A NEW PROOF OF VÁZSONYI'S CONJECTURE

KONRAD J. SWANEPOEL

ABSTRACT. We present a self-contained proof that the number of diameter pairs among n points in Euclidean 3-space is at most 2n-2. The proof avoids the ball polytopes used in the original proofs by Grünbaum, Heppes and Straszewicz. As a corollary we obtain that any three-dimensional diameter graph can be embedded in the projective plane.

Let S be a set of n points of diameter D in \mathbb{R}^d . Define the *diameter graph* on S by joining all *diameters*, i.e., point pairs at distance D. The following theorem was conjectured by Vázsonyi, as reported in [2]. It was subsequently independently proved by Grünbaum [3], Heppes [4] and Straszewicz [7].

Theorem 1. The number of edges in a diameter graph on $n \ge 4$ points in \mathbb{R}^3 is at most 2n - 2.

All three proofs (see [6, Theorem 13.14]) use the ball polytope obtained by taking the intersection of the balls of radius *D* centred at the points. However, these ball polytopes do not behave the same as ordinary polytopes. In particular, their graphs need not be 3-connected, as shown by Kupitz, Martini and Perles in [5], where a detailed study of the ball polytopes associated to the above theorem is made. The proof presented here avoids the use of ball polytopes.

Theorem 2. Any diameter graph in \mathbb{R}^3 has a bipartite double covering that has a centrally symmetric drawing on the 2-sphere.

In fact, each point $x \in S$ will correspond to an antipodal pair of points x_r and x_b on the sphere, with x_r coloured red and x_b blue. Each edge xy of the diameter graph will correspond to two antipodal edges x_ry_b and x_by_r on the sphere, giving a properly 2-coloured graph on 2n vertices. The drawing will be made such that no edges cross. By Euler's formula there will be at most 4n - 4 edges, hence at most 2n - 2 edges in the diameter graph. By identifying opposite points of the sphere we further obtain:

This material is based upon work supported by the South African National Research Foundation.

Corollary 3. Any diameter graph in \mathbb{R}^3 can be embedded in the projective plane such that all odd cycles are noncontractible.

Therefore, any two odd cycles intersect, and we regain the following theorem of Dol'nikov [1]:

Corollary 4. Any two odd cycles in a diameter graph on a finite set in \mathbb{R}^3 intersect.

Proof of Theorem 2. Without loss we assume from now on that D=1. Let \mathbb{S}^2 denote the sphere in \mathbb{R}^3 with centre the origin and radius 1. We may repeatedly remove all vertices of degree at most 1 in the diameter graph. Since such vertices can easily be added later, this is no loss of generality. For each $x \in S$, let R(x) be the intersection of \mathbb{S}^2 with the cone generated by $\{y-x:xy \text{ is a diameter}\}$. Each R(x) is a convex spherical polygon with great circular arcs as edges. (If x has degree 2 then R(x) is an arc). Colour R(x) red and R(x) := -R(x) blue. Assume for the moment the following two properties of these polygons:

Lemma 1. If $x \neq y$, then R(x) and R(y) are disjoint.

Lemma 2. If R(x) and B(y) intersect, then xy is a diameter and $R(x) \cap B(y) = \{y - x\}$.

For each $x \in S$ we choose any x_r in the interior of R(x) and let $x_b = -x_r$. (If R(x) is an arc we let x_r be in its relative interior.) Draw arcs inside R(x) from x_r to all the vertices of R(x), as well as antipodal arcs from x_b to the vertices of R(x). This gives a centrally symmetric drawing of a 2-coloured double covering of the diameter graph. By Lemmas 1 and 2 no edges cross, and the theorem follows.

The following proofs of Lemmas 1 and 2 are dimension independent, which gives a double covering on S^{d-1} of any diameter graph in \mathbb{R}^d .

Lemma 3. Let $x_1, ..., x_k$ and $\sum_{i=1}^k \lambda_i x_i$ be unit vectors in \mathbb{R}^d , with all $\lambda_i \geq 0$. Suppose that for some $y \in \mathbb{R}^d$, $||y - x_i|| \leq 1$ for all i = 1, ..., k. Then $||y - \sum_{i=1}^k \lambda_i x_i|| \leq 1$.

Proof. By the triangle inequality,

$$1 \le \|\sum_{i=1}^k \lambda_i x_i\| \le \sum_{i=1}^k \lambda_i. \tag{1}$$

Expanding $||y - x_i||^2 \le 1$ by inner products,

$$-2\langle x_i, y \rangle \le -\|y\|^2. \tag{2}$$

Therefore,

$$||y - \sum_{i=1}^{k} \lambda_i x_i||^2 = ||y||^2 - 2 \sum_{i=1}^{k} \langle x_i, y \rangle + 1$$

$$\leq \left(1 - \sum_{i=1}^{k} \lambda_i\right) ||y||^2 + 1 \quad \text{by (2)}$$

$$\leq 1 \quad \text{by (1).}$$

Proof of Lemma 1. Let the neighbours of x be $x + x_i$, and the neighbours of y be $y + y_i$, with the x_i and y_i unit vectors. Suppose that

$$\sum_{i} \lambda_{i} x_{i} = \sum_{j} \mu_{j} y_{j} \in R(x) \cap R(y) \text{ with } \lambda_{i}, \mu_{j} \geq 0.$$

Since $||x + x_i - y|| \le 1$ for all i, Lemma 3 gives

$$||x + \sum_{i} \lambda_i x_i - y|| \le 1.$$

Similarly, Lemma 3 applied to $||x - y - y_j|| \le 1$ gives

$$||x-y-\sum_{j}\mu_{j}y_{j}||\leq 1.$$

By the triangle inequality,

$$2 = \|2 \sum_{i} \lambda_{i} x_{i}\|$$

$$= \|(x + \sum_{i} \lambda_{i} x_{i} - y) - (x - y - \sum_{j} \mu_{j} y_{j})\|$$

$$\leq \|x + \sum_{i} \lambda_{i} x_{i} - y\| + \|x - y - \sum_{j} \mu_{j} y_{j}\|$$

$$< 2.$$

Since we have equality throughout, $x + \sum_i \lambda_i x_i - y$ and $-x + y + \sum_j \mu_j y_j$ are unit vectors in the same direction, hence are equal, which gives x = y.

Proof of Lemma 2. Since $||x_i - x_j|| \le 1$ for all i, j, R(x) is properly contained in an open hemisphere of \mathbb{S}^2 , hence $R(x) \cap B(x) = \emptyset$. Thus without loss of generality, $x \ne y$. As before, let the neighbours of x be $x + x_i$, and the neighbours of y be $y + y_j$, with the x_i and y_j unit vectors. Suppose that $\sum_i \lambda_i x_i = -\sum_j \mu_j y_j \in R(x) \cap B(y)$ with

 $\lambda_i, \mu_j \ge 0$. For a fixed j we have that $||x + x_i - y - y_j|| \le 1$ for all i. Lemma 3 then gives

$$||x + \sum_{i} \lambda_i x_i - y - y_j|| \le 1$$
 for all j .

Again by Lemma 3,

$$||x + \sum_{i} \lambda_i x_i - y - \sum_{j} \mu_j y_j|| \le 1.$$

By the triangle inequality,

$$2 = \|2 \sum_{i} \lambda_{i} x_{i}\|$$

$$= \|(x + \sum_{i} \lambda_{i} x_{i} - y - \sum_{j} \mu_{j} y_{j}) + (y - x)\|$$

$$\leq \|x + \sum_{i} \lambda_{i} x_{i} - y - \sum_{j} \mu_{j} y_{j}\| + \|y - x\|$$

$$< 2.$$

Since we have equality throughout, $x + \sum_i \lambda_i x_i - y - \sum_j \mu_j y_j$ and y - x are unit vectors in the same direction, hence are equal, which gives $x + \sum_i \lambda_i x_i = y$ and $R(x) \cap B(y) = \{y - x\}$.

REFERENCES

- 1. V. L. Dol'nikov, *Some properties of graphs of diameters*, Discrete Comput. Geom. **24** (2000), 293–299.
- 2. P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.
- 3. B. Grünbaum, *A proof of Vázsonyi's conjecture*, Bull. Res. Council Israel Sect. A **6** (1956), 77–78.
- 4. A. Heppes, *Beweis einer Vermutung von A. Vázsonyi*, Acta Math. Acad. Sci. Hungar. 7 (1957), 463–466.
- 5. Y. S. Kupitz, H. Martini and M. A. Perles, *On the extremal cofigurations of the Vázsonyi problem and their Reuleaux Polytopes an overview,* manuscript.
- J. Pach and P. K. Agarwal, Combinatorial Geometry, John Wiley & Sons, New York, 1995.
- 7. S. Straszewicz, Sur un problème géométrique de P. Erdős, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 39–40.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF SOUTH AFRICA, PO BOX 392, PRETORIA 0003, SOUTH AFRICA

E-mail address: swanekj@unisa.ac.za