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FROM BRUHAT INTERVALS TO INTERSECTION

LATTICES AND A CONJECTURE OF POSTNIKOV

AXEL HULTMAN, SVANTE LINUSSON, JOHN SHARESHIAN,
AND JONAS SJÖSTRAND

Abstract. We prove the conjecture of A. Postnikov that (A) the
number of regions in the inversion hyperplane arrangement associ-
ated with a permutation w ∈ Sn is at most the number of elements
below w in the Bruhat order, and (B) that equality holds if and
only if w avoids the patterns 4231, 35142, 42513 and 351624. Fur-
thermore, assertion (A) is extended to all finite reflection groups.

A byproduct of this result and its proof is a set of inequalities
relating Betti numbers of complexified inversion arrangements to
Betti numbers of closed Schubert cells. Another consequence is a
simple combinatorial interpretation of the chromatic polynomial
of the inversion graph of a permutation which avoids the above
patterns.

1. Introduction

We confirm a conjecture of A. Postnikov [12, Conj 24.4(1)], relating
the interval below a permutation w ∈ Sn in the Bruhat order and a
hyperplane arrangement determined by the inversions of w. Definitions
of key objects discussed but not defined in this introduction can be
found in Section 2.
Fix n ∈ N and w ∈ Sn. An inversion of w is a pair (i, j) such that

1 ≤ i < j ≤ n and iw < jw. (Here we write w as a function acting
from the right on [n] := {1, . . . , n}.) We write INV(w) for the set of
inversions of w.
For 1 ≤ i < j ≤ n, set

Hij := {(v1, . . . , vn) ∈ R
n | vi = vj},

so Hij is a hyperplane in Rn. Set

A′
w := {Hij | (i, j) ∈ INV(w)},

so A′
w is a central hyperplane arrangement in Rn. Let re(w) be the

number of connected components of Rn \ ∪A′
w. Let br(w) be the size

of the ideal generated by w in the Bruhat order on Sn.
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The first part of Postnikov’s conjecture is that

(A) for all n ∈ N and all w ∈ Sn we have re(w) ≤ br(w).

In Theorem 3.3 below, we give a generalization of (A) that holds for
all finite reflection groups.
Let m ≤ n, let p ∈ Sm and let w ∈ Sn. We say w avoids p if there

do not exist 1 ≤ i1 < i2 < · · · < im ≤ n such that for all j, k ∈ [m] we
have ijw < ikw if and only if jp < kp. The second part of Postnikov’s
conjecture is that

(B) for all n ∈ N and all w ∈ Sn, we have br(w) = re(w) if and
only if w avoids all of 4231, 35142, 42513 and 351624.

Here we have written the four permutations to be avoided in one line
notation, that is, we write w ∈ Sn as 1w · · ·nw. As is standard, we call
the permutations to be avoided patterns. With Theorem 4.1 we show
that avoidance of the four given patterns is necessary for the equality
of br(w) and re(w) and with Corollary 5.7 we show that this avoidance
is sufficient, thus proving all of Postnikov’s conjecture.
We remark that the avoidance of the four given patterns has arisen

in work of Postnikov on total positivity ([12]), work of Gasharov and
Reiner on Schubert varieties in partial flag manifolds ([9]) and work of
Sjöstrand ([13]) on the Bruhat order. In Section 6, we give yet another
characterization of the permutations that avoid these patterns.
The Bruhat order (on any Weyl group) describes the containment

relations between the closures of Schubert cells in the associated flag
variety (see for example [6, 8]). Inequality (A) (along with our proof of
it) indicates that there might be some relationship between the coho-
mology of the closure of the Schubert cell indexed by w and the coho-
mology of the complexification of the arrangement A′

w. In Proposition
7.1 we provide three inequalities relating these objects when w ∈ Sn

avoids the four patterns mentioned above.
In Section 8, we show how the chromatic polynomial of the inversion

graph of w ∈ Sn (or, equivalently, the characteristic polynomial of
A′

w) keeps track of the transposition distance from u to w for u ≤ w in
Bruhat order. In Section 9 we provide an example to illustrate what
our results say about a specific permutation, and in Section 10 we list
some open problems.
Acknowledgement: Linusson is a Royal Swedish Academy of Sci-
ences Research Fellow supported by a grant from the Knut and Alice
Wallenberg Foundation. Shareshian is supported by NSF grant DMS-
0604233.



A CONJECTURE OF POSTNIKOV 3

2. Prerequisites

In this section, we review basic material on hyperplane arrangements
and Coxeter groups that we will use in the sequel. For more information
on these subjects the reader may consult, for example, [14] and [3],
respectively.
A Coxeter group is a group W generated by a finite set S of in-

volutions subject only to relations of the form (ss′)m(s,s′) = 1, where
m(s, s′) = m(s′, s) ≥ 2 if s 6= s′. The pair (W,S) is referred to as a
Coxeter system.
The length, denoted ℓ(w), of w ∈ W is the smallest k such that

w = s1 · · · sk for some s1, . . . , sk ∈ S. If w = s1 · · · sk and ℓ(w) = k,
then the sequence s1 · · · sk is called a reduced expression for w.
Every Coxeter group admits a partial order called the Bruhat order.

Definition 2.1. Given u, w ∈ W , we say that u ≤ w in the Bruhat
order if every reduced expression (equivalently, some reduced expres-
sion) for w contains a subword representing u. In other words, u ≤ w
if whenever w = s1 · · · sk with each si ∈ S and ℓ(w) = k, there exist
1 ≤ i1 < · · · < ij ≤ k such that u = si1 · · · sij .

Although it is not obvious from Definition 2.1, the Bruhat order is
a partial order on W . Observe that the identity element e ∈ W is the
unique minimal element with respect to this order.
Given u, w ∈ W , the definition is typically not very useful for deter-

minining whether u ≤ w. When W = Sn is a symmetric group, with
S being the set of adjacent transpositions (i i+ 1), the following nice
criterion exists. For a permutation w ∈ Sn and i, j ∈ [n] = {1, . . . , n},
let

w[i, j] = |{m ∈ [i] | mw ≥ j}|.

Let P (w) = (aij) be the permutation matrix corresponding to w ∈ Sn

(so aij = 1 if iw = j and aij = 0 otherwise). Then w[i, j] is simply the
number of ones weakly above and weakly to the right of position (i, j)
in P (w), that is, the number of pairs (k, l) such that k ≤ i, j ≤ l and
akl = 1.
A proof of the next proposition can be found in [3].

Proposition 2.2 (Standard criterion). Given u, v ∈ Sn, we have u ≤
w in the Bruhat order if and only if u[i, j] ≤ w[i, j] for all (i, j) ∈ [n]2.

In fact, it is only necessary to compare u[i, j] and w[i, j] for certain
pairs (i, j); see Lemma 5.1 below.
Each finite Coxeter group W can be embedded in some GLn(R) in

such a way that the elements of S act as reflections. That is, having
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fixed such an embedding, for each s ∈ S there is some hyperplane Hs in
Rn such that s acts on Rn by reflection throughHs. Thus a reflection in
W is defined to be an element conjugate to an element of S. Letting T
denote the set of reflections in W , we therefore have T = {w−1sw | s ∈
S, w ∈ W}. Every finite subgroup of GLn(R) generated by reflections
is a Coxeter group. A natural geometric representation of a Coxeter
group W is an embedding of the type just described in which no point
in Rn \ {0} is fixed by all of W .
Sometimes we work with the generating set T rather than S. We

define the absolute length ℓ′(w) as the smallest number of reflections
needed to express w ∈ W as a product. In the case of finite Coxeter
groups, i.e. finite reflection groups, a nice formula for the absolute
length follows from work of Carter [5, Lemma 2].

Proposition 2.3 (Carter [5]). Let W be a finite reflection group in a
natural geometric representation. Then, the absolute length of w ∈ W
equals the codimension of the space of fixed points of w.

Next, we recall a convenient interaction between reflections and (not
necessarily reduced) expressions. For a proof, the reader may consult

[3, Theorem 1.4.3]. By a ĥat over an element, we understand deletion
of that element.

Proposition 2.4 (Strong exchange property). Suppose w = s1 . . . sk
for some si ∈ S. If t ∈ T has the property that ℓ(tw) < ℓ(w), then
tw = s1 . . . ŝi . . . sk for some i ∈ [k].

A real hyperplane arrangement is a set A of affine hyperplanes in
some real vector space V ∼= R

n. We will assume that A is finite. The
arrangement A is called linear if each H ∈ A is a linear subspace of
Rn. The intersection lattice of a linear arrangement A is the set LA of
all subspaces of V that can be obtained by intersecting some elements
of A, ordered by reverse inclusion. (The minimal element V of LA is
obtained by taking the intersection of no elements of A and will be
denoted by 0̂.)
A crucial property of LA is that it admits a so-called EL-labelling.

The general definition of such labellings is not important to us; see
[1] for details. Instead, we focus on the properties of a particular EL-
labelling of LA, the standard labelling λ, which we now describe.
Let ⊳ denote the covering relation of LA. Choose some total ordering

of the hyperplanes in A. To each covering A⊳B we associate the label

λ(A⊳ B) = min{H ∈ A | H ≤ B and H 6≤ A}.
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The complement V \ ∪A of the arrangement A is a disjoint union
of contractible connected components called the regions of A. The
number of regions can be computed from λ. Given any saturated chain
C = {A0⊳· · ·⊳Am} in LA, say that C is λ-decreasing if λ(Ai−1⊳Ai) >
λ(Ai ⊳ Ai+1) for all i ∈ [m− 1].

Proposition 2.5 (Björner [1], Zaslavsky [15]). The number of regions
of A equals the number of λ-decreasing saturated chains that contain
0̂.

Proof. It follows from the theory of EL-labellings [1] that the number
of chains with the asserted properties is

∑

A∈LA

|µ(0̂, A)|,

where µ is the Möbius function of LA. By a result of Zaslavsky [15],
this number is precisely the number of regions of A. �

Given a finite Coxeter group W we may associate to it the Coxeter
arrangement AW . This is the collection of hyperplanes that are fixed
by the various reflections in T when we consider W as a finite reflection
group in a standard geometric representation. The isomorphism type
of LA does not depend on the choice of standard representation.

3. From intersection lattices to Bruhat intervals

Let (W,S) be a finite Coxeter system. Fix a reduced expression
s1 · · · sk for some w ∈ W . Given i ∈ [k], define the reflection

ti = s1 · · · si−1sisi−1 · · · s1 ∈ T.

The set Tw = {ti | i ∈ [k]} only depends on w and not on the chosen
reduced expression. In fact, Tw = {t ∈ T | ℓ(tw) < ℓ(w)}. We call Tw

the inversion set of w. If W = Sn and T is the set of transpositions,
then the transposition (i j) lies in Tw if and only if (i, j) ∈ INV(w).
Being reflections, the various ti correspond to reflecting hyperplanes
Hi in a standard geometric representation of W . Thus, w determines
an arrangement of real linear hyperplanes

Aw = {Hi | i ∈ [k]}

which we call the inversion arrangement of w. It is a subarrangement
of the Coxeter arrangement AW .
Let us order the hyperplanes in Aw by H1 > H2 > · · · > Hk. We

denote by λ the standard EL-labelling of the intersection lattice Lw =
LAw

induced by this order. In particular, λ depends on the choice of
reduced expression for w.
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Let C↓ be the set of λ-decreasing saturated chains in Lw that include
the minimum element 0̂. By Proposition 2.5, C↓ is in bijection with the
set of regions of Aw. We will construct an injective map from C↓ to the
Bruhat interval [e, w].
Let C = {0̂ = X0 ⊳ X1 ⊳ · · · ⊳ Xm} ⊂ Lw be a saturated chain.

Suppose, for each i ∈ [m], we have λ(Xi−1 ⊳Xi) = Hji. Define

p(C) = tj1 · · · tjm ∈ W.

Proposition 3.1. If C ∈ C↓, then p(C)w ≤ w in the Bruhat order.
Thus, C 7→ p(C)w defines a map φ : C↓ → [e, w].

Proof. When C = {0̂ = X0 ⊳X1 ⊳ · · ·⊳Xm} ⊂ Lw is λ-decreasing, we
have

p(C)w =
∏

i∈[k]\{j1,...,jm}

si.

Thus, p(C)w can be represented by an expression which is a subword
of the chosen reduced expression for w. �

A full description of φ when w = (142) ∈ S4 appears in Section 9.
In order to deduce injectivity of φ, we need the following lemma.

Lemma 3.2. For every saturated chain C = {0̂ = X0 ⊳ X1 ⊳ · · · ⊳
Xm} ⊂ Lw, we have ℓ′(p(C)) = m.

Proof. We proceed by induction on m, the case m = 0 being trivial.
By construction, ℓ′(p(C)) ≤ m. Suppose, in order to deduce a contra-

diction, that the inequality is strict. The inductive hypothesis implies
ℓ′(p(C\Xm)) = m−1. Thus, ℓ′(p(C)) = m−2. We may therefore write
p(C) = t′1 · · · t

′
m−2 for some reflections t′i ∈ T through corresponding

hyperplanes H ′
i.

Recall the notation λ(Xi−1⊳Xi) = Hji with corresponding reflection
tji. Let F denote the fixed point space of p(C)tjm = p(C \Xm). Then,
Xm−1 = Hj1 ∩ · · · ∩ Hjm−1

⊆ F . By Proposition 2.3, codim(F ) =
ℓ′(p(C)tjm) = m− 1 = codim(Xm−1). Thus, F = Xm−1. On the other
hand, p(C)tjm = t′1 · · · t

′
m−2tjm . Therefore, F ⊇ H ′

1 ∩ · · · ∩H ′
m−2 ∩Hjm.

Now, codim(F ) = m − 1 ≥ codim(H ′
1 ∩ · · · ∩ H ′

m−2 ∩ Hjm) so that,
in fact, F = H ′

1 ∩ · · · ∩ H ′
m−2 ∩ Hjm. Hence, Hjm ⊇ Xm−1, which is

impossible given the deefinition of λ. �

We are now in position to prove the main result of this section.

Theorem 3.3. The map φ : C↓ → [e, w] is injective.

Proof. If C is the saturated chain 0̂ = X0⊳ · · ·⊳Xm in Lw, then Xm is
contained in the fixed point space of p(C) (since p(C) is a product of
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reflections through hyperplanes, all of which contain Xm). Lemma 3.2
and Proposition 2.3 therefore imply that Xm is the fixed point space of
p(C). In particular, if two chains have the same image under p, then
their respective maximum elements coincide.
Now suppose p(C) = p(D) for some C,D ∈ C↓. We shall show that

C = D. Write C = {0̂ = X0⊳ · · ·⊳Xm} and D = {0̂ = Y0⊳ · · ·⊳Ym′}.
We have shown that m = m′ and Xm = Ym. Since both C and D are
λ-decreasing, the construction of λ implies λ(Xm−1⊳Xm) = λ(Ym−1⊳

Ym) = H , where H is the smallest hyperplane below Xm = Ym in
Lw. With t denoting the reflection corresponding to H , we thus have
p(C \ Xm) = p(D \ Ym) = p(C)t = p(D)t. Our theorem is proved by
induction on m. �

Let us explain how the first part of Postnikov’s conjecture, statement
(A) in the Introduction, follows from Theorem 3.3. The symmetric
group Sn acts on Rn by permuting coordinates. Under this action,
the transposition (i j) acts by a reflection in the hyperplane given by
xi = xj . However, this is not quite a natural geometric representation
of Sn because the entire line given by x1 = · · · = xn is fixed by all
elements. To rectify the situation we may study the restriction of the
action to the subspace V (n−1) ⊂ Rn that consists of the points in Rn

whose coordinates sum to zero. Thus, Aw is a hyperplane arrangement
in V (n−1).
Recalling our convention that uw means “first u, then w” for u, w ∈

Sn we see that (i j) ∈ Tw if and only if (i, j) is an inversion of w in the
ordinary sense. Thus, for w ∈ Sn,

Aw = {H ∩ V (n−1) | H ∈ A′
w}.

In the language of [14], Aw is the essentialization of A′
w. The regions

in the complements of Aw and A′
w are in an obvious bijective corre-

spondence and statement (A) follows.
Although we do not know when φ is surjective for an arbitrary finite

reflection group, for symmetric groups we have the following result,
whose proof is contained in the nect two sections.

Theorem 3.4. If w ∈ Sn, the map φ is surjective (and hence bijective)
if and only if w avoids the patterns 4231, 35142, 42513 and 351624.

4. A necessity criterion for surjectivity in symmetric

groups

We now confine our attention to the type A case when W = Sn is a
symmetric group. Depending on what is most convenient, either one-
line notation or cycle notation is used to represent a permutation w ∈
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Sn. In this setting, as we have seen, T becomes the set of transpositions
in Sn and Tw = {(i j) | i < j and iw > jw} can be identified with
INV(w).

Theorem 4.1. Suppose W is a symmetric group. If φ : C↓ → [e, w] is
surjective, then w avoids the patterns 4231, 35142, 42513 and 351624.

Proof. It follows from Lemma 3.2 that if u ≤ w is in the image of φ,
then uw−1 can be written as a product of ℓ′(uw−1) inversions of w.
Below we construct, for w containing each of the four given patterns,
elements u ≤ w that fail to satisfy this property.
Case 4231. Suppose w contains the pattern 4231 in positions n1,
n2, n3, and n4, meaning that n1w > n3w > n2w > n4w. Then, let
u = (n1 n4)(n2 n3)w. Invoking the standard criterion, Proposition 2.2,
it suffices to check (1 4)(2 3)4231 = 1324 < 4231 in order to conclude
u < w. Now, uw−1 = (n1 n4)(n2 n3) has absolute length 2. However,
uw−1 cannot be written as a product of two inversions of w, because
(n2 n3) is not an inversion.
Case 35142. Now assume w contains 35142 in positions n1, . . . , n5.
Define u = (n1 n3 n4)(n2 n5)w. Again we have u < w; this time since
(1 3 4)(2 5)35142 = 12435 < 35142. We have uw−1 = (n1 n3 n4)(n2 n5)
which is of absolute length 3. Neither (n1 n4) nor (n3 n4) is an inversion
of w, so u cannot be written as a product of three members of Tw.
Case 42513. Next, suppose w contains 42513 in n1 through n5. Then,
we let u = (n2 n5 n3)(n1 n4)w and argue as in the previous cases.
Case 351624. Finally, if w contains 351624 in positions n1 through n6,
we may use u = (n1 n3 n6 n4)(n2 n5)w and argue as before. �

5. Pattern avoidance implies br(w) = re(w)

Let Ŝn ⊆ Sn denote the set of permutations that avoid the four
patterns 4231, 35142, 42513, 351624.
In this section we will represent permutations π ∈ Sn by rook di-

agrams. These are n by n square boards with a rook in entry (i, j),
i.e. row i and column j, if iπ = j. If x is a rook, we will write xi for
its row number and xj for its column number.
The inversion graph of π, denoted by Gπ, is a simple undirected

graph with the rooks as vertices and an edge between two rooks if they
form an inversion of π, i.e. if one of them is south-west of the other one.
Let ao(π) = ao(Gπ) denote the number of acyclic orientations of Gπ.
Note that ao(π) equals the number of regions re(π) of the hyperplane
arrangement A′

π.
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Figure 1. The shaded region constitutes the right hull
of the permutation 35124.

Following Postnikov [12], we will call a permutation π chromobruhatic
if br(π) = ao(π). (A motivation for this appellation is given in Sec-

tion 8.) Our goal in this section is to prove that all π ∈ Ŝn are chromo-
bruhatic. This will be accomplished as follows: First we show that if
π (or its inverse) has something called a reduction pair, which is a pair
of rooks with certain properties, then there is a recurrence relation for
br(π) in terms of br(ρ) for some permutations ρ ∈ Ŝn ∪ Ŝn−1 that are
“simpler” than π in a sense that will be made precise later. It turns out
that the very same recurrence relation also works for expressing ao(π)

in terms of a few ao(ρ). Finally, we show that every π ∈ Ŝn except the
identity permutation has a reduction pair, and hence br(π) = ao(π) by
induction.
We will need two useful lemmas about the Bruhat order on the sym-

metric group. The first is a well-known variant of Proposition 2.2 (see
e.g. [9]). A square that has a rook strictly to the left in the same row
and strictly below it in the same column is called a bubble.

Lemma 5.1. Let π, σ ∈ Sn. Then σ ≤ π in the Bruhat order if and
only if σ[i, j] ≤ π[i, j] for every bubble (i, j) of π.

If π avoids the forbidden patterns, there is an even simpler criterion.
Define the right hull of π, denoted by HR(π), as the set of squares in
the rook diagram of π that have at least one rook weakly south-west of
them and at least one rook weakly north-east of them. Figure 1 shows
an example. The following lemma is due to Sjöstrand [13].

Lemma 5.2. Let π ∈ Ŝn and σ ∈ Sn. Then σ ≤ π in the Bruhat
order if and only if all rooks of σ lie in the right hull of π.

For a permutation π ∈ Sn, the rook diagram of the inverse permu-
tation π−1 is obtained by transposing the rook diagram of π. Define
π	 = π0ππ0, where π0 = n(n − 1) · · ·1 denotes the maximum element
(in the Bruhat order) of Sn. Note that the rook diagram of π	 is
obtained by a 180 degree rotation of the rook diagram of π.

Observation 5.3. The operations of transposition and rotation of the
rook diagram of a permutation have the following properties.
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(a) They are automorphisms of the Bruhat order, i.e.

σ ≤ τ ⇔ σ−1 ≤ τ−1 ⇔ σ	 ≤ τ	 ⇔ (σ	)−1 ≤ (τ	)−1.

(b) They induce isomorphisms of inversion graphs, so

Gσ
∼= Gσ−1

∼= Gσ	
∼= G(σ	 )−1 .

(c) The set of the four forbidden patterns is closed under transpo-
sition and rotation, so

σ ∈ Ŝn ⇔ σ−1 ∈ Ŝn ⇔ σ	 ∈ Ŝn ⇔ (σ	)−1 ∈ Ŝn.

From (a) and (b) it follows that σ, σ−1, σ	 and (σ	)−1 are either all
chromobruhatic or all non-chromobruhatic.

If x is a rook in the diagram of π then the image of x under any
composition of transpositions and rotations is a rook in the diagram
of the resulting permutation. In what follows, we sometimes discuss
properties that the image rook (also called x) has in the resulting di-
agram, while still thinking of x as lying in its original position in the
diagram of π.

Definition 5.4. Let π ∈ Sn and let x, y be a pair of rooks that is a
descent, i.e. yi = xi − 1 and xj < yj. Then, x, y is a light reduction
pair if we have the situation in Figure 2(a), i.e.

• there is no rook a with ai < yi and aj > yj, and
• there is no rook a with ai > xi and xj < aj < yj.

The pair x, y is called a heavy reduction pair if we have the situation
in Figure 2(b), i.e.

• there is no rook a with ai > xi and aj < xj,
• there is no rook a with ai < yi and aj > yj, and
• there is no pair of rooks a, b such that ai < yi and bi > xi and
xj < aj < bj < yj (or, equivalently, there is some xj ≤ j < yj
such that the regions [1, yi− 1]× [xj +1, j] and [xi +1, n]× [j+
1, yj − 1] are both empty).

Lemma 5.5. Let π ∈ Ŝn and assume that

(a) all ρ ∈ Ŝn below π in Bruhat order, and

(b) all ρ ∈ Ŝn−1 are chromobruhatic.

Then, π is chromobruhatic if at least one of π, π−1, π	 and (π	)−1 has
a reduction pair.

Proof. If one of π, π−1, π	 and (π	)−1 has a light reduction pair, then
by Observation 5.3, π, π−1, π	 and (π	)−1 all satisfy conditions (a)
and (b), so we may assume that π has a light reduction pair x, y. On
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(a)

x
y

(b)

x
y

Figure 2. (a) A light reduction pair. (b) A heavy re-
duction pair. The shaded areas are empty. The size of
the lighter shaded areas depends on the underlying per-
mutation.

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

4231 35142 42513 351624

Figure 3. The four forbidden patterns.

the other hand, if none of π, π−1, π	 and (π	)−1 has a light reduction
pair, then one of them has a heavy reduction pair x, y and we may
assume that it is π.
In either case, replace x by a rook x′ immediately above it, and

replace y by a rook y′ immediately below it. The resulting permutation
ρ is below π in the Bruhat order. Note that ρ ∈ Ŝn — a forbidden
pattern in ρ must include both of x′ and y′ but an inspection of the
forbidden patterns in Figure 3 and the reduction pair situations in
Figure 2 reveals that this is impossible. Thus, by the assumption in
the lemma we conclude that ρ is chromobruhatic.
Case 1: x, y is a light reduction pair in π. What permutations

are below π but not below ρ in the Bruhat order? Note that ρ has
the same bubbles as π, plus an additional bubble immediately above
y′, i.e. at the position of y. Now, Lemma 5.1 yields that the only
permutations below π that are not below ρ are the ones with a rook
at the position of y. These are in one-one correspondence with the
permutations weakly below the permutation π − y ∈ Sn−1 that we
obtain by deleting y from π together with its row and column. Thus,
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(a)

x
y

b

a

(b)

x′

y′

b

a

Figure 4. (a) The heavy reduction pair x, y in π. The
shaded areas are empty and the thick lines show segments
of the border of the right hull of π. (b) The right hull of
ρ is the same as that of π, except for the two squares of
x and y.

we have

(1) br(π) = br(ρ) + br(π − y).

Now consider the inversion graphs of π, ρ and π − y. It is not hard to
show that Gρ is isomorphic to the graphGπ\{x, y} obtained by deletion
of the edge {x, y}. Since all neighbors of y′ are also neighbors of x′

in Gρ, the graph Gπ−y = Gρ−y′ is isomorphic to the graph Gπ/{x, y}
obtained by contraction of the edge {x, y}. It is a well-known fact that,
for any edge e in any simple graph G, the number of acyclic orientations
satisfies the recurrence relation ao(G) = ao(G \ e) + ao(G/e). Thus, in
our case we get

(2) ao(π) = ao(ρ) + ao(π − y).

The right-hand sides of equations (1) and (2) are equal since ρ and
π − y are chromobruhatic. We conclude that br(π) = ao(π) so that π
also is chromobruhatic.
Case 2: x, y is a heavy reduction pair in π, and none of

π, π−1, π	 and (π	)−1 has a light reduction pair. Since y, x is
not a light reduction pair in π	, there exists a rook a in the region
A = [1, yi − 1] × [xj + 1, yj − 1]. Analogously, since x, y is not a light
reduction pair in π, there exists a rook b in the region B = [xi+1, n]×
[xj + 1, yj − 1]. As can be seen in Figure 4, the right hulls of π and
ρ are the same except for the two squares containing x and y, which
belong to HR(π) but not to HR(ρ).
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By Lemma 5.2 and inclusion-exclusion, we get

(3) br(π) = br(ρ) + br(π − x) + br(π − y)− br(π − x− y)

where π − x − y ∈ Sn−2 is the permutation whose rook diagram is
obtained by deleting both of x and y together with their rows and
columns.
Now, for any permutation σ, let χσ(t) = χGσ

(t) denote the chromatic
polynomial of the inversion graph Gσ (so for each positive integer n,
χGσ

(n) is the number of vertex colorings with at most n colors such
that neighboring vertices get distinct colors. The following argument
is based on an idea by Postnikov. It is a well-known fact that ao(G) =
(−1)nχG(−1) for any graph G with n vertices. Since Gρ = Gπ \ {x, y},
the difference χρ(t)−χπ(t) is the number of t-colorings of Gρ where x′

and y′ have the same color.
Let C be any t-coloring of Gπ−x−y using, say, α different colors for the

vertices in A and β different colors for those in B. Since the subgraph
of Gπ induced by A ∪ B is a complete bipartite graph, the coloring
C must use α + β different colors for the vertices in A ∪ B. We can
extend C to a coloring of Gπ−y by coloring the vertex x with any of the
t − α colors that are not used for the vertices in A. Analogously, we
can extend C to a coloring of Gπ−x by coloring the vertex y with any
of the t− β colors that are not used in B. Finally, we can extend C to
a coloring of Gρ where x′ and y′ have the same color, by choosing this
color among the t − α − β colors that are not used for the vertices in
A ∪B. Summing over all t-colorings C of Gπ−x−y yields

χρ(t)− χπ(t) =
∑

C

(t− α− β)

=
∑

C

(t− β) +
∑

C

(t− α)−
∑

C

t

= χπ−x(t) + χπ−y(t)− tχπ−x−y(t).

Using that ao(G) = (−1)nχG(−1) for a graph G with n vertices, we
finally obtain

(4) ao(π) = ao(ρ) + ao(π − x) + ao(π − y)− ao(π − x− y).

The right-hand sides of equations 3 and 4 are equal by the assump-
tion in the lemma. Thus, br(π) = ao(π) and we conclude that π is
chromobruhatic. �

Let π ∈ Sn be any nonidentity permutation. Then there is a pair of
rooks x, y that is the first descent of π, i.e. xi = min{i : iπ < (i−1)π}
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x̄

ȳ

x
y

Ā

A

Figure 5. The situation of case 1. It is possible that
x = x̄.

and yi = xi − 1. Analogously, let x̄, ȳ be the first descent of π−1,
i.e. x̄j = min{j : jπ−1 < (j − 1)π−1} and ȳj = x̄j − 1.

Proposition 5.6. For any nonidentity π ∈ Ŝn, either x, y is a reduc-
tion pair in π or x̄, ȳ is a reduction pair in π−1, or both.

Proof. We suppose neither of x, y and x̄, ȳ is a reduction pair, and our
goal is to find a forbidden pattern.
If π(1) = 1 it suffices to look at the rook configuration on the smaller

board [2, n]× [2, n] since the pairs x, y and x̄, ȳ on that board are not
reduction pairs either. Thus, we may assume that π(1) > 1.
Let z be the rook in row 1 and let z̄ be the rook in column 1. From

our assumption that x, y is not a light reduction pair in π, and
the fact that the rooks x, y represent the first descent in π, it follows

that there is a rook a in the region A = [xi + 1, n] × [xj + 1, yj − 1].
If x is in column 1, our assumption that x, y is not a heavy reduction
pair implies that y 6= z and that there is a rook b in the region B =
[xi + 1, n]× [zj + 1, yj − 1], because z is the leftmost rook in the rows
above y. Analogously, since x̄, ȳ is not a reduction pair in π−1, there is
a rook ā ∈ Ā = [x̄i + 1, ȳi − 1]× [x̄j + 1, n], and if x̄ is in the first row,
then ȳ 6= z̄ and there is a rook b̄ ∈ B̄ = [z̄i + 1, ȳi − 1]× [x̄j + 1, n].
By the construction of x, all rooks in rows above of x are weakly to

the right of z, so z̄ is weakly below x. Analogously, z is weakly to the
right of x̄. This implies that either x̄ is weakly below x, or x̄ = z, and
analogously, either x is weakly to the right of x̄, or x = z̄.
Case 1: x 6= z̄ and x̄ 6= z as in Figure 5. If a is above ȳ, then

the rooks y, x, a, ȳ form the forbidden pattern 4231. Analogously, if ā
is to the left of y, then the rooks y, x̄, ā, ȳ form the forbidden pattern
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x̄

ȳ

x

z

y

Ā

B

Figure 6. The situation of case 2. (If we transpose the
diagram and let each letter change places with its barred
variant, we obtain the situation of case 3.)

ȳ

x

x̄

y

B̄

B

Figure 7. The situation of case 4.

4231. Finally, if a is below ȳ and ā is to the right of y, then the rooks
y, x, ā, ȳ, a form the forbidden pattern 42513.
Case 2: x = z̄ but x̄ 6= z as in Figure 6. As before, if ā is to the

left of y, then the rooks y, x̄, ā, ȳ form the forbidden pattern 4231. If b
is above ȳ, then z, y, x, b, ȳ form the pattern 35142. Finally, if ā is to
the right of y and b is below ȳ, then y, x̄, ā, ȳ, b form the pattern 42513.
Case 3: x 6= z̄ but x̄ = z. This is just the “transpose” of case 2.
Case 4: x = z̄ and x̄ = z as in Figure 7. If there is a rook

b̃ ∈ B ∩ B̄, then x̄, y, x, b̃, ȳ form the pattern 35142. But if b is below
ȳ and b̄ is to the right of y, then z, y, z̄, b̄, ȳ, b form the last forbidden
pattern 351624. �

Combining Lemma 5.5 and Proposition 5.6, yields the following two
corollaries via induction.
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Corollary 5.7. A permutation is chromobruhatic if it avoids the pat-
terns 4231, 35142, 42513 and 351624.

Recall that the right and left weak orders on Sn are defined by
u ≤R w ⇔ INV(u) ⊆ INV(w) and u ≤L w ⇔ INV(u−1) ⊆ INV(w−1).
The two-sided weak order is the transitive closure of the union of the
right and left weak orders.

Corollary 5.8. Every chromobruhatic permutation is connected to the
identity permutation via a saturated chain of chromobruhatic permuta-
tions in the two-sided weak order.

6. Another characterization of permutations that avoid

the four patterns

In this section we demonstrate a feature of the injection φ : C↓ →
[e, w] that we call the “going-down property”. As a consequence, yet
another characterization of permutations that avoid 4231, 35142, 42513
and 351624 is deduced. It implies, in particular, that avoidance of these
patterns is a combinatorial property of the principal ideal a permuta-
tion generates in the Bruhat order.

Lemma 6.1. Let (W,S) be any finitely generated Coxeter system.
Suppose s1 · · · sk is a reduced expression for w ∈ W . Define ti =
s1 · · · si · · · s1 ∈ Tw. Assume there exist 1 ≤ i1 < · · · < im ≤ k
such that ti1 · · · timw = u and that the string (im, . . . , i1) is lexico-
graphically maximal with this property (for fixed m and u). Then,
w > timw > tim−1

timw > · · · > ti1 · · · timw = u.

Proof. In order to arrive at a contradiction, let us assume tij · · · timw >
tij+1

· · · timw = b. The strong exchange property (Proposition 2.4) im-
plies that an expression for b can be obtained from s1 · · · ŝij · · · ŝim · · · sk
by deleting a letter sx.
If x < ij , then tij = tx and w = t2ijw = s1 · · · ŝx · · · ŝij · · · sk, contra-

dicting the fact our original expression for w is reduced.
Now suppose x > ij ; say ij ≤ il < x < il+1 (where we have defined

im+1 = k + 1). Hence, u = ti1 · · · tij−1
tij+1

· · · tiltxtil+1
· · · timw. This,

however, contradicts the maximality of (i1, . . . , im). �

Proposition 6.2 (Going-down property of φ). Choose C = {0̂ = X0⊳

X1 ⊳ · · ·⊳Xm} ∈ C↓. Assume λ(Xi−1 ⊳Xi) = Hji with corresponding
reflection tji. Then, tji · · · tjmw < tji+1

· · · tjmw for all i.

Proof. Applying Lemma 6.1, it suffices to show that (jm, . . . , j1) is lex-
icographically maximal in the set {(pm, . . . , p1) ∈ [k]m | pm > · · · >
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p1 and tp1 · · · tpm = tj1 . . . tjm}. Let us deduce a contradiction by as-
suming that (j′m, . . . , j

′
1) is a lexicographically larger sequence in this

set. Suppose i is the largest index for which ji 6= j′i. We have Hj′i
⊇ Xi,

because, by Proposition 2.3 and Lemma 3.2, Xi is the fixed point space
of tj1 · · · tji = tj′

1
· · · tj′i which is an element of absolute length i. Ob-

serving that j′i > ji, i.e. Hji > Hj′i
, the construction of λ implies

λ(Xα−1 ⊳ Xα) ≤ Hj′i
for some α ∈ [i]. However, this contradicts the

fact that λ(Xα−1 ⊳Xα) ≥ Hji for all such α. �

Given u ≤ w ∈ W , let aℓ(u, w) denote the directed distance from u
to w in the directed graph (the Bruhat graph [7]) on W whose edges
are given by x → tx whenever t ∈ T and ℓ(x) < ℓ(tx). Observe that
aℓ(u, w) ≥ ℓ′(uw−1) in general.

Theorem 6.3. Let w ∈ Sn. The following assertions are equivalent:

• w avoids 4231, 35142, 42513 and 351624.
• ℓ′(uw−1) = aℓ(u, w) for all u < w.

Proof. If w avoids the given patterns, φ is surjective. Proposition 6.2
then shows that for any u < w there is a directed path of length
ℓ′(uw−1) from u to w in the Bruhat graph.
For the converse implication, suppose w contains at least one of the

patterns. By the proof of Theorem 4.1, there exists some u < w such
that uw−1 cannot be written as a product of ℓ′(uw−1) inversions of w.
On the other hand, whenever there is a directed path from u to w of
length p, then uw−1 can be written as a product of p inversions of w
(this follows from the strong exchange property). Hence, aℓ(u, w) >
ℓ′(uw−1). �

Corollary 6.4. Suppose w1 ∈ Sn avoids 4231, 35142, 42513 and
351624 whereas w2 ∈ Sn does not. Then, [e, w1] 6∼= [e, w2] as posets.

Proof. Let u ≤ w ∈ W . Denote by BG(u, w) the subgraph of the
Bruhat graph on W induced by the elements in the Bruhat interval
[u, w]. It is known [7, Proposition 3.3] that the isomorphism type of
[u, w] determines the isomorphism type of BG(u, w).
Now suppose w ∈ Sn contains one of the four patterns. In the proof

of Theorem 4.1, we produced elements u < w such that uw−1 cannot be
written as a product of ℓ′(uw−1) inversions of w. A closer examination
of these elements reveals that, for each such u, there is a transposition
t such that tu < u and ℓ′(tuw−1) = aℓ(tu, w) = ℓ′(uw−1) − 1.1 Thus,

1For example, if the pattern 42513 occurs in positions n1, . . . , n5, we have uw
−1 =

(n2 n5 n3)(n1 n4). Observe that n2u = n5w and n3u = n2w. Hence, t = (n2 n3)
with (n2, n3) ∈ INV(u). Now, tuw−1 = (n3 n5)(n1 n4), ℓ

′(tuw−1) = 2 and tu →
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BG(e, w) contains an undirected path from u to w of length ℓ′(uw−1).
Therefore, it is possible to determine from the combinatorial type of
[e, w] that it contains an element u with aℓ(u, w) > ℓ′(uw−1). �

7. Inequality of Betti numbers

In this section we use the bijection φ to derive, for w ∈ Ŝn, inequal-
ities relating the ranks of the cohomology groups of the complexified
hyperplane arrangement A′C

w and the closure of the cell corresponding
to w in the Bruhat decomposition of the flag manifold.
Let B be a Borel subgroup of G = GLn(C). The Schubert cells

(or Bruhat cells) BwB/B (w ∈ Sn) determine a cell decomposition of
the complex flag manifold G/B. The closure of each such cell admits a
regular decomposition into cells indexed by permutations in the Bruhat
interval [e, w], that is, BwB/B = ∪π≤wBπB/B. All Schubert cells

are even-dimensional. It follows that
∑

i β
2i(BwB/B)qi =

∑
π≤w qℓ(π).

That is, β2i(BwB/B) counts the number of elements u ∈ [e, w] with
ℓ(u) = i. This is well known, see for instance [4, 8, 9].
The linear equations determining the hyperplanes in an arrangement

A in Rn also define hyperplanes in Cn. These complex hyperplanes
yield the complexified arrangement AC.
For the complexified hyperplane arrangement A′C

w we have the Orlik-
Solomon formula for the Betti numbers of the complement of a complex
hyperplane arrangement,

βi(Cn \ ∪A′C
w) =

∑

x∈Lw:rank(x)=i

|µ(0̂, x)|.

See [2] for background on subspace arrangements. As noted above, the
theory for lexicographic shellability of posets [1] says that |µ(0̂, x)| is
the number of descending saturated chains in the EL-labeling λ starting
at 0̂ and ending at x.

Proposition 7.1. For any permutation w ∈ Sn that avoids the pat-
terns 4231, 35142, 42513, and 351624, we have for r ≥ 0 that

(1)
∑r

i=0 β
2(ℓ(w)−i)(BwB/B) ≤

∑r
i=0 β

i(Cn \ A′C
w),

(2)
∑r

j=0 β
2(ℓ(w)−2j)(BwB/B) ≤

∑r
j=0 β

2j(Cn \ A′C
w) and

(3)
∑r

j=0 β
2(ℓ(w)−2j−1)(BwB/B) ≤

∑r
j=0 β

2j+1(Cn \ A′C
w).

When r is maximal, that is, when the sum is taken over all non-zero
Betti numbers, we have equality. This occurs when r = ℓ(w), r =
⌊ℓ(w)/2⌋ and r = ⌊(ℓ(w)− 1)/2⌋, respectively.

(n3 n5)tu → (n1 n4)(n3 n5)tu = w is a directed path in BG(e, w) of length 2. The
remaining three cases are similar.
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Proof. We use the notation introduced in Section 3. Let s1 . . . sk be
a reduced expression for w. The right hand side in (1) counts chains
C ∈ C↓ of length at most r. Each such chain of length i gives a
word p(C) of length i in the alphabet t1, . . . , tk. By Lemma 3.2 we
have ℓ′(p(C)) = i and thus ℓ(φ(C)) ≤ ℓ(w) − i. By Theorem 3.3 φ is
injective and the inequality follows.
Since multiplication by a transposition tj always changes the length

of w ∈ Sn by an odd number, the other two inequalities follow.
The map φ is by Theorem 3.4 a bijection between chains with de-

scending labels and elements in the Bruhat interval [e, w] which gives
equality of the number of plausible words in the tjs and sjs respec-
tively. �

Note that these inequalities are not true in general for permutations
not avoiding the four patterns. In fact, if w /∈ Ŝn and r = ℓ(w) we
know by Theorem 4.1 that the inequality (1) does not hold.

8. Chromatic polynomials and smooth permutations

Recall the directed distance aℓ(u, w) defined prior to Theorem 6.3.
In this section we will use the injective map φ from Proposition 3.1 to
show that the chromatic polynomial χGw

(t) of the inversion graphGw of

w ∈ Ŝn keeps track of the transposition distance aℓ(u, w) of elements
u ∈ [e, w]. We follow Postnikov and sometimes call a permutation
chromobruhatic if it avoids the four forbidden patterns.

Theorem 8.1. For any permutation w ∈ Sn, the polynomial identity
∑

u∈[e,w]

qaℓ(u,w) = (−q)nχGw
(−q−1),

holds if and only if w avoids the patterns 4231, 35142, 42513 and
351624.

Proof. It is well-known (see e.g. [14]) that

χGw
(t) =

∑

X∈Lw

µ(X)tdimX =
∑

X∈Lw

(−1)codimX |µ(X)|tdimX .

Lemma 3.2 implies that if u = φ(0̂ = X0 ⊳ X1 ⊳ · · · ⊳ Xm) then
ℓ′(uw−1) = m = codim(Xm). If w avoids the four patterns we have by
Theorem 6.3 that ℓ′(uw−1) = aℓ(u, w) and thus

∑

X∈Lw

(−1)codimX |µ(X)|tdimX =
∑

u∈[e,w]

(−1)aℓ(u,w)tn−aℓ(u,w),
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since φ is bijective. If w does contain one of the four patterns Theorem
4.1 gives inequality by substituting t = −1.
Finally, make the substitution t = −q−1. �

A well-known criterion, due to Lakshmibai and Sandhya [10], says

that for a permutation w ∈ Sn, the Schubert variety BwB/B is smooth
if and only if w avoids the patterns 3412 and 4231. Let us say that such
a permutation itself is smooth. Note that every smooth permutation is
chromobruhatic.
Given w ∈ Sn and regions r and r′ of Rn−1\A′

w, let d(r, r
′) denote the

number of hyperplanes of A′
w that separate r and r′. Let r0 be the re-

gion that contains the point (1, . . . , n), and define Rw(q) =
∑

r q
d(r0,r),

where the sum is taken over all regions of A′
w.

Recently, Oh, Postnikov, and Yoo [11] showed that the Poincaré
polynomial

∑
u∈[e,w] q

ℓ(u) equals Rw(q) if and only if w is smooth. They

also link this polynomial to the chromatic polynomial χGw
(t), and they

are able to compute the latter, which is very useful for us.
An index r ∈ {1, . . . , n} is a record position of a permutation w ∈ Sn

if rw > max{1w, . . . , (r − 1)w}. For i = 1, . . . , n, let ri and r′i be the
record positions of w such that ri ≤ i < r′i and there are no other
record positions between ri and r′i. (Set r

′
i = +∞ if there are no record

positions greater than i.) Let

ei = #{j | ri ≤ j < i, jw > iw}+#{k | r′i ≤ k ≤ n, kw < iw}.

Theorem 8.2 (Oh, Postnikov, Yoo). For any smooth permutation w ∈
Sn, the chromatic polynomial of the inversion graph of w is given by
χGw

(t) = (t− e1)(t− e2) · · · (t− en).

Combining this with Theorem 8.1 allows us to compute the trans-
position distance generating function

∑
u∈[e,w] q

aℓ(u,w) for any smooth
permutation w ∈ Sn.

9. Example: the permutation w = 4132

Consider the symmetric group W = S4 generated by the adjacent
transpositions S = {s1 = (1 2), s2 = (2 3), s3 = (3 4)}, and let w =
4132 = s1s2s3s2 so that t1 = s1 = (1 2), t2 = s1s2s1 = (1 3), t3 =
s1s2s3s2s1 = (1 4), and t4 = s3 = (3 4). The intersection lattice LW

is isomorphic to the lattice of partitions of the set {1, 2, 3, 4} ordered
by refinement. (For instance, the partition 13|24 corresponds to the
set {(x1, x2, x3, x4) ∈ R4 | x1 = x3 and x2 = x4} ∈ LW .) With this
notation, the lattice Lw looks like this:
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1234

123|4

4

124|3

4

12|34

3

134|2

1

12|3|4

2
3

4

13|2|4

1
4

14|2|3

1
4

1|2|34

1
3

1|2|3|4

1 2 3 4

Here the coverings are labelled by indices; for instance, since λ(12|3|4⊳
12|34) = H4, that edge is labelled by 4. After finding the decreasing
chains C ∈ C↓, we obtain the following table.

C p(C) p(C)w

0̂ e s1s2s3s2 = 4132

0̂⊳ 12|3|4 t1 s2s3s2 = 1432

0̂⊳ 12|3|4⊳ 123|4 t1t2 s3s2 = 1342

0̂⊳ 12|3|4⊳ 123|4⊳ 1234 t1t2t4 s3 = 1243

0̂⊳ 12|3|4⊳ 124|3 t1t3 e = 1234

0̂⊳ 12|3|4⊳ 124|3⊳ 1234 t1t3t4 s2 = 1324

0̂⊳ 12|3|4⊳ 12|34 t1t4 s2s3 = 1423

0̂⊳ 13|2|4 t2 s1s3s2 = 3142

0̂⊳ 13|2|4⊳ 134|2 t2t4 s1s3 = 2143

0̂⊳ 14|2|3 t3 s1 = 2134

0̂⊳ 14|2|3⊳ 134|2 t3t4 s1s2 = 3124

0̂⊳ 1|2|34 t4 s1s2s3 = 4123

Now, we draw the Bruhat graph of the interval [e, w] with labelled fat
edges forming paths that encode the decreasing chains C.

4132

1432

t1

3142

t2

4123

t4

1342

t1

1423

t1

2143

t2

3124

t3

1243

t1

1324

t1

2134

t3

1234

t1
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By Theorem 3.3, the fat edges form a tree, and by Proposition 6.2, the
fat paths go down from w. By Corollary 5.7, the fat tree spans all of
[e, w].
Assume a chain C = {0̂ = X0 ⊳ · · · ⊳ Xm} ∈ C↓, is such that the

smallest hyperplane Hk does not contain Xm. Then the chain C2 =
{X0 ⊳ · · ·⊳Xm ⊳ (Xm ∩Hk)} ∈ C↓. This implies that p(C2) = p(C)tk
and we may thus add tk from the right to any word of descending labels
p(C). Hence the tree of descending words consists of two isomorphic
(as edge labelled graphs) copies connected by an edge labelled tk.
Finally, let us relate Theorem 8.1 to our example. In the figure above,

we see that
∑

u∈[e,w] q
aℓ(u,w) = 1+ 4q + 5q2 + 2q3, and by Theorem 8.2,

χGw
(t) = (t − 1)(t − 0)(t − 1)(t − 2). The reader may check that∑

u∈[e,w] q
aℓ(u,w) = (−q)nχGw

(−q−1) as stated in Theorem 8.1.

10. Open problems

In this last section, we present some ideas for future research. Some
of the open problems are intentionally left vague, while others are more
precise.
In Theorem 3.3, we showed that the map φ : C↓ → [e, w] is injec-

tive for any finite Coxeter group, but it is not surjective in general.
When the forbidden patterns are avoided, we use an inductive count-
ing argument showing that the finite sets C↓ and [e, w] have the same
cardinality — then surjectivity of φ follows from injectivity.

Open problem 10.1. Is there a direct proof of the surjectivity of φ
or, if not, is there another bijection C↓ ↔ [e, w] whose bijectivity can
be proved directly.

Open problem 10.2. When φ is not surjective, what is its image?

Considering Betti numbers, see Section 7, one can deduce that the
number of elements of even length not lying in the image of φ equals
the number of such elements of odd length. In particular, evenly many
elements of [e, w] do not lie in the image of φ.

Open problem 10.3. Find a criterion for the surjectivity of φ in an
arbitrary finite reflection group.

As noted in the introduction, our work (following Postnikov) marks
the third appearance of the four patterns 4231, 35142, 42513, and
351624 in the study of flag manifolds and Bruhat order. The first time
was in 2002 when Gasharov and Reiner [9] studied the cohomology
of smooth Schubert varieties in partial flag manifolds. In their paper,
they find a simple presentation for the integral cohomology ring, and it
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turns out that this presentation holds for a larger class of subvarieties
of partial flag manifold, namely the ones defined by inclusions. They
characterize these varieties by the same pattern avoidance condition
that apppears in our work.
More recently, Sjöstrand [13] used the pattern condition to charac-

terize permutations whose right hull covers exactly the lower Bruhat
interval below the permutation; see Lemma 5.2.
As is discussed in [13] there seems to be no direct connection between

the “right hull” result and the “defined by inclusions” result. Though
we use Sjöstrand’s result in the proof of Lemma 5.5, we have not found
any simple reason why the same pattern condition turns up again.

Open problem 10.4. Is there a simple reason why the same pattern
condition turns up in three different contexts: Gasharov and Reiner’s
“defined by inclusions”, Sjöstrand’s “right hull”, and Postnikov’s (now
proved) conjecture?

Open problem 10.5. Does the poset structure of the Bruhat interval
determine the intersection lattice uniquely? In other words, for any
two finite Coxeter systems (W,S) and (W ′, S ′) and elements w ∈ W ,
w′ ∈ W ′, does [e, w] ∼= [e′, w′] imply Lw

∼= Lw′?

It is not hard to check that the assertion is true for ℓ(w) ≤ 4.
Finally, it would be interesting to know whether our results could be

extended to general Bruhat intervals, i.e. [u, w] with u 6= e.

Open problem 10.6. Given a (finite) Coxeter system (W,S) and
u, w ∈ W with u ≤ w in Bruhat order, is there a hyperplane arrange-
ment Au,w, naturally associated with u and w, which has as many re-
gions as there are elements in [u, w] (at least for u, w in some interest-
ing subset of W )?

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans.
Amer. Math. Soc. 260 (1980), 159–183.

[2] A. Björner, Subspace Arrangements, in “First European Congress of Math-
ematics, Paris 1992”, (eds. A. Joseph et al), Progress in Math. Series, 119,
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