EKR TYPE INEQUALITIES FOR 4-WISE INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

Abstract

Let $1 \leq t \leq 7$ be an integer and let \mathscr{F} be a k-uniform hypergraph on n vertices. Suppose that $|A \cap B \cap C \cap D| \geq t$ holds for all $A, B, C, D \in \mathscr{F}$. Then we have $|\mathscr{F}| \leq\binom{ n-t}{k-t}$ if $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ holds for some $\varepsilon>0$ and all $n>n_{0}(\varepsilon)$. We apply this result to get EKR type inequalities for "intersecting and union families" and "intersecting Sperner families."

1. Introduction

A family $\mathscr{F} \subset 2^{[n]}$ is called r-wise t-intersecting if $\left|F_{1} \cap \cdots \cap F_{r}\right| \geq t$ holds for all $F_{1}, \ldots, F_{r} \in \mathscr{F}$. Let us define r-wise t-intersecting families $\mathscr{F}_{i}(n, k, r, t)$ as follows:

$$
\mathscr{F}_{i}(n, k, r, t)=\left\{F \in\binom{[n]}{k}:|F \cap[t+r i]| \geq t+(r-1) i\right\} .
$$

Let $m(n, k, r, t)$ be the maximal size of k-uniform r-wise t-intersecting families on n vertices. Can we extend the Erdős-Ko-Rado Theorem in the following way?

Conjecture 1. $m(n, k, r, t)=\max _{i}\left|\mathscr{F}_{i}(n, k, r, t)\right|$.
Ahlswede and Khachatrian[1] proved the case $r=2$, which extended the earlier results by Erdős-Ko-Rado[3], Frankl[6] and Wilson[25]. Frankl proved the case $t=1$ as follows.

Theorem 1 ([4]). $m(n, k, r, 1)=\binom{n-1}{k-1}$ for $(r-1) n \geq r k$.
The cases $r \geq 3$ and $t \geq 2$ seem to be much more difficult and only a few results are known.

Theorem $2([9,10]) . m(n, k, 3,2)=\binom{n-2}{k-2}$ for $\frac{k}{n}<0.501$ and $n>n_{0}$.
Theorem 3 ([23]). $m(n, k, 3, t)=\binom{n-t}{k-t}$ for $t \geq 26, \frac{k}{n} \leq \frac{2}{\sqrt{4 t+9}-1}$ and $n>n_{0}(t)$.
Theorem 4 ([22]). $m(n, k, r, t)=\binom{n-t}{k-t}$ if $p=\frac{k}{n}$ satisfies $p<\frac{r-2}{r}$,

$$
(1-p) p^{\frac{t}{t+1}(r-1)}-p^{\frac{t}{t+1}}+p<0
$$

and $n>n_{0}(r, t, p)$.
Date: September 3, 2006, 10:19am.
2000 Mathematics Subject Classification. Primary: 05D05 Secondary: (05C65).
Key words and phrases. intersecting family; Erdős-Ko-Rado Theorem.
The author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027.

Our main result in this paper is the following.
Theorem 5. Let t be an integer with $1 \leq t \leq 7$. Then there exists $\varepsilon>0$ and $n_{0}=n_{0}(\varepsilon)$ such that $m(n, k, 4, t)=\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ and $n>n_{0}$. Moreover $\mathscr{F}_{0}(n, k, 4, t)$ is the only optimal configuration (up to isomorphism).

There is a possibility to improve the range for t in the above theorem from $t \leq 7$ to $t \leq 10$, but the theorem fails for $t \geq 11$. In fact, by simple computation, one finds $\left|\mathscr{F}_{1}(n, k, 4, t)\right|>\left|F_{0}(n, k, 4, t)\right|$ if $\frac{k}{n}>\frac{1}{2}$ and $t=11$, or $\frac{k}{n} \geq \frac{1}{2}$ and $t \geq 12$.

A family $\mathscr{F} \subset 2^{[n]}$ is called r-wise t-union if $\left|F_{1} \cup \cdots \cup F_{r}\right| \leq n-t$ holds for all $F_{1}, \ldots, F_{r} \in$ \mathscr{F}. This is equivalent to the property that $\mathscr{F}^{c}=\{[n]-F: F \in \mathscr{F}\}$ is r-wise t-intersecting. What is the maximal size of r-wise t-intersecting and q-wise t-union k-uniform family? The case $r \geq 4, q \geq 4$ and $t=1$ was settled as follows.

Theorem 6 ([16, 2]). Let $r \geq 4, q \geq 4$ and $\mathscr{F} \subset\binom{[n]}{k}$. Suppose that \mathscr{F} is r-wise 1 intersecting and q-wise 1 -union, and

$$
\frac{n-1}{q}+1 \leq k \leq \frac{r-1}{r}(n-1) .
$$

Then we have $|\mathscr{F}| \leq\binom{ n-2}{k-1}$.
The case $r=q=3$ and $t=1$ is more difficult and still open. As a special case the following is known.

Theorem 7 ([11]). Let $\mathscr{F} \subset\binom{[2 n]}{n}$ be a 3-wise 1-intersecting and 3-wise 1-union family. Then we have $|\mathscr{F}| \leq\binom{ 2 n-2}{n-1}$. Equality holds iff $\mathscr{F} \cong\left\{F \in\binom{[2 n-1]}{n}: 1 \in F\right\}$.

In [21] the case $r=q=4$ and $t=2$ was considered. Using Theorem 5 we extend the result as follows.

Theorem 8. Let t be an integer with $1 \leq t \leq 4$, and let $\mathscr{F} \subset\binom{[2 n]}{n}$ be a 4-wise t-intersecting and 4-wise t-union family. Then we have $|\mathscr{F}| \leq\binom{ 2 n-2 t}{n-t}$ for $n>n_{0}$. Equality holds iff $\mathscr{F} \cong\left\{F \in\binom{[2 n-t]}{n}:[t] \subset F\right\}$.

A family $\mathscr{F} \subset 2^{[n]}$ is called a Sperner family if $F \not \subset G$ holds for all distinct $F, G \in$ \mathscr{F}. What is the maximum size of r-wise t-intersecting families? The case $r=2$ was determined by Milner in [19], and the maximum is given by the simple formula $\binom{n}{\lceil(n+t) / 2\rceil}$. For the cases $r \geq 3$, the situation becomes more complicated. Frankl[4] and Gronau[12, $13,14,15]$ considered the case $r=3$ and $t=1$, and it is known that for $n \geq 53$ the only optimal families are

$$
\begin{array}{ll}
\mathscr{F}=\left\{F \cup\{n\}: F \in\binom{[n-1]}{n / 2}\right\} \cup\{[n-1]\} & \\
n \text { even, } \\
\mathscr{F}=\left\{F \cup\{n\}: F \in\binom{(n-1]}{(n-1) / 2}\right\} & \\
n \text { odd. }
\end{array}
$$

The case $r=3$ and $t=2$ was solved in [9,10] as follows.

Theorem 9. Let $\mathscr{F} \subset 2^{[n]}$ be a 3-wise 2-intersecting Sperner family. Then,

$$
|\mathscr{F}| \leq \begin{cases}\binom{n-2}{(n-2) / 2} & \text { if } n \text { even } \\ \binom{n-2}{(n-1) / 2}+2 & \text { if } n \text { odd },\end{cases}
$$

holds for $n \geq n_{0}$. The extremal configurations are

$$
\begin{array}{ll}
\mathscr{F}=\left\{\{1,2\} \cup F: F \in\binom{[3, n]}{(n-2) / 2}\right\} & n \text { even } \\
\mathscr{F}=\left\{\{1,2\} \cup F: F \in\binom{[3, n] / 2}{(n-1) / 2}\right\} \cup\{[n]-\{1\}\} \cup\{[n]-\{2\}\} & n \text { odd. }
\end{array}
$$

In this paper we consider the case $r=4$ and $1 \leq t \leq 7$ and we prove the following.
Theorem 10. Let $1 \leq t \leq 7$ and let $\mathscr{F} \subset 2^{[n]}$ be a 4 -wise t-intersecting Sperner family. Then we have $|\mathscr{F}| \leq\binom{ n-\bar{t}}{\left[\frac{n-t}{2}\right\rceil}$ for $n>n_{0}$. Equality holds iff $\mathscr{F} \cong\left\{F \in\binom{[n]}{k}:[t] \subset F\right\}$ where $k=t+\left\lceil\frac{n-t}{2}\right\rceil$ or $k=t+\left\lfloor\frac{n-t}{2}\right\rfloor$.

We present the proofs of Theorem 5, Theorem 8 and Theorem 10 in Section 3, Section 4 and Section 5, respectively. In the next section we review some basic tools for those proofs.

2. Tools

For integers $1 \leq i<j \leq n$ and a family $\mathscr{F} \subset\binom{[n]}{k}$, define the (i, j)-shift $S_{i j}$ as follows.

$$
S_{i j}(\mathscr{F})=\left\{S_{i j}(F): F \in \mathscr{F}\right\}
$$

where

$$
S_{i j}(F)= \begin{cases}(F-\{j\}) \cup\{i\} & \text { if } i \notin F, j \in F,(F-\{j\}) \cup\{i\} \notin \mathscr{F}, \\ F & \text { otherwise } .\end{cases}
$$

A family $\mathscr{F} \subset\binom{[n]}{k}$ is called shifted if $S_{i j}(\mathscr{F})=\mathscr{F}$ for all $1 \leq i<j \leq n$. For a given family \mathscr{F}, one can always obtain a shifted family \mathscr{F}^{\prime} from \mathscr{F} by applying shifting to \mathscr{F} repeatedly. Then we have $\left|\mathscr{F}^{\prime}\right|=|\mathscr{F}|$ because shifting preserves the size of the family. It is easy to check that if \mathscr{F} is r-wise t-intersecting then $S_{i j}(\mathscr{F})$ is also r-wise t-intersecting. Therefore if \mathscr{F} is an r-wise t-intersecting family then we can find a shifted family \mathscr{F}^{\prime} which is also r-wise t-intersecting with $\left|\mathscr{F}^{\prime}\right|=|\mathscr{F}|$. See [7] for more details.

We use the random walk method originated from [5, 6] by Frankl. Let us introduce a partial order in $\binom{[n]}{k}$ by using shifting. For $F, G \in\binom{[n]}{k}$, define $F \succ G$ if G is obtained by repeating a shifting to F. The following fact follows immediately from the definition.
Fact 1. Let $\mathscr{F} \subset\binom{[n]}{k}$ be a shifted family. If $F \in \mathscr{F}$ and $F \succ G$, then $G \in \mathscr{F}$.
For $F \in\binom{[n]}{k}$ we define the corresponding walk on \mathbb{Z}^{2}, denoted by walk (F), in the following way. The walk is from $(0,0)$ to $(n-k, k)$ with n steps, and if $i \in F$ (resp. $i \notin F$) then the i-th step is one unit up (resp. one unit to the right). The following fact is useful (see $[5,7,21]$).

Fact 2. Let $\mathscr{F} \subset\binom{[n]}{k}$ be a shifted r-wise t-intersecting family. Then for all $F \in \mathscr{F}$, walk (F) must touch the line $L: y=(r-1) x+t$.

The next result (Corollary 8 in [21]) enables us to upper bound the number of walks which touch a given line.

Proposition 11. Let $p \in \mathbb{Q}, r, s, u, v \in \mathbb{N}$ be fixed constants with $r \geq 2$ and $p<\frac{r-1}{r+1}$, and let n and k be positive integers with $p=\frac{k}{n}$. Let $\alpha \in(p, 1)$ be the unique root of the equation $(1-p) x^{r}-x+p=0$ and let $g(n)$ be the number of walks from (u, v) to $(n-k, k)$ which touch the line $y=(r-1)(x-u)+v+s$. Then for any $\varepsilon>0$ there exists n_{0} such that

$$
\frac{g(n)}{\binom{n-u-v}{k-v}} \leq(1+\varepsilon) \alpha^{s}
$$

holds for all $n>n_{0}$. Moreover if $u=0$ then we can choose $\varepsilon=0$.
To prove Theorem 8 we use a dual version of Fact 2.
Fact 3. Let $\mathscr{F} \subset\binom{[n]}{k}$ be a shifted q-wise s-union family. Then for all $F \in \mathscr{F}$, $\operatorname{walk}(F)$ must touch the line $L_{2}: y=\frac{1}{q-1}(x-n+k+s)+k$.

Then we can extend Proposition 11 as follows (Corollary 9 in [21]).
Proposition 12. Let $q, r, s, t, u, v \in \mathbb{N}$ be fixed constants with $q \geq 4, r \geq 4$ and $t+(r-1) u-$ $v>0$. Let $\alpha_{j} \in\left(\frac{1}{2}, 1\right)$ be the unique root of the equation $\frac{1}{2} x^{j}-x+\frac{1}{2}=0$. Let $h(n)$ be the number of walks from (u, v) to (n, n) which touch both of the lines $L_{1}: y=(r-1) x+t$ and $L_{2}: y=\frac{1}{q-1}(x-n+s)+n$. Then for any $\varepsilon>0$ there exists n_{0} such that

$$
\frac{h(n)}{\binom{2 n-u-v}{n-v}} \leq(1+\varepsilon) \alpha_{r}^{t+(r-1) u-v} \alpha_{q}^{s}
$$

holds for all $n>n_{0}$.
To prove Theorem 10, we need a basic fact about shadow. For a family $\mathscr{F} \subset 2^{[n]}$ and a positive integer $\ell<n$, let us define the ℓ-th shadow of \mathscr{F}, denoted by $\Delta_{\ell}(\mathscr{F})$, as follows.

$$
\Delta_{\ell}(\mathscr{F})=\left\{G \in\binom{[n]}{\ell}: G \subset \exists F \in \mathscr{F}\right\}
$$

We use the following version of the Kruskal-Katona Theorem [18, 17, 8].
Proposition 13. Suppose that $\mathscr{F} \subset\binom{[n]}{k}$ and $|\mathscr{F}| \leq\binom{ m}{k}$. Then we have

$$
\left|\Delta_{\ell}(\mathscr{F})\right| \geq|\mathscr{F}|\binom{m}{\ell} /\binom{m}{k} .
$$

Equality holds only if $\mathscr{F}=\binom{Y}{k},|Y|=m$.

3. Multiply intersecting families

In this section we prove Theorem 5. Note that $\left|\mathscr{F}_{0}(n, k, r, t)\right|=\binom{n-t}{k-t} \approx p^{t}\binom{n}{k}$, and $\left|\mathscr{F}_{1}(n, k, r, t)\right|=(t+r)\binom{n-t-r}{k-t-r+1}+\binom{n-t-r}{k-t-r} \approx\left((t+r) p^{t+r-1}-(t+r-1) p^{t+r}\right)\binom{n}{k}$, where we denote $a \approx b$ iff $\lim _{n \rightarrow \infty} a / b=1$. Let $p_{r, t} \in(0,1)$ be the root of the equation $1=(t+$ $r) x^{r-1}-(t+r-1) x^{r}$. Then $\left|\mathscr{F}_{0}(n, k, r, t)\right|>\left|\mathscr{F}_{1}(n, k, r, t)\right|$ holds if $p \leq p_{r, t}$. Throughout this section, we assume that $0<p \leq p_{r, t}$ and let $q=1-p$. We start with the following somewhat cumbersome statement, which will imply Theorem 5 as a special case after some refinement (see Proposition 15).

Proposition 14. Let $r, t \in \mathbb{N}$ and $p \in \mathbb{Q}$ be given. Suppose that $r \geq 3$ and $p \in(0,0.55)$. Let $\alpha \in(p, 1)$ be the root of the equation $q x^{r}-x+p=0$. Suppose that r, t, p satisfy all of the following inequalities:

$$
\begin{align*}
& (\alpha / p)^{t}-t\left(1-\alpha^{r-1}\right) p^{r-1} q^{2}+\alpha^{r-1} q+p-2<0 \tag{C1}\\
& (\alpha / p)^{t}-1-\frac{1-\alpha^{r-1}}{\alpha^{2 r-2}} q(1-(p / \alpha))<0 \tag{C2}\\
& \frac{\alpha^{2(r-1)}}{t\left(1-\alpha^{r-1}\right) q} \sum_{j=0}^{t+r-2}(j+1)(\alpha / p)^{t+r-1-j}-1<0 \tag{C3}
\end{align*}
$$

Then $m(n, k, r, t)=\binom{n-t}{k-t}$ holds for $p=\frac{k}{n}$ and $n>n_{0}(r, t, p)$. Moreover $\mathscr{F}_{0}(n, k, r, t)$ is the only optimal configuration (up to isomorphism).

We prove Proposition 14 in section 3.1 and we will show that we can replace ($C 1$) by weaker conditions in section 3.2 (see Proposition 15). Then Theorem 5 will follow from Proposition 15 easily.
3.1. Proof of Proposition 14. Let $p \in \mathbb{Q}$ with $0<p \leq 0.55$ be given. Let $\alpha=\alpha_{p} \in(p, 1)$ be the root of the equation $q x^{r}-x+p=0$.

Let $\mathscr{H} \subset\binom{[n]}{k}$ be a shifted r-wise t-intersecting family and suppose that $p=\frac{k}{n}$. Then by Fact 2 walk (H) hits the line $L: y=(r-1) x+t$ for all $H \in \mathscr{H}$. Thus by Proposition 11 (setting $u=v=0, s=t$) we have $|\mathscr{H}| \leq \alpha^{t}\binom{n}{k}$. Our goal is to prove that $|\mathscr{H}|<\binom{n-t}{k-t} \approx$ $p^{t}\binom{n}{k}$ unless $\mathscr{H} \cong \mathscr{F}_{0}(n, k, r, t)$.

For $0 \leq i \leq\left\lfloor\frac{k-t}{r-1}\right\rfloor$ let us define

$$
\mathscr{G}_{i}=\left\{G \in\binom{[n]}{k}:|G \cap[t+r \ell]| \geq t+(r-1) \ell \text { first holds at } \ell=i\right\} .
$$

In other words, $G \in \mathscr{G}_{i}$ iff $\operatorname{walk}(G)$ reaches the line L at $(i,(r-1) i+t)$ for the first time. Set $\mathscr{H}_{i}=\mathscr{H} \cap \mathscr{G}_{i}$.

Next we will define $A_{i} \in \mathscr{G}_{0}$ and $B_{i} \in \mathscr{G}_{1}$. As in the following picture, starting from the origin, walk $\left(A_{i}\right)$ passes $(0, t)$ and (i, t), and then from (i, t) walk $\left(A_{i}\right)$ is the maximal walk (in the shifting poset) that does not touch the line $L_{i}: y=(r-1)(x-i)+(t+r-1)$,
while walk $\left(B_{i}\right)$ passes $(0, t-1),(1, t-1),(1, t+r-1)$, and $(i+1, t+r-1)$, then from $(i+1, t+r-1)$ walk $\left(B_{i}\right)$ is the maximal walk that does not touch the line L_{i}.

Formal definitions are as follows. For an infinite set $A=\left\{a_{1}, a_{2}, \ldots\right\} \subset \mathbb{N}$ with $a_{1}<a_{2}<$ \cdots, let us define $\operatorname{First}_{k}(A)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Set

$$
\begin{aligned}
T(i) & =\{i, i+r, i+2 r, \ldots\}=\{i+r j: j \geq 0\}, \\
A_{i}^{*} & =[t] \cup(\bigcup\{T(t+i+s): 1 \leq s \leq r, s \neq r-1\}) \\
& =([t] \cup[t+i+1, \infty])-\bigcup_{j=0}^{\infty}\{t+i+r-1+r j\}, \\
B_{i}^{*} & =[t-1] \cup[t+1, t+r] \cup(\bigcup\{T(t+i+s+r): 1 \leq s \leq r, s \neq r-1\}) \\
& =([t-1] \cup[t+1, t+r] \cup[t+i+r+1, \infty))-\bigcup_{j=1}^{\infty}\{t+i+r-1+r j\}
\end{aligned}
$$

and define $A_{i}=\operatorname{First}_{k}\left(A_{i}^{*}\right), B_{i}=\operatorname{First}_{k}\left(B_{i}^{*}\right)$. We will use only small i so that $A_{i}, B_{i} \in\binom{[n]}{k}$, and then we have $A_{i} \in \mathscr{G}_{0}$ and $B_{i} \in \mathscr{G}_{1}$. Note that $A_{i+1} \succ A_{i}$ and $B_{i+1} \succ B_{i}$.

We consider three cases according to the structure of \mathscr{H}. If \mathscr{H} is similar to $\mathscr{F}_{0}(n, k, r, t)$ then we compare \mathscr{H} with $\mathscr{F}_{0}(n, k, r, t)$ and this is Case 2. In Case 3 we compare \mathscr{H} with $\mathscr{F}_{1}(n, k, r, t)$. If \mathscr{H} is neither similar to \mathscr{F}_{0} nor \mathscr{F}_{1} then it is less likely that \mathscr{H} has large size, but in this case we do not have an appropriate comparison object, which makes it difficult to bound the size of \mathscr{H}. We deal with this situation in Case 1, and we will refine the estimation for this case in the next subsection again.

Case 1. $A_{1} \notin \mathscr{H}$ and $B_{1} \notin \mathscr{H}$.
Suppose that $H \in \mathscr{H}_{0}$. Then after passing the point $(0, t)$, walk (H) goes to $(0, t+1)$ or $(1, t)$. So we can divide $\mathscr{H}_{0}=\mathscr{H}_{0}^{(0, t+1)} \cup \mathscr{H}_{0}^{(1, t)}$ according to the next point to $(0, t)$ in
the walk. For $\mathscr{H}_{0}^{(0, t+1)}$ we use a trivial bound

$$
\begin{equation*}
\left|\mathscr{H}_{0}^{(0, t+1)}\right| \leq\binom{ n-(t+1)}{k-(t+1)} \approx p^{t+1}\binom{n}{k} . \tag{1}
\end{equation*}
$$

If $H \in \mathscr{H}_{0}^{(1, t)}$ then walk (H) must touch the line $L: y=(r-1) x+t$ after passing $(1, t)$. Otherwise we get $H \succ A_{1}$, which means $H \notin \mathscr{H}$ by Fact 1, a contradiction. Here we used the fact that A_{1} is the minimal set (in the shifting order poset) whose walk does not touch the line L after passing $(1, t)$. Thus by Proposition 11 (setting $u=1, v=t, s=r-1$) we have

$$
\begin{equation*}
\left|\mathscr{H}_{0}^{(1, t)}\right| \leq(1+\varepsilon) \alpha^{r-1}\binom{n-(t+1)}{k-t} \approx \alpha^{r-1} p^{t} q\binom{n}{k} \tag{2}
\end{equation*}
$$

Next suppose that $H \in \mathscr{H}_{1}$. Then after passing $(1, t+r-1)$, walk (H) goes to $(1, t+r)$ or $(2, t+r-1)$. So we can divide $\mathscr{H}_{1}=\mathscr{H}_{1}^{(1, t+r)} \cup \mathscr{H}_{1}^{(2, t+r-1)}$. Noting that there are t ways of walking from $(0,0)$ to $(1, t+r)$ which avoid passing $(0, t)$, we have

$$
\begin{equation*}
\left|\mathscr{H}_{1}^{(1, t+r)}\right| \leq t\binom{n-(t+r+1)}{k-(t+r)} \approx t p^{t+r} q\binom{n}{k} . \tag{3}
\end{equation*}
$$

If $H \in \mathscr{H}_{1}^{(2, t+r-1)}$, then walk (H) must touch L after passing $(2, t+r-1)$. Otherwise we get $H \succ B_{1}$, which means $H \notin \mathscr{H}$, a contradiction. Thus by Proposition 11 (setting $u=2$, $v=t+r-1, s=r-1)$ we have

$$
\begin{equation*}
\left|\mathscr{H}_{1}^{(2, t+r-1)}\right| \leq(1+\varepsilon) t \alpha^{r-1}\binom{n-(t+r+1)}{k-(t+r-1)} \approx t \alpha^{r-1} p^{t+r-1} q^{2}\binom{n}{k} \tag{4}
\end{equation*}
$$

Finally we count the number of H in $\bigcup_{i \geq 2} \mathscr{H}_{i} \subset \bigcup_{i \geq 2} \mathscr{G}_{i}$. By Proposition 11 (setting $u=v=0, s=r)$ we have $\left|\bigcup_{i \geq 0} \mathscr{G}_{i}\right| \leq \alpha^{t}\binom{n}{k}$ and so

$$
\begin{align*}
\left|\bigcup_{i \geq 2} \mathscr{H}_{i}\right| & \leq\left|\bigcup_{i \geq 0} \mathscr{G}_{i}\right|-\left|\mathscr{G}_{0}\right|-\left|\mathscr{G}_{1}\right| \\
& \leq \alpha^{t}\binom{n}{k}-\binom{n-t}{k-t}-t\binom{n-(t+r)}{k-(t+r-1)} \\
& \approx\left(\alpha^{t}-p^{t}-t p^{t+r-1} q\right)\binom{n}{k} \tag{5}
\end{align*}
$$

Therefore by (1), (2), (3), (4) and (5) we have

$$
\frac{|\mathscr{H}|}{\binom{n}{k}} \leq(1+o(1))\left(p^{t+1}+\alpha^{r-1} p^{t} q+t p^{t+r} q+t \alpha^{r-1} p^{t+r-1} q^{2}+\alpha^{t}-p^{t}-t p^{t+r-1} q\right)
$$

as $n \rightarrow \infty$. Consequently $|\mathscr{H}|<\binom{n-t}{k-t} \approx p^{t}\binom{n}{k}$ follows from

$$
p^{t+1}+\alpha^{r-1} p^{t} q+t p^{t+r} q+t \alpha^{r-1} p^{t+r-1} q^{2}+\alpha^{t}-p^{t}-t p^{t+r-1} q<p^{t}
$$

which is equivalent to $(C 1)$.

Case 2. $A_{1} \in \mathscr{H}$.
If $[t] \subset H$ holds for all $H \in \mathscr{H}$ then it follows that $|\mathscr{H}| \leq\binom{ n-t}{k-t}$ and equality holds iff $\mathscr{H} \cong \mathscr{F}_{0}(n, k, r, t)$. Thus we may assume that $[t] \not \subset H$ holds for some $H \in \mathscr{H}$ and in particular we may assume that $D^{\prime}=[k+1]-\{t\} \in \mathscr{H}$ because \mathscr{H} is shifted.

We shall show that $A_{i} \notin \mathscr{H}$ holds for some i. Our plan is to choose a "witness" $\left\{A^{\prime}, C_{1}^{\prime}, \ldots, C_{r-2}^{\prime}\right\}$ for being $A_{i} \notin \mathscr{H}$ so that

$$
\begin{equation*}
A_{i} \succ A^{\prime} \succ C_{1}^{\prime} \succ C_{2}^{\prime} \succ \cdots \succ C_{r-2}^{\prime} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime} \cap C_{1}^{\prime} \cap C_{2}^{\prime} \cap \cdots \cap C_{r-2}^{\prime} \cap D^{\prime}=[t-1] . \tag{7}
\end{equation*}
$$

Suppose that we have chosen the witness. If $A_{i} \in \mathscr{H}$ then (6) and Fact 1 imply $A^{\prime}, C_{1}^{\prime}, \ldots, C_{r-2}^{\prime} \in$ \mathscr{H}, and thus (7) contradicts that \mathscr{H} is r-wise t-intersecting. The following picture shows an example of a witness for the case $r=5, t=3, i=2$ and $k=23$. Lines connecting the discs show that $A^{\prime} \succ C_{1}^{\prime} \succ C_{2}^{\prime} \succ C_{3}^{\prime}$.

Before giving a formal description of the witness, let us explain how to find i (see (13)) by considering a bit more rough situation. Here we consider infinite sets for simplicity.
Let

$$
A^{\prime \prime}=[t] \cup[t+i+1, \infty)-\{t+i+r j+r-1: j \geq 0\} .
$$

We try to find $C_{1}^{\prime \prime}, \ldots, C_{r-2}^{\prime \prime}$ so that

$$
\begin{gather*}
A^{\prime \prime} \succ C_{1}^{\prime \prime} \succ C_{2}^{\prime \prime} \succ \cdots \succ C_{r-2}^{\prime \prime}, \tag{8}\\
A^{\prime \prime} \cap C_{1}^{\prime \prime} \cap C_{2}^{\prime \prime} \cap \cdots \cap C_{r-2}^{\prime \prime}=[t] . \tag{9}
\end{gather*}
$$

To do so, we maintain

$$
\begin{equation*}
\left|A^{\prime \prime} \cap\{j\}\right|+\left|C_{1}^{\prime \prime} \cap\{j\}\right|+\cdots+\left|C_{r-2}^{\prime \prime} \cap\{j\}\right|=r-2 \tag{10}
\end{equation*}
$$

for all $j>t+i$ by using a cyclic pattern. More formally, set $z(u, i)=t+i+u(r-2) r$, and for $1 \leq \ell \leq r-2$ set $C_{\ell}^{\prime \prime}=[1, \infty)-Z_{\ell}(i)$, where

$$
Z_{1}(i)=\bigcup_{u \geq 0}(\{z(u, i)+1, z(u, i)+r\} \cup\{z(u, i)+(r-1) v: 2 \leq v \leq r-2\})
$$

and $Z_{\ell}(i)=\{t+i+\ell\} \cup\left(r+Z_{\ell-1}(i)\right)$ for $2 \leq \ell \leq r-2$. Here we denote the set $\{r+z$: $z \in Z\}$ by $r+Z$. In $[t+i+1, \infty)$, the sets $A^{\prime \prime}, C_{1}^{\prime \prime}, \ldots, C_{r-2}^{\prime \prime}$ are periodic of period $r(r-2)$. Due to (10), we have (9). But (8) is not satisfied. So we will find an integer a such that

$$
\begin{equation*}
\operatorname{First}_{a}\left(A^{\prime \prime}\right) \succ \operatorname{First}_{a}\left(C_{1}^{\prime \prime}\right) \succ \operatorname{First}_{a}\left(C_{2}^{\prime \prime}\right) \succ \cdots \succ \operatorname{First}_{a}\left(C_{r-2}^{\prime \prime}\right), \tag{11}
\end{equation*}
$$

It is necessary that

$$
\begin{equation*}
\left|A^{\prime \prime} \cap[a]\right|=\left|C_{\ell}^{\prime \prime} \cap[a]\right| \tag{12}
\end{equation*}
$$

holds for all $1 \leq \ell \leq r-2$. We need to adjust the excess $\left|C_{\ell}^{\prime \prime} \cap[t+i]\right|-\left|A^{\prime \prime} \cap[t+i]\right|=i$. We note that

$$
\begin{aligned}
& A^{\prime \prime} \cap[t+i+1, t+i+r(r-2)]=(r-1)(r-2), \\
& C_{\ell}^{\prime \prime} \cap[t+i+1, t+i+r(r-2)]=(r-1)(r-2)-1,
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{\prime \prime} \cap[t+i+1, t+i+(2 r-3)]=2 r-4 \\
& C_{\ell}^{\prime \prime} \cap[t+i+1, t+i+(2 r-3)]=2 r-5
\end{aligned}
$$

Thus we find that

$$
a=t+i+(i-1) r(r-2)+(2 r-3)=t+(r-1)((r-1) i-r+3)
$$

satisfies (12). We leave the reader to check that a defined above satisfy (11), actually this is the maximum integer satisfying (11). We require $a \geq k+1$, which gives $i \geq i_{0}$ where

$$
\begin{equation*}
i_{0}=\left\lceil\frac{k+1-t+(r-1)(r-3)}{(r-1)^{2}}\right\rceil \text {. } \tag{13}
\end{equation*}
$$

Now we are ready to define the witness $A^{\prime}, C_{1}^{\prime}, \ldots, C_{r-2}^{\prime}$. Set

$$
\begin{aligned}
\tilde{A} & =[t] \cup\left(\left[t+i_{0}+1, a\left(i_{0}\right)\right]-\left\{t+i_{0}+r j+r-1: j \geq 0\right\}\right) \cup\left[a\left(i_{0}\right)+1, \infty\right) \\
& =\left(A_{i_{0}} \cap\left[a\left(i_{0}\right)\right]\right) \cup\left[a\left(i_{0}\right)+1, \infty\right)
\end{aligned}
$$

where $a(i)=t-(r-1)(r-3)+(r-1)^{2} i$ and define $A^{\prime}=\operatorname{First}_{k}(\tilde{A})$. Set

$$
\tilde{C}_{\ell}=\left(\left[a\left(i_{0}\right)\right]-Z_{\ell}\left(i_{0}\right)\right) \cup\left[a\left(i_{0}\right)+1, \infty\right)
$$

and define $C_{\ell}^{\prime}=\operatorname{First}_{k}\left(\tilde{C}_{\ell}\right)$ for $1 \leq \ell \leq r-2$. Then the witness satisfies (6) and (7). Thus we have $A^{\prime} \notin \mathscr{H}$, and since $A_{i} \succ A^{\prime}$ for $i \geq i_{0}$ we also have $A_{i} \notin \mathscr{H}$ if $i \geq i_{0}$.

Now let $1 \leq i<i_{0}$ be such that $A_{i} \in \mathscr{H}$ but $A_{i+1} \notin \mathscr{H}$. (Then $A_{j} \in \mathscr{H}$ iff $j \leq i$.) For $1 \leq \ell \leq r-2$ set $R_{\ell}(i)=\left(A_{i}+\ell\right)-[a(i)]$ and

$$
C_{\ell}^{*}=\left([a(i)]-Z_{\ell}(i)\right) \cup R_{\ell}(i)
$$

and let

$$
D^{*}=([a(i)]-\{t\}) \cup R_{r-1}(i) .
$$

Finally set $C_{\ell}=\operatorname{First}_{k}\left(C_{\ell}^{*}\right), D=\operatorname{First}_{k}\left(D^{*}\right)$. The following picture shows an example of the case $r=4, t=3, i=2$ and $k=21$.

Then we have $C_{\ell} \in \mathscr{H}$ because $A_{i} \in \mathscr{H}$ and $A_{i} \succ C_{1} \succ C_{2} \succ \cdots \succ C_{r-2}$. Since \mathscr{H} is r-wise t-intersecting and $A_{i} \cap C_{1} \cap C_{2} \cap \cdots \cap C_{r-2} \cap D=[t-1]$ we can conclude that $D \notin \mathscr{H}$. Since $a(i)-(r-2) \equiv t+i-1(\bmod r)$ we have $A_{i} \nexists a(i)-(r-2)$, and thus $R_{r-1}(i) \cup[a(i)]=A_{i}+(r-1) \not \supset a(i)+1$. This means that after passing $(0, t-1)$ and $(1, t-$ $1)$, walk (D) is the maximal walk that does not touch the line $L: y=(r-1)(x-1)+a(i)$.

Let $H \in \mathscr{H}$. First suppose that walk (H) does not pass $(0, t)$, i.e., $H \cap[t] \neq[t]$. Then walk (H) must go through at least one of the points in

$$
P=\{(1,0),(1,1), \ldots,(1, t-1)\} .
$$

Let $(1, j)(0 \leq j \leq t-1)$ be the first point in P that walk (H) hits. In other words, we have $H \cap[j+1]=[j]$. From the point $(1, j)$, walk (H) must touch the line L, otherwise we get $H \succ D$ and $D \in \mathscr{H}$, which is a contradiction.

We estimate the number of walks from $(1, j)$ to $(n-k, k)$ which touch the line L. By Proposition 11 (setting $u=1, v=j, s=a(i)-j$) the number is at most

$$
(1+\varepsilon) \alpha^{a(i)-j}\binom{n-(j+1)}{k-j}
$$

Therefore the number of $H \in \mathscr{H}$ such that $H \cap[t] \neq[t]$ is at most

$$
\begin{equation*}
(1+\varepsilon) \sum_{j=0}^{t-1} \alpha^{a(i)-j}\binom{n-(j+1)}{k-j} . \tag{14}
\end{equation*}
$$

Next suppose that walk (H) passes $(0, t)$, i.e., $H \cap[t]=[t]$. The number of corresponding walks is at most $\binom{n-t}{k-t}$, but we need to refine this estimation. Suppose that walk (H) passes $(i+1, t)$. Then from this point walk (H) must touch the line $L^{\prime}: y=(r-1)(x-(i+1))+$ $t+r-1$, otherwise we get $H \succ A_{i+1}$ and $A_{i+1} \in \mathscr{H}$, which is a contradiction.

The trivial upper bound for the number of walks from $(i+1, t)$ to $(n-k, k)$ is $\binom{n-(t+i+1)}{k-t}$, but those walks in \mathscr{H} touch the line L^{\prime} and so by Proposition 11 we will get an improved upper bound. To apply the proposition, it is convenient to neglect the first $i+t+1$ steps of the walks, in other words, we shift the origin to $(i+1, t)$, and replace n and k by $n^{\prime}=n-(t+i+1)$ and $k^{\prime}=k-t$. Then L^{\prime} becomes $y=(r-1) x+r-1$ in the new coordinates, and by setting $u=v=0$ and $s=r-1$, Proposition 11 gives an improved upper bound $\alpha_{p^{\prime}}^{r-1}\binom{n^{\prime}}{k^{\prime}}$ where $p^{\prime}=\frac{k^{\prime}}{n^{\prime}} \approx \frac{k}{n-i}$ and $\alpha_{p^{\prime}} \in\left(p^{\prime}, 1\right)$ be the root of the equation $\left(1-p^{\prime}\right) x^{r}-x+p^{\prime}=0$. Therefore the number of $H \in \mathscr{H}$ such that $H \cap[t]=[t]$ is at most

$$
\begin{equation*}
\binom{n-t}{k-t}-\left(1-\alpha_{p^{\prime}}^{r-1}\right)\binom{n^{\prime}}{k^{\prime}} \tag{15}
\end{equation*}
$$

We shall show $|\mathscr{H}|<\binom{n-t}{k-t}$. By (14) and (15) it suffices to prove that

$$
(1+\varepsilon) \sum_{j=0}^{t-1} \alpha^{a(i)-j}\binom{n-(j+1)}{k-j}-\left(1-\alpha_{p^{\prime}}^{r-1}\right)\binom{n^{\prime}}{k^{\prime}}<0
$$

or equivalently,

$$
\begin{equation*}
(1+\varepsilon) \sum_{j=0}^{t-1} \alpha^{t-(r-1)(r-3)-j}\binom{n-(j+1)}{k-j}<\frac{1-\alpha_{p^{\prime}}^{r-1}}{\alpha^{(r-1)^{2} i}}\binom{n^{\prime}}{k^{\prime}}=: f(i) \tag{16}
\end{equation*}
$$

Claim 1. $f(i)$ is an increasing function of i.
Proof. To show $f(i-1)<f(i)$, let $p^{\prime \prime}=\frac{k-t}{n-(t+(i-1)+1)}=\frac{k^{\prime}}{n^{\prime}+1}$. Then we need to show

$$
\frac{1-\alpha_{p^{\prime \prime}}^{r-1}}{\alpha^{(r-1)^{2}(i-1)}}\binom{n^{\prime}+1}{k^{\prime}}<\frac{1-\alpha_{p^{\prime}}^{r-1}}{\alpha^{(r-1)^{2} i}}\binom{n^{\prime}}{k^{\prime}},
$$

which is equivalent to

$$
\frac{1-\alpha_{p^{\prime \prime}}^{r-1}}{1-\alpha_{p^{\prime}}^{r-1}}<\frac{1}{\alpha^{(r-1)^{2}}}\binom{n^{\prime}}{k^{\prime}} /\binom{n^{\prime}+1}{k^{\prime}}=\frac{1}{\alpha^{(r-1)^{2}}} \cdot \frac{n^{\prime}+1-k^{\prime}}{n^{\prime}+1}
$$

Using (13) we have $\frac{n^{\prime}+1-k}{n^{\prime}+1}=\frac{n-k-i}{n-t-i} \geq \frac{n-k-i_{0}}{n-t-i_{0}} \approx\left(1-p-\frac{p}{(r-1)^{2}}\right) /\left(1-\frac{p}{(r-1)^{2}}\right)>(p+$ $\left.p^{r}\right)^{(r-1)^{2}}>\alpha^{(r-1)^{2}}$ for $p<0.55$ and $r \geq 3$. Thus we can choose $\delta>0$ so small that

$$
1+\delta<\frac{1}{\alpha^{(r-1)^{2}}} \cdot \frac{n^{\prime}+1-k^{\prime}}{n^{\prime}+1}
$$

holds for $n>n_{0}(\boldsymbol{\delta})$. On the other hand, since $\frac{1}{p^{\prime \prime}}=\frac{1}{p^{\prime}}+\frac{1}{k^{\prime}}$ we have $p^{\prime \prime} \approx p^{\prime}$ and hence

$$
\frac{1-\alpha_{p^{\prime \prime}}^{r-1}}{1-\alpha_{p^{\prime}}^{r-1}}<1+\delta
$$

for $n>n_{1}(\boldsymbol{\delta})$.
Thus it suffices to show the inequality (16) for $i=1$. Noting that $p^{\prime} \approx p,\binom{n-(j+1)}{k-j} \approx$ $p^{j} q\binom{n}{k}$ and $\binom{n-(t+2)}{k-t} \approx p^{t} q^{2}\binom{n}{k}$, we find that the target inequality follows from (C2) by choosing $\varepsilon=\varepsilon(r, t, p)$ sufficiently small.
Case 3. $B_{1} \in \mathscr{H}$.
Let $D^{\prime}=[k+2]-\{t+r-1, t+r\}$. If $D^{\prime} \notin \mathscr{H}$ then the shiftedness of \mathscr{H} implies that $\mathscr{H} \subset \mathscr{F}_{1}(n, k, r, t)$ and we are done. (Recall that we have $\left|\mathscr{F}_{1}(n, k, r, t)\right|<\left|\mathscr{F}_{0}(n, k, r, t)\right|=$ $\binom{n-t}{k-t}$ for $0<p \leq p_{r, t}$.) Thus we may assume that $D^{\prime} \in \mathscr{H}$. Let $i_{0}=\left\lceil\frac{k+r^{2}-5 r+5-t}{(r-1)^{2}}\right\rceil$ and set

$$
\begin{aligned}
\tilde{B} & =([t+r]-\{t\}) \cup\left(\left[t+r+i_{0}+1, b\left(i_{0}\right)\right]-\left\{t+r+i_{0}+j r-1: j \geq 1\right\}\right) \cup\left[b\left(i_{0}\right)+1, \infty\right) \\
& =\left(B_{i_{0}} \cap\left[b\left(i_{0}\right)\right]\right) \cup\left[b\left(i_{0}\right)+1, \infty\right)
\end{aligned}
$$

where $b(i)=t+r+i+(i-1) r(r-2)+(2 r-3)=t-r^{2}+5 r-3+(r-1)^{2} i$. Set $z(u, i)=$ $t+r+i+u(r-2) r$ and for $1 \leq \ell \leq r-1$ define $Z_{\ell}(i)$ by

$$
Z_{1}(i)=\bigcup_{u \geq 0}(\{z(u, i)+1, z(u, i)+r\} \cup\{z(u, i)+(r-1) v: 2 \leq v \leq r-2\})
$$

and $Z_{\ell}(i)=\{t+r+i+\ell\} \cup\left(r+Z_{\ell-1}(i)\right)$ for $2 \leq \ell \leq r-2$. Finally let $B^{\prime}=\operatorname{First}_{k}(\tilde{B})$ and for $1 \leq \ell \leq r-2$ let $C_{\ell}^{\prime}=\operatorname{First}_{k}\left(\tilde{C}_{\ell}\right)$ where

$$
\tilde{C}_{\ell}=\left(\left[b\left(i_{0}\right)\right]-Z_{\ell}\left(i_{0}\right)\right) \cup\left[b\left(i_{0}\right)+1, \infty\right) .
$$

Note that $B^{\prime} \succ C_{1}^{\prime} \succ C_{2}^{\prime} \succ \cdots \succ C_{r-2}^{\prime}$ and $B^{\prime} \cap C_{1}^{\prime} \cap C_{2}^{\prime} \cap \cdots \cap C_{r-2}^{\prime} \cap D^{\prime}=[t-1]$. Thus we have $B^{\prime} \notin \mathscr{H}$, and since $B_{i} \succ B^{\prime}$ for $i \geq i_{0}$ we also have $B_{i} \notin \mathscr{H}$ if $i \geq i_{0}$. The following picture shows an example of the case $r=5, t=3, i_{0}=2$ and $k=23\left(b\left(i_{0}\right)=32\right)$.

Now let $1 \leq i<i_{0}$ be such that $B_{i} \in \mathscr{H}$ but $B_{i+1} \notin \mathscr{H}$. For $1 \leq \ell \leq r-2$ set $R_{\ell}(i)=$ $\left(B_{i}+\ell\right)-[b(\bar{i})]$ and

$$
C_{\ell}^{*}=\left([b(i)]-Z_{\ell}(i)\right) \cup R_{\ell}(i),
$$

and let

$$
D^{*}=([b(i)]-\{t+r-1, t+r\}) \cup R_{r-1}(i) .
$$

Finally set $C_{\ell}=\operatorname{First}_{k}\left(C_{\ell}^{*}\right), D=\operatorname{First}_{k}\left(D^{*}\right)$.
Then we have $C_{\ell} \in \mathscr{H}$ because $B_{i} \in \mathscr{H}$ and $B_{i} \succ C_{1} \succ C_{2} \succ \cdots \succ C_{r-2}$. Since \mathscr{H} is r wise t-intersecting and $B_{i} \cap C_{1} \cap C_{2} \cap \cdots \cap C_{r-2} \cap D=[t-1]$ we can conclude that $D \notin \mathscr{H}$. The following picture shows an example of the case $r=4, t=3, i=1$ and $k=21$.

Let $H \in \mathscr{H}$. First suppose that walk (H) passes at least one of the points in $P=$ $\{(2,0),(2,1), \ldots,(2, t+r-2)\}$, i.e., $|H \cap[t+r]| \leq t+r-2$. Let $(2, j)(0 \leq j \leq t+r-2)$ be the first point in P that walk (H) hits. From this point, walk (H) must touch the line $L: y=(r-1)(x-2)+b(i)-1$, otherwise we get $H \succ D$ and $D \in \mathscr{H}$, a contradiction.

Thus the number of corresponding walks is at most

$$
(j+1)(1+\varepsilon) \alpha^{b(i)-1-j}\binom{n-(j+2)}{k-j}
$$

where $j+1$ is the number of walks from $(0,0)$ to $(2, j)$ which do not touch $\{(2, \ell): 0 \leq$ $\ell<j\}$. Hence the number of $H \in \mathscr{H}$ such that $|H \cap[t+r]| \leq t+r-2$ is at most

$$
\begin{equation*}
(1+\varepsilon) \sum_{j=0}^{t+r-2}(j+1) \alpha^{b(i)-1-j}\binom{n-(j+2)}{k-j} \tag{17}
\end{equation*}
$$

Next suppose that $|H \cap[t+r]| \geq t+r-1$. Then walk (H) passes $(0, t+r)$ or $(1, t+r-1)$. The number of walks which pass $(0, t+r)$ is at most

$$
\begin{equation*}
\binom{n-(t+r)}{k-(t+r)} . \tag{18}
\end{equation*}
$$

The number of walks which pass $(1, t+r-1)$ is clearly at most $(t+r)\binom{n-(t+r)}{k-(t+r-1)}$ and we will improve this estimation. Suppose that walk (H) passes $(1, t-1),(1, t+r-1)$ and $(i+2, t+r-1)$. Then from $(i+2, t+r-1)$, this walk must touch the line $L^{\prime}: y=(r-$ 1) $(x-i)+t=(r-1)(x-(i+2))+t+2 r-2$, otherwise we get $H \succ B_{i+1}$ and $B_{i+1} \in \mathscr{H}$, a contradiction. Thus the number of walks in \mathscr{H} which pass $(1, t+r-1)$ is at most

$$
\begin{equation*}
(t+r)\binom{n-(t+r)}{k-(t+r-1)}-t\left(1-\alpha_{p^{\prime}}^{r-1}\right)\binom{n^{\prime}}{k^{\prime}} \tag{19}
\end{equation*}
$$

where $n^{\prime}=n-(t+r+i+1), k^{\prime}=k-(t+r-1)$ and $p^{\prime}=\frac{k^{\prime}}{n^{\prime}} \approx \frac{k}{n-i}$.

We shall show that the sum of (17), (18) and (19) is less than $\left|\mathscr{F}_{1}(n, k, r, t)\right|=(t+$ $r)\binom{n-(t+r)}{k-(t+r-1)}+\binom{n-(t+r)}{k-(t+r)}$, which means $|\mathscr{H}|<\left|\mathscr{F}_{1}\right|$. Our target inequality is

$$
(1+\varepsilon) \sum_{j=0}^{t+r-2}(j+1) \alpha^{t-(r-1)(r-4)-j}\binom{n-(j+2)}{k-j}<\frac{t\left(1-\alpha_{p^{\prime}}^{r-1}\right)}{\alpha^{(r-1)^{2} i}}\binom{n^{\prime}}{k^{\prime}}
$$

One can show similarly to Claim 1 that the RHS is an increasing function of i. Thus it suffices to show the inequality for $i=1$, which follows from ($C 3$).
3.2. Further improvement. In the previous subsection, we proved Proposition 14. Here we will refine the proof for Case 1 to show that we can replace $(C 1)$ by the following
weaker conditions $(C 1 a) \wedge(C 1 b) \wedge(C 1 c)$:
(C1a)

$$
p+\alpha^{r-1} q+t p^{r-1} q^{2}\left(\frac{p}{q}+\alpha^{r-1}+\frac{\alpha^{r}}{\alpha-p}\left((\alpha / p)^{r-1}-1\right)\right)-1<0,
$$

$$
\begin{equation*}
(\alpha / p)^{t}-t p^{r-1} q^{2}\left(1+p-\alpha^{r-1}\right)+\alpha^{r-1} q+p^{2}-2<0 \tag{C1b}
\end{equation*}
$$

$$
\begin{equation*}
p^{2}+\alpha^{r-1} q+t p^{r} q+t(p \alpha)^{r-1} q^{2}+\sum_{j=1}^{r-1} u_{j} \alpha^{r j-1} p^{r-j} q^{j+1}-1<0 \tag{C1c}
\end{equation*}
$$

where u_{j} will be defined later in Case 1c.
Assume that $A_{1} \notin \mathscr{H}$ and $B_{1} \notin \mathscr{H}$. We continue to use notation defined in Case 1, and let

$$
\begin{aligned}
\tilde{\mathscr{H}}_{0}^{(0, t+1)} & =\left\{H-[t+1]: H \in \mathscr{H}_{0}^{(0, t+1)}\right\} \subset\binom{[t+2, n]}{k-t-1}, \\
\tilde{\mathscr{H}}_{1}^{(1, t+r)} & =\left\{H \cap[t+r+2, n]: H \in \mathscr{H}_{1}^{(1, t+r)}\right\} \subset\binom{[t+r+2, n]}{k-t-r} .
\end{aligned}
$$

Case 1a. $\tilde{\mathscr{H}}_{0}^{(0, t+1)}$ is not $(r-1)$-wise 1 -intersecting.
In this case we have $G_{1}, \ldots, G_{r-1} \in \mathscr{H}$ such that $G_{1} \cap \cdots \cap G_{r-1}=[t+1]$. Let $H \in \mathscr{H}$. Since \mathscr{H} is r-wise t-intersecting we have $|H \cap[t+1]| \geq t$. Thus walk (H) hits $(0, t+1)$ or $(1, t)$, and walk (H) never hits a point in $\{(2,0),(2,1), \ldots,(2, t-1)\}$. In particular, if $H \in \bigcup_{i>2} \mathscr{H}_{i}$ then walk (H) reaches the line $x=2$ for the first time only at one of $(2, t), \ldots,(2, t+r-2)$. In this case walk (H) passes $(1, t)$ and there are t ways of walking from $(0,0)$ to $(1, t)$ which avoid $(0, t)$. Then after passing $(2, j)(t \leq j \leq t+r-2)$ walk (H) must touch the line $L: y=(r-1) x+t$.

Therefore we have

$$
\begin{align*}
\left|\bigcup_{i \geq 2} \mathscr{H}_{i}\right| & \leq(1+\varepsilon) \sum_{j=t}^{t+r-2} t \alpha^{t+2 r-2-j}\binom{n-(j+2)}{k-j} \\
& \approx t \alpha^{r} p^{t+r-2} q^{2}\binom{n}{k} \sum_{i=0}^{r-2}(\alpha / p)^{i}=t \alpha^{r} p^{t+r-2} q^{2} \frac{1-(\alpha / p)^{r-1}}{1-(\alpha / p)}\binom{n}{k} . \tag{20}
\end{align*}
$$

By (1), (2), (3), (4) and (20) it suffices to show that

$$
p^{t+1}+\alpha^{r-1} p^{t} q+t p^{t+r} q+t \alpha^{r-1} p^{t+r-1} q^{2}+t \alpha^{r} p^{t+r-2} q^{2} \frac{1-(\alpha / p)^{r-1}}{1-(\alpha / p)}<p^{t}
$$

which is equivalent to $(C 1 a)$.
Case 1b. Both $\tilde{\mathscr{H}}_{0}^{(0, t+1)}$ and $\tilde{\mathscr{H}}_{1}^{(1, t+r)}$ are $(r-1)$-wise 1-intersecting.
In this case we use Theorem 1 to bound the sizes of $\mathscr{H}_{0}^{(0, t+1)}$ and $\mathscr{H}_{1}^{(1, t+r)}$. Then we have

$$
\begin{align*}
& \left|\mathscr{H}_{0}^{(0, t+1)}\right|=\left|\tilde{\mathscr{H}}_{0}^{(0, t+1)}\right| \leq\binom{ n-(t+1)-1}{k-(t+1)-1} \approx p^{t+2}\binom{n}{k}, \tag{21}\\
& \left|\mathscr{H}_{1}^{(1, t+r)}\right|=t\left|\tilde{\mathscr{H}}_{1}^{(1, t+r)}\right| \leq t\binom{n-(t+r+1)-1}{k-(t+r)-1} \approx t p^{t+r+1} q\binom{n}{k} . \tag{22}
\end{align*}
$$

Therefore by (21), (2), (22), (4) and (5) it suffices to show that

$$
p^{t+2}+\alpha^{r-1} p^{t} q+t p^{t+r+1} q+t \alpha^{r-1} p^{t+r-1} q^{2}+\alpha^{t}-p^{t}-t p^{t+r-1} q<p^{t}
$$

which is equivalent to $(C 1 b)$.
Case 1c. $\tilde{\mathscr{H}}_{0}^{(0, t+1)}$ is $(r-1)$-wise 1 -intersecting and $\tilde{\mathscr{H}}_{1}^{(1, t+r)}$ is not $(r-1)$-wise 1 intersecting.
We use (21) to bound $\mathscr{H}_{0}^{(0, t+1)}$ again. Now we will bound the size of $\bigcup_{i \geq 2} \mathscr{H}_{i}$. Since $\tilde{\mathscr{H}}_{1}^{(1, t+r)}$ is not $(r-1)$-wise 1-intersecting and \mathscr{H} is shifted, we have $G_{1}, \ldots, G_{r-1} \in \mathscr{H}$ such that $G_{1} \cap \cdots \cap G_{r-1}=[t+r+1]-\{t\}$. If $F=([k+r+1]-[t, t+r+1]) \cup\{t+1\} \in \mathscr{H}$ then we also have $F^{\prime}=[k+r+1]-[t+1, t+r+1] \in \mathscr{H}$ by shifting. But this is impossible because $G_{1} \cap \cdots \cap G_{r-1} \cap F^{\prime}=[t-1]$. Thus we must have $F \notin \mathscr{H}$. Let $H \in \bigcup_{i \geq 2} \mathscr{H}_{i}$. Then walk (H) never hits any point in $\{(r+1,0),(r+1,1), \ldots,(r+1, t)\}$, otherwise we get $H \succ F \in \mathscr{H}$, a contradiction. In other words, $\operatorname{walk}(H)$ passes one of the points in $J=\{(j+1, t+r-j): 1 \leq j \leq r-1\}$.

$$
\begin{array}{r}
(1, t+r-1) \\
\ddots \\
(0, t)
\end{array}
$$

For $1 \leq j \leq r-1$ let u_{j} be the number of walks from $(0,0)$ to $(j+1, t+r-j)$ which do not touch the line $L: y=(r-1) x+t$. We have $u_{j}=\binom{t+r+1}{j+1}-\binom{r+1}{j+1}-\delta_{j}$ where $\delta_{1}=t$
and $\delta_{j}=0$ for $j \geq 2$. Then after passing $(j+1, t+r-j)$, walk (H) must touch the line L. Therefore we have

$$
\begin{align*}
\left|\bigcup_{i \geq 2} \mathscr{H} \mathcal{C}_{i}\right| & \leq(1+\varepsilon) \sum_{j=1}^{r-1} u_{j} \alpha^{r j-1}\binom{n-(t+r+1)}{k-(t+r-j)} \\
& \approx \sum_{j=1}^{r-1} u_{j} \alpha^{r j-1} p^{t+r-j} q^{j+1}\binom{n}{k} \tag{23}
\end{align*}
$$

Consequently by (21), (2), (3), (4) and (23) it suffices to show that

$$
p^{t+2}+\alpha^{r-1} p^{t} q+t p^{t+r} q+t \alpha^{r-1} p^{t+r-1} q^{2}+\sum_{j=1}^{r-1} u_{j} \alpha^{r j-1} p^{t+r-j} q^{j+1}<p^{t}
$$

which is equivalent to $(C 1 c)$.
Noting that the LHSs of $(C 1 a),(C 1 b),(C 1 c),(C 2)$ and $(C 3)$ are continuous functions of p, we have proved the following.
Proposition 15. Let $r, t \in \mathbb{N}$ and $p \in \mathbb{Q}$ be given. Suppose that $r \geq 3$ and $p \in(0,0.55)$. Let $\alpha \in(0,1)$ be the root of the equation $(1-p) x^{r}-x+p=0$. Suppose that r, t, p satisfy $(C 1 a),(C 1 b),(C 1 c),(C 2)$ and (C3). Then there exists $\varepsilon=\varepsilon(r, t, p)>0$ such that $m(n, k, r, t)=\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-p\right|<\varepsilon$ and $n>n_{0}(r, t, p, \varepsilon)$. Moreover $\mathscr{F}_{0}(n, k, r, t)$ is the only optimal configuration (up to isomorphism).

Proof of Theorem 5. Setting $r=4, p=1 / 2$ and $t=1, \ldots, 7$, we can verify $(C 1 a),(C 1 b)$, $(C 1 c),(C 2)$ and $(C 3)$. Then the result follows from the above proposition.

Remark 1. In the proof of Proposition 15 and Theorem 5, we used $p \leq 0.55$ only to show

$$
\left(1-p-\frac{p}{(r-1)^{2}}\right) /\left(1-\frac{p}{(r-1)^{2}}\right)>\alpha^{(r-1)^{2}}
$$

for $r=3$ (see Claim 1). If $r \geq 4$ then we can replace the condition $p \leq 0.55$ by the above inequality.

Let $\operatorname{EKR}(r)$ be the maximal t such that $m(n, k, r, t)=\binom{n-t}{k-t}$ holds for $n=2 k$ and $n>n_{0}$. Then $\operatorname{EKR}(4) \geq 7$ follows from Theorem 5. Let t_{r} be the maximal t such that all $(C i)$'s hold for $p=1 / 2$ in the sense of Proposition 15, e.g., $t_{4}=7$. Clearly we have $\operatorname{EKR}(r) \geq t_{r}$. On the other hand, comparing the size of $\mathscr{F}_{0}(n, k, r, t)$ and $\mathscr{F}_{1}(n, k, r, t)$, we have $\operatorname{EKR}(r) \leq$ $T_{r}=2^{r}-r-1$. If Conjecture 1 is true then it follows that $\operatorname{EKR}(r)=T_{r}$. We can compute t_{r} and T_{r} for $4 \leq r \leq 10$ as follows.

r	4	5	6	7	8	9	10
t_{r}	7	18	41	89	184	377	762
T_{r}	11	26	57	120	247	502	1013

For example, $t_{10}=762$ implies that there exists $\varepsilon>0$ such that $m(n, k, 10, t) \leq\binom{ n-t}{k-t}$ holds for $t \leq 762,\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ and $n>n_{0}(\varepsilon)$.

Let us note that our proof of Proposition 15 also includes the proof of the following slightly stronger result.

Proposition 16. Let $\mathscr{F} \subset\binom{[n]}{k}$ be an r-wise t-intersecting family. Suppose that \mathscr{F} is nontrivial, that is, $\left|\bigcap_{F \in \mathscr{F}} F\right|<t$. Then under the same assumptions as in Proposition 15, there exist $\gamma=\gamma(r, t, p)>0$ and $\varepsilon=\varepsilon(\gamma)>0$ such that $|\mathscr{F}|<(1-\gamma)\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-p\right|<\varepsilon$ and $n>n_{0}(\varepsilon)$.

Let us summarize our result for the case $p=1 / 2$ and $4 \leq r \leq 10$ as follows.
Theorem 17. Let $4 \leq r \leq 10$ and let $1 \leq t \leq t_{r}$. Then there exists $\varepsilon>0$ and $n_{0}=n_{0}(\varepsilon)$ such that $m(n, k, r, t)=\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ and $n>n_{0}$. Moreover if \mathscr{F} is non-trivial then there exist $\gamma>0$ and $\varepsilon=\varepsilon(\gamma)>0$ such that $|\mathscr{F}|<(1-\gamma)\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ and $n>n_{1}(\varepsilon)$.

4. Intersecting and union families

Proof of Theorem 8. Let $\mathscr{F} \subset\binom{[2 n]}{n}$ be a 4-wise t-intersecting and 4 -wise t-union family. Suppose that \mathscr{F} is not 3 -wise $(t+1)$-union. Then there exist $A, B, C \in \mathscr{F}$ such that $\mid A \cup$ $B \cup C \mid=2 n-t$, say, $A \cup B \cup C=[2 n-t]$. Since \mathscr{F} is 4 -wise t-union, we have $\mathscr{F} \subset\binom{[2 n-t]}{n}$. On the other hand, \mathscr{F} is 4 -wise t-intersecting. Then by Theorem 5 we have $|\mathscr{F}| \leq\binom{ 2 n-2 t}{n-t}$ and equality holds iff $\mathscr{F} \cong\left\{F \in\binom{[2 n-t]}{n}:[t] \subset F\right\}$. This means that the theorem is true if \mathscr{F} is not 3 -wise $(t+1)$-union. Considering the complement, the theorem is also true if \mathscr{F} is not 3 -wise $(t+1)$-intersecting. Therefore from now on we assume that

$$
\begin{equation*}
\mathscr{F} \text { is 3-wise }(t+1) \text {-intersecting and 3-wise }(t+1) \text {-union. } \tag{24}
\end{equation*}
$$

We also assume that \mathscr{F} is shifted. Now suppose that

$$
\begin{equation*}
|\mathscr{F}| \geq\binom{ 2 n-2 t}{n-t} \tag{25}
\end{equation*}
$$

and we shall prove that there is no such \mathscr{F}.
Recall that for $A \in\binom{[2 n]}{n}$ we define $\operatorname{walk}(A)$ on \mathbb{Z}^{2} in the following way. The walk is from $(0,0)$ to (n, n) with $2 n$ steps, and if $i \in A$ (resp. $i \notin A$) then the i-th step is one unit up (resp. one unit to the right). Let us define

$$
\begin{gathered}
\mathscr{A}_{i}=\left\{A \in\binom{[2 n]}{n}:|A \cap[t+4 \ell]| \geq t+3 \ell \text { first holds at } \ell=i\right\}, \\
\mathscr{A}_{\bar{j}}=\left\{A \in\binom{2 n]}{n}:|A \cap[2 n-4 \ell-t+1,2 n]| \leq \ell \text { first holds at } \ell=j\right\} .
\end{gathered}
$$

(Here we say that a property $P(\ell)$ first holds at $\ell=i$ iff $P(\ell)$ does not hold for $0 \leq \ell<i$ and $P(i)$ holds.) If $A \in \mathscr{A}_{i}$ then, starting from the origin, walk (A) touches the line $L_{1}: y=3 x+t$ at $(i, 3 i+t)$ for the first time. If $A \in \mathscr{A}_{\bar{j}}$ then walk (A) touches the line $L_{2}: y=\frac{1}{3}(x-(n-$
$t))+n$ at $(n-3 j-t, n-j)$ and after passing this point this walk never touches the line again.

Let c_{i} be the number of walks from $(0,0)$ to $(i, 3 i+t)$ which touch the line L_{1} only at $(i, 3 i+t)$. Then it follows that $c_{i}=\frac{t}{4 i+t}\binom{4 i+t}{i}$ (see e.g. Fact 3 in [24]). Set $\mathscr{A}_{i \bar{j}}=\mathscr{A}_{i} \cap \mathscr{A}_{\bar{j}}$. From now on, i and j denote some fixed constants, and we consider the situation $n \rightarrow \infty$. Then we have

$$
\begin{equation*}
\left|\mathscr{A}_{i \bar{j}}\right|=c_{i} c_{j}\binom{2 n-2 t-4(i+j)}{n-t-3 i-j} \approx \frac{c_{i} c_{j}}{2^{4(i+j)}}\binom{2 n-2 t}{n-t} . \tag{26}
\end{equation*}
$$

By Fact 2 and Fact 3 every walk corresponding to a member of \mathscr{F} touches both L_{1} and L_{2}. Thus we have $\mathscr{F} \subset \bigcup_{i, j} \mathscr{A}_{i \bar{j}}$. Set $\mathscr{F}_{i \bar{j}}=\mathscr{A}_{i \bar{j}} \cap \mathscr{F}$ and

$$
\mathscr{G}_{i \bar{j}}=\left\{F \cap[4 i+t+1,2 n-4 j-t]: F \in \mathscr{F}_{i j}\right\} .
$$

Clearly we have $\left|\mathscr{F}_{i j}\right| \leq c_{i} c_{j}\left|\mathscr{G}_{i \bar{j}}\right|$. So we can bound $\left|\mathscr{F}_{i j}\right|$ by bounding $\left|\mathscr{G}_{i j}\right|$.
Claim 2. $\mathscr{G}_{0 \bar{j}} \subset\left(\begin{array}{c}{\left[\begin{array}{c}t+1,2 n-t-4 j] \\ n-t-j\end{array}\right.}\end{array}\right)$ is 3-wise 1-intersecting.
Proof. Suppose on the contrary that there exist $A, B, C \in \mathscr{G}_{0 \bar{j}}$ such that $A \cap B \cap C=\emptyset$. By the shiftedness we may assume that $A \cup T, B \cup T, C \cup T \in \mathscr{F}$ where $T=[t] \cup\{2 n-t-4 i+1$: $0 \leq i<j\}$. Then using shiftedness again we may also assume that the following three subsets $A^{\prime}, B^{\prime}, C^{\prime}$ belong to \mathscr{F} :

$$
\begin{aligned}
A^{\prime} & =[t] \cup A \cup\{2 n-t-4 i+1: 0 \leq i<j\}, \\
B^{\prime} & =[t] \cup B \cup\{2 n-t-4 i: 0 \leq i<j\}, \\
C^{\prime} & =[t] \cup C \cup\{2 n-t-4 i-1: 0 \leq i<j\} .
\end{aligned}
$$

Then we have $A^{\prime} \cap B^{\prime} \cap C^{\prime}=[t]$, which contradicts (24).
By Claim 2 and Theorem 1 we can bound $\left|\mathscr{G}_{0 \bar{j}}\right|$, and we have

$$
\begin{equation*}
\left|\mathscr{F}_{0 \bar{j}}\right| \leq c_{0} c_{j}\left|\mathscr{G}_{0 \bar{j}}\right| \leq c_{0} c_{j}\binom{2 n-2 t-4 j-1}{n-t-j-1} \approx \frac{1}{2}\left|\mathscr{A}_{0 \bar{j}}\right| . \tag{27}
\end{equation*}
$$

By considering the complement we also have

$$
\begin{equation*}
\left|\mathscr{F}_{i \overline{0}}\right| \leq \frac{1+o(1)}{2}\left|\mathscr{A}_{i \overline{0}}\right| \tag{28}
\end{equation*}
$$

Claim 3. $\mathscr{G}_{1 \bar{j}} \subset\left(\begin{array}{c}{\left[\begin{array}{c}t+5,2 n-t-4 j] \\ n-t-j-3\end{array}\right)}\end{array}\right)$ is 3-wise 1-intersecting.
Proof. Suppose on the contrary that there exist $A, B, C \in \mathscr{G}_{1 \bar{j}}$ such that $A \cap B \cap C=\emptyset$. By the shiftedness we may assume that the following three subsets $A^{\prime}, B^{\prime}, C^{\prime}$ belong to \mathscr{F} :

$$
\begin{aligned}
A^{\prime} & =([t+4]-\{t\}) \cup A \cup\{2 n-t-4 i+1: 0 \leq i<j\}, \\
B^{\prime} & =([t+4]-\{t+1\}) \cup B \cup\{2 n-t-4 i: 0 \leq i<j\}, \\
C^{\prime} & =([t+4]-\{t+2\}) \cup C \cup\{2 n-t-4 i-1: 0 \leq i<j\} .
\end{aligned}
$$

If there exists $F \in \mathscr{F}$ such that $|F \cap[t+4]| \leq t+2$ then using the shiftedness we may assume that $F \cap[t+4]=[t+2]$. But this is impossible because $A^{\prime} \cap B^{\prime} \cap C^{\prime} \cap F=[t-1]$, contradicting the 4 -wise t-intersecting property. So we may assume that $|F \cap[t+4]| \geq t+3$ holds for all $F \in \mathscr{F}$. In other words, walk (F) passes $(0, t+4)$ or $(1, t+3)$. Since walk (F) touches the line L_{2}, Proposition 11 implies

$$
|\mathscr{F}| \leq \alpha^{t}\binom{2 n-t-4}{n}+(1+\varepsilon)(t+4) \alpha^{t}\binom{2 n-t-4}{n-1} \approx(t+5) \alpha^{t} 2^{t-4}\binom{2 n-2 t}{n-t}
$$

where $\alpha \approx 0.54$ is the root of the equation $X^{4}-2 X+1=0$. The RHS is less than $\binom{2 n-2 t}{n-t}$ for $t \leq 5$ and this contradicts (25).

By Claim 3 and Theorem 1 we have

$$
\begin{equation*}
\left|\mathscr{F}_{1 \bar{j}}\right| \leq \frac{1+o(1)}{2}\left|\mathscr{A}_{1 \bar{j}}\right| \quad \text { and } \quad\left|\mathscr{F}_{i \overline{1}}\right| \leq \frac{1+o(1)}{2}\left|\mathscr{A}_{i \overline{1}}\right| . \tag{29}
\end{equation*}
$$

Let I be the set of 18 pairs of indices:

$$
I=\left\{(i, j) \in \mathbb{N}^{2}: i \geq 0, j \geq 0, i+j \leq 5, \min \{i, j\} \leq 1\right\}
$$

By (27), (28) and (29) we have

$$
\begin{equation*}
\sum_{(i, j) \in I}\left|\mathscr{F}_{i \bar{j}}\right| \leq \frac{1+o(1)}{2} \sum_{(i, j) \in I}\left|\mathscr{A}_{i \bar{j}}\right| . \tag{30}
\end{equation*}
$$

By Proposition 12 (setting $q=r=4, s=t$ and $u=v=0$) we have

$$
\begin{equation*}
\sum_{x, y}\left|\mathscr{A}_{x, \bar{y}}\right| \leq(1+o(1)) \alpha^{2 t}\binom{2 n}{n} \tag{31}
\end{equation*}
$$

Finally, by (30), (31) and (26), we have

$$
\begin{aligned}
|\mathscr{F}| & =\sum_{(i, j) \in I}\left|\mathscr{F}_{i \bar{j}}\right|+\sum_{(x, y) \notin I}\left|\mathscr{F}_{x, \bar{y}}\right| \leq \sum_{(i, j) \in I}\left|\mathscr{F}_{i \bar{j}}\right|+\sum_{(x, y) \notin I}\left|\mathscr{A}_{x, \bar{y}}\right| \\
& \leq \frac{1+o(1)}{2} \sum_{(i, j) \in I}\left|\mathscr{A}_{i \bar{j}}\right|+\left(\sum_{x, y}\left|\mathscr{A}_{x, \bar{y}}\right|-\sum_{(i, j) \in I}\left|\mathscr{A}_{i \bar{j}}\right|\right) \\
& \leq(1+o(1))\left(\alpha^{2 t}\binom{2 n}{n}-\frac{1}{2} \sum_{(i, j) \in I}\left|\mathscr{A}_{i \bar{j}}\right|\right) \\
& \approx\left((2 \alpha)^{2 t}-\frac{1}{2} \sum_{(i, j) \in I} \frac{c_{i} c_{j}}{2^{4(i+j)}}\right)\binom{2 n-2 t}{n-t} .
\end{aligned}
$$

Noting that $c_{i}=\frac{t}{4 i+t}\binom{4 i+t}{i}$ one can verify that the RHS is less than $0.998\binom{2 n-2 t}{n-t}$ for $1 \leq$ $t \leq 4$, which contradicts (25). This completes the proof of Theorem 8.

5. Intersecting Sperner families

Recall that an r-wise t-intersecting family $\mathscr{F} \subset 2^{[n]}$ is called non-trivial if $\left|\bigcap_{F \in \mathscr{F}}\right|<t$. Let $m^{*}(n, k, r, t)$ be the maximal size of k-uniform non-trivial t-intersecting families on n vertices.

Theorem 18. Let $r \geq 4$ and t be fixed positive integers. Suppose that there exists $\gamma=$ $\gamma(r, t)>0$ and $\varepsilon=\varepsilon(\gamma)>0$ such that $m^{*}(n, k, r, t) \leq(1-\gamma)\binom{n-t}{k-t}$ holds for $\left|\frac{k}{n}-\frac{1}{2}\right|<\varepsilon$ and $n>n_{0}(\varepsilon)$. Let $\mathscr{F} \subset 2^{[n]}$ be an r-wise t-intersecting Sperner family. Then we have $|\mathscr{F}| \leq$ $\binom{n-t}{\left[\frac{n-t}{2}\right\rceil}$ for $n>n_{0}(\varepsilon)$. Equality holds iff $\mathscr{F} \cong\left\{F \in\binom{[n]}{k}:[t] \subset F\right\}$ where $k=t+\left\lceil\frac{n-t}{2}\right\rceil$ or $k=t+\left\lfloor\frac{n-t}{2}\right\rfloor$.
Proof of Theorem 18. Our proof is based on the idea from [4]. For a family $\mathscr{F} \subset 2^{[n]}$, set $\mathscr{F}_{k}=\mathscr{F} \cap\binom{[n]}{k}$. Let $\gamma>0$ and $\varepsilon>0$ be as in the theorem and set $K=\left\{k \in \mathbb{N}:\left(\frac{1}{2}-\boldsymbol{\varepsilon}\right) n<\right.$ $\left.k<\left(\frac{1}{2}+\varepsilon\right) n\right\}$. First we prove the following inequality.
Claim 4. Let $\mathscr{F} \subset 2^{[n]}$ be a non-trivial r-wise t-intersecting Sperner family with $n>$ $n_{1}(\varepsilon, \gamma)$. Then we have $\sum_{k \in K}\left|\mathscr{F}_{k}\right| /\binom{n-t}{k-t}<1-\gamma$.
Proof. First suppose that $\bigcup_{k \in K} \mathscr{F}_{k}$ is trivial and $[t] \subset F$ holds for all $F \in \bigcup_{k \in K} \mathscr{F}_{k}$. Since \mathscr{F} is non-trivial, we can find $F^{\prime} \in \mathscr{F}$ such that $\left|[t] \cap F^{\prime}\right|<t$. Thus, for each $k \in K$, $\mathscr{F}_{k}^{\prime}:=\left\{F-[t]: F \in \mathscr{F}_{k}\right\}$ is $(r-1)$-wise 1-intersecting, and we have

$$
\left|\mathscr{F}_{k}\right|=\left|\mathscr{F}_{k}^{\prime}\right| \leq\binom{ n-t-1}{k-t-1}<\frac{k}{n}\binom{n-t}{k-t}<\left(\frac{1}{2}+\varepsilon\right)\binom{n-t}{k-t},
$$

which gives the desired inequality. Thus we may suppose that $\bigcup_{k \in K} \mathscr{F}_{k}$ is non-trivial. We prove $\sum_{k \in K}\left|\mathscr{F}_{k}\right| /\binom{n-t}{k-t}<1-\gamma$ for $n>n_{1}$ by induction on the number of nonzero $\left|\mathscr{F}_{k}\right|$'s.

If this number is one then the inequality follows from the assumption of Theorem 18. If it is not the case then let i be the smallest and j the second-smallest index in K for which $\left|\mathscr{F}_{k}\right| \neq 0$. Set $\mathscr{F}_{i}^{c}=\left\{[n]-F: F \in \mathscr{F}_{i}\right\} \subset\binom{[n]}{n-i}$. Since \mathscr{F}_{i} is r-wise t-intersecting, it follows from our assumption on $m^{*}(n, k, r, t)$ that $\left|\mathscr{F}_{i}\right|=\left|\mathscr{F}_{i}^{c}\right| \leq\binom{ n-t}{i-t}=\binom{n-t}{n-i}$. Then by Proposition 13, we have

$$
\begin{equation*}
\frac{\left|\Delta_{n-j}\left(\mathscr{F}_{i}^{c}\right)\right|}{\left|\mathscr{F}_{i}^{c}\right|} \geq \frac{\binom{n-t}{n-j}}{\binom{n-t}{n-i}}=\frac{\binom{n-t}{j-t}}{\binom{n-t}{i-t}} . \tag{32}
\end{equation*}
$$

Set $\mathscr{G}_{j}=\left\{G \in\binom{[n]}{j}: G \supset \exists F \in \mathscr{F}_{i}\right\}$. Due to (32) and the fact $\mathscr{G}_{j}=\left(\Delta_{n-j}\left(\mathscr{F}_{i}^{c}\right)\right)^{c}$, we have $\left|\mathscr{G}_{j}\right| /\binom{n-t}{j-t} \geq\left|\mathscr{F}_{i}\right| /\binom{n-t}{i-t}$. Since \mathscr{F} is Sperner, $\mathscr{F}_{j} \cap \mathscr{G}_{j}=\emptyset$ and $\mathscr{H}=\left(\mathscr{F}-\mathscr{F}_{i}\right) \cup \mathscr{G}_{j}$ is an r-wise t-intersecting Sperner family. Moreover, the number of nonzero $\left|\mathscr{H}_{k}\right|$'s is one less than that of $\left|\mathscr{F}_{k}\right|$'s. Therefore, by the induction hypothesis and the fact that $\mathscr{F} \triangle \mathscr{H}=\mathscr{F}_{i} \cup \mathscr{G}_{j}$, we have

$$
\sum_{k \in K} \frac{\left|\mathscr{F}_{k}\right|}{\binom{(n-t}{k-t}} \leq \sum_{k \in K} \frac{\left|\mathscr{H}_{k}\right|}{\binom{n-t}{k-t}} \leq 1-\gamma
$$

which completes the proof of the claim.
We continue to prove Theorem 18. Let $\mathscr{F} \subset 2^{[n]}$ be an r-wise t-intersecting Sperner family. First suppose that \mathscr{F} fixes t-element set, say $[t]$. Then $\mathscr{G}=\{F \backslash[t]: F \in \mathscr{F}\} \subset$ $2^{[t+1, n]}$ is a Sperner family. Thus by the Sperner Theorem [20] we have

$$
|\mathscr{F}|=|\mathscr{G}| \leq\binom{ n-t}{\lceil(n-t) / 2\rceil} .
$$

Equality holds iff $\mathscr{G} \cong\binom{[n-t]}{[(n-t) / 2\rceil}$ or $\binom{[n-t]}{\lfloor(n-t) / 2\rfloor}$.
Next suppose that \mathscr{F} is non-trivial. By Claim 4, we have

$$
1-\gamma>\sum_{k \in K} \frac{\left|\mathscr{F}_{k}\right|}{\binom{n-t}{k-t}} \geq \sum_{k \in K} \frac{\left|\mathscr{F}_{k}\right|}{\binom{n-t}{\lceil(n-t) / 2\rceil}} .
$$

On the other hand, by the Yamamoto (or LYM) inequality [26], we have

$$
1 \geq \sum_{\ell \notin K} \frac{\left|\mathscr{F}_{\ell}\right|}{\binom{n}{\ell}} \geq \sum_{\ell \notin K} \frac{\left|\mathscr{F}_{\ell}\right|}{\left(\begin{array}{c}
\left.\frac{1}{2}+\varepsilon\right) n
\end{array}\right)} .
$$

Therefore, we have

$$
|\mathscr{F}| \leq(1-\gamma)\binom{n-t}{\lceil(n-t) / 2\rceil}+\binom{n}{\left(\frac{1}{2}+\varepsilon\right) n}<\binom{n-t}{\lceil(n-t) / 2\rceil}
$$

for sufficiently large n.
Now set t_{r} for $4 \leq r \leq 10$ as follows.

$$
\begin{array}{c|ccccccc}
r & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline t_{r} & 7 & 18 & 41 & 89 & 184 & 377 & 762
\end{array}
$$

By Theorem 18 and Theorem 17 we have the following result, which includes Theorem 10.
Theorem 19. Let $4 \leq r \leq 10,1 \leq t \leq t_{r}$ and let $\mathscr{F} \subset 2^{[n]}$ be an r-wise t-intersecting Sperner family with $n>n_{0}$. Then we have $|\mathscr{F}| \leq\binom{ n-t}{\left[\frac{n-t}{2}\right\rceil}$. Equality holds iff $\mathscr{F} \cong\{F \in$ $\left.\binom{[n]}{k}:[t] \subset F\right\}$ where $k=t+\left\lceil\frac{n-t}{2}\right\rceil$ or $k=t+\left\lfloor\frac{n-t}{2}\right\rfloor$.

References

[1] R. Ahlswede, L.H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18:125-136, 1997.
[2] K. Engel, H.-D.O.F. Gronau. An Erdős-Ko-Rado type theorem II. Acta Cybernet., 4:405-411, 1986.
[3] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2), 12:313-320, 1961.
[4] P. Frankl. On Sperner families satisfying an additional condition. J. Combin. Theory (A), 20:1-11, 1976.
[5] P. Frankl. Families of finite sets satisfying an intersection condition. Bull. Austral. Math. Soc., 15:73791976.
[6] P. Frankl. The Erdős-Ko-Rado theorem is true for $n=c k t$. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthey, 1976), Vol. I, 365-375, Colloq. math. Soc. János Bolyai, 18, North-Holland, 1978.
[7] P. Frankl. The shifting technique in extremal set theory. "Surveys in Combinatorics 1987" (C. Whitehead, Ed. LMS Lecture Note Series 123), 81-110, Cambridge Univ. Press, 1987.
[8] P. Frankl, N. Tokushige. The Kruskal-Katona Theorem, some of its analogues and applications. Conference on extremal problems for finite sets, 1991, Visegrád, Hungary, 92-108.
[9] P. Frankl, N. Tokushige. Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100:94-115, 2002.
[10] P. Frankl, N. Tokushige. Random walks and multiply intersecting families. J. Combin. Theory (A), 109:121-134, 2005.
[11] P. Frankl, N. Tokushige. The maximum size of 3-wise intersecting and 3-wise union families. Graphs and Combinatorics, 22:225-231, 2006.
[12] H.-D.O.F. Gronau. On Sperner families in which no 3-sets have an empty intersection. Acta Cybernet., 4:213-220, 1978.
[13] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection. J. Combin. Theory (A), 28:54-63, 1980.
[14] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection II. J. Combin. Theory (A), 30:298-316, 1981.
[15] H.-D.O.F. Gronau. On Sperner families in which no k-sets have an empty intersection III. Combinatorica, 2:25-36, 1982.
[16] H.-D.O.F. Gronau. An Erdős-Ko-Rado type theorem. Finite and infinite sets, Vol. I,II (Eger, 1981) Colloq. Math. Soc. J. Bolyai, 37:333-342, 1984.
[17] G.O.H. Katona. A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187-207, MR 45 \#76.
[18] J.B. Kruskal. The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251-278, MR 27 \#4771.
[19] E.C. Milner. A combinatorial theorem on systems of sets. J. London Math. Soc., 43:204-206, 1968.
[20] E. Sperner. Ein Satz über Untermengen einer endlichen Mente. Math. Zeitschrift, 27:544-548, 1928.
[21] N. Tokushige. The maximum size of 4-wise 2-intersecting and 4-wise 2-union families. European J. of Comb. 27:814-825, 2006.
[22] N. Tokushige. Extending the Erdős-Ko-Rado theorem. J. Combin. Designs, 14:52-55, 2006.
[23] N. Tokushige. The maximum size of 3-wise t-intersecting families. European J. Combin, in press.
[24] N. Tokushige. A frog's random jump and the Pólya identity. Ryukyu Math. Journal, 17:89-103, 2004.
[25] R.M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica, 4:247-257, 1984.
[26] K. Yamamoto. Logarithmic order of free distributive lattices. J. Math. Soc. Japan, 6:343-353, 1954.
College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan
E-mail address: hide@edu.u-ryukyu.ac.jp

