A NEW PROOF OF VÁZSONYI'S CONJECTURE

KONRAD J. SWANEPOEL

Abstract

We present a self-contained proof that the number of diameter pairs among n points in Euclidean 3-space is at most $2 n-2$. The proof avoids the ball polytopes used in the original proofs by Grünbaum, Heppes and Straszewicz. As a corollary we obtain that any three-dimensional diameter graph can be embedded in the projective plane.

Let S be a set of n points of diameter D in \mathbb{R}^{d}. Define the diameter graph on S by joining all diameters, i.e., point pairs at distance D. The following theorem was conjectured by Vázsonyi, as reported in [2]. It was subsequently independently proved by Grünbaum [3], Heppes [4] and Straszewicz [7].
Theorem 1. The number of edges in a diameter graph on $n \geq 4$ points in \mathbb{R}^{3} is at most $2 n-2$.

All three proofs (see [6, Theorem 13.14]) use the ball polytope obtained by taking the intersection of the balls of radius D centred at the points. However, these ball polytopes do not behave the same as ordinary polytopes. In particular, their graphs need not be 3connected, as shown by Kupitz, Martini and Perles in [5], where a detailed study of the ball polytopes associated to the above theorem is made. The proof presented here avoids the use of ball polytopes.
Theorem 2. Any diameter graph in \mathbb{R}^{3} has a bipartite double covering that has a centrally symmetric drawing on the 2 -sphere.

In fact, each point $x \in S$ will correspond to an antipodal pair of points x_{r} and x_{b} on the sphere, with x_{r} coloured red and x_{b} blue. Each edge $x y$ of the diameter graph will correspond to two antipodal edges $x_{r} y_{b}$ and $x_{b} y_{r}$ on the sphere, giving a properly 2 -coloured graph on $2 n$ vertices. The drawing will be made such that no edges cross. By Euler's formula there will be at most $4 n-4$ edges, hence at most $2 n-2$ edges in the diameter graph. By identifying opposite points of the sphere we further obtain:

[^0]Corollary 3. Any diameter graph in \mathbb{R}^{3} can be embedded in the projective plane such that all odd cycles are noncontractible.

Therefore, any two odd cycles intersect, and we regain the following theorem of Dol'nikov [1]:
Corollary 4. Any two odd cycles in a diameter graph on a finite set in \mathbb{R}^{3} intersect.

Proof of Theorem 2. Without loss we assume from now on that $D=1$. Let S^{2} denote the sphere in \mathbb{R}^{3} with centre the origin and radius 1. We may repeatedly remove all vertices of degree at most 1 in the diameter graph. Since such vertices can easily be added later, this is no loss of generality. For each $x \in S$, let $R(x)$ be the intersection of S^{2} with the cone generated by $\{y-x: x y$ is a diameter $\}$. Each $R(x)$ is a convex spherical polygon with great circular arcs as edges. (If x has degree 2 then $R(x)$ is an arc). Colour $R(x)$ red and $B(x):=-R(x)$ blue. Assume for the moment the following two properties of these polygons:
Lemma 1. If $x \neq y$, then $R(x)$ and $R(y)$ are disjoint.
Lemma 2. If $R(x)$ and $B(y)$ intersect, then $x y$ is a diameter and $R(x) \cap$ $B(y)=\{y-x\}$.

For each $x \in S$ we choose any x_{r} in the interior of $R(x)$ and let $x_{b}=$ $-x_{r}$. (If $R(x)$ is an arc we let x_{r} be in its relative interior.) Draw arcs inside $R(x)$ from x_{r} to all the vertices of $R(x)$, as well as antipodal arcs from x_{b} to the vertices of $B(x)$. This gives a centrally symmetric drawing of a 2 -coloured double covering of the diameter graph. By Lemmas 1 and 2 no edges cross, and the theorem follows.

The following proofs of Lemmas 1 and 2 are dimension independent, which gives a double covering on S^{d-1} of any diameter graph in \mathbb{R}^{d}.
Lemma 3. Let x_{1}, \ldots, x_{k} and $\sum_{i=1}^{k} \lambda_{i} x_{i}$ be unit vectors in \mathbb{R}^{d}, with all $\lambda_{i} \geq 0$. Suppose that for some $y \in \mathbb{R}^{d},\left\|y-x_{i}\right\| \leq 1$ for all $i=1, \ldots, k$. Then $\left\|y-\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \leq 1$.
Proof. By the triangle inequality,

$$
\begin{equation*}
1 \leq\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\| \leq \sum_{i=1}^{k} \lambda_{i} \tag{1}
\end{equation*}
$$

Expanding $\left\|y-x_{i}\right\|^{2} \leq 1$ by inner products,

$$
\begin{equation*}
-2\left\langle x_{i}, y\right\rangle \leq-\|y\|^{2} \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left\|y-\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|^{2} & =\|y\|^{2}-2 \sum_{i=1}^{k}\left\langle x_{i}, y\right\rangle+1 \\
& \leq\left(1-\sum_{i=1}^{k} \lambda_{i}\right)\|y\|^{2}+1 \quad \text { by }(2) \\
& \leq 1 \quad \text { by }(1)
\end{aligned}
$$

Proof of Lemma 1. Let the neighbours of x be $x+x_{i}$, and the neighbours of y be $y+y_{j}$, with the x_{i} and y_{j} unit vectors. Suppose that

$$
\sum_{i} \lambda_{i} x_{i}=\sum_{j} \mu_{j} y_{j} \in R(x) \cap R(y) \text { with } \lambda_{i}, \mu_{j} \geq 0
$$

Since $\left\|x+x_{i}-y\right\| \leq 1$ for all i, Lemma 3 gives

$$
\left\|x+\sum_{i} \lambda_{i} x_{i}-y\right\| \leq 1
$$

Similarly, Lemma 3 applied to $\left\|x-y-y_{j}\right\| \leq 1$ gives

$$
\left\|x-y-\sum_{j} \mu_{j} y_{j}\right\| \leq 1
$$

By the triangle inequality,

$$
\begin{aligned}
2 & =\left\|2 \sum_{i} \lambda_{i} x_{i}\right\| \\
& =\left\|\left(x+\sum_{i} \lambda_{i} x_{i}-y\right)-\left(x-y-\sum_{j} \mu_{j} y_{j}\right)\right\| \\
& \leq\left\|x+\sum_{i} \lambda_{i} x_{i}-y\right\|+\left\|x-y-\sum_{j} \mu_{j} y_{j}\right\| \\
& \leq 2 .
\end{aligned}
$$

Since we have equality throughout, $x+\sum_{i} \lambda_{i} x_{i}-y$ and $-x+y+$ $\sum_{j} \mu_{j} y_{j}$ are unit vectors in the same direction, hence are equal, which gives $x=y$.

Proof of Lemma 2. Since $\left\|x_{i}-x_{j}\right\| \leq 1$ for all $i, j, R(x)$ is properly contained in an open hemisphere of S^{2}, hence $R(x) \cap B(x)=\varnothing$. Thus without loss of generality, $x \neq y$. As before, let the neighbours of x be $x+x_{i}$, and the neighbours of y be $y+y_{j}$, with the x_{i} and y_{j} unit vectors. Suppose that $\sum_{i} \lambda_{i} x_{i}=-\sum_{j} \mu_{j} y_{j} \in R(x) \cap B(y)$ with
$\lambda_{i}, \mu_{j} \geq 0$. For a fixed j we have that $\left\|x+x_{i}-y-y_{j}\right\| \leq 1$ for all i. Lemma 3 then gives

$$
\left\|x+\sum_{i} \lambda_{i} x_{i}-y-y_{j}\right\| \leq 1 \quad \text { for all } j
$$

Again by Lemma 3,

$$
\left\|x+\sum_{i} \lambda_{i} x_{i}-y-\sum_{j} \mu_{j} y_{j}\right\| \leq 1 .
$$

By the triangle inequality,

$$
\begin{aligned}
2 & =\left\|2 \sum_{i} \lambda_{i} x_{i}\right\| \\
& =\left\|\left(x+\sum_{i} \lambda_{i} x_{i}-y-\sum_{j} \mu_{j} y_{j}\right)+(y-x)\right\| \\
& \leq\left\|x+\sum_{i} \lambda_{i} x_{i}-y-\sum_{j} \mu_{j} y_{j}\right\|+\|y-x\|
\end{aligned}
$$

$$
\leq 2
$$

Since we have equality throughout, $x+\sum_{i} \lambda_{i} x_{i}-y-\sum_{j} \mu_{j} y_{j}$ and $y-$ x are unit vectors in the same direction, hence are equal, which gives $x+\sum_{i} \lambda_{i} x_{i}=y$ and $R(x) \cap B(y)=\{y-x\}$.

References

1. V. L. Dol'nikov, Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000), 293-299.
2. P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
3. B. Grünbaum, A proof of Vázsonyi's conjecture, Bull. Res. Council Israel Sect. A 6 (1956), 77-78.
4. A. Heppes, Beweis einer Vermutung von A. Vázsonyi, Acta Math. Acad. Sci. Hungar. 7 (1957), 463-466.
5. Y. S. Kupitz, H. Martini and M. A. Perles, On the extremal cofigurations of the Vázsonyi problem and their Reuleaux Polytopes - an overview, manuscript.
6. J. Pach and P. K. Agarwal, Combinatorial Geometry, John Wiley \& Sons, New York, 1995.
7. S. Straszewicz, Sur un problème géométrique de P. Erdős, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 39-40.

Department of Mathematical Sciences, University of South Africa, PO Box 392, Pretoria 0003, South Africa

E-mail address: swanekj@unisa.ac.za

[^0]: This material is based upon work supported by the South African National Research Foundation.

