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A NEW PROOF OF VÁZSONYI’S CONJECTURE

KONRAD J. SWANEPOEL

ABSTRACT. We present a self-contained proof that the number of
diameter pairs among n points in Euclidean 3-space is at most
2n − 2. The proof avoids the ball polytopes used in the original
proofs by Grünbaum, Heppes and Straszewicz. As a corollary we
obtain that any three-dimensional diameter graph can be embed-
ded in the projective plane.

Let S be a set of n points of diameter D in Rd. Define the diame-
ter graph on S by joining all diameters, i.e., point pairs at distance D.
The following theorem was conjectured by Vázsonyi, as reported in
[2]. It was subsequently independently proved by Grünbaum [3],
Heppes [4] and Straszewicz [7].

Theorem 1. The number of edges in a diameter graph on n ≥ 4 points in
R3 is at most 2n − 2.

All three proofs (see [6, Theorem 13.14]) use the ball polytope ob-
tained by taking the intersection of the balls of radius D centred at
the points. However, these ball polytopes do not behave the same
as ordinary polytopes. In particular, their graphs need not be 3-
connected, as shown by Kupitz, Martini and Perles in [5], where a
detailed study of the ball polytopes associated to the above theorem
is made. The proof presented here avoids the use of ball polytopes.

Theorem 2. Any diameter graph in R3 has a bipartite double covering that
has a centrally symmetric drawing on the 2-sphere.

In fact, each point x ∈ S will correspond to an antipodal pair of
points xr and xb on the sphere, with xr coloured red and xb blue.
Each edge xy of the diameter graph will correspond to two antipo-
dal edges xryb and xbyr on the sphere, giving a properly 2-coloured
graph on 2n vertices. The drawing will be made such that no edges
cross. By Euler’s formula there will be at most 4n − 4 edges, hence
at most 2n − 2 edges in the diameter graph. By identifying opposite
points of the sphere we further obtain:
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Corollary 3. Any diameter graph in R3 can be embedded in the projective
plane such that all odd cycles are noncontractible.

Therefore, any two odd cycles intersect, and we regain the follow-
ing theorem of Dol’nikov [1]:

Corollary 4. Any two odd cycles in a diameter graph on a finite set in R3

intersect.

Proof of Theorem 2. Without loss we assume from now on that D = 1.
Let S2 denote the sphere in R3 with centre the origin and radius 1.
We may repeatedly remove all vertices of degree at most 1 in the
diameter graph. Since such vertices can easily be added later, this is
no loss of generality. For each x ∈ S, let R(x) be the intersection of S2

with the cone generated by {y − x : xy is a diameter}. Each R(x) is a
convex spherical polygon with great circular arcs as edges. (If x has
degree 2 then R(x) is an arc). Colour R(x) red and B(x) := −R(x)
blue. Assume for the moment the following two properties of these
polygons:

Lemma 1. If x 6= y, then R(x) and R(y) are disjoint.

Lemma 2. If R(x) and B(y) intersect, then xy is a diameter and R(x) ∩
B(y) = {y − x}.

For each x ∈ S we choose any xr in the interior of R(x) and let xb =
−xr. (If R(x) is an arc we let xr be in its relative interior.) Draw arcs
inside R(x) from xr to all the vertices of R(x), as well as antipodal
arcs from xb to the vertices of B(x). This gives a centrally symmetric
drawing of a 2-coloured double covering of the diameter graph. By
Lemmas 1 and 2 no edges cross, and the theorem follows. �

The following proofs of Lemmas 1 and 2 are dimension indepen-

dent, which gives a double covering on Sd−1 of any diameter graph

in Rd.

Lemma 3. Let x1, . . . , xk and ∑
k
i=1 λixi be unit vectors in Rd, with all

λi ≥ 0. Suppose that for some y ∈ Rd, ‖y − xi‖ ≤ 1 for all i = 1, . . . , k.

Then ‖y − ∑
k
i=1 λixi‖ ≤ 1.

Proof. By the triangle inequality,

1 ≤ ‖
k

∑
i=1

λixi‖ ≤
k

∑
i=1

λi. (1)

Expanding ‖y − xi‖
2 ≤ 1 by inner products,

− 2 〈xi, y〉 ≤ −‖y‖2. (2)
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Therefore,

‖y −
k

∑
i=1

λixi‖
2 = ‖y‖2 − 2

k

∑
i=1

〈xi, y〉+ 1

≤
(

1 −
k

∑
i=1

λi

)

‖y‖2 + 1 by (2)

≤ 1 by (1). �

Proof of Lemma 1. Let the neighbours of x be x + xi, and the neigh-
bours of y be y + yj, with the xi and yj unit vectors. Suppose that

∑
i

λixi = ∑
j

µjyj ∈ R(x) ∩ R(y) with λi, µj ≥ 0.

Since ‖x + xi − y‖ ≤ 1 for all i, Lemma 3 gives

‖x + ∑
i

λixi − y‖ ≤ 1.

Similarly, Lemma 3 applied to ‖x − y − yj‖ ≤ 1 gives

‖x − y −∑
j

µjyj‖ ≤ 1.

By the triangle inequality,

2 = ‖2 ∑
i

λixi‖

= ‖(x +∑
i

λixi − y)− (x − y −∑
j

µjyj)‖

≤ ‖x +∑
i

λixi − y‖+ ‖x − y − ∑
j

µjyj‖

≤ 2.

Since we have equality throughout, x + ∑i λixi − y and −x + y +
∑j µjyj are unit vectors in the same direction, hence are equal, which
gives x = y. �

Proof of Lemma 2. Since ‖xi − xj‖ ≤ 1 for all i, j, R(x) is properly con-

tained in an open hemisphere of S2, hence R(x) ∩ B(x) = ∅. Thus
without loss of generality, x 6= y. As before, let the neighbours of
x be x + xi, and the neighbours of y be y + yj, with the xi and yj

unit vectors. Suppose that ∑i λixi = − ∑j µjyj ∈ R(x) ∩ B(y) with
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λi, µj ≥ 0. For a fixed j we have that ‖x + xi − y − yj‖ ≤ 1 for all i.
Lemma 3 then gives

‖x + ∑
i

λixi − y − yj‖ ≤ 1 for all j.

Again by Lemma 3,

‖x + ∑
i

λixi − y −∑
j

µjyj‖ ≤ 1.

By the triangle inequality,

2 = ‖2 ∑
i

λixi‖

= ‖(x +∑
i

λixi − y − ∑
j

µjyj) + (y − x)‖

≤ ‖x +∑
i

λixi − y − ∑
j

µjyj‖+ ‖y − x‖

≤ 2.

Since we have equality throughout, x + ∑i λixi − y− ∑j µjyj and y−
x are unit vectors in the same direction, hence are equal, which gives
x + ∑i λixi = y and R(x) ∩ B(y) = {y − x}. �
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