−1)2 e and set

B̃ = ([t + r]−{t})∪ ([t + r + i0 +1,b(i0)]−{t + r + i0 + jr −1 : j ≥ 1})∪ [b(i0)+1,∞)
= (Bi0∩ [b(i0)])∪ [b(i0)+1,∞)

whereb(i) = t + r + i +(i−1)r(r−2)+(2r−3) = t− r2+5r−3+(r−1)2i. Setz(u, i) =
t + r + i +u(r−2)r and for1≤ `≤ r−1 defineZ`(i) by

Z1(i) =
⋃

u≥0

({z(u, i)+1,z(u, i)+ r}∪{z(u, i)+(r−1)v : 2≤ v≤ r−2}),

andZ`(i) = {t + r + i + `}∪ (r +Z`−1(i)) for 2≤ `≤ r−2. Finally letB′ = Firstk(B̃) and
for 1≤ `≤ r−2 let C′` = Firstk(C̃`) where

C̃` = ([b(i0)]−Z`(i0))∪ [b(i0)+1,∞).

Note thatB′ ÂC′1ÂC′2Â ·· · ÂC′r−2 andB′∩C′1∩C′2∩·· ·∩C′r−2∩D′ = [t−1]. Thus we
haveB′ 6∈H , and sinceBi Â B′ for i ≥ i0 we also haveBi 6∈H if i ≥ i0. The following
picture shows an example of the caser = 5, t = 3, i0 = 2 andk = 23 (b(i0) = 32).

B′

C′1
C′2

C′r−2

D′

t
t + r

t + r + i0
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Now let 1≤ i < i0 be such thatBi ∈H but Bi+1 6∈H . For 1≤ ` ≤ r−2 setR̀ (i) =
(Bi + `)− [b(i)] and

C∗` = ([b(i)]−Z`(i))∪ R̀ (i),
and let

D∗ = ([b(i)]−{t + r−1, t + r})∪Rr−1(i).
Finally setC` = Firstk(C∗` ), D = Firstk(D∗).

Then we haveC` ∈H becauseBi ∈H andBi ÂC1ÂC2Â ·· · ÂCr−2. SinceH is r-
wiset-intersecting andBi∩C1∩C2∩·· ·∩Cr−2∩D = [t−1] we can conclude thatD 6∈H .
The following picture shows an example of the caser = 4, t = 3, i = 1 andk = 21.

t t + r b(i)

Bi

C1
Cr−2

D

Let H ∈ H . First suppose thatwalk(H) passes at least one of the points inP =
{(2,0),(2,1), . . . ,(2, t + r−2)}, i.e.,|H ∩ [t + r]| ≤ t + r−2. Let (2, j) (0≤ j ≤ t + r−2)
be the first point inP that walk(H) hits. From this point,walk(H) must touch the line
L : y = (r−1)(x−2)+b(i)−1, otherwise we getH Â D andD ∈H , a contradiction.

L

walk(D)

(2, j)

(2,b(i)−1)

(0, t + r−2)

Thus the number of corresponding walks is at most

( j +1)(1+ ε)αb(i)−1− j
(

n− ( j +2)
k− j

)
,

where j + 1 is the number of walks from(0,0) to (2, j) which do not touch{(2, `) : 0≤
` < j}. Hence the number ofH ∈H such that|H ∩ [t + r]| ≤ t + r−2 is at most

(1+ ε)
t+r−2

∑
j=0

( j +1)αb(i)−1− j
(

n− ( j +2)
k− j

)
. (17)
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Next suppose that|H∩ [t +r]| ≥ t +r−1. Thenwalk(H) passes(0, t +r) or (1, t +r−1).
The number of walks which pass(0, t + r) is at most

(
n− (t + r)
k− (t + r)

)
. (18)

The number of walks which pass(1, t + r − 1) is clearly at most(t + r)
( n−(t+r)

k−(t+r−1)

)
and

we will improve this estimation. Suppose thatwalk(H) passes(1, t−1), (1, t + r−1) and
(i + 2, t + r −1). Then from(i + 2, t + r −1), this walk must touch the lineL′ : y = (r −
1)(x− i)+ t = (r−1)(x− (i +2))+ t +2r−2, otherwise we getH Â Bi+1 andBi+1 ∈H ,
a contradiction. Thus the number of walks inH which pass(1, t + r−1) is at most

(t + r)
(

n− (t + r)
k− (t + r−1)

)
− t

(
1−α r−1

p′
)(n′

k′

)
, (19)

wheren′ = n− (t + r + i +1), k′ = k− (t + r−1) andp′ = k′
n′ ≈ k

n−i .

L′

walk(Bi+1)

(i +2, t + r−1)

(i +2, t +2r−2)

(1, t + r−1)

(1, t−1)

We shall show that the sum of (17), (18) and (19) is less than|F1(n,k, r, t)| = (t +
r)

( n−(t+r)
k−(t+r−1)

)
+

(n−(t+r)
k−(t+r)

)
, which means|H |< |F1|. Our target inequality is

(1+ ε)
t+r−2

∑
j=0

( j +1)α t−(r−1)(r−4)− j
(

n− ( j +2)
k− j

)
<

t(1−α r−1
p′ )

α(r−1)2i

(
n′

k′

)
.

One can show similarly to Claim 1 that the RHS is an increasing function ofi. Thus it
suffices to show the inequality fori = 1, which follows from(C3). ¤

3.2. Further improvement. In the previous subsection, we proved Proposition 14. Here
we will refine the proof for Case 1 to show that we can replace(C1) by the following
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weaker conditions(C1a)∧ (C1b)∧ (C1c):

(C1a) p+α r−1q+ t pr−1q2( p
q

+α r−1 +
α r

α− p
((α/p)r−1−1)

)−1 < 0,

(C1b) (α/p)t − t pr−1q2(1+ p−α r−1)+α r−1q+ p2−2 < 0,

(C1c) p2 +α r−1q+ t prq+ t(pα)r−1q2 +
r−1

∑
j=1

u jα r j−1pr− jq j+1−1 < 0.

whereu j will be defined later in Case 1c.
Assume thatA1 6∈H andB1 6∈H . We continue to use notation defined in Case 1, and

let

H̃
(0,t+1)

0 = {H− [t +1] : H ∈H
(0,t+1)

0 } ⊂
(

[t +2,n]
k− t−1

)
,

H̃
(1,t+r)

1 = {H ∩ [t + r +2,n] : H ∈H
(1,t+r)

1 } ⊂
(

[t + r +2,n]
k− t− r

)
.

Case 1a.H̃ (0,t+1)
0 is not(r−1)-wise 1-intersecting.

In this case we haveG1, . . . ,Gr−1 ∈H such thatG1∩ ·· · ∩Gr−1 = [t +1]. Let H ∈H .
SinceH is r-wise t-intersecting we have|H ∩ [t + 1]| ≥ t. Thuswalk(H) hits (0, t + 1)
or (1, t), andwalk(H) never hits a point in{(2,0),(2,1), . . . ,(2, t − 1)}. In particular,
if H ∈ ⋃

i≥2Hi then walk(H) reaches the linex = 2 for the first time only at one of
(2, t), . . . ,(2, t + r−2). In this casewalk(H) passes(1, t) and there aret ways of walking
from (0,0) to (1, t) which avoid(0, t). Then after passing(2, j) (t ≤ j ≤ t + r−2) walk(H)
must touch the lineL : y = (r−1)x+ t.

(2, t)

(2, t + r−2)

(0, t)

L

Therefore we have

|
⋃

i≥2

Hi | ≤ (1+ ε)
t+r−2

∑
j=t

tα t+2r−2− j
(

n− ( j +2)
k− j

)

≈ tα r pt+r−2q2
(

n
k

) r−2

∑
i=0

(α/p)i = tα r pt+r−2q21− (α/p)r−1

1− (α/p)

(
n
k

)
. (20)
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By (1), (2), (3), (4) and (20) it suffices to show that

pt+1 +α r−1ptq+ t pt+rq+ tα r−1pt+r−1q2 + tα r pt+r−2q21− (α/p)r−1

1− (α/p)
< pt ,

which is equivalent to(C1a).

Case 1b.BothH̃
(0,t+1)

0 andH̃
(1,t+r)

1 are(r−1)-wise 1-intersecting.

In this case we use Theorem 1 to bound the sizes ofH
(0,t+1)

0 andH
(1,t+r)

1 . Then we have

|H (0,t+1)
0 | = |H̃ (0,t+1)

0 | ≤
(

n− (t +1)−1
k− (t +1)−1

)
≈ pt+2

(
n
k

)
, (21)

|H (1,t+r)
1 | = t|H̃ (1,t+r)

1 | ≤ t

(
n− (t + r +1)−1

k− (t + r)−1

)
≈ t pt+r+1q

(
n
k

)
. (22)

Therefore by (21), (2), (22), (4) and (5) it suffices to show that

pt+2 +α r−1ptq+ t pt+r+1q+ tα r−1pt+r−1q2 +α t − pt − t pt+r−1q < pt ,

which is equivalent to(C1b).

Case 1c. H̃
(0,t+1)

0 is (r − 1)-wise 1-intersecting andH̃ (1,t+r)
1 is not (r − 1)-wise 1-

intersecting.
We use (21) to boundH (0,t+1)

0 again. Now we will bound the size of
⋃

i≥2Hi . Since

H̃
(1,t+r)

1 is not(r−1)-wise 1-intersecting andH is shifted, we haveG1, . . . ,Gr−1 ∈H
such thatG1∩·· ·∩Gr−1 = [t +r +1]−{t}. If F = ([k+r +1]− [t, t +r +1])∪{t +1}∈H
then we also haveF ′ = [k+ r +1]− [t +1, t + r +1] ∈H by shifting. But this is impossi-
ble becauseG1∩·· ·∩Gr−1∩F ′ = [t−1]. Thus we must haveF 6∈H . Let H ∈⋃

i≥2Hi .
Thenwalk(H) never hits any point in{(r + 1,0),(r + 1,1), . . . ,(r + 1, t)}, otherwise we
get H Â F ∈ H , a contradiction. In other words,walk(H) passes one of the points in
J = {( j +1, t + r− j) : 1≤ j ≤ r−1}.

walk(F)

L

(0, t)

(1, t + r−1)

(r +1, t)

J

For 1≤ j ≤ r −1 let u j be the number of walks from(0,0) to ( j + 1, t + r − j) which
do not touch the lineL : y = (r−1)x+ t. We haveu j =

(t+r+1
j+1

)−(r+1
j+1

)−δ j whereδ1 = t
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andδ j = 0 for j ≥ 2. Then after passing( j +1, t + r− j), walk(H) must touch the lineL.
Therefore we have

|
⋃

i≥2

Hi | ≤ (1+ ε)
r−1

∑
j=1

u jα r j−1
(

n− (t + r +1)
k− (t + r− j)

)

≈
r−1

∑
j=1

u jα r j−1pt+r− jq j+1
(

n
k

)
. (23)

Consequently by (21), (2), (3), (4) and (23) it suffices to show that

pt+2 +α r−1ptq+ t pt+rq+ tα r−1pt+r−1q2 +
r−1

∑
j=1

u jα r j−1pt+r− jq j+1 < pt ,

which is equivalent to(C1c). ¤
Noting that the LHSs of(C1a), (C1b), (C1c), (C2) and(C3) are continuous functions

of p, we have proved the following.

Proposition 15. Let r, t ∈ N and p ∈ Q be given. Suppose thatr ≥ 3 and p ∈ (0,0.55).
Let α ∈ (0,1) be the root of the equation(1− p)xr − x+ p = 0. Suppose thatr, t, p sat-
isfy (C1a), (C1b), (C1c), (C2) and(C3). Then there existsε = ε(r, t, p) > 0 such that
m(n,k, r, t) =

(n−t
k−t

)
holds for | kn− p| < ε andn > n0(r, t, p,ε). MoreoverF0(n,k, r, t) is

the only optimal configuration (up to isomorphism).

Proof of Theorem 5.Settingr = 4, p = 1/2 andt = 1, . . . ,7, we can verify(C1a), (C1b),
(C1c), (C2) and(C3). Then the result follows from the above proposition. ¤

Remark 1. In the proof of Proposition 15 and Theorem 5, we usedp≤ 0.55only to show

(1− p− p
(r−1)2)/(1− p

(r−1)2) > α(r−1)2

for r = 3 (see Claim 1). Ifr ≥ 4 then we can replace the conditionp≤ 0.55 by the above
inequality.

Let EKR(r) be the maximalt such thatm(n,k, r, t) =
(n−t

k−t

)
holds forn = 2k andn > n0.

ThenEKR(4) ≥ 7 follows from Theorem 5. Lettr be the maximalt such that all(Ci)’s
hold for p= 1/2 in the sense of Proposition 15, e.g.,t4 = 7. Clearly we haveEKR(r)≥ tr .
On the other hand, comparing the size ofF0(n,k, r, t) andF1(n,k, r, t), we haveEKR(r)≤
Tr = 2r − r−1. If Conjecture 1 is true then it follows thatEKR(r) = Tr . We can compute
tr andTr for 4≤ r ≤ 10as follows.

r 4 5 6 7 8 9 10
tr 7 18 41 89 184 377 762
Tr 11 26 57 120 247 502 1013
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For example,t10 = 762implies that there existsε > 0 such thatm(n,k,10, t)≤ (n−t
k−t

)
holds

for t ≤ 762, | kn− 1
2|< ε andn > n0(ε).

Let us note that our proof of Proposition 15 also includes the proof of the following
slightly stronger result.

Proposition 16. Let F ⊂ ([n]
k

)
be anr-wiset-intersecting family. Suppose thatF is non-

trivial, that is,|⋂F∈F F |< t. Then under the same assumptions as in Proposition 15, there
existγ = γ(r, t, p) > 0 andε = ε(γ) > 0 such that|F |< (1−γ)

(n−t
k−t

)
holds for| kn− p|< ε

andn > n0(ε).

Let us summarize our result for the casep = 1/2 and4≤ r ≤ 10as follows.

Theorem 17. Let 4≤ r ≤ 10 and let1≤ t ≤ tr . Then there existsε > 0 andn0 = n0(ε)
such thatm(n,k, r, t) =

(n−t
k−t

)
holds for| kn− 1

2|< ε andn> n0. Moreover ifF is non-trivial
then there existγ > 0 andε = ε(γ) > 0 such that|F |< (1− γ)

(n−t
k−t

)
holds for| kn− 1

2|< ε
andn > n1(ε).

4. INTERSECTING AND UNION FAMILIES

Proof of Theorem 8.Let F ⊂ ([2n]
n

)
be a 4-wiset-intersecting and 4-wiset-union family.

Suppose thatF is not 3-wise(t + 1)-union. Then there existA,B,C ∈F such that|A∪
B∪C|= 2n−t, say,A∪B∪C= [2n−t]. SinceF is 4-wiset-union, we haveF ⊂ ([2n−t]

n

)
.

On the other hand,F is 4-wiset-intersecting. Then by Theorem 5 we have|F | ≤ (2n−2t
n−t

)

and equality holds iffF ∼= {F ∈ ([2n−t]
n

)
: [t]⊂ F}. This means that the theorem is true if

F is not 3-wise(t +1)-union. Considering the complement, the theorem is also true ifF
is not 3-wise(t +1)-intersecting. Therefore from now on we assume that

F is 3-wise(t +1)-intersecting and 3-wise(t +1)-union. (24)

We also assume thatF is shifted. Now suppose that

|F | ≥
(

2n−2t
n− t

)
(25)

and we shall prove that there is no suchF .
Recall that forA∈ ([2n]

n

)
we definewalk(A) onZ2 in the following way. The walk is

from (0,0) to (n,n) with 2n steps, and ifi ∈ A (resp.i 6∈ A) then thei-th step is one unit up
(resp. one unit to the right). Let us define

Ai = {A∈ ([2n]
n

)
: |A∩ [t +4`]| ≥ t +3` first holds at̀ = i},

A j̄ = {A∈ ([2n]
n

)
: |A∩ [2n−4`− t +1,2n]| ≤ ` first holds at̀ = j}.

(Here we say that a propertyP(`) first holds at̀ = i iff P(`) does not hold for0≤ ` < i and
P(i) holds.) IfA∈Ai then, starting from the origin,walk(A) touches the lineL1 : y= 3x+t
at (i,3i + t) for the first time. IfA∈A j̄ thenwalk(A) touches the lineL2 : y = 1

3(x− (n−
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t))+ n at (n−3 j − t,n− j) and after passing this point this walk never touches the line
again.

Let ci be the number of walks from(0,0) to (i,3i + t) which touch the lineL1 only at
(i,3i + t). Then it follows thatci = t

4i+t

(4i+t
i

)
(see e.g. Fact 3 in [24]). SetAi j̄ = Ai ∩A j̄ .

From now on,i and j denote some fixed constants, and we consider the situationn→ ∞.
Then we have

|Ai j̄ |= cic j

(
2n−2t−4(i + j)

n− t−3i− j

)
≈ cic j

24(i+ j)

(
2n−2t
n− t

)
. (26)

By Fact 2 and Fact 3 every walk corresponding to a member ofF touches bothL1 and
L2. Thus we haveF ⊂⋃

i, j Ai j̄ . SetFi j̄ = Ai j̄ ∩F and

Gi j̄ = {F ∩ [4i + t +1,2n−4 j− t] : F ∈Fi j̄}.
Clearly we have|Fi j̄ | ≤ cic j |Gi j̄ |. So we can bound|Fi j̄ | by bounding|Gi j̄ |.

Claim 2. G0 j̄ ⊂
([t+1,2n−t−4 j]

n−t− j

)
is 3-wise1-intersecting.

Proof. Suppose on the contrary that there existA,B,C∈G0 j̄ such thatA∩B∩C= /0. By the
shiftedness we may assume thatA∪T,B∪T,C∪T ∈F whereT = [t]∪{2n− t−4i +1 :
0≤ i < j}. Then using shiftedness again we may also assume that the following three
subsetsA′,B′,C′ belong toF :

A′ = [t]∪A∪{2n− t−4i +1 : 0≤ i < j},
B′ = [t]∪B∪{2n− t−4i : 0≤ i < j},
C′ = [t]∪C∪{2n− t−4i−1 : 0≤ i < j}.

Then we haveA′∩B′∩C′ = [t], which contradicts (24). ¤
By Claim 2 and Theorem 1 we can bound|G0 j̄ |, and we have

|F0 j̄ | ≤ c0c j |G0 j̄ | ≤ c0c j

(
2n−2t−4 j−1

n− t− j−1

)
≈ 1

2
|A0 j̄ |. (27)

By considering the complement we also have

|Fi 0̄| ≤
1+o(1)

2
|Ai 0̄|. (28)

Claim 3. G1 j̄ ⊂
([t+5,2n−t−4 j]

n−t− j−3

)
is 3-wise1-intersecting.

Proof. Suppose on the contrary that there existA,B,C ∈ G1 j̄ such thatA∩B∩C = /0. By
the shiftedness we may assume that the following three subsetsA′,B′,C′ belong toF :

A′ = ([t +4]−{t})∪A∪{2n− t−4i +1 : 0≤ i < j},
B′ = ([t +4]−{t +1})∪B∪{2n− t−4i : 0≤ i < j},
C′ = ([t +4]−{t +2})∪C∪{2n− t−4i−1 : 0≤ i < j}.
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If there existsF ∈ F such that|F ∩ [t + 4]| ≤ t + 2 then using the shiftedness we may
assume thatF ∩ [t +4] = [t +2]. But this is impossible becauseA′∩B′∩C′∩F = [t−1],
contradicting the 4-wiset-intersecting property. So we may assume that|F∩ [t +4]| ≥ t +3
holds for allF ∈F . In other words,walk(F) passes(0, t +4) or (1, t +3). Sincewalk(F)
touches the lineL2, Proposition 11 implies

|F | ≤ α t
(

2n− t−4
n

)
+(1+ ε)(t +4)α t

(
2n− t−4

n−1

)
≈ (t +5)α t2t−4

(
2n−2t
n− t

)
,

whereα ≈ 0.54 is the root of the equationX4−2X +1 = 0. The RHS is less than
(2n−2t

n−t

)
for t ≤ 5 and this contradicts (25). ¤

By Claim 3 and Theorem 1 we have

|F1 j̄ | ≤
1+o(1)

2
|A1 j̄ | and |Fi 1̄| ≤

1+o(1)
2

|Ai 1̄|. (29)

Let I be the set of 18 pairs of indices:

I = {(i, j) ∈ N2 : i ≥ 0, j ≥ 0, i + j ≤ 5,min{i, j} ≤ 1}.
By (27), (28) and (29) we have

∑
(i, j)∈I

|Fi j̄ | ≤
1+o(1)

2 ∑
(i, j)∈I

|Ai j̄ |. (30)

By Proposition 12 (settingq = r = 4, s= t andu = v = 0) we have

∑
x,y
|Ax,ȳ| ≤ (1+o(1))α2t

(
2n
n

)
. (31)

Finally, by (30), (31) and (26), we have

|F | = ∑
(i, j)∈I

|Fi j̄ |+ ∑
(x,y)6∈I

|Fx,ȳ| ≤ ∑
(i, j)∈I

|Fi j̄ |+ ∑
(x,y)6∈I

|Ax,ȳ|

≤ 1+o(1)
2 ∑

(i, j)∈I

|Ai j̄ |+
(

∑
x,y
|Ax,ȳ|− ∑

(i, j)∈I

|Ai j̄ |
)

≤ (1+o(1))

(
α2t

(
2n
n

)
− 1

2 ∑
(i, j)∈I

|Ai j̄ |
)

≈
(

(2α)2t − 1
2 ∑

(i, j)∈I

cic j

24(i+ j)

)(
2n−2t
n− t

)
.

Noting thatci = t
4i+t

(4i+t
i

)
one can verify that the RHS is less than0.998

(2n−2t
n−t

)
for 1≤

t ≤ 4, which contradicts (25). This completes the proof of Theorem 8. ¤
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5. INTERSECTINGSPERNER FAMILIES

Recall that anr-wiset-intersecting familyF ⊂ 2[n] is called non-trivial if|⋂F∈F |< t.
Let m∗(n,k, r, t) be the maximal size ofk-uniform non-trivialt-intersecting families onn
vertices.

Theorem 18. Let r ≥ 4 and t be fixed positive integers. Suppose that there existsγ =
γ(r, t) > 0 andε = ε(γ) > 0 such thatm∗(n,k, r, t)≤ (1−γ)

(n−t
k−t

)
holds for| kn− 1

2|< ε and

n > n0(ε). Let F ⊂ 2[n] be anr-wiset-intersecting Sperner family. Then we have|F | ≤( n−t
d n−t

2 e
)

for n > n0(ε). Equality holds iffF ∼= {F ∈ ([n]
k

)
: [t]⊂ F} wherek = t + dn−t

2 e or

k = t + bn−t
2 c.

Proof of Theorem 18.Our proof is based on the idea from [4]. For a familyF ⊂ 2[n], set
Fk = F ∩([n]

k

)
. Let γ > 0 andε > 0 be as in the theorem and setK = {k∈N : (1

2−ε)n<

k < (1
2 + ε)n}. First we prove the following inequality.

Claim 4. Let F ⊂ 2[n] be a non-trivialr-wise t-intersecting Sperner family withn >
n1(ε,γ). Then we have∑k∈K |Fk|/

(n−t
k−t

)
< 1− γ.

Proof. First suppose that
⋃

k∈K Fk is trivial and[t]⊂ F holds for allF ∈ ⋃
k∈K Fk. Since

F is non-trivial, we can findF ′ ∈ F such that|[t]∩ F ′| < t. Thus, for eachk ∈ K,
F ′

k := {F− [t] : F ∈Fk} is (r−1)-wise1-intersecting, and we have

|Fk|= |F ′
k| ≤

(
n− t−1
k− t−1

)
<

k
n

(
n− t
k− t

)
< (

1
2

+ ε)
(

n− t
k− t

)
,

which gives the desired inequality. Thus we may suppose that
⋃

k∈K Fk is non-trivial. We
prove∑k∈K |Fk|/

(n−t
k−t

)
< 1− γ for n > n1 by induction on the number of nonzero|Fk|’s.

If this number is one then the inequality follows from the assumption of Theorem 18.
If it is not the case then leti be the smallest andj the second-smallest index inK for
which |Fk| 6= 0. SetF c

i = {[n]−F : F ∈Fi} ⊂
( [n]

n−i

)
. SinceFi is r-wiset-intersecting,

it follows from our assumption onm∗(n,k, r, t) that|Fi |= |F c
i | ≤

(n−t
i−t

)
=

(n−t
n−i

)
. Then by

Proposition 13, we have
|∆n− j(F c

i )|
|F c

i |
≥

(n−t
n− j

)
(n−t

n−i

) =

(n−t
j−t

)
(n−t

i−t

) . (32)

SetG j = {G ∈ ([n]
j

)
: G⊃ ∃F ∈ Fi}. Due to (32) and the factG j = (∆n− j(F c

i ))c, we

have|G j |/
(n−t

j−t

)≥ |Fi |/
(n−t

i−t

)
. SinceF is Sperner,F j ∩G j = /0 andH = (F −Fi)∪G j

is an r-wise t-intersecting Sperner family. Moreover, the number of nonzero|Hk|’s is
one less than that of|Fk|’s. Therefore, by the induction hypothesis and the fact that
F4H = Fi ∪G j , we have

∑
k∈K

|Fk|(n−t
k−t

) ≤ ∑
k∈K

|Hk|(n−t
k−t

) ≤ 1− γ ,
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which completes the proof of the claim. ¤
We continue to prove Theorem 18. LetF ⊂ 2[n] be anr-wise t-intersecting Sperner

family. First suppose thatF fixes t-element set, say[t]. ThenG = {F \ [t] : F ∈F} ⊂
2[t+1,n] is a Sperner family. Thus by the Sperner Theorem [20] we have

|F |= |G | ≤
(

n− t
d(n− t)/2e

)
.

Equality holds iffG ∼=
( [n−t]
d(n−t)/2e

)
or

( [n−t]
b(n−t)/2c

)
.

Next suppose thatF is non-trivial. By Claim 4, we have

1− γ > ∑
k∈K

|Fk|(n−t
k−t

) ≥ ∑
k∈K

|Fk|( n−t
d(n−t)/2e

) .

On the other hand, by the Yamamoto (or LYM) inequality [26], we have

1≥ ∑
6̀∈K

|F`|(n
`

) ≥ ∑
6̀∈K

|F`|( n
( 1

2+ε)n

) .

Therefore, we have

|F | ≤ (1− γ)
(

n− t
d(n− t)/2e

)
+

(
n

(1
2 + ε)n

)
<

(
n− t

d(n− t)/2e
)

for sufficiently largen. ¤
Now settr for 4≤ r ≤ 10as follows.

r 4 5 6 7 8 9 10
tr 7 18 41 89 184 377 762

By Theorem 18 and Theorem 17 we have the following result, which includes Theorem 10.

Theorem 19. Let 4 ≤ r ≤ 10, 1 ≤ t ≤ tr and letF ⊂ 2[n] be anr-wise t-intersecting
Sperner family withn > n0. Then we have|F | ≤ ( n−t

d n−t
2 e

)
. Equality holds iffF ∼= {F ∈

([n]
k

)
: [t]⊂ F} wherek = t + dn−t

2 e or k = t + bn−t
2 c.
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