FROM BRUHAT INTERVALS TO INTERSECTION LATTICES AND A CONJECTURE OF POSTNIKOV

AXEL HULTMAN, SVANTE LINUSSON, JOHN SHARESHIAN, AND JONAS SJÖSTRAND

Abstract

We prove the conjecture of A. Postnikov that (A) the number of regions in the inversion hyperplane arrangement associated with a permutation $w \in \mathfrak{S}_{n}$ is at most the number of elements below w in the Bruhat order, and (B) that equality holds if and only if w avoids the patterns $4231,35142,42513$ and 351624 . Furthermore, assertion (A) is extended to all finite reflection groups.

A byproduct of this result and its proof is a set of inequalities relating Betti numbers of complexified inversion arrangements to Betti numbers of closed Schubert cells. Another consequence is a simple combinatorial interpretation of the chromatic polynomial of the inversion graph of a permutation which avoids the above patterns.

1. Introduction

We confirm a conjecture of A. Postnikov [12, Conj 24.4(1)], relating the interval below a permutation $w \in \mathfrak{S}_{n}$ in the Bruhat order and a hyperplane arrangement determined by the inversions of w. Definitions of key objects discussed but not defined in this introduction can be found in Section 2,

Fix $n \in \mathbb{N}$ and $w \in \mathfrak{S}_{n}$. An inversion of w is a pair (i, j) such that $1 \leq i<j \leq n$ and $i w<j w$. (Here we write w as a function acting from the right on $[n]:=\{1, \ldots, n\}$.) We write $\operatorname{INV}(w)$ for the set of inversions of w.

For $1 \leq i<j \leq n$, set

$$
H_{i j}:=\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n} \mid v_{i}=v_{j}\right\},
$$

so $H_{i j}$ is a hyperplane in \mathbb{R}^{n}. Set

$$
\mathcal{A}_{w}^{\prime}:=\left\{H_{i j} \mid(i, j) \in \operatorname{INV}(w)\right\}
$$

so \mathcal{A}_{w}^{\prime} is a central hyperplane arrangement in \mathbb{R}^{n}. Let re (w) be the number of connected components of $\mathbb{R}^{n} \backslash \cup \mathcal{A}_{w}^{\prime}$. Let $\operatorname{br}(w)$ be the size of the ideal generated by w in the Bruhat order on \mathfrak{S}_{n}.

[^0]The first part of Postnikov's conjecture is that
(A) for all $n \in \mathbb{N}$ and all $w \in \mathfrak{S}_{n}$ we have $\operatorname{re}(w) \leq \operatorname{br}(w)$.

In Theorem 3.3 below, we give a generalization of (A) that holds for all finite reflection groups.

Let $m \leq n$, let $p \in \mathfrak{S}_{m}$ and let $w \in \mathfrak{S}_{n}$. We say w avoids p if there do not exist $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that for all $j, k \in[m]$ we have $i_{j} w<i_{k} w$ if and only if $j p<k p$. The second part of Postnikov's conjecture is that
(B) for all $n \in \mathbb{N}$ and all $w \in \mathfrak{S}_{n}$, we have $\operatorname{br}(w)=\operatorname{re}(w)$ if and only if w avoids all of 4231, 35142, 42513 and 351624.

Here we have written the four permutations to be avoided in one line notation, that is, we write $w \in \mathfrak{S}_{n}$ as $1 w \cdots n w$. As is standard, we call the permutations to be avoided patterns. With Theorem 4.1 we show that avoidance of the four given patterns is necessary for the equality of $\operatorname{br}(w)$ and $\mathrm{re}(w)$ and with Corollary 5.7 we show that this avoidance is sufficient, thus proving all of Postnikov's conjecture.

We remark that the avoidance of the four given patterns has arisen in work of Postnikov on total positivity ($[12]$), work of Gasharov and Reiner on Schubert varieties in partial flag manifolds (9]) and work of Sjöstrand ([13]) on the Bruhat order. In Section 6, we give yet another characterization of the permutations that avoid these patterns.

The Bruhat order (on any Weyl group) describes the containment relations between the closures of Schubert cells in the associated flag variety (see for example [6, 8]). Inequality (A) (along with our proof of it) indicates that there might be some relationship between the cohomology of the closure of the Schubert cell indexed by w and the cohomology of the complexification of the arrangement \mathcal{A}_{w}^{\prime}. In Proposition 7.1 we provide three inequalities relating these objects when $w \in \mathfrak{S}_{n}$ avoids the four patterns mentioned above.

In Section 8, we show how the chromatic polynomial of the inversion graph of $w \in \mathfrak{S}_{n}$ (or, equivalently, the characteristic polynomial of $\left.\mathcal{A}_{w}^{\prime}\right)$ keeps track of the transposition distance from u to w for $u \leq w$ in Bruhat order. In Section 9 we provide an example to illustrate what our results say about a specific permutation, and in Section 10 we list some open problems.
Acknowledgement: Linusson is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. Shareshian is supported by NSF grant DMS0604233.

2. Prerequisites

In this section, we review basic material on hyperplane arrangements and Coxeter groups that we will use in the sequel. For more information on these subjects the reader may consult, for example, [14] and [3], respectively.

A Coxeter group is a group W generated by a finite set S of involutions subject only to relations of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=1$, where $m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \geq 2$ if $s \neq s^{\prime}$. The pair (W, S) is referred to as a Coxeter system.

The length, denoted $\ell(w)$, of $w \in W$ is the smallest k such that $w=s_{1} \cdots s_{k}$ for some $s_{1}, \ldots, s_{k} \in S$. If $w=s_{1} \cdots s_{k}$ and $\ell(w)=k$, then the sequence $s_{1} \cdots s_{k}$ is called a reduced expression for w.

Every Coxeter group admits a partial order called the Bruhat order.
Definition 2.1. Given $u, w \in W$, we say that $u \leq w$ in the Bruhat order if every reduced expression (equivalently, some reduced expression) for w contains a subword representing u. In other words, $u \leq w$ if whenever $w=s_{1} \cdots s_{k}$ with each $s_{i} \in S$ and $\ell(w)=k$, there exist $1 \leq i_{1}<\cdots<i_{j} \leq k$ such that $u=s_{i_{1}} \cdots s_{i_{j}}$.

Although it is not obvious from Definition [2.1, the Bruhat order is a partial order on W. Observe that the identity element $e \in W$ is the unique minimal element with respect to this order.

Given $u, w \in W$, the definition is typically not very useful for determinining whether $u \leq w$. When $W=\mathfrak{S}_{n}$ is a symmetric group, with S being the set of adjacent transpositions $(i i+1)$, the following nice criterion exists. For a permutation $w \in \mathfrak{S}_{n}$ and $i, j \in[n]=\{1, \ldots, n\}$, let

$$
w[i, j]=|\{m \in[i] \mid m w \geq j\}| .
$$

Let $P(w)=\left(a_{i j}\right)$ be the permutation matrix corresponding to $w \in \mathfrak{S}_{n}$ (so $a_{i j}=1$ if $i w=j$ and $a_{i j}=0$ otherwise). Then $w[i, j]$ is simply the number of ones weakly above and weakly to the right of position (i, j) in $P(w)$, that is, the number of pairs (k, l) such that $k \leq i, j \leq l$ and $a_{k l}=1$.

A proof of the next proposition can be found in [3].
Proposition 2.2 (Standard criterion). Given $u, v \in \mathfrak{S}_{n}$, we have $u \leq$ w in the Bruhat order if and only if $u[i, j] \leq w[i, j]$ for all $(i, j) \in[n]^{2}$.

In fact, it is only necessary to compare $u[i, j]$ and $w[i, j]$ for certain pairs (i, j); see Lemma 5.1 below.

Each finite Coxeter group W can be embedded in some $\mathrm{GL}_{n}(\mathbb{R})$ in such a way that the elements of S act as reflections. That is, having
fixed such an embedding, for each $s \in S$ there is some hyperplane H_{s} in \mathbb{R}^{n} such that s acts on \mathbb{R}^{n} by reflection through H_{s}. Thus a reflection in W is defined to be an element conjugate to an element of S. Letting T denote the set of reflections in W, we therefore have $T=\left\{w^{-1} s w \mid s \in\right.$ $S, w \in W\}$. Every finite subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ generated by reflections is a Coxeter group. A natural geometric representation of a Coxeter group W is an embedding of the type just described in which no point in $\mathbb{R}^{n} \backslash\{0\}$ is fixed by all of W.

Sometimes we work with the generating set T rather than S. We define the absolute length $\ell^{\prime}(w)$ as the smallest number of reflections needed to express $w \in W$ as a product. In the case of finite Coxeter groups, i.e. finite reflection groups, a nice formula for the absolute length follows from work of Carter [5, Lemma 2].

Proposition 2.3 (Carter [5]). Let W be a finite reflection group in a natural geometric representation. Then, the absolute length of $w \in W$ equals the codimension of the space of fixed points of w.

Next, we recall a convenient interaction between reflections and (not necessarily reduced) expressions. For a proof, the reader may consult [3, Theorem 1.4.3]. By a hat over an element, we understand deletion of that element.

Proposition 2.4 (Strong exchange property). Suppose $w=s_{1} \ldots s_{k}$ for some $s_{i} \in S$. If $t \in T$ has the property that $\ell(t w)<\ell(w)$, then $t w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$ for some $i \in[k]$.

A real hyperplane arrangement is a set \mathcal{A} of affine hyperplanes in some real vector space $V \cong \mathbb{R}^{n}$. We will assume that \mathcal{A} is finite. The arrangement \mathcal{A} is called linear if each $H \in \mathcal{A}$ is a linear subspace of \mathbb{R}^{n}. The intersection lattice of a linear arrangement \mathcal{A} is the set $L_{\mathcal{A}}$ of all subspaces of V that can be obtained by intersecting some elements of \mathcal{A}, ordered by reverse inclusion. (The minimal element V of $L_{\mathcal{A}}$ is obtained by taking the intersection of no elements of \mathcal{A} and will be denoted by $\hat{0}$.)

A crucial property of $L_{\mathcal{A}}$ is that it admits a so-called EL-labelling. The general definition of such labellings is not important to us; see [1] for details. Instead, we focus on the properties of a particular ELlabelling of $L_{\mathcal{A}}$, the standard labelling λ, which we now describe.

Let \triangleleft denote the covering relation of $L_{\mathcal{A}}$. Choose some total ordering of the hyperplanes in \mathcal{A}. To each covering $A \triangleleft B$ we associate the label

$$
\lambda(A \triangleleft B)=\min \{H \in \mathcal{A} \mid H \leq B \text { and } H \not \leq A\} .
$$

The complement $V \backslash \cup \mathcal{A}$ of the arrangement \mathcal{A} is a disjoint union of contractible connected components called the regions of \mathcal{A}. The number of regions can be computed from λ. Given any saturated chain $C=\left\{A_{0} \triangleleft \cdots \triangleleft A_{m}\right\}$ in $L_{\mathcal{A}}$, say that C is λ-decreasing if $\lambda\left(A_{i-1} \triangleleft A_{i}\right)>$ $\lambda\left(A_{i} \triangleleft A_{i+1}\right)$ for all $i \in[m-1]$.

Proposition 2.5 (Björner [1], Zaslavsky [15]). The number of regions of \mathcal{A} equals the number of λ-decreasing saturated chains that contain 0 .

Proof. It follows from the theory of EL-labellings [1] that the number of chains with the asserted properties is

$$
\sum_{A \in L_{\mathcal{A}}}|\mu(\hat{0}, A)|
$$

where μ is the Möbius function of $L_{\mathcal{A}}$. By a result of Zaslavsky [15], this number is precisely the number of regions of \mathcal{A}.

Given a finite Coxeter group W we may associate to it the Coxeter arrangement \mathcal{A}_{W}. This is the collection of hyperplanes that are fixed by the various reflections in T when we consider W as a finite reflection group in a standard geometric representation. The isomorphism type of $L_{\mathcal{A}}$ does not depend on the choice of standard representation.

3. From intersection lattices to Bruhat intervals

Let (W, S) be a finite Coxeter system. Fix a reduced expression $s_{1} \cdots s_{k}$ for some $w \in W$. Given $i \in[k]$, define the reflection

$$
t_{i}=s_{1} \cdots s_{i-1} s_{i} s_{i-1} \cdots s_{1} \in T
$$

The set $T_{w}=\left\{t_{i} \mid i \in[k]\right\}$ only depends on w and not on the chosen reduced expression. In fact, $T_{w}=\{t \in T \mid \ell(t w)<\ell(w)\}$. We call T_{w} the inversion set of w. If $W=\mathfrak{S}_{n}$ and T is the set of transpositions, then the transposition $(i j)$ lies in T_{w} if and only if $(i, j) \in \operatorname{INV}(w)$. Being reflections, the various t_{i} correspond to reflecting hyperplanes H_{i} in a standard geometric representation of W. Thus, w determines an arrangement of real linear hyperplanes

$$
\mathcal{A}_{w}=\left\{H_{i} \mid i \in[k]\right\}
$$

which we call the inversion arrangement of w. It is a subarrangement of the Coxeter arrangement \mathcal{A}_{W}.

Let us order the hyperplanes in \mathcal{A}_{w} by $H_{1}>H_{2}>\cdots>H_{k}$. We denote by λ the standard EL-labelling of the intersection lattice $L_{w}=$ $L_{\mathcal{A}_{w}}$ induced by this order. In particular, λ depends on the choice of reduced expression for w.

Let $\mathcal{C} \downarrow$ be the set of λ-decreasing saturated chains in L_{w} that include the minimum element $\hat{0}$. By Proposition 2.5, \mathcal{C}^{\downarrow} is in bijection with the set of regions of \mathcal{A}_{w}. We will construct an injective map from \mathcal{C}^{\downarrow} to the Bruhat interval $[e, w]$.

Let $C=\left\{\hat{0}=X_{0} \triangleleft X_{1} \triangleleft \cdots \triangleleft X_{m}\right\} \subset L_{w}$ be a saturated chain. Suppose, for each $i \in[m]$, we have $\lambda\left(X_{i-1} \triangleleft X_{i}\right)=H_{j_{i}}$. Define

$$
p(C)=t_{j_{1}} \cdots t_{j_{m}} \in W
$$

Proposition 3.1. If $C \in \mathcal{C}^{\downarrow}$, then $p(C) w \leq w$ in the Bruhat order. Thus, $C \mapsto p(C) w$ defines a map $\phi: \mathcal{C}^{\downarrow} \rightarrow[e, w]$.

Proof. When $C=\left\{\hat{0}=X_{0} \triangleleft X_{1} \triangleleft \cdots \triangleleft X_{m}\right\} \subset L_{w}$ is λ-decreasing, we have

$$
p(C) w=\prod_{i \in[k] \backslash\left\{j_{1}, \ldots, j_{m}\right\}} s_{i} .
$$

Thus, $p(C) w$ can be represented by an expression which is a subword of the chosen reduced expression for w.

A full description of ϕ when $w=(142) \in \mathfrak{S}_{4}$ appears in Section 9 , In order to deduce injectivity of ϕ, we need the following lemma.
Lemma 3.2. For every saturated chain $C=\left\{\hat{0}=X_{0} \triangleleft X_{1} \triangleleft \cdots \triangleleft\right.$ $\left.X_{m}\right\} \subset L_{w}$, we have $\ell^{\prime}(p(C))=m$.
Proof. We proceed by induction on m, the case $m=0$ being trivial.
By construction, $\ell^{\prime}(p(C)) \leq m$. Suppose, in order to deduce a contradiction, that the inequality is strict. The inductive hypothesis implies $\ell^{\prime}\left(p\left(C \backslash X_{m}\right)\right)=m-1$. Thus, $\ell^{\prime}(p(C))=m-2$. We may therefore write $p(C)=t_{1}^{\prime} \cdots t_{m-2}^{\prime}$ for some reflections $t_{i}^{\prime} \in T$ through corresponding hyperplanes H_{i}^{\prime}.

Recall the notation $\lambda\left(X_{i-1} \triangleleft X_{i}\right)=H_{j_{i}}$ with corresponding reflection $t_{j_{i}}$. Let F denote the fixed point space of $p(C) t_{j_{m}}=p\left(C \backslash X_{m}\right)$. Then, $X_{m-1}=H_{j_{1}} \cap \cdots \cap H_{j_{m-1}} \subseteq F$. By Proposition [2.3, $\operatorname{codim}(F)=$ $\ell^{\prime}\left(p(C) t_{j_{m}}\right)=m-1=\operatorname{codim}\left(X_{m-1}\right)$. Thus, $F=X_{m-1}$. On the other hand, $p(C) t_{j_{m}}=t_{1}^{\prime} \cdots t_{m-2}^{\prime} t_{j_{m}}$. Therefore, $F \supseteq H_{1}^{\prime} \cap \cdots \cap H_{m-2}^{\prime} \cap H_{j_{m}}$. Now, $\operatorname{codim}(F)=m-1 \geq \operatorname{codim}\left(H_{1}^{\prime} \cap \cdots \cap H_{m-2}^{\prime} \cap H_{j_{m}}\right)$ so that, in fact, $F=H_{1}^{\prime} \cap \cdots \cap H_{m-2}^{\prime} \cap H_{j_{m}}$. Hence, $H_{j_{m}} \supseteq X_{m-1}$, which is impossible given the deefinition of λ.

We are now in position to prove the main result of this section.
Theorem 3.3. The map $\phi: \mathcal{C}^{\downarrow} \rightarrow[e, w]$ is injective.
Proof. If C is the saturated chain $\hat{0}=X_{0} \triangleleft \cdots \triangleleft X_{m}$ in L_{w}, then X_{m} is contained in the fixed point space of $p(C)$ (since $p(C)$ is a product of
reflections through hyperplanes, all of which contain X_{m}). Lemma 3.2 and Proposition 2.3 therefore imply that X_{m} is the fixed point space of $p(C)$. In particular, if two chains have the same image under p, then their respective maximum elements coincide.

Now suppose $p(C)=p(D)$ for some $C, D \in \mathcal{C}^{\downarrow}$. We shall show that $C=D$. Write $C=\left\{\hat{0}=X_{0} \triangleleft \cdots \triangleleft X_{m}\right\}$ and $D=\left\{\hat{0}=Y_{0} \triangleleft \cdots \triangleleft Y_{m^{\prime}}\right\}$. We have shown that $m=m^{\prime}$ and $X_{m}=Y_{m}$. Since both C and D are λ-decreasing, the construction of λ implies $\lambda\left(X_{m-1} \triangleleft X_{m}\right)=\lambda\left(Y_{m-1} \triangleleft\right.$ $\left.Y_{m}\right)=H$, where H is the smallest hyperplane below $X_{m}=Y_{m}$ in L_{w}. With t denoting the reflection corresponding to H, we thus have $p\left(C \backslash X_{m}\right)=p\left(D \backslash Y_{m}\right)=p(C) t=p(D) t$. Our theorem is proved by induction on m.

Let us explain how the first part of Postnikov's conjecture, statement (A) in the Introduction, follows from Theorem 3.3. The symmetric group \mathfrak{S}_{n} acts on \mathbb{R}^{n} by permuting coordinates. Under this action, the transposition $(i j)$ acts by a reflection in the hyperplane given by $x_{i}=x_{j}$. However, this is not quite a natural geometric representation of \mathfrak{S}_{n} because the entire line given by $x_{1}=\cdots=x_{n}$ is fixed by all elements. To rectify the situation we may study the restriction of the action to the subspace $V^{(n-1)} \subset \mathbb{R}^{n}$ that consists of the points in \mathbb{R}^{n} whose coordinates sum to zero. Thus, \mathcal{A}_{w} is a hyperplane arrangement in $V^{(n-1)}$.

Recalling our convention that $u w$ means "first u, then w " for $u, w \in$ \mathfrak{S}_{n} we see that $(i j) \in T_{w}$ if and only if (i, j) is an inversion of w in the ordinary sense. Thus, for $w \in \mathfrak{S}_{n}$,

$$
\mathcal{A}_{w}=\left\{H \cap V^{(n-1)} \mid H \in \mathcal{A}_{w}^{\prime}\right\}
$$

In the language of [14], \mathcal{A}_{w} is the essentialization of \mathcal{A}_{w}^{\prime}. The regions in the complements of \mathcal{A}_{w} and \mathcal{A}_{w}^{\prime} are in an obvious bijective correspondence and statement (A) follows.

Although we do not know when ϕ is surjective for an arbitrary finite reflection group, for symmetric groups we have the following result, whose proof is contained in the nect two sections.

Theorem 3.4. If $w \in \mathfrak{S}_{n}$, the map ϕ is surjective (and hence bijective) if and only if w avoids the patterns 4231, 35142, 42513 and 351624.

4. A NECESSITY CRITERION FOR SURJECTIVITY IN SYMMETRIC GROUPS

We now confine our attention to the type A case when $W=\mathfrak{S}_{n}$ is a symmetric group. Depending on what is most convenient, either oneline notation or cycle notation is used to represent a permutation $w \in$
\mathfrak{S}_{n}. In this setting, as we have seen, T becomes the set of transpositions in \mathfrak{S}_{n} and $T_{w}=\{(i j) \mid i<j$ and $i w>j w\}$ can be identified with $\operatorname{INV}(w)$.

Theorem 4.1. Suppose W is a symmetric group. If $\phi: \mathcal{C}^{\downarrow} \rightarrow[e, w]$ is surjective, then w avoids the patterns 4231, 35142, 42513 and 351624.

Proof. It follows from Lemma 3.2 that if $u \leq w$ is in the image of ϕ, then $u w^{-1}$ can be written as a product of $\ell^{\prime}\left(u w^{-1}\right)$ inversions of w. Below we construct, for w containing each of the four given patterns, elements $u \leq w$ that fail to satisfy this property.
Case 4231. Suppose w contains the pattern 4231 in positions n_{1}, n_{2}, n_{3}, and n_{4}, meaning that $n_{1} w>n_{3} w>n_{2} w>n_{4} w$. Then, let $u=\left(n_{1} n_{4}\right)\left(n_{2} n_{3}\right) w$. Invoking the standard criterion, Proposition 2.2, it suffices to check $(14)(23) 4231=1324<4231$ in order to conclude $u<w$. Now, $u w^{-1}=\left(n_{1} n_{4}\right)\left(n_{2} n_{3}\right)$ has absolute length 2. However, $u w^{-1}$ cannot be written as a product of two inversions of w, because $\left(n_{2} n_{3}\right)$ is not an inversion.
Case 35142. Now assume w contains 35142 in positions n_{1}, \ldots, n_{5}. Define $u=\left(n_{1} n_{3} n_{4}\right)\left(n_{2} n_{5}\right) w$. Again we have $u<w$; this time since $(134)(25) 35142=12435<35142$. We have $u w^{-1}=\left(n_{1} n_{3} n_{4}\right)\left(n_{2} n_{5}\right)$ which is of absolute length 3 . Neither $\left(n_{1} n_{4}\right)$ nor $\left(n_{3} n_{4}\right)$ is an inversion of w, so u cannot be written as a product of three members of T_{w}.
Case 42513. Next, suppose w contains 42513 in n_{1} through n_{5}. Then, we let $u=\left(n_{2} n_{5} n_{3}\right)\left(n_{1} n_{4}\right) w$ and argue as in the previous cases.
Case 351624. Finally, if w contains 351624 in positions n_{1} through n_{6}, we may use $u=\left(n_{1} n_{3} n_{6} n_{4}\right)\left(n_{2} n_{5}\right) w$ and argue as before.

5. Pattern avoidance implies $\operatorname{br}(w)=\mathrm{re}(w)$

Let $\hat{\mathfrak{S}}_{n} \subseteq \mathfrak{S}_{n}$ denote the set of permutations that avoid the four patterns 4231, 35142, 42513, 351624.

In this section we will represent permutations $\pi \in \mathfrak{S}_{n}$ by rook diagrams. These are n by n square boards with a rook in entry (i, j), i.e. row i and column j, if $i \pi=j$. If x is a rook, we will write x_{i} for its row number and x_{j} for its column number.

The inversion graph of π, denoted by G_{π}, is a simple undirected graph with the rooks as vertices and an edge between two rooks if they form an inversion of π, i.e. if one of them is south-west of the other one. Let $\mathrm{ao}(\pi)=\mathrm{ao}\left(G_{\pi}\right)$ denote the number of acyclic orientations of G_{π}. Note that ao (π) equals the number of regions $\mathrm{re}(\pi)$ of the hyperplane arrangement $\mathcal{A}_{\pi}^{\prime}$.

Figure 1. The shaded region constitutes the right hull of the permutation 35124 .

Following Postnikov [12], we will call a permutation π chromobruhatic if $\operatorname{br}(\pi)=\operatorname{ao}(\pi)$. (A motivation for this appellation is given in Section 8.) Our goal in this section is to prove that all $\pi \in \hat{\mathfrak{S}}_{n}$ are chromobruhatic. This will be accomplished as follows: First we show that if π (or its inverse) has something called a reduction pair, which is a pair of rooks with certain properties, then there is a recurrence relation for $\operatorname{br}(\pi)$ in terms of $\operatorname{br}(\rho)$ for some permutations $\rho \in \hat{\mathfrak{S}}_{n} \cup \hat{\mathfrak{S}}_{n-1}$ that are "simpler" than π in a sense that will be made precise later. It turns out that the very same recurrence relation also works for expressing ao (π) in terms of a few ao (ρ). Finally, we show that every $\pi \in \hat{\mathfrak{S}}_{n}$ except the identity permutation has a reduction pair, and hence $\operatorname{br}(\pi)=\mathrm{ao}(\pi)$ by induction.

We will need two useful lemmas about the Bruhat order on the symmetric group. The first is a well-known variant of Proposition 2.2 (see e.g. [9). A square that has a rook strictly to the left in the same row and strictly below it in the same column is called a bubble.
Lemma 5.1. Let $\pi, \sigma \in \mathfrak{S}_{n}$. Then $\sigma \leq \pi$ in the Bruhat order if and only if $\sigma[i, j] \leq \pi[i, j]$ for every bubble (i, j) of π.

If π avoids the forbidden patterns, there is an even simpler criterion. Define the right hull of π, denoted by $H_{R}(\pi)$, as the set of squares in the rook diagram of π that have at least one rook weakly south-west of them and at least one rook weakly north-east of them. Figure 1 shows an example. The following lemma is due to Sjöstrand [13].
Lemma 5.2. Let $\pi \in \hat{\mathfrak{S}}_{n}$ and $\sigma \in \mathfrak{S}_{n}$. Then $\sigma \leq \pi$ in the Bruhat order if and only if all rooks of σ lie in the right hull of π.

For a permutation $\pi \in \mathfrak{S}_{n}$, the rook diagram of the inverse permutation π^{-1} is obtained by transposing the rook diagram of π. Define $\pi^{\circlearrowleft}=\pi_{0} \pi \pi_{0}$, where $\pi_{0}=n(n-1) \cdots 1$ denotes the maximum element (in the Bruhat order) of \mathfrak{S}_{n}. Note that the rook diagram of π^{\circlearrowleft} is obtained by a 180 degree rotation of the rook diagram of π.
Observation 5.3. The operations of transposition and rotation of the rook diagram of a permutation have the following properties.
(a) They are automorphisms of the Bruhat order, i.e.

$$
\sigma \leq \tau \Leftrightarrow \sigma^{-1} \leq \tau^{-1} \Leftrightarrow \sigma^{\circlearrowleft} \leq \tau^{\circlearrowleft} \Leftrightarrow\left(\sigma^{\circlearrowleft}\right)^{-1} \leq\left(\tau^{\circlearrowleft}\right)^{-1}
$$

(b) They induce isomorphisms of inversion graphs, so

$$
G_{\sigma} \cong G_{\sigma^{-1}} \cong G_{\sigma^{\circlearrowleft}} \cong G_{\left(\sigma^{\circlearrowleft}\right)^{-1}} .
$$

(c) The set of the four forbidden patterns is closed under transposition and rotation, so

$$
\sigma \in \hat{\mathfrak{S}}_{n} \Leftrightarrow \sigma^{-1} \in \hat{\mathfrak{S}}_{n} \Leftrightarrow \sigma^{\circlearrowleft} \in \hat{\mathfrak{S}}_{n} \Leftrightarrow\left(\sigma^{\circlearrowleft}\right)^{-1} \in \hat{\mathfrak{S}}_{n} .
$$

From (a) and (b) it follows that $\sigma, \sigma^{-1}, \sigma^{\circlearrowleft}$ and $\left(\sigma^{\circlearrowleft}\right)^{-1}$ are either all chromobruhatic or all non-chromobruhatic.

If x is a rook in the diagram of π then the image of x under any composition of transpositions and rotations is a rook in the diagram of the resulting permutation. In what follows, we sometimes discuss properties that the image rook (also called x) has in the resulting diagram, while still thinking of x as lying in its original position in the diagram of π.

Definition 5.4. Let $\pi \in \mathfrak{S}_{n}$ and let x, y be a pair of rooks that is a descent, i.e. $y_{i}=x_{i}-1$ and $x_{j}<y_{j}$. Then, x, y is a light reduction pair if we have the situation in Figure (a), i.e.

- there is no rook a with $a_{i}<y_{i}$ and $a_{j}>y_{j}$, and
- there is no rook a with $a_{i}>x_{i}$ and $x_{j}<a_{j}<y_{j}$.

The pair x, y is called a heavy reduction pair if we have the situation in Figure 圆(b), i.e.

- there is no rook a with $a_{i}>x_{i}$ and $a_{j}<x_{j}$,
- there is no rook a with $a_{i}<y_{i}$ and $a_{j}>y_{j}$, and
- there is no pair of rooks a,b such that $a_{i}<y_{i}$ and $b_{i}>x_{i}$ and $x_{j}<a_{j}<b_{j}<y_{j}$ (or, equivalently, there is some $x_{j} \leq j<y_{j}$ such that the regions $\left[1, y_{i}-1\right] \times\left[x_{j}+1, j\right]$ and $\left[x_{i}+1, n\right] \times[j+$ $\left.1, y_{j}-1\right]$ are both empty).

Lemma 5.5. Let $\pi \in \hat{\mathfrak{S}}_{n}$ and assume that
(a) all $\rho \in \hat{\mathfrak{S}}_{n}$ below π in Bruhat order, and
(b) all $\rho \in \hat{\mathfrak{S}}_{n-1}$ are chromobruhatic.

Then, π is chromobruhatic if at least one of $\pi, \pi^{-1}, \pi^{\circlearrowleft}$ and $\left(\pi^{\circlearrowleft}\right)^{-1}$ has a reduction pair.

Proof. If one of $\pi, \pi^{-1}, \pi^{\circlearrowleft}$ and $\left(\pi^{\circlearrowleft}\right)^{-1}$ has a light reduction pair, then by Observation 5.3, $\pi, \pi^{-1}, \pi^{\circlearrowleft}$ and $\left(\pi^{\circlearrowleft}\right)^{-1}$ all satisfy conditions (a) and (b), so we may assume that π has a light reduction pair x, y. On

Figure 2. (a) A light reduction pair. (b) A heavy reduction pair. The shaded areas are empty. The size of the lighter shaded areas depends on the underlying permutation.

Figure 3. The four forbidden patterns.
the other hand, if none of $\pi, \pi^{-1}, \pi^{\circlearrowleft}$ and $\left(\pi^{\circlearrowleft}\right)^{-1}$ has a light reduction pair, then one of them has a heavy reduction pair x, y and we may assume that it is π.

In either case, replace x by a rook x^{\prime} immediately above it, and replace y by a rook y^{\prime} immediately below it. The resulting permutation ρ is below π in the Bruhat order. Note that $\rho \in \hat{\mathfrak{S}}_{n}$ - a forbidden pattern in ρ must include both of x^{\prime} and y^{\prime} but an inspection of the forbidden patterns in Figure 3 and the reduction pair situations in Figure 2 reveals that this is impossible. Thus, by the assumption in the lemma we conclude that ρ is chromobruhatic.

Case 1: x, y is a light reduction pair in π. What permutations are below π but not below ρ in the Bruhat order? Note that ρ has the same bubbles as π, plus an additional bubble immediately above y^{\prime}, i.e. at the position of y. Now, Lemma 5.1 yields that the only permutations below π that are not below ρ are the ones with a rook at the position of y. These are in one-one correspondence with the permutations weakly below the permutation $\pi-y \in \mathfrak{S}_{n-1}$ that we obtain by deleting y from π together with its row and column. Thus,
(a)

(b)

Figure 4. (a) The heavy reduction pair x, y in π. The shaded areas are empty and the thick lines show segments of the border of the right hull of π. (b) The right hull of ρ is the same as that of π, except for the two squares of x and y.
we have

$$
\begin{equation*}
\operatorname{br}(\pi)=\operatorname{br}(\rho)+\operatorname{br}(\pi-y) \tag{1}
\end{equation*}
$$

Now consider the inversion graphs of π, ρ and $\pi-y$. It is not hard to show that G_{ρ} is isomorphic to the graph $G_{\pi} \backslash\{x, y\}$ obtained by deletion of the edge $\{x, y\}$. Since all neighbors of y^{\prime} are also neighbors of x^{\prime} in G_{ρ}, the graph $G_{\pi-y}=G_{\rho-y^{\prime}}$ is isomorphic to the graph $G_{\pi} /\{x, y\}$ obtained by contraction of the edge $\{x, y\}$. It is a well-known fact that, for any edge e in any simple graph G, the number of acyclic orientations satisfies the recurrence relation $\mathrm{ao}(G)=\mathrm{ao}(G \backslash e)+\mathrm{ao}(G / e)$. Thus, in our case we get

$$
\begin{equation*}
\mathrm{ao}(\pi)=\mathrm{ao}(\rho)+\mathrm{ao}(\pi-y) \tag{2}
\end{equation*}
$$

The right-hand sides of equations (1) and (2) are equal since ρ and $\pi-y$ are chromobruhatic. We conclude that $\operatorname{br}(\pi)=\mathrm{ao}(\pi)$ so that π also is chromobruhatic.

Case 2: x, y is a heavy reduction pair in π, and none of $\pi, \pi^{-1}, \pi^{\circlearrowleft}$ and $\left(\pi^{\circlearrowleft}\right)^{-1}$ has a light reduction pair. Since y, x is not a light reduction pair in π^{\circlearrowleft}, there exists a rook a in the region $A=\left[1, y_{i}-1\right] \times\left[x_{j}+1, y_{j}-1\right]$. Analogously, since x, y is not a light reduction pair in π, there exists a rook b in the region $B=\left[x_{i}+1, n\right] \times$ $\left[x_{j}+1, y_{j}-1\right]$. As can be seen in Figure 4, the right hulls of π and ρ are the same except for the two squares containing x and y, which belong to $H_{R}(\pi)$ but not to $H_{R}(\rho)$.

By Lemma 5.2 and inclusion-exclusion, we get

$$
\begin{equation*}
\operatorname{br}(\pi)=\operatorname{br}(\rho)+\operatorname{br}(\pi-x)+\operatorname{br}(\pi-y)-\operatorname{br}(\pi-x-y) \tag{3}
\end{equation*}
$$

where $\pi-x-y \in \mathfrak{S}_{n-2}$ is the permutation whose rook diagram is obtained by deleting both of x and y together with their rows and columns.

Now, for any permutation σ, let $\chi_{\sigma}(t)=\chi_{G_{\sigma}}(t)$ denote the chromatic polynomial of the inversion graph G_{σ} (so for each positive integer n, $\chi_{G_{\sigma}}(n)$ is the number of vertex colorings with at most n colors such that neighboring vertices get distinct colors. The following argument is based on an idea by Postnikov. It is a well-known fact that ao $(G)=$ $(-1)^{n} \chi_{G}(-1)$ for any graph G with n vertices. Since $G_{\rho}=G_{\pi} \backslash\{x, y\}$, the difference $\chi_{\rho}(t)-\chi_{\pi}(t)$ is the number of t-colorings of G_{ρ} where x^{\prime} and y^{\prime} have the same color.

Let \mathcal{C} be any t-coloring of $G_{\pi-x-y}$ using, say, α different colors for the vertices in A and β different colors for those in B. Since the subgraph of G_{π} induced by $A \cup B$ is a complete bipartite graph, the coloring \mathcal{C} must use $\alpha+\beta$ different colors for the vertices in $A \cup B$. We can extend \mathcal{C} to a coloring of $G_{\pi-y}$ by coloring the vertex x with any of the $t-\alpha$ colors that are not used for the vertices in A. Analogously, we can extend \mathcal{C} to a coloring of $G_{\pi-x}$ by coloring the vertex y with any of the $t-\beta$ colors that are not used in B. Finally, we can extend \mathcal{C} to a coloring of G_{ρ} where x^{\prime} and y^{\prime} have the same color, by choosing this color among the $t-\alpha-\beta$ colors that are not used for the vertices in $A \cup B$. Summing over all t-colorings \mathcal{C} of $G_{\pi-x-y}$ yields

$$
\begin{aligned}
\chi_{\rho}(t)-\chi_{\pi}(t) & =\sum_{\mathcal{C}}(t-\alpha-\beta) \\
& =\sum_{\mathcal{C}}(t-\beta)+\sum_{\mathcal{C}}(t-\alpha)-\sum_{\mathcal{C}} t \\
& =\chi_{\pi-x}(t)+\chi_{\pi-y}(t)-t \chi_{\pi-x-y}(t)
\end{aligned}
$$

Using that ao $(G)=(-1)^{n} \chi_{G}(-1)$ for a graph G with n vertices, we finally obtain

$$
\begin{equation*}
\mathrm{ao}(\pi)=\mathrm{ao}(\rho)+\mathrm{ao}(\pi-x)+\mathrm{ao}(\pi-y)-\mathrm{ao}(\pi-x-y) \tag{4}
\end{equation*}
$$

The right-hand sides of equations 3 and 4 are equal by the assumption in the lemma. Thus, $\operatorname{br}(\pi)=\mathrm{ao}(\pi)$ and we conclude that π is chromobruhatic.

Let $\pi \in \mathfrak{S}_{n}$ be any nonidentity permutation. Then there is a pair of rooks x, y that is the first descent of π, i.e. $x_{i}=\min \{i: i \pi<(i-1) \pi\}$

Figure 5. The situation of case 1 . It is possible that $x=\bar{x}$.
and $y_{i}=x_{i}-1$. Analogously, let \bar{x}, \bar{y} be the first descent of π^{-1}, i.e. $\bar{x}_{j}=\min \left\{j: j \pi^{-1}<(j-1) \pi^{-1}\right\}$ and $\bar{y}_{j}=\bar{x}_{j}-1$.

Proposition 5.6. For any nonidentity $\pi \in \hat{\mathfrak{S}}_{n}$, either x, y is a reduction pair in π or \bar{x}, \bar{y} is a reduction pair in π^{-1}, or both.

Proof. We suppose neither of x, y and \bar{x}, \bar{y} is a reduction pair, and our goal is to find a forbidden pattern.

If $\pi(1)=1$ it suffices to look at the rook configuration on the smaller board $[2, n] \times[2, n]$ since the pairs x, y and \bar{x}, \bar{y} on that board are not reduction pairs either. Thus, we may assume that $\pi(1)>1$.

Let z be the rook in row 1 and let \bar{z} be the rook in column 1. From our assumption that x, y is not a light reduction pair in π, and
the fact that the rooks x, y represent the first descent in π, it follows that there is a rook a in the region $A=\left[x_{i}+1, n\right] \times\left[x_{j}+1, y_{j}-1\right]$. If x is in column 1 , our assumption that x, y is not a heavy reduction pair implies that $y \neq z$ and that there is a rook b in the region $B=$ $\left[x_{i}+1, n\right] \times\left[z_{j}+1, y_{j}-1\right]$, because z is the leftmost rook in the rows above y. Analogously, since \bar{x}, \bar{y} is not a reduction pair in π^{-1}, there is a rook $\bar{a} \in \bar{A}=\left[\bar{x}_{i}+1, \bar{y}_{i}-1\right] \times\left[\bar{x}_{j}+1, n\right]$, and if \bar{x} is in the first row, then $\bar{y} \neq \bar{z}$ and there is a rook $\bar{b} \in \bar{B}=\left[\bar{z}_{i}+1, \bar{y}_{i}-1\right] \times\left[\bar{x}_{j}+1, n\right]$.

By the construction of x, all rooks in rows above of x are weakly to the right of z, so \bar{z} is weakly below x. Analogously, z is weakly to the right of \bar{x}. This implies that either \bar{x} is weakly below x, or $\bar{x}=z$, and analogously, either x is weakly to the right of \bar{x}, or $x=\bar{z}$.

Case 1: $x \neq \bar{z}$ and $\bar{x} \neq z$ as in Figure 5. If a is above \bar{y}, then the rooks y, x, a, \bar{y} form the forbidden pattern 4231. Analogously, if \bar{a} is to the left of y, then the rooks $y, \bar{x}, \bar{a}, \bar{y}$ form the forbidden pattern

Figure 6. The situation of case 2. (If we transpose the diagram and let each letter change places with its barred variant, we obtain the situation of case 3.)

Figure 7. The situation of case 4.
4231. Finally, if a is below \bar{y} and \bar{a} is to the right of y, then the rooks $y, x, \bar{a}, \bar{y}, a$ form the forbidden pattern 42513.

Case 2: $x=\bar{z}$ but $\bar{x} \neq z$ as in Figure 6. As before, if \bar{a} is to the left of y, then the rooks $y, \bar{x}, \bar{a}, \bar{y}$ form the forbidden pattern 4231. If b is above \bar{y}, then z, y, x, b, \bar{y} form the pattern 35142. Finally, if \bar{a} is to the right of y and b is below \bar{y}, then $y, \bar{x}, \bar{a}, \bar{y}, b$ form the pattern 42513.

Case 3: $x \neq \bar{z}$ but $\bar{x}=z$. This is just the "transpose" of case 2 .
Case 4: $x=\bar{z}$ and $\bar{x}=z$ as in Figure 7. If there is a rook $\tilde{b} \in B \cap \bar{B}$, then $\bar{x}, y, x, \tilde{b}, \bar{y}$ form the pattern 35142. But if b is below \bar{y} and \bar{b} is to the right of y, then $z, y, \bar{z}, \bar{b}, \bar{y}, b$ form the last forbidden pattern 351624.

Combining Lemma 5.5 and Proposition 5.6, yields the following two corollaries via induction.

Corollary 5.7. A permutation is chromobruhatic if it avoids the patterns 4231, 35142, 42513 and 351624.

Recall that the right and left weak orders on \mathfrak{S}_{n} are defined by $u \leq_{R} w \Leftrightarrow \operatorname{INV}(u) \subseteq \operatorname{INV}(w)$ and $u \leq_{L} w \Leftrightarrow \operatorname{INV}\left(u^{-1}\right) \subseteq \operatorname{INV}\left(w^{-1}\right)$. The two-sided weak order is the transitive closure of the union of the right and left weak orders.

Corollary 5.8. Every chromobruhatic permutation is connected to the identity permutation via a saturated chain of chromobruhatic permutations in the two-sided weak order.

6. Another characterization of permutations that avoid THE FOUR PATTERNS

In this section we demonstrate a feature of the injection $\phi: \mathcal{C}^{\downarrow} \rightarrow$ $[e, w]$ that we call the "going-down property". As a consequence, yet another characterization of permutations that avoid 4231, 35142, 42513 and 351624 is deduced. It implies, in particular, that avoidance of these patterns is a combinatorial property of the principal ideal a permutation generates in the Bruhat order.

Lemma 6.1. Let (W, S) be any finitely generated Coxeter system. Suppose $s_{1} \cdots s_{k}$ is a reduced expression for $w \in W$. Define $t_{i}=$ $s_{1} \cdots s_{i} \cdots s_{1} \in T_{w}$. Assume there exist $1 \leq i_{1}<\cdots<i_{m} \leq k$ such that $t_{i_{1}} \cdots t_{i_{m}} w=u$ and that the string $\left(i_{m}, \ldots, i_{1}\right)$ is lexicographically maximal with this property (for fixed m and u). Then, $w>t_{i_{m}} w>t_{i_{m-1}} t_{i_{m}} w>\cdots>t_{i_{1}} \cdots t_{i_{m}} w=u$.

Proof. In order to arrive at a contradiction, let us assume $t_{i_{j}} \cdots t_{i_{m}} w>$ $t_{i_{j+1}} \cdots t_{i_{m}} w=b$. The strong exchange property (Proposition (2.4) implies that an expression for b can be obtained from $s_{1} \cdots \widehat{s_{i_{j}}} \cdots \widehat{s_{i_{m}}} \cdots s_{k}$ by deleting a letter s_{x}.

If $x<i_{j}$, then $t_{i_{j}}=t_{x}$ and $w=t_{i_{j}}^{2} w=s_{1} \cdots \widehat{s_{x}} \cdots \widehat{s_{j}} \cdots s_{k}$, contradicting the fact our original expression for w is reduced.

Now suppose $x>i_{j}$; say $i_{j} \leq i_{l}<x<i_{l+1}$ (where we have defined $\left.i_{m+1}=k+1\right)$. Hence, $u=t_{i_{1}} \cdots t_{i_{j-1}} t_{i_{j+1}} \cdots t_{i_{l}} t_{x} t_{i_{l+1}} \cdots t_{i_{m}} w$. This, however, contradicts the maximality of $\left(i_{1}, \ldots, i_{m}\right)$.

Proposition 6.2 (Going-down property of ϕ). Choose $C=\left\{\hat{0}=X_{0} \triangleleft\right.$ $\left.X_{1} \triangleleft \cdots \triangleleft X_{m}\right\} \in \mathcal{C}^{\downarrow}$. Assume $\lambda\left(X_{i-1} \triangleleft X_{i}\right)=H_{j_{i}}$ with corresponding reflection $t_{j_{i}}$. Then, $t_{j_{i}} \cdots t_{j_{m}} w<t_{j_{i+1}} \cdots t_{j_{m}} w$ for all i.
Proof. Applying Lemma 6.1, it suffices to show that $\left(j_{m}, \ldots, j_{1}\right)$ is lexicographically maximal in the set $\left\{\left(p_{m}, \ldots, p_{1}\right) \in[k]^{m} \mid p_{m}>\cdots>\right.$
p_{1} and $\left.t_{p_{1}} \cdots t_{p_{m}}=t_{j_{1}} \ldots t_{j_{m}}\right\}$. Let us deduce a contradiction by assuming that $\left(j_{m}^{\prime}, \ldots, j_{1}^{\prime}\right)$ is a lexicographically larger sequence in this set. Suppose i is the largest index for which $j_{i} \neq j_{i}^{\prime}$. We have $H_{j_{i}^{\prime}} \supseteq X_{i}$, because, by Proposition 2.3 and Lemma 3.2, X_{i} is the fixed point space of $t_{j_{1}} \cdots t_{j_{i}}=t_{j_{1}^{\prime}} \cdots t_{j_{i}^{\prime}}$ which is an element of absolute length i. Observing that $j_{i}^{\prime}>j_{i}$, i.e. $H_{j_{i}}>H_{j_{i}^{\prime}}$, the construction of λ implies $\lambda\left(X_{\alpha-1} \triangleleft X_{\alpha}\right) \leq H_{j_{i}^{\prime}}$ for some $\alpha \in[i]$. However, this contradicts the fact that $\lambda\left(X_{\alpha-1} \triangleleft X_{\alpha}\right) \geq H_{j_{i}}$ for all such α.

Given $u \leq w \in W$, let $a \ell(u, w)$ denote the directed distance from u to w in the directed graph (the Bruhat graph [7]) on W whose edges are given by $x \rightarrow t x$ whenever $t \in T$ and $\ell(x)<\ell(t x)$. Observe that $a \ell(u, w) \geq \ell^{\prime}\left(u w^{-1}\right)$ in general.

Theorem 6.3. Let $w \in \mathfrak{S}_{n}$. The following assertions are equivalent:

- w avoids 4231, 35142, 42513 and 351624.
- $\ell^{\prime}\left(u w^{-1}\right)=a \ell(u, w)$ for all $u<w$.

Proof. If w avoids the given patterns, ϕ is surjective. Proposition 6.2 then shows that for any $u<w$ there is a directed path of length $\ell^{\prime}\left(u w^{-1}\right)$ from u to w in the Bruhat graph.

For the converse implication, suppose w contains at least one of the patterns. By the proof of Theorem 4.1, there exists some $u<w$ such that $u w^{-1}$ cannot be written as a product of $\ell^{\prime}\left(u w^{-1}\right)$ inversions of w. On the other hand, whenever there is a directed path from u to w of length p, then $u w^{-1}$ can be written as a product of p inversions of w (this follows from the strong exchange property). Hence, $a \ell(u, w)>$ $\ell^{\prime}\left(u w^{-1}\right)$.
Corollary 6.4. Suppose $w_{1} \in \mathfrak{S}_{n}$ avoids 4231, 35142, 42513 and 351624 whereas $w_{2} \in \mathfrak{S}_{n}$ does not. Then, $\left[e, w_{1}\right] \not \neq\left[e, w_{2}\right]$ as posets.
Proof. Let $u \leq w \in W$. Denote by $\operatorname{BG}(u, w)$ the subgraph of the Bruhat graph on W induced by the elements in the Bruhat interval [u,w]. It is known [7, Proposition 3.3] that the isomorphism type of $[u, w]$ determines the isomorphism type of $\operatorname{BG}(u, w)$.

Now suppose $w \in \mathfrak{S}_{n}$ contains one of the four patterns. In the proof of Theorem 4.1, we produced elements $u<w$ such that $u w^{-1}$ cannot be written as a product of $\ell^{\prime}\left(u w^{-1}\right)$ inversions of w. A closer examination of these elements reveals that, for each such u, there is a transposition t such that $t u<u$ and $\ell^{\prime}\left(t u w^{-1}\right)=a \ell(t u, w)=\ell^{\prime}\left(u w^{-1}\right)-1.1$ Thus,

[^1]$\mathrm{BG}(e, w)$ contains an undirected path from u to w of length $\ell^{\prime}\left(u w^{-1}\right)$. Therefore, it is possible to determine from the combinatorial type of $[e, w]$ that it contains an element u with $a \ell(u, w)>\ell^{\prime}\left(u w^{-1}\right)$.

7. Inequality of Betti numbers

In this section we use the bijection ϕ to derive, for $w \in \hat{\mathfrak{S}}_{n}$, inequalities relating the ranks of the cohomology groups of the complexified hyperplane arrangement $\mathcal{A}_{w}^{\mathbb{C}}$ and the closure of the cell corresponding to w in the Bruhat decomposition of the flag manifold.

Let B be a Borel subgroup of $G=G L_{n}(\mathbb{C})$. The Schubert cells (or Bruhat cells) $B w B / B\left(w \in S_{n}\right)$ determine a cell decomposition of the complex flag manifold G / B. The closure of each such cell admits a regular decomposition into cells indexed by permutations in the Bruhat interval $[e, w]$, that is, $\overline{B w B / B}=\cup_{\pi \leq w} B \pi B / B$. All Schubert cells are even-dimensional. It follows that $\sum_{i} \beta^{2 i}(\overline{B w B / B}) q^{i}=\sum_{\pi \leq w} q^{\ell(\pi)}$. That is, $\beta^{2 i}(\overline{B w B / B})$ counts the number of elements $u \in[e, w]$ with $\ell(u)=i$. This is well known, see for instance [4, 8, (9).

The linear equations determining the hyperplanes in an arrangement \mathcal{A} in \mathbb{R}^{n} also define hyperplanes in \mathbb{C}^{n}. These complex hyperplanes yield the complexified arrangement $\mathcal{A}^{\mathbb{C}}$.

For the complexified hyperplane arrangement $\mathcal{A}_{w}^{\mathbb{C}}$ we have the OrlikSolomon formula for the Betti numbers of the complement of a complex hyperplane arrangement,

$$
\beta^{i}\left(\mathbb{C}^{n} \backslash \cup \mathcal{A}_{w}^{\mathcal{C}}\right)=\sum_{x \in L_{w}: \operatorname{rank}(x)=i}|\mu(\hat{0}, x)| .
$$

See [2] for background on subspace arrangements. As noted above, the theory for lexicographic shellability of posets [1] says that $|\mu(\hat{0}, x)|$ is the number of descending saturated chains in the EL-labeling λ starting at $\hat{0}$ and ending at x.
Proposition 7.1. For any permutation $w \in \mathfrak{S}_{n}$ that avoids the patterns 4231, 35142, 42513, and 351624, we have for $r \geq 0$ that
(1) $\sum_{i=0}^{r} \beta^{2(\ell(w)-i)}(\overline{B w B / B}) \leq \sum_{i=0}^{r} \beta^{i}\left(\mathbb{C}^{n} \backslash \mathcal{A}_{w}^{\prime \mathbb{C}}\right)$,
(2) $\sum_{j=0}^{r} \beta^{2(\ell(w)-2 j)}(\overline{B w B / B}) \leq \sum_{j=0}^{r} \beta^{2 j}\left(\mathbb{C}^{n} \backslash \mathcal{A}_{w}^{\mathbb{C}}\right)$ and
(3) $\sum_{j=0}^{r} \beta^{2(\ell(w)-2 j-1)}(\overline{B w B / B}) \leq \sum_{j=0}^{r} \beta^{2 j+1}\left(\mathbb{C}^{n} \backslash \mathcal{A}_{w}^{\prime \mathbb{C}}\right)$.

When r is maximal, that is, when the sum is taken over all non-zero Betti numbers, we have equality. This occurs when $r=\ell(w), r=$ $\lfloor\ell(w) / 2\rfloor$ and $r=\lfloor(\ell(w)-1) / 2\rfloor$, respectively.
$\left(n_{3} n_{5}\right) t u \rightarrow\left(n_{1} n_{4}\right)\left(n_{3} n_{5}\right) t u=w$ is a directed path in $\operatorname{BG}(e, w)$ of length 2 . The remaining three cases are similar.

Proof. We use the notation introduced in Section 3, Let $s_{1} \ldots s_{k}$ be a reduced expression for w. The right hand side in (1) counts chains $C \in \mathcal{C}^{\downarrow}$ of length at most r. Each such chain of length i gives a word $p(C)$ of length i in the alphabet t_{1}, \ldots, t_{k}. By Lemma 3.2 we have $\ell^{\prime}(p(C))=i$ and thus $\ell(\phi(C)) \leq \ell(w)-i$. By Theorem 3.3ϕ is injective and the inequality follows.

Since multiplication by a transposition t_{j} always changes the length of $w \in S_{n}$ by an odd number, the other two inequalities follow.

The map ϕ is by Theorem 3.4 a bijection between chains with descending labels and elements in the Bruhat interval $[e, w]$ which gives equality of the number of plausible words in the $t_{j} \mathrm{~s}$ and $s_{j} \mathrm{~s}$ respectively.

Note that these inequalities are not true in general for permutations not avoiding the four patterns. In fact, if $w \notin \hat{\mathfrak{S}}_{n}$ and $r=\ell(w)$ we know by Theorem 4.1 that the inequality (1) does not hold.

8. Chromatic polynomials and smooth permutations

Recall the directed distance $a \ell(u, w)$ defined prior to Theorem 6.3, In this section we will use the injective map ϕ from Proposition 3.1 to show that the chromatic polynomial $\chi_{G_{w}}(t)$ of the inversion graph G_{w} of $w \in \hat{\mathfrak{S}}_{n}$ keeps track of the transposition distance $a \ell(u, w)$ of elements $u \in[e, w]$. We follow Postnikov and sometimes call a permutation chromobruhatic if it avoids the four forbidden patterns.

Theorem 8.1. For any permutation $w \in \mathfrak{S}_{n}$, the polynomial identity

$$
\sum_{u \in[e, w]} q^{a \ell(u, w)}=(-q)^{n} \chi_{G_{w}}\left(-q^{-1}\right),
$$

holds if and only if w avoids the patterns 4231, 35142, 42513 and 351624.

Proof. It is well-known (see e.g. [14]) that

$$
\chi_{G_{w}}(t)=\sum_{X \in L_{w}} \mu(X) t^{\operatorname{dim} X}=\sum_{X \in L_{w}}(-1)^{\operatorname{codim} X}|\mu(X)| t^{\operatorname{dim} X} .
$$

Lemma 3.2 implies that if $u=\phi\left(\hat{0}=X_{0} \triangleleft X_{1} \triangleleft \cdots \triangleleft X_{m}\right)$ then $\ell^{\prime}\left(u w^{-1}\right)=m=\operatorname{codim}\left(X_{m}\right)$. If w avoids the four patterns we have by Theorem 6.3 that $\ell^{\prime}\left(u w^{-1}\right)=a \ell(u, w)$ and thus

$$
\sum_{X \in L_{w}}(-1)^{\operatorname{codim} X}|\mu(X)| t^{\operatorname{dim} X}=\sum_{u \in[e, w]}(-1)^{a \ell(u, w)} t^{n-a \ell(u, w)},
$$

since ϕ is bijective. If w does contain one of the four patterns Theorem 4.1 gives inequality by substituting $t=-1$.

Finally, make the substitution $t=-q^{-1}$.
A well-known criterion, due to Lakshmibai and Sandhya [10], says that for a permutation $w \in \mathfrak{S}_{n}$, the Schubert variety $\overline{B w B / B}$ is smooth if and only if w avoids the patterns 3412 and 4231. Let us say that such a permutation itself is smooth. Note that every smooth permutation is chromobruhatic.

Given $w \in \mathfrak{S}_{n}$ and regions r and r^{\prime} of $\mathbb{R}^{n-1} \backslash \mathcal{A}_{w}^{\prime}$, let $d\left(r, r^{\prime}\right)$ denote the number of hyperplanes of \mathcal{A}_{w}^{\prime} that separate r and r^{\prime}. Let r_{0} be the region that contains the point $(1, \ldots, n)$, and define $R_{w}(q)=\sum_{r} q^{d\left(r_{0}, r\right)}$, where the sum is taken over all regions of \mathcal{A}_{w}^{\prime}.

Recently, Oh, Postnikov, and Yoo [11] showed that the Poincaré polynomial $\sum_{u \in[e, w]} q^{\ell(u)}$ equals $R_{w}(q)$ if and only if w is smooth. They also link this polynomial to the chromatic polynomial $\chi_{G_{w}}(t)$, and they are able to compute the latter, which is very useful for us.

An index $r \in\{1, \ldots, n\}$ is a record position of a permutation $w \in \mathfrak{S}_{n}$ if $r w>\max \{1 w, \ldots,(r-1) w\}$. For $i=1, \ldots, n$, let r_{i} and r_{i}^{\prime} be the record positions of w such that $r_{i} \leq i<r_{i}^{\prime}$ and there are no other record positions between r_{i} and r_{i}^{\prime}. (Set $r_{i}^{\prime}=+\infty$ if there are no record positions greater than i.) Let

$$
e_{i}=\#\left\{j \mid r_{i} \leq j<i, j w>i w\right\}+\#\left\{k \mid r_{i}^{\prime} \leq k \leq n, k w<i w\right\}
$$

Theorem 8.2 (Oh, Postnikov, Yoo). For any smooth permutation $w \in$ \mathfrak{S}_{n}, the chromatic polynomial of the inversion graph of w is given by $\chi_{G_{w}}(t)=\left(t-e_{1}\right)\left(t-e_{2}\right) \cdots\left(t-e_{n}\right)$.

Combining this with Theorem 8.1 allows us to compute the transposition distance generating function $\sum_{u \in[e, w]} a^{a \ell(u, w)}$ for any smooth permutation $w \in \mathfrak{S}_{n}$.

9. Example: the permutation $w=4132$

Consider the symmetric group $W=\mathfrak{S}_{4}$ generated by the adjacent transpositions $S=\left\{s_{1}=(12), s_{2}=(23), s_{3}=(34)\right\}$, and let $w=$ $4132=s_{1} s_{2} s_{3} s_{2}$ so that $t_{1}=s_{1}=(12), t_{2}=s_{1} s_{2} s_{1}=(13), t_{3}=$ $s_{1} s_{2} s_{3} s_{2} s_{1}=(14)$, and $t_{4}=s_{3}=(34)$. The intersection lattice L_{W} is isomorphic to the lattice of partitions of the set $\{1,2,3,4\}$ ordered by refinement. (For instance, the partition $13 \mid 24$ corresponds to the set $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}=x_{3}\right.$ and $\left.x_{2}=x_{4}\right\} \in L_{W}$.) With this notation, the lattice L_{w} looks like this:

Here the coverings are labelled by indices; for instance, since $\lambda(12|3| 4 \triangleleft$ $12 \mid 34)=H_{4}$, that edge is labelled by 4 . After finding the decreasing chains $C \in \mathcal{C}^{\downarrow}$, we obtain the following table.

C	$p(C)$	$p(C) w$	
$\hat{0}$	e	$s_{1} s_{2} s_{3} s_{2}=4132$	
$\hat{0} \triangleleft 12\|3\| 4$	t_{1}	$s_{2} s_{3} s_{2}=1432$	
$\hat{0} \triangleleft 12\|3\| 4 \triangleleft 123 \mid 4$	$t_{1} t_{2}$	$s_{3} s_{2}=1342$	
$\hat{0} \triangleleft 12\|3\| 4 \triangleleft 123 \mid 4 \triangleleft 1234$	$t_{1} t_{2} t_{4}$	s_{3}	$=1243$
$\hat{0} \triangleleft 12\|3\| 4 \triangleleft 124 \mid 3$	$t_{1} t_{3}$	e	$=1234$
$\hat{0} \triangleleft 12\|3\| 4 \triangleleft 124 \mid 3 \triangleleft 1234$	$t_{1} t_{3} t_{4}$	s_{2}	$=1324$
$\hat{0} \triangleleft 12\|3\| 4 \triangleleft 12 \mid 34$	$t_{1} t_{4}$	$s_{2} s_{3}$	$=1423$
$\hat{0} \triangleleft 13\|2\| 4$	t_{2}	$s_{1} s_{3} s_{2}$	$=3142$
$\hat{0} \triangleleft 13\|2\| 4 \triangleleft 134 \mid 2$	$t_{2} t_{4}$	$s_{1} s_{3}$	$=2143$
$\hat{0} \triangleleft 14\|2\| 3$	t_{3}	s_{1}	$=2134$
$\hat{0} \triangleleft 14\|2\| 3 \triangleleft 134 \mid 2$	$t_{3} t_{4}$	$s_{1} s_{2}$	$=3124$
$\hat{0} \triangleleft 1\|2\| 34$	t_{4}	$s_{1} s_{2} s_{3}=4123$	

Now, we draw the Bruhat graph of the interval $[e, w]$ with labelled fat edges forming paths that encode the decreasing chains C.

By Theorem [3.3, the fat edges form a tree, and by Proposition 6.2, the fat paths go down from w. By Corollary 5.7, the fat tree spans all of $[e, w]$.

Assume a chain $C=\left\{\hat{0}=X_{0} \triangleleft \cdots \triangleleft X_{m}\right\} \in \mathcal{C}^{\downarrow}$, is such that the smallest hyperplane H_{k} does not contain X_{m}. Then the chain $C_{2}=$ $\left\{X_{0} \triangleleft \cdots \triangleleft X_{m} \triangleleft\left(X_{m} \cap H_{k}\right)\right\} \in \mathcal{C}^{\downarrow}$. This implies that $p\left(C_{2}\right)=p(C) t_{k}$ and we may thus add t_{k} from the right to any word of descending labels $p(C)$. Hence the tree of descending words consists of two isomorphic (as edge labelled graphs) copies connected by an edge labelled t_{k}.

Finally, let us relate Theorem8.1 to our example. In the figure above, we see that $\sum_{u \in[e, w]} q^{a \ell(u, w)}=1+4 q+5 q^{2}+2 q^{3}$, and by Theorem 8.2, $\chi_{G_{w}}(t)=(t-1)(t-0)(t-1)(t-2)$. The reader may check that $\sum_{u \in[e, w]} q^{a \ell(u, w)}=(-q)^{n} \chi_{G_{w}}\left(-q^{-1}\right)$ as stated in Theorem 8.1.

10. Open problems

In this last section, we present some ideas for future research. Some of the open problems are intentionally left vague, while others are more precise.

In Theorem [3.3, we showed that the map $\phi: \mathcal{C}^{\downarrow} \rightarrow[e, w]$ is injective for any finite Coxeter group, but it is not surjective in general. When the forbidden patterns are avoided, we use an inductive counting argument showing that the finite sets $\mathcal{C} \downarrow$ and $[e, w]$ have the same cardinality - then surjectivity of ϕ follows from injectivity.

Open problem 10.1. Is there a direct proof of the surjectivity of ϕ or, if not, is there another bijection $\mathcal{C}^{\downarrow} \leftrightarrow[e, w]$ whose bijectivity can be proved directly.

Open problem 10.2. When ϕ is not surjective, what is its image?
Considering Betti numbers, see Section 7, one can deduce that the number of elements of even length not lying in the image of ϕ equals the number of such elements of odd length. In particular, evenly many elements of $[e, w]$ do not lie in the image of ϕ.

Open problem 10.3. Find a criterion for the surjectivity of ϕ in an arbitrary finite reflection group.

As noted in the introduction, our work (following Postnikov) marks the third appearance of the four patterns 4231, 35142, 42513, and 351624 in the study of flag manifolds and Bruhat order. The first time was in 2002 when Gasharov and Reiner [9] studied the cohomology of smooth Schubert varieties in partial flag manifolds. In their paper, they find a simple presentation for the integral cohomology ring, and it
turns out that this presentation holds for a larger class of subvarieties of partial flag manifold, namely the ones defined by inclusions. They characterize these varieties by the same pattern avoidance condition that apppears in our work.

More recently, Sjöstrand [13] used the pattern condition to characterize permutations whose right hull covers exactly the lower Bruhat interval below the permutation; see Lemma 5.2.

As is discussed in [13] there seems to be no direct connection between the "right hull" result and the "defined by inclusions" result. Though we use Sjöstrand's result in the proof of Lemma 5.5, we have not found any simple reason why the same pattern condition turns up again.

Open problem 10.4. Is there a simple reason why the same pattern condition turns up in three different contexts: Gasharov and Reiner's "defined by inclusions", Sjöstrand's "right hull", and Postnikov's (now proved) conjecture?

Open problem 10.5. Does the poset structure of the Bruhat interval determine the intersection lattice uniquely? In other words, for any two finite Coxeter systems (W, S) and $\left(W^{\prime}, S^{\prime}\right)$ and elements $w \in W$, $w^{\prime} \in W^{\prime}$, does $[e, w] \cong\left[e^{\prime}, w^{\prime}\right]$ imply $L_{w} \cong L_{w^{\prime}}$?

It is not hard to check that the assertion is true for $\ell(w) \leq 4$.
Finally, it would be interesting to know whether our results could be extended to general Bruhat intervals, i.e. $[u, w]$ with $u \neq e$.

Open problem 10.6. Given a (finite) Coxeter system (W, S) and $u, w \in W$ with $u \leq w$ in Bruhat order, is there a hyperplane arrangement $\mathcal{A}_{u, w}$, naturally associated with u and w, which has as many regions as there are elements in $[u, w]$ (at least for u, w in some interesting subset of W)?

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159-183.
[2] A. Björner, Subspace Arrangements, in "First European Congress of Mathematics, Paris 1992", (eds. A. Joseph et al), Progress in Math. Series, 119, Birkhäuser, Boston (1994), 321-370.
[3] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics 231, Springer, New York, 2005.
[4] A. Borel, Linear algebraic groups. Second edition., Graduate Texts in Mathematics, 126, Springer, New York, 1991.
[5] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.
[6] C. Chevalley, Sur les décompositions cellulaires des espaces G / B. (With a foreword by Armand Borel), Proc. Sympos. Pure Math., 56, Part 1, Algebraic groups and their generalizations, 1-23, Amer. Math. Soc., Providence, RI, 1994.
[7] M. J. Dyer, On the "Bruhat graph" of a Coxeter system, Compositio Math. 78 (1991), 185-191.
[8] W. Fulton, Young Tableaux, Student Texts 35 London Math. Soc., Cambridge Univ. press., 1997.
[9] V. Gasharov, V. Reiner, Cohomology of smooth schubert varieties in partial flag manifolds, J. London Math. Soc. (2) 66 (2002), 550-562.
[10] V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties in SL $(n) / B$, Proc. of the Indian Acad. of Sci. (Math. Sci.) 100 (1990), 45-52.
[11] S. Oh, A. Postnikov, H. Yoo, Bruhat order, smooth Schubert varieties, and hyperplane arrangements, arXiv: math/0709.3259v1 [math.CO].
[12] A. Postnikov, Total positivity, Grassmannians, and networks, arXiv: math/0609764v1 [math.CO].
[13] J. Sjöstrand, Bruhat intervals as rooks on skew Ferrers boards, J. Combin. Theory Ser. A (7) 114 (2007), 1182-1198.
[14] R. P. Stanley, An introduction to hyperplane arrangements, preprint 2006, available at http://math.mit.edu/~rstan/arrangements/arr.html
[15] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., no. 154, (1975).

Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44, Stockholm, Sweden.

Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44, Stockholm, Sweden.

Department of Mathematics, Washington University, St Louis, MO 63130, USA.

Department of Mathematics and Physics, Mälardalen University, Box 883, SE-721 23, VÄsterås, Sweden.

E-mail address: hultman@math.kth.se
E-mail address: linusson@math.kth.se
E-mail address: shareshi@math.wustl.edu
E-mail address: jonass@kth.se

[^0]: Date: October 5, 2007.

[^1]: ${ }^{1}$ For example, if the pattern 42513 occurs in positions n_{1}, \ldots, n_{5}, we have $u w^{-1}=$ $\left(n_{2} n_{5} n_{3}\right)\left(n_{1} n_{4}\right)$. Observe that $n_{2} u=n_{5} w$ and $n_{3} u=n_{2} w$. Hence, $t=\left(n_{2} n_{3}\right)$ with $\left(n_{2}, n_{3}\right) \in \operatorname{INV}(u)$. Now, tuw ${ }^{-1}=\left(n_{3} n_{5}\right)\left(n_{1} n_{4}\right), \ell^{\prime}\left(t u w^{-1}\right)=2$ and $t u \rightarrow$

