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Abstract

Let q be an odd natural number. We prove there is a cocyclic Hadamard matrix
of order 210+tq whenever t ≥ 8b log2(q−1)

10 c. We also show that if the binary expansion
of q contains N ones, then there is a cocyclic Hadamard matrix of order 24N−2q.

1 Introduction

In the early 1990’s, de Launey and Horadam [7] noted that many of the familiar con-
structions for Hadamard matrices imposed a special kind of regular group action on the
resulting design. Eventually [2, 3, 6] it became clear that such a group action made
the Hadamard matrix equivalent to a maximal-sized, relative difference set with a cen-
tral forbidden subgroup of order two. Such Hadamard matrices are said to be cocyclic
because they have an associated 2-cocycle. The wide applicability of the cocyclic differ-
ence method was exciting news because suddenly the algebraic machinery of difference
methods could be brought to bear on the Hadamard conjecture. In fact, de Launey and
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Horadam [4] conjectured that there is a cocyclic Hadamard matrix of order 4t for all
integers t ≥ 1. This conjecture is called the cocyclic Hadamard conjecture.

Let q be an odd natural number. Towards the end of the paper [5] de Launey and Smith
adapted ideas of Seberry [8] to prove that there is a cocyclic Hadamard matrix of order
2tq whenever t ≥

⌊
8log2 q

⌋
. This asymptotic existence result was additional evidence in

favor of the cocyclic Hadamard conjecture, but the exponent of 2 required was almost
four times Seberry’s original bound 2log2(q− 3), and far larger than the best known
cut-off value 5 + 4

⌊ log2(q−1)
10

⌋
for general Hadamard matrices. In this paper, we adapt

the ideas of [1] to show that there is a cocyclic Hadamard matrix of order 2tq whenever
t ≥ 10+8

⌊ log2(q−1)
10

⌋
.

The construction method of [1] has the following overall pattern. Fix an odd inte-
ger q = 2p + 1, where p > 1. First, 2M paired complementary sequences of combined
length 2p are constructed. Second, these sequences are used to make Hermitian and skew-
Hermitian circulant matrices whose supports disjointly cover all off-diagonal entries in a
q× q array. Third, these circulants are combined with signed permutation matrices with
special pairwise amicability and anti-amicability properties to form the desired (complex)
Hadamard matrix.

In order to adapt the ideas of [1] to obtain a cocyclic Hadamard matrix, we must
see how each of the above steps needs to be altered to ensure that the resulting complex
Hadamard matrix is cocyclic. It happens that nothing needs to be done in the first two
steps. The third step requires fundamental changes, but luckily all of the underlying
theory needed has been worked out in [5]. So it is sufficient to assemble the necessary
components from the papers [1] and [5]. However, there are aspects of the theory which
are not spelt out in [5] as explicitly as we need here, and there are minor errors in both
papers [1] and [5] which need to be corrected. So in this paper, we have tried to give a
direct and self-contained exposition.

The rest of this paper is organized as follows. In the next section, we discuss cocycles
and cocyclic matrices. In Section 3, we obtain the set of cocyclic signed permutation
matrices together with a Hadamard matrix with the same cocycle. In Section 4, we cover
sequences. In Section 5, we show how to obtain the Hermitian and skew-Hermitian circu-
lants from the sequences given in Section 4. In Section 6, we put all the material together
to obtain the cocyclic Hadamard matrices. In Section 7, we discuss the implications of
our results, and suggest avenues for further research.

2 Preliminaries

In this paper, we will need to construct a set of n×n cocyclic signed permutation matrices
P0,P1, . . . ,Pt−1,Q0,Q1, . . . ,Qs−1 and a Hadamard matrix H of order n such that for all
i = 0,1, . . . , t−1, and j = 0,1, . . . ,s−1,

(I) there is a 2-cocycle f : G×G → 〈−1〉 and maps g,gi,h j : G → {0,±1} such that
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H = [ f (x,y)g(xy)]x,y∈G, Pi = [ f (x,y)gi(xy)]x,y∈G and Q j = [ f (x,y)h j(xy)]x,y∈G,

(II) P0,P1, . . . ,Pt−1 are pairwise anti-amicable (i.e., PiP>j =−PjP>i for i 6= j),

(III) Q0,Q1, . . . ,Qs−1 are pairwise anti-amicable,

(IV) PiQ>
j = Q jP>i .

The paper [5] shows that for each pair s, t ≥ 2 the smallest value of n is a power of 2.
Moreover, it contains all the ingredients for a method for computing that power of 2,
and constructing the matrices H,Pi,Q j. However, the paper [5] does not give an explicit
method, and we will need to construct these matrices for all t = s = 2M +1, where M > 0.
So in this paper, we will give an explicit method, using the ideas of [5], to construct these
matrices. Along the way, we will correct errors in the statement of [5, Theorem 7.3], and
provide a complete proof. All of this requires a fair amount of background knowledge.
Furthermore, the reader will need to see how the cocyclic properties of the components
of our construction ensures that the resulting Hadamard matrix is indeed cocyclic. This
section contains a summary of the theory of binary cocycles and matrices with binary
cocycles which is sufficient to meet these needs.

2.1 Some Central Products

We use the following notation for various groups. For the cyclic group of order n we
use the notation Zn. We usually use additive notation for this abelian group. For the
quaternion group of order 8 and the dihedral group of order 8, we use the following
respective notations

Q8 = 〈a,b | a2 = b2 =−1, [a,b] =−1 〉 ,
D8 = 〈a,b | a2 =−1,b2 = 1, [a,b] =−1 〉 .

For the finite groups G and H containing a distinguished central involution −1, we let
GgH denote the direct product group G×H factored out by the group 〈(−1,−1)〉. This
group is an example of a central product. It has |G||H|/2 elements. For example, the
group

Q8 gD8 = 〈a,b,c,d | a2 = b2 = c2 =−1,d2 = 1,

[a,b] =−1, [c,d] =−1, [a,c] = [a,d] = [b,c] = [b,d] = 1〉

has 32 elements. We have D8 gD8 ∼= Q8 gQ8 and Q8 gZ4 ∼= D8 gZ4. We use the notation

A` =
` terms︷ ︸︸ ︷

D8 gD8 g . . .D8 gQ8 ,

B` = D8 gD8 g . . .D8 gD8 ,

C` = D8 gD8 g . . .D8 gD8 gZ4 .

The groups A` and B` both have order 22`+1, and the group C` has order 22`+2.
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2.2 Binary Cocycles and Central Extensions of Z2

Let G be a finite group. A binary cocycle with indexing group G is a mapping f : G×G→
{−1,1} such that for all a,b,c ∈ G,

f (a,b) f (ab,c) = f (b,c) f (a,bc) . (1)

f is normalized if f (1,1) = 1. Notice that if f1 and f2 are binary cocycles with indexing
group G, then the pointwise product mapping f1 f2, where f1 f2(a,b) = f1(a,b) f2(a,b), is
a binary cocycle. Moreover, if ρ : G → 〈−1〉 is any map, then cρ, where

cρ(a,b) = ρ(ab)−1
ρ(a)ρ(b) , (2)

is a binary cocycle. Cocycles with the special form (2) are called coboundaries. If f1 =
f2cρ for some coboundary cρ, then f1 and f2 are said to be cohomologous.

Binary cocycles are closely related to central extensions of Z2. We will exploit this
connection, when we construct the matrices H,Pi,Q j satisfying conditions (I)-(IV). Our
approach will be to construct the extension group first, and then extract the cocycle f .

A central extension of Z2 by a finite group G is a group R containing a central invo-
lution, which we denote by −1, such that the factor group R/〈−1〉 is isomorphic to the
group G. This is equivalent to the sequence of group homomorphisms

1 → 〈−1〉 → R π→ G → 1 (3)

being exact: that is, the kernel of each homomorphism in the sequence is the image of the
previous homomorphism. The sequence (3) is called a short exact sequence. A cocycle
associated to the sequence (3) may be obtained by choosing a transversal map τ. A
transversal map for the sequence (3) is a map τ : G → R such that π ◦ τ(x) = x for all
x ∈ G. Given such a map, we define a cocycle fτ : G×G → 〈−1〉 via the equation

fτ(a,b) = τ(ab)−1
τ(a)τ(b) . (4)

(N.B., τ(a)τ(b)τ(ab)−1 = τ(ab)−1τ(a)τ(b).)

Conversely, if f is a normalized binary 2-cocycle with indexing group G, and we think
of σ(a) as a formal object indexed by the element a ∈ G, then the set of elements ±σ(a)
(a ∈ G) forms an extension group R f of G under the operation

(−1)k
σ(a)(−1)`σ(b) = f (a,b)(−1)k+`

σ(ab) .

(The cocycle equation (1) is equivalent to this operation being associative.) We then have
the short exact sequence of group homomorphisms

1 → 〈−1〉 → R f
π→ G → 1 , (5)

where π(±σ(a)) = a. We may then write f = fτ, where τ : G→ R f is the transversal map
defined by the equation τ(a) = σ(a) for all a ∈ G.

4



Let G1 and G2 be finite groups, and let G = G1×G2. For i = 1,2, let fi : Gi×Gi →
〈−1〉 be cocycles. Define the direct product cocycle f = f1× f2 : G×G → 〈−1〉 so that
for all xi,yi ∈ Gi

f1× f2 (x1x2,y1y2) = f1(x1,y1) f2(x2,y2) . (6)

We have the following standard result.

Lemma 2.1. Let fi : Gi ×Gi → 〈−1〉 (i = 1,2) be cocycles, and let f be the product
cocycle f1× f2. Then R f = R f1 gR f2 .

2.3 Complex Matrices with Binary Cocycles

Let i denote the complex square root of −1. A (0,±1,±i)-matrix A is in cocyclic form
with binary cocycle f and mapping g : G →{0,±1,±i} if

A = [ f (a,b)g(ab)]a,b∈G .

For Kronecker products A1⊗A2 of matrices A1 and A2, we have the following standard
result.

Lemma 2.2. Suppose that for i = 1,2, Ai = [ fi(a,b)gi(ab)]a,b∈Gi , then

A1⊗A2 = [ f1× f2(ac,bd)g(abcd)]ac,bd∈G1×G2 ,

where g : G1×G2 → 〈−1〉 is such that g(ac) = g1(a)g2(c) for all a ∈ G1 and c ∈ G2.

2.4 Binary Cocycles and Monomial Representations

There is a connection between cocycles and monomial representations of groups contain-
ing a central involution. These representations are essential to our construction. Let

δ
x
y =

{
1 if x = y,
0 if x 6= y.

If f : G×G → 〈−1〉 is a cocycle, then the mapping

(−1)k
σ(x) 7→ P( f )

(−1)kx = (−1)k[δax
b f (a,x)]a,b∈G (7)

is a faithful monomial representation of R f . Such a representation depends on the choice
of cocycle f , but the full notation is a little cumbersome, so when the choice of cocycle is
clear from the context, we just write P(−1)kx. We have

P(−1)kxP(−1)`y = Pf (x,y)(−1)k+`xy and P((−1)kx)−1 = P−1
(−1)kx = P>(−1)kx . (8)

Note that
(∀x 6= y) P(−1)kx∧P(−1)`y = 0 (9)
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Moreover, we have for all maps g : G →{0,±1,±i}

[g(ab) f (a,b)]a,b∈G = U ( f )
∑
x∈G

g(x)P( f )
x , (10)

where
U ( f ) = [δab

1 f (a,a−1)]a,b∈G .

Consequently, any (0,±1,±i)-matrix of the form on the right hand side of equation (10)
is cocyclic with binary cocycle f .

Lemma 2.3. Let H be a (0,±1,±i)- matrix. Then f is a binary cocycle of H if and
only if there is a map g : G → {0,±1,±i} such that H is equivalent to the matrix H ′ =
∑x∈G g(x)P( f )

x ; i.e., there exist (0,±1)-monomial matrices P,Q such that PHQ> = H ′.

2.5 Binary Collection Cocycles and Central Extensions of Z2 by Zm
2

In this paper, we will need to determine the isomorphism class of a particular central
extension of Z2 by Zm

2 . The paper [5] gives a general method for solving this type of
problem. In this subsection, we give a more direct treatment which allows us to determine
the isomorphism class of the extension group of the cocycle f for the matrices H,Pi,Q j
satisfying the constraints (I)-(IV).

In this case, we have a short exact sequence of the form

1 → 〈−1〉 → R(Q) π→ G ∼= Zm
2 → 1 ,

where Q = [qi j] is an m×m upper-triangular matrix over GF(2) and R(Q) and G have the
presentations

G = 〈a1,a2, . . . ,am|a2
i = 1, [a j,ai] = 1 (i < j) 〉 ,

and
R(Q) = 〈b1,b2, . . . ,bm|b2

i = (−1)qii, [b j,bi] = (−1)qi j (i < j) 〉 . (11)

The presentation (11) is an example of a power-commutator presentation. Let V m de-
note the m-dimensional vector space over GF(2). For u = (u1,u2, . . . ,um) ∈V m, write au

for au1
1 au2

2 . . .aum
m , and bu for bu1

1 bu2
2 . . .bum

m . Then every element of R(Q) may be written in
the form±bu. A process called collection (wherein b jbi (i < j) is replaced by bib j(−1)qi j ,
b2

i is replaced by (−1)qii , and the powers of −1 are collected to the left) may be used to
reduce any product bubv to its canonical form (−1)kbu+v. Choosing τ so that τ(au) = bu,
equation (4) implies

fτ(au,av) = (bu+v)−1bubv . (12)

So we may compute fτ(au,av) by applying collection to the word (bu+v)−1bubv in R(Q).
Consequently, we call fτ a binary collection cocycle. The relations in the presentation
(11), and the fact that the commutators are all central imply the elegant identity

fτ(au,av) = (−1)vQu> . (13)
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The structure of R(Q) is discussed in [5, Subsection 5.2]. We have (see [5, equation
(34)])

R(Q) = F(R(Q))×Hub(R(Q)) , (14)

where, for some k ≥ 0,
F(R(Q))∼= Zk

2 ,

and Hub(R(Q)) is one of the groups A`,B` or C`. Each of these groups has a unique cen-
tral involution (denoted by−1). The group F(R(Q))×〈−1〉 is the characteristic subgroup
of R(Q) comprised of the identity and all the central involutions in R(Q). The isomor-
phism class of Hub(R(Q)) is determined by the number ξ(R(Q)) of order four elements
it contains and the rank k of F(R(Q)). Equation (13) implies that

(bu)2 = fτ(au,au) = (−1)uQu>

and equations (12) and (13) imply that

[bu,bv] = (bv+u fτ(av,au))−1(bu+v fτ(au,av)) = fτ(au,av) fτ(av,au) = (−1)uPv> ,

where P = Q+Q>. So

k = dim(ker(P))−
{

1 if uQu> = 1 for some u ∈ ker(P),
0 otherwise,

(15)

and
ξ(R(Q)) = 2|{u | uQu> = 1}| . (16)

Direct calculation reveals that

ξ(R(Q)) =


2k(22` +2`) if Hub(R(Q))∼= A`,
2k(22`−2`) if Hub(R(Q))∼= B`,
22`+k+1 if Hub(R(Q))∼= C`.

(17)

An element u∈V m is called anisotropic (with respect to Q) if uQu> = 1. Thus, in the case
where Hub(R(Q)) 6∼= C` for all `, calculating the number of anisotropic elements of V m

with respect to Q, will determine the isomorphism class of R(Q), and, in the case where
Hub(R(Q))∼= C` for some `, determination of the number of isotropic elements in ker(P)
will decide the isomorphism class of R(Q).

2.6 Cocyclic Hadamard Matrices

A Hadamard matrix H has cocycle f if there are signed permutation matrices P and Q
and a mapping g : G → 〈−1〉 such that

H = P[ f (a,b)g(ab)]a,b∈GQ> . (18)

In other words, H is Hadamard equivalent to a (±1)-matrix in cocyclic form with cocycle
f .
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Once we have the matrices Pi,Q j satisfying conditions (I)-(IV) for some cocycle f ,
we must construct a Hadamard matrix H with the same cocycle. As it happens, when the
matrices Pi,Q j have minimal order, f must be a binary collection cocycle. Theorem 4.3
of [5] implies that nearly all the binary collection cocycles of the previous subsection are
cocycles of some Sylvester Hadamard matrix Hm = [(−1)xy>]x,y∈V m .

Lemma 2.4. Let Q be an m×m upper triangular matrix over GF(2). If there is a sym-
metric m×m matrix S = T + T> over GF(2) with zero diagonal such that N = S + Q is
invertible, then the collection cocycle fτ where

fτ(au,av) = (−1)uQ>v> ,

is a cocycle of the Sylvester Hadamard matrix Hm. Indeed, Hm is equivalent to the matrix

∑
u∈V m

(−1)uTu>P( fτ)
u . (19)

Proof. By Lemma 2.3, it is sufficient to prove that Hm is equivalent to the matrix (19). By
equation (10),

U ( fτ) ∑
u∈V m

(−1)uTu>P( fτ)
u = [(−1)(u+v)T (u+v)> fτ(au,av)]u,v∈V m

= [(−1)uTu>(−1)vT v>(−1)uT v>(−1)uT>v>(−1)uQ>v>]u,v∈V m ,

which is equivalent to
[(−1)uN>v>]u,v∈V m

which is equivalent to Hm since N> is invertible.

Notice that Lemma 2.4 (with T = 0 and Q = I) implies Hm is cocyclic for all m ≥ 1.
Since H1⊗H2 is a Hadamard matrix if H1 and H2 are, Lemma 2.2 implies the following
well-known result.

Theorem 2.5. If there is a cocyclic Hadamard matrix of order n, then there is a cocyclic
Hadamard matrix of order 2mn for all m ≥ 0.

2.7 Complex Hadamard Matrices with a Binary Cocycle

The method of [1] first yields a complex Hadamard matrix, and then a standard construc-
tion gives a (real) Hadamard matrix of twice the order. As stated in the introduction, we
will adapt the method of [1] to produce a cocyclic Hadamard matrix, but in fact we will
first produce a complex Hadamard matrix with a binary cocycle. In this short subsection,
we show how such a matrix leads to a cocyclic Hadamard matrix.

A complex Hadamard matrix of order n is an n× n (±1,±i)-matrix H such that
HH∗ = nIn. We say a complex Hadamard matrix H has a binary cocycle if there is a
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binary cocycle f : G×G → 〈−1〉 and a map g : G → 〈i〉 such that for some (0,±1,±i)-
monomials P and Q

H = P[ f (a,b)g(ab)]a,b∈GQ .

Such a complex Hadamard matrix yields a cocyclic Hadamard matrix of order 2n. Write
PHQ = A+ iB where A and B are real matrices. Then A and B are disjoint (0,±1)-matrices
such that

AA>+BB> = nIn and AB> = BA> .

There are uniquely determined maps gA : G →{0,±1} and gB : G →{0,±1} such that

A = P[ f (a,b)gA(ab)]a,b∈GQ , and B = P[ f (a,b)gB(ab)]a,b∈GQ .

So the real block matrix[
A+B A−B
A−B −A−B

]
= [ f ′((x,a),(y,b))g′((x,a)(y,b))](x,a),(y,b)∈Z2×G ,

where

g′((x,a)(y,b)) =
{

gA(ab)+gB(ab) if x = y,
gA(ab)−gB(ab) if x 6= y,

is a Hadamard matrix with cocycle f ′ : G′×G′→ 〈−1〉 where G′ = Z2×G, and

f ′((x,a),(y,b)) = (−1)xy f (a,b) .

Here we use additive notation for Z2; so (−1)xy =−1 if and only if x = y = 1. Lemma 2.1
implies the extension group is Z4 gR f . We have proved the following theorem.

Theorem 2.6. If there is a complex Hadamard matrix C of order n with binary cocycle,
then there is a cocyclic Hadamard matrix H of order 2n. If f : G×G → 〈−1〉 is the
cocycle for C, then H has cocycle f ′ with indexing group Z2 ×G and extension group
Z4 gR f .

3 Constructing the Matrices Pi,Q j and H

We are now ready to state and prove a corrected version of [5, Theorem 7.3]. (Theorems
7.1 and 7.2 of [5] are correct.) Because we have not presented all the machinery needed
to prove uniqueness for the minimal case, we will not prove that part here.

Definition 3.1. Let f : G×G→〈−1〉 be a binary cocycle. A pair of amicable orthogonal
designs AOD(n;1s1,1s2) with cocycle f is a pair of orthogonal designs OD(n;1si), Di =
[gi(xy) f (x,y)]x,y∈G, (i = 1,2) such that D1D>

2 = D2D>
1 .

Remark 3.2. Let a0,a1, . . . ,at−1,b0,b1,b2, . . . ,bs−1 be commuting indeterminates. No-
tice that D1 = ∑

t−1
i=0 aiPi and D2 = ∑

s−1
i=0 biQi comprise an AOD(|G|;1s,1t) with cocycle f

if and only if the matrices Pi,Qi satisfy the conditions (II)–(IV) for the cocycle f .
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Theorem 3.3. For all integers s > 2 and t > 1 define the group

Ts,t =


B(s+t−2)/2 s− t ≡ 0 (mod 8)
B(s+t−1)/2 s− t ≡±1 (mod 8)
C(s+t−2)/2 s− t ≡±2 (mod 8)
A(s+t−1)/2 s− t ≡±3 (mod 8)
A(s+t−2)/2 s− t ≡ 4 (mod 8).

Let −1 be the unique central involution in Ts,t . An AOD(n;1s;1t) with cocycle f exists
if and only if there is a homomorphic injection of Ts,t into R f which maps the central
involution −1 to the distinguished central involution in R f .

Proof. By Remark 3.2, we may suppose there are matrices Pi and Q j satisfying conditions
(I)-(IV) for some cocycle f : G×G → 〈−1〉. We will show that if the order of R f is
minimized, then R f ∼= Ts,t .

By equation (10), there are elements x0,x1, . . . ,xt−1, y0,y1, . . . ,ys−1 ∈ R f such that for
all i = 0,1, . . . , t−1 and j = 0,1, . . . ,s−1

UPi = Pxi and UQ j = Py j .

For i = 0,1, . . . , t−1, put ui = xix−1
0 and, for j = 0,1, . . . ,s−1, put ut+ j = y jx−1

0 . We then
have for 1 ≤ i ≤ s+ t−1,

P2
ui

= PxiP
>
x0

PxiP
>
x0

= (−1)n0iPxiP
>
x0

Px0P>xi
= (−1)n0iI ,

and, for 1 ≤ i < j ≤ s+ t−1,

[Pui,Pu j ] = [P−1
ui

,P−1
u j

] = PuiPu jP
>
ui

P>u j
= Pui(−1)ni jPuiP

>
u j

P>u j
= (−1)n0i+n0 j+ni jI ,

where, for 0 ≤ i < j ≤ s+ t−1,

ni j =


1 0 ≤ i < j ≤ t−1,
1 t ≤ i < j ≤ s+ t−1,
0 otherwise.

Now define the (s + t − 1)× (s + t − 1) matrix Q = [qi j] over GF(2) so that, for 1 ≤ i <
j ≤ s+ t−1,

qii = n0i , and qi j = n0i +n0 j +ni j .

Then the s + t permutation matrices Pi and Q j (i = 0,1, . . . , t − 1 and j = 0,1, . . . ,s− 1),
where P0 = U,Pi = UPui , and Q j = UPut+ j , satisfy the constraints (I)-(IV) if and only if
the elements ui satisfy the equations

u2
i = (−1)qii , and

[
u j,ui

]
= (−1)qi j , (20)

for all 1 ≤ i < j ≤ s+ t−1. Our goal now is to identify the smallest extension group R f
containing elements ui satisfying (20).
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We show that R f ∼= Hub(R(Q)). By the minimality of the order of R f , we have

R f = 〈u1,u2, . . . ,us+t−1〉 ,

and there is an epimorphism φ : R(Q) → R f . Observe that R f is non-abelian, and that
R(Q)/〈−1〉 ∼= Zs+t−1

2 is abelian. So R f ∼= R(Q)/N, where N is a normal subgroup of R(Q)
not containing the central involution −1. Now since [a,bc] = [a,c][a,b]c, and [ab,c] =
[a,c]b[b,c], we have

[R(Q),R(Q)] = 〈−1〉 .
So any non-abelian subgroup of R(Q) contains −1. Moreover, since N must not contain
−1, N must be abelian. Indeed, if there is an element r ∈ R(Q) and an element s ∈ N such
that [r,s] 6= 1, then [r,s] = −1, and −1 = (s−1)rs ∈ N - a contradiction. So N is central
in R(Q). Finally, since R(Q)/〈−1〉 is elementary abelian, every non-identity element in
R(Q) is of order 2 or 4, and the square of any order four element is −1. Therefore, every
non-identity element of N is a central involution. Consequently, N〈−1〉= F(R(Q))〈−1〉.
So NHub(R(Q)) = N〈−1〉Hub(R(Q)) = F(R(Q))〈−1〉Hub(R(Q)) = R(Q), and, since
N ∩Hub(R(Q)) = 1, R(Q) = N ×Hub(R(Q)). Therefore R f ∼= R(Q)/N ∼= Hub(R(Q)),
as claimed.

To determine R f ∼= Hub(R(Q)), we use the procedure set out in Subsection 2.5. In this
case, Q is an (s+ t−1)× (s+ t−1) upper-triangular matrix with above-diagonal entries
all equal to 1. The first t−1 diagonal entries of Q equal 1, and the remaining s are 0. So
P = Q+QT is the matrix Js+t−1− Is+t−1. We have

kerP =
{
〈(1, . . . ,1)〉 s ≡ t (mod 2),
0 otherwise,

(1, . . . ,1)Q(1, . . . ,1)> =
{

0 s− t ≡ 0,3 (mod 4),
1 otherwise,

ξ(R(Q)) = 2 ∑
w1−w2≡1,2(4)

(
t−1
w1

)(
s

w2

)
.

Writing Σi for ∑w1−w2≡i (4)
(t−1

w1

)( s
w2

)
, we have

2(Σ1 +Σ2−Σ0−Σ3)

= ∑
w1,w2

(
−(i)w1−w2 − (i)−w1+w2 − (i)1+w1−w2 +(i)1−w1+w2

)(t−1
w1

)(
s

w2

)
=−(1+ i)t−1(1− i)s− (1− i)t−1(1+ i)s

− i(1+ i)t−1(1− i)s + i(1− i)t−1(1+ i)s .

So

4(Σ1 +Σ2) = 2t+s− (1+ i)t(1− i)s− (1− i)t(1+ i)s

= 2t+s− (
√

2)t+s(e(t−s)iπ/4 + e−(t−s)iπ/4)

= 2t+s− (
√

2)t+s2cos(t− s)π/4 .

11



So

ξ(R(Q)) =


2(2t+s−2−2(t+s−2)/2) if t− s ≡ 0 (mod 8),
2t+s−1−2(t+s−1)/2 if t− s ≡±1 (mod 8),
2t+s−1 if t− s ≡±2 (mod 8),
2t+s−1 +2(t+s−1)/2 if t− s ≡±3 (mod 8),
2(2t+s−2 +2(t+s−2)/2) if t− s ≡ 4 (mod 8),

Consequently,

Hub(R(Q))∼=


B(t+s−2)/2 if t− s ≡ 0 (mod 8),
B(t+s−1)/2 if t− s ≡±1 (mod 8),
C(t+s−2)/2 if t− s ≡±2 (mod 8),
A(t+s−1)/2 if t− s ≡±3 (mod 8),
A(t+s−2)/2 if t− s ≡ 4 (mod 8),

and

F(R(Q))∼=
{

Z2 if t− s ≡ 0 (mod 4),
1 otherwise.

The proof of the above theorem gives an explicit method for constructing the matrices
Pi and Q j and cocycle f satisfying conditions (I)-(IV). For s = t = 2M +1, the extension
group is B2M ∼= R(Q′), where Q′ is the 4M × 4M upper-triangular matrix over GF(2)
with all above diagonal entries equal to 1, and the first 2M diagonal entries equal to 1.
The cocycle f is the collection cocycle fτ defined by equation (13) for Q = Q′. So for
u,v ∈V 4M,

f (au,av) = (−1)vQ′u> . (21)

To form the matrices Pi,Q j, using the presentation (11) with Q = Q′, we set

P0 = U , Q0 = UPb1b2...b4M , Pi = UPbi , and Qi = UPb2M+i , (22)

where i = 1,2, . . . ,2M, This leaves the explicit construction of a map g : Z4M
2 → 〈−1〉

such that H = [ f (x,y)g(xy)] is a Hadamard matrix. The proof of the following theorem
meets this need.

Theorem 3.4. Let M ≥ 1 be an integer. Let Q′ be the 4M×4M upper-triangular binary
matrix defined above, and let f be the cocycle defined by equation (21). The signed
permutation matrices P0,P1, . . . ,P2M,Q0,Q1, . . . ,Q2M of order 24M defined by (22) satisfy
the conditions (I)-(IV) with cocycle f . The extension group is B2M, and the indexing group
is (V 4M,+) ∼= Z4M

2 . Moreover, there is a binary matrix T such that H4M is equivalent to
the matrix H = ∑v∈V 4M(−1)vT v>P( f )

v .

Proof. The properties of the matrices Pi,Q j have just been proved above. Therefore, by
Lemma 2.4, it is sufficient to exhibit for each M ≥ 1, a symmetric matrix S = T +T> with
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zero diagonal such that Q′+S is invertible over GF(2). For M = 1, we have

Q′ =


1 1 1 1
0 1 1 1
0 0 0 1
0 0 0 0

 , S =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 , Q′+S =


1 0 0 0
1 1 1 0
1 0 0 1
1 1 0 0

 .

For M > 1, we take S = T +T>, where T = [ti j] is the 4M×4M matrix such that

ti j =
{

1 if i = 2M +1 and j > 2M +2,
0 otherwise.

Thus for any s = t = 2M+1, we have an explicit construction for the matrices Pi,Q j,H
satisfying conditions (I)-(IV). Moreover, we know the order n can be no smaller than 24M.

4 Complementary Sequences with Zero Aperiodic Auto-
correlation

As in [1], our constructions will employ complementary sequences. In this section, we
bring together the existence results from [1] needed for our construction. Let

(a11,a12, . . . ,a1,n1),(a21,a22, . . . ,a2,n2), . . . ,(ar1,ar2, . . . ,ar,nr)

denote r sequences of complex fourth roots of unity. So ai j ∈ {±1,±i}. The integer ni
is called the length of the ith sequence, and the sum of the lengths ∑

r
i=1 ni is called the

combined length.

The sequences have zero aperiodic autocorrelation if

r

∑
i=1

ni−a

∑
j=1

ai, jai, j+a = 0 ,

for all integers a > 0. Notice that the lengths ni exceeding 1 must appear an even number
of times in the sequence n1,n2, . . . ,nr. So if ni > 1 for all i, then we may suppose that
n2i = n2i−1. In this case, we say that the sequences are paired.

For any non-negative integer q, let N(q) denote the number of 1’s in the binary expan-
sion of q. Combining pairs of Golay sequences of length 2k, we have

Theorem 4.1. Let q = 2p + 1 be an odd natural number, then there are 2N(p) real
(1,−1)-sequences with n2i = n2i−1, zero aperiodic autocorrelation and combined length
2p.

13



Real sequences offer important advantages over complex sequences. However, com-
plex sequences seem to be much more abundant, and they are all we need for our construc-
tion. Let L(p) denote the least number of paired complex sequences with zero autocorre-
lation needed for a combined length of 2p. So Theorem 4.1 implies that L(p) ≤ 2N(p).
The asymptotic power of this paper’s approach to constructing cocyclic Hadamard matri-
ces depends on the behavior of L(p). We make the following conjecture without further
comment here.

Conjecture 4.2. For any ε > 0, L(p) is eventually less than ε log2 p.

The following result was proved in [1].

Theorem 4.3. Let q = 2p + 1 > 0 be an integer, and let t =
⌊ log2(q−1)

10

⌋
. Then for some

L ≤ 4t +4, there are L complex sequences (ai1,ai2, . . . ,ai,ni) with zero aperiodic autocor-
relation and combined length 2p such that n2i = n2i−1. Equivalently,

L(p)≤ 4+4
⌊ log2(q−1)

10

⌋
. (23)

Note that in general Theorem 4.3 gives a much lower bound than Theorem 4.1.

5 A Family of Hermitian and Skew-Hermitian Circulants

In this section, we show how the complementary sequences described in the previous
section may be used to make special sets of circulant Hermitian and skew-Hermitian
complex matrices. These techniques are discussed in [1], however, here we make certain
things more explicit, and draw out what is needed for our constructions.

Let q = 2p+1 denote an odd natural number where p≥ 1. Let {(ai1,ai2, . . . ,ai,ni)}2M
i=1

be 2M (±1,±i)-sequences with n2i = n2i−1, zero aperiodic autocorrelation and combined
length 2p = n1 + n2 + · · ·+ n2M. For i = 1,2, . . . ,M, form the q× q circulant matrix Ai
with initial row

(01+p−n1−n3−···−n2i−1,a2i−1,1,a2i−1,2, . . . ,a2i−1,n2i−1,0
n1+n3+···+n2i−3,

0n2+n4+···+n2i−2,a2i,1,a2i,2, . . . ,a2i,n2i,0
p−n2−n4−···−n2i) (24)

and, for i = 1,2, . . . ,M, form the q×q circulant matrix Bi with initial row

(01+p−n1−n3−···−n2i−1,a2i−1,1,a2i−1,2, . . . ,a2i−1,n2i−1,0
n1+n3+···+n2i−3,

0n2+n4+···+n2i−2,−a2i,1,−a2i,2, . . . ,−a2i,n2i,0
p−n2−n4−···−n2i) (25)

Then Ai,Bi,A>i ,B>i have the same support. For i = 1,2, . . . ,M, we may set

Si = (Ai +A∗i )/2 Ti = (Bi +B∗i )/2
Ui = (Ai−A∗i )/2 Vi = (Bi−B∗i )/2

14



The matrices Si,Ti are Hermitian circulants, and the matrices Ui,Vi are skew-Hermitian
circulants. Moreover, Si±Ui and Ti±Vi are (0,±1,±i)-matrices. We have

SiS∗i +UiU∗
i = (Ai +A∗i )

2/4− (Ai−A∗i )
2/4 = AiA∗i ,

and
TiT ∗

i +ViV ∗
i = (Bi +B∗i )

2/4− (Bi−B∗i )
2/4 = BiB∗i .

In fact, the matrices Ui,Vi,Si and Ti satisfy the following theorem.

Theorem 5.1. Let q = 2p + 1 > 1 be an odd natural number. If there are 2M paired
complex sequences with zero aperiodic autocorrelation and combined length 2p, then
there are 4M circulant (0,±1,±i)-matrices S1,S2, . . . ,SM, T1,T2, . . . ,TM, U1,U2, . . . ,UM,
V1,V2, . . . ,VM such that

1. for i = 1,2, . . . ,M, the matrices Si and Ti are Hermitian, and the matrices Ui and Vi
are skew-Hermitian.

2. Iq +∑
M
i=1(±Si±Ui) and Iq +∑

M
i=1(±Ti±Vi) are q×q (±1,±i)-matrices.

3. ∑
M
i=1(SiS∗i +TiT ∗

i +UiU∗
i +ViV ∗

i ) = 4pIq.

6 Combining the Circulants with the Signed Permuta-
tion Matrices

We now construct a complex Hadamard matrix with binary cocycle, and then a cocyclic
Hadamard matrix of twice the order.

Theorem 6.1. Let q = 2p + 1 > 1 be an odd integer. If there are 2M paired
(±1,±i)−sequences with zero aperiodic autocorrelation and combined length 2p, then
there is a complex Hadamard matrix of order q24M+1 with extension group Z2q ×B2M

and indexing group Zq×Z4M+1
2 . Consequently, there is a cocyclic Hadamard matrix with

extension group Z2q×C2M and indexing group Zq×Z4M+2
2 .

Proof. By Theorem 5.1, there are 4M circulant q×q (0,±1,±i)-matrices S1,S2, . . . ,SM,
T1,T2, . . . ,TM, U1,U2, . . . ,UM, V1,V2, . . . ,VM satisfying conditions (1)–(3) of Theorem 5.1.
Let H,P0,P1, . . . ,P2M,Q0,Q1, . . . ,Q2M of order 24M be the matrices supplied by Theo-
rem 3.4. Let W be the matrix

[
0 1
1 0

]
. Form the complex Hadamard matrix

X = I2⊗ (Iq⊗P0H +
M

∑
i=1

(Si⊗P2iH +Ui⊗Q2i−1H))

+ iW ⊗ (Iq⊗Q0H +
M

∑
i=1

(Ti⊗Q2iH +Vi⊗P2i−1H)) .
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We claim that X is a complex Hadamard matrix with binary cocycle and extension group
Z2q×B2M. Then Theorem 2.6 implies there is a cocyclic Hadamard matrix with extension
group Z4 gB2M ×Z2q ∼= C2M ×Z2q and indexing group Zq×Z4M+2

2 .

To see that X is a complex Hadamard matrix takes a few steps. First observe that X is
a (±1,±i)-matrix. The matrices PiH,Q jH are (±1)-matrices, and I2 and W are disjoint
(0,1)-matrices summing to the all 1’s matrix

[
1 1
1 1

]
. So condition (2) of Theorem 5.1

implies that X is a (±1,±i)-matrix. Next observe that, if A and C are matrices of the
same dimension, and B and D are matrices of the same dimension, then (A⊗B)(C⊗D)∗ =
AC∗⊗BD∗. Therefore, the (anti-) amicability properties of the matrices Iq,Ui,Vi,Si,Ti and
the matrices Pi and Qi imply that X = I2⊗∑

M
i=0 Ai + iW ⊗∑

M
i=0 Bi, where AiB∗j = B jA∗i for

all i, j = 0,1, . . . ,M, and, for i 6= j, AiA∗j =−A jA∗i and BiB∗j =−B jB∗i . So the cross terms
in the computation for XX∗ cancel out. Finally note that, if P is a signed permutation
matrix of order n and H is an Hadamard matrix of the same order, then (PH)(PH)∗ =
PHH∗P∗ = nPP∗ = nIn. So, using condition (2) of Theorem 5.1,

XX∗ = I2⊗
(

2Iq +
M

∑
i=1

(SiS∗i +UiU∗
i +TiT ∗

i +ViV ∗
i )

)
⊗24MI24M = q24M+1Iq24M+1 .

So X is a complex Hadamard matrix.

Next we show that X has a binary cocycle. By Theorem 3.4, the matrices PiH and QiH
are linear combinations of the monomials P( f1)

x , where R f1
∼= B2M. So Lemma 2.3 implies

that the matrices PiH and QiH are cocyclic with cocycle f1 : Z4M
2 ×Z4M

2 → 〈−1〉 and
extension group B2M. The matrices Ui,Vi,Si,Ti are cocyclic with trivial cocycle f2 : Zq×
Zq →〈−1〉, where f2(a,b) = 1 for all a,b∈Zq. Finally, I2 and W are cocyclic with trivial
cocycle f3 : Z2×Z2 →〈−1〉. So R f2

∼= Zq×〈−1〉, and R f3
∼= Z2×〈−1〉. Consequently, by

Lemma 2.2, the complex Hadamard X has cocycle f = f1× f2× f3, and, by Lemma 2.1,
the extension group is R f1 gR f2 gR f3

∼= B2M g (Zq×〈−1〉)g (Z2×〈−1〉)∼= B2M ×Z2q.
So X is a complex Hadamard matrix with cocycle as claimed.

Corollary 6.2. Let q = 2p+1 > 1 be an odd integer. If the binary expansion of q has N
ones, then there is a cocyclic Hadamard matrix of order 24N−2q. The extension group is
C2(N−1)×Z2q and the indexing group is Z4N−2

2 ×Zq.

Proof. By Theorem 4.1, there are 2(N−1) paired (±1)−sequences with zero autocorre-
lation and combined length 2p. Now apply Theorem 6.1 with M = N−1.

Even in the worst case, where N = log2 q, we have a cocyclic Hadamard matrix of
order 24log2 q−2q which is a substantial improvement over the result in [5].

We now obtain a much better asymptotic result using the sequences from Theorem 4.3.

Corollary 6.3. For any odd natural number q = 2p+1 > 1, there is a cocyclic Hadamard
matrix with extension group Z2q×CL(p) and indexing group Zq×Z2L(p)+2

2 . In particular,

there is a cocyclic Hadamard matrix of order q2k for all k ≥ 10+8
⌊ log2(q−1)

10

⌋
.
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Proof. By the definition of L(p), we may apply Theorem 6.1 with 2M = L(p). By
Theorem 4.3, we may apply Theorem 6.1 with 2M ≤ 4 + 4

⌊ log2(q−1)
10

⌋
to get a cocyclic

Hadamard matrix of order q24M+2. Now apply Theorem 2.5 to obtain cocyclic Hadamard
matrices for all k ≥ 4M +2.

7 Concluding Remarks

By [3, Theorem 2.4], Corollaries 6.2 and 6.3 imply the existence of large classes of
Hadamard matrices with regular group actions and large classes of maximal-size, rela-
tive difference sets with central forbidden subgroup of order two. Thus at least for large
powers of two, there are Hadamard matrices with very special structure. This extra struc-
ture makes the algebraic techniques (such as group ring theory and representation theory)
commonly used to study relative difference sets relevant to resolving the Hadamard con-
jecture. In order to proceed along these lines, we must develop better tools for handling
relative difference sets in non-abelian groups.

We now make a few remarks about the limitations and implications of the construction
of Theorem 6.1. Our construction shows that it is possible to adapt the method of [1] to
obtain cocyclic Hadamard matrices, but our bound on the exponent in the power of two
is about twice the bound obtained for general Hadamard matrices. Once the number of
complementary sequences is fixed, the exponent of two is determined by the order of
the signed permutation matrices Pi,Qi needed for the construction. Asking that these
matrices be cocyclic doubles the exponent. The theory described in this paper shows that
this exponent cannot be lowered. However, the above limitation on the power of two is not
as important as one might think. If Conjecture 4.2 is true, then Corollary 6.3 implies that,
for any ε > 0, there is an integer k such that for all q > k, there is a cocyclic Hadamard
matrix or order q22+ε log2 q. We therefore propose the following problem.

Problem 7.1. Show that there are sufficiently many complex complementary sequences
that the construction of Theorem 6.1 could be used to prove that for any ε > 0, there is an
integer k such that for all q > k, there is a cocyclic Hadamard matrix of order q22+ε log2 q.

Solving this problem, which may be within our reach, would be a striking advance. It
wholly depends on improving our understanding of the asymptotic behaviour of the quan-
tity L(p). Notice that dropping the requirement that the Hadamard matrix be cocyclic has
no bearing on Problem 7.1, since its resolution depends on establishing Conjecture 4.2.
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Note Added in Proof: The following asymptotic existence result has been proved in a
recent paper (W. de Launey, On the Asymptotic Existence of Hadamard Matrices, JCTA,
to appear). It is a weak version of the conclusion to Problem 7.1.

Theorem 7.2. Let ε > 0. Let H(x) denote the number of odd positive integers k ≤ x
for which there is a cocyclic Hadamard matrix of order 2`k, for some positive integer
` ≤ 2 + ε log2 k. Then there is a constant c1(ε), dependent only on ε, such that, for all
sufficiently large x, H(x) > c1(ε)x.
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