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Abstract

Let A, B ⊆ R
2 be finite, nonempty subsets, let s ≥ 2 be an integer, and let h1(A,B)

denote the minimal number t such that there exist 2t (not necessarily distinct) parallel lines,

ℓ1, . . . , ℓt, ℓ
′
1, . . . , ℓ

′
t
, with A ⊆ ⋃t

i=1 ℓi and B ⊆ ⋃t

i=1 ℓ
′
i
. Suppose h1(A,B) ≥ s. Then we show

that:

(a) if ||A| − |B|| ≤ s and |A|+ |B| ≥ 4s2 − 6s+ 3, then

|A+B| ≥ (2− 1

s
)(|A| + |B|)− 2s+ 1;

(b) if |A| ≥ |B|+ s and |B| ≥ 2s2 − 7
2s+

3
2 , then

|A+B| ≥ |A|+ (3− 2

s
)|B| − s;

(c) if |A| ≥ 1
2s(s−1)|B|+s and either |A| > 1

8 (2s−1)2|B|− 1
4 (2s−1)+ (s−1)2

2(|B|−2) or |B| ≥ 2s+4
3 ,

then

|A+B| ≥ |A|+ s(|B| − 1).

This extends the 2-dimensional case of the Freiman 2d–Theorem to distinct sets A and B, and,

in the symmetric case A = B, improves the best prior known bound for |A| + |B| (due to

Stanchescu, and which was cubic in s) to an exact value.

As part of the proof, we give general lower bounds for two dimensional subsets that improve

the 2-dimensional case of estimates of Green and Tao and of Gardner and Gronchi, and that

generalize the 2-dimensional case of the Brunn-Minkowski Theorem.

1 Introduction

Given a pair of finite subsets A and B of an abelian group G, their Minkowski sum, or simply

sumset, is A + B = {a + b | a ∈ A, b ∈ B}. Furthermore, if G = R
d and H is a subspace,
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then we let φH : Rd → R
d/H denote the natural projection modulo H, and we let hd−1(A,B)

be the minimal number s such that there exist 2s (not necessarily distinct) parallel hyperplanes,

H1, . . . ,Hs,H
′
1, . . . ,H

′
s, with A ⊆ ⋃s

i=1 Hi and B ⊆ ⋃s
i=1 H

′
i. Alternatively, hd−1(A,B) is the

minimal s such that there exists a (d− 1)–dimensional subspace H with |φH(A)|, |φH(B)| ≤ s.

It is the central goal of inverse additive theory to describe the structure of sumsets and their

summands. One of the most classical results is the Freiman 2d–Theorem [5] [1] [11] [15], which says

that a subset of Rd with small sumset must be contained in a small number of parallel hyperplanes.

Theorem A (Freiman 2d–Theorem). Let d ≥ 2 be an integer and let 0 < c < 2d. There exist

constants k = k(c, d) and s = s(c, d) such that if A ⊆ R
d is a finite, nonempty subset satisfying

|A| ≥ k and |A+A| < c|A|, then hd−1(A,A) < s.

From the pigeonhole principle, one then easily infers there must exist a hyperplane H such that

|H ∩A| ≥ 1
s−1 |A|, thus containing a significant fraction of the elements of A. In fact, this corollary

is sometimes given as the statement of the Freiman 2d–Theorem itself, in part because it can be

shown to easily imply the version given above, illustrating the close dual relationship between being

covered by a small number of hyperplanes and having a large intersection with a hyperplane.

The Freiman 2d–Theorem was one of the main tools used in the original proof of Freiman’s

Theorem [1] [6] [5] (a result which shows that any subset A ⊆ Z with |A + A| ≤ C|A| must

be a large subset of a multidimensional progression), which has become one of the foundational

centerpieces in inverse additive theory. However, like Freiman’s Theorem itself, it suffers from

lacking even asymptotically correct constants. Remedying such a drawback would greatly magnify

the applicability of these results, and in the case of Freiman’s Theorem, much effort has been so

invested culminating in the achievement of values that are now almost asymptotically correct [3].

With the Freiman 2d–Theorem, there has been less notable success in improving the constants.

When d = 2 (so that a hyperplane is just a line), independent proofs of the result were found by

Fishburn [4] and by Stanchescu [14], with the latter method yielding an optimal value for s(c, d)

(specifically, s = s(c, 2) is the ceiling of the smaller root defined by c|A| = 4|A| + 1 − 2(s + |A|
s )),

though the value for k(c, d) was still not asymptotically accurate (the constant obtained was cubic

in s rather than quadratic).

The main result of this paper is the following, which extends the 2-dimensional case of the

Freiman 2d–Theorem to distinct sets while at the same time giving exact values for the constants

(when ||A| − |B|| ≤ s).

Theorem 1.1. Let s ≥ 2 be an integer, and let A, B ⊆ R
2 be finite subsets.

(i) If ||A| − |B|| ≤ s, |A|+ |B| ≥ 4s2 − 6s + 3, and

|A+B| < (2− 1

s
)(|A| + |B|)− 2s + 1, (1)

then h1(A,B) < s.
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(ii) If |A| ≥ |B|+ s, |B| ≥ 2s2 − 7
2s+

3
2 , and

|A+B| < |A|+ (3− 2

s
)|B| − s, (2)

then h1(A,B) < s.

The following example shows that, for s ≥ 3, the constant in (i) is best possible: let T be a

right isosceles triangle in the integer lattice whose equal length sides each cover x = 2s − 2 lattice

points; then |T | = (s − 1)(2s − 1) and |2T | = 2(s − 1)(4s − 5) < 4|T | + 1 − 2s − 2 |T |
s , but T is

covered by no fewer than 2s − 2 > s − 1 parallel lines. The same example shows that, even when

|A|+ |B| < 4s2 − 6s+3 and h1(A,B) ≥ s, the lower bound on |A+B| implied by Theorem 1.1 (i)

is quite accurate. Indeed, when x ≥ s, we have |T | = x(x+1)
2 ≥ s(s+1)

2 , h1(T, T ) ≥ s and

|2T | = x(2x− 1) = 4|T |+ 3

2
− 3

√

1

4
+ 2|T |.

On the other hand, for |A|+ |B| < 4s2 − 6s+3 and h1(A,B) ≥ s, one can always choose s0 < s so

that the hypothesis of Theorem 1.1 hold. Let t0 =
1
2

√

1
4 + |A|+ |B|− 1

4 , and let s0 = ⌈t0⌉ = t0+ z,

with 0 ≤ z < 1. Note that |A|+ |B| = 4(t0+1)2−6(t0+1)+2 > 4s20−6s0+2. When |A|+ |B| ≥ 14,

by applying Theorem 1.1 with s0, the resulting bound, as a function of z, is minimized for z = 0.

Consequently, we obtain the estimate

|A+B| ≥ 2|A|+ 2|B|+ 1

2
− 3

√

1

4
+ |A|+ |B|

when 14 ≤ |A|+ |B| ≤ 4s2 + 2s, h1(A,B) ≥ s, and either ||A| − |B|| ≤ s0 or else ||A| − |B|| ≤ ⌈ s2⌉
and s(s + 1) ≤ |A| + |B|. This shows that the resulting bound for |A+B| using s0 is surprisingly

accurate for |A|+ |B| ≥ s(s+ 1). However, once |A|+ |B| < s(s+ 1), the lower bound for |A+B|
assuming h1(A,B) ≥ s should begin to become much larger.

The proof of Theorem 1.1 will be given in Section 3, along with the proof of the dual formulation

bounding |A + B| when A and B are assumed to contain no s collinear points. Concerning the

case s = 2, a result of Ruzsa [13], generalizing to distinct sets yet another result of Freiman

[5, Eq. 1.14.1] [15], shows that if A, B ⊆ R
d with |A| ≥ |B| and A + B d-dimensional, then

|A+B| ≥ |A|+ d|B| − d(d+1)
2 . However, as the Freiman 2d–Theorem indicates, the cardinality of A

and B modulo appropriate subspaces also plays an important role contributing to the cardinality

of A+B. Section 2 is devoted to proving Theorem 1.2 below, which gives a general lower bound for

|A + B| based upon |φH(A)| and |φH(B)|, with H = Rx1 an arbitrary one-dimensional subspace.

It will be a key ingredient in the proof of Theorem 1.1. We remark that the symmetric case (when

A = B) was first proved by Freiman [5, Eq. 1.15.4].

Theorem 1.2. Let A, B ⊆ R
2 be finite, nonempty subsets, let ℓ = Rx1 be a line, let m be the

number of lines parallel to ℓ which intersect A, and let n be the number of lines parallel to ℓ that

intersect B. Then

|A+B| ≥ (
|A|
m

+
|B|
n

− 1)(m+ n− 1). (3)
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Furthermore, the following bounds are implied by (3).

(i) If m ≥ n and |A| ≤ |B|+m, then

|A+B| ≥ (2− 1

m
)(|A| + |B|)− 2m+ 1.

(ii) If |A| ≥ |B|+m, then

|A+B| ≥ |A|+ (3− 2

m
)|B| −m.

(iii) If 1 < m < |A|, let l be an integer such that l(l−1)
m(m−1) ≤ |B|

|A|−m ≤ l(l+1)
m(m−1) , and if m = 1, let

l = 1. Then

|A+B| ≥ |A|+ |B|+ l − 1

m
|A|+ m− 1

l
|B| − (m+ l − 1).

(iv) In general,

|A+B| ≥ |A|+ |B|+ 2

√

(m− 1)(
|A|
m

− 1)|B| − (
|A|
m

+m) + 1.

Note l = ⌊
√

1
4 +

(m−1)|B|
|A|/m−1 + 1

2⌋ satisfies the hypotheses of Theorem 1.2(iii) for m < |A|. We

remark that Theorem 1.2(iv), along with the compression techniques of Section 2, easily implies (a

diagonal compression along x1 − x2 should also be used when A is contained in two lines, y1 +Rx1
and y2 + Rx2, each containing |A|+1

2 points of A) the 2-dimensional case of a discrete analog of

the Brunn-Minkowski Theorem given by Gardner and Gronchi [7, Theorem 6.6, roles of A and B

reversed]. Also, (3) improves the 2-dimensional case of an estimate of Green and Tao [8, Theorem

2.1], with the two bounds equal only when A is a rectangle. In Section 2.1, we give a continuous

version of Theorem 1.2 that generalizes the 2-dimensional case of the Brunn-Minkowski Theorem

(see e.g. [7]).

The lower bounds for |A + B| from Theorem 1.1(ii) and Theorem 1.2(ii) are estimates based

on min{|A|, |B|}, much like nearly all other existing estimates for distinct sumsets; however, if |A|
is much larger than |B|, such bounds can be weak. The bounds in Theorem 1.2(iii) and Theorem

1.2(iv) are more accurate since they take into account the relative size of |A| and |B|. It would

be desirable to have a similar refinement to Theorem 1.1, i.e., a lower bound for |A+B| based off

the parameter s ≤ h1(A,B) and the relative size of |A| and |B|. One possibility would be if the

bound in Theorem 1.2(iii) held with the globally defined parameter s ≤ h1(A,B) in place of m, for

|A| and |B| suitably large with respect to s. This is achieved by Theorem 1.1(i) for the extremal

case when |A| and |B| are very close in size. Theorem 1.3 below accomplishes the same aim for the

other extremal case, when |A| is much larger than |B|. Note that the coefficient of |B| in the bound

below is much larger than the value of 3− 2
s obtained from Theorem 1.1(ii). Moreover, the bound

on |B| required to apply Theorem 1.3(b) is much smaller than the corresponding requirement for

Theorem 1.1, being linear in s rather than quadratic. In fact, Theorem 1.3(a) shows that, by only

increasing slightly the requirement of |A| to be much larger than |B|—from |A| ≥ 1
2s(s− 1)|B|+ s
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to |A| > 1
8(2s − 1)2|B| − 1

4(2s − 1) + (s−1)2

2(|B|−2)—one can eliminate all need for |A| and |B| to be

sufficiently large with respect to s.

Theorem 1.3. Let s be a positive integer, and let A, B ⊆ R
2 be finite, nonempty subsets with

h1(A,B) ≥ s and |A| ≥ 1
2s(s− 1)|B|+ s. If either

(a) |A| > 1
8 (2s− 1)2|B| − 1

4 (2s− 1) + (s−1)2

2(|B|−2) , or

(b) |B| ≥ 2s+4
3 , then

|A+B| ≥ |A|+ s(|B| − 1). (4)

We remark that the bound |A| ≥ 1
2s(s − 1)|B| + s is not in general sufficient to guarantee

|A + B| ≥ |A| + s(|B| − 1), and thus the slight increase in the requirement for |A| given by (a) is

necessary. For instance, let s = 34, and let A′ and B be geometrically similar right isosceles triangles

whose equal length sides each cover 82 and 3 lattice points, respectively. Suppose A′ lies in the

positive upper plane with one its equal length sides along the horizontal axis. Let A be obtained

from A′ by deleting the 3 points in A′ farthest away from the horizontal axis. Then |B| = 6,

|A| = 3400 = 1
2s(s− 1)|B|+ s, h1(A,B) = 80 > 34, and |A+B| = 3567 < 3570 = |A|+ s(|B| − 1).

As a second example, let A = [0, a − 1] × [0, s + 1] and B = [0, b − 1] × {0, 1} be two rectangles

in the integer lattice. We have |A| = a(s + 2), |B| = 2b and |A + B| = (a + b − 1)(s + 3) =

|A|+s(|B|−1)+a−b(s−3)−3. By taking b = (s+3)/6 and a = (s(s−1)b+s+1)/(s+2) = (s2+3)/6

(with s ≡ 3 (mod 6)), we have |A| = 1
2s(s−1)|B|+s+1, |B| = (s+3)/3 and |A+B| < |A|+s(|B|−1).

Furthermore, h1(A,B) ≥ h1(A,A) ≥ min{s + 2, (s2 + 3)/6} ≥ s for s ≥ 9.

We conclude the introduction with two special cases of Freiman’s Theorem for which exact

constants are known. The first is folklore [11] [15], while the second is a generalization by Lev and

Smeliansky [10] of the Freiman (3k − 4)–Theorem [5, Theorem 1.9] [11] [15].

Theorem B. If A and B are finite and nonempty subsets of a torsion-free abelian group, then

|A+B| ≥ |A|+ |B| − 1, (5)

with equality possible only when A and B are arithmetic progressions with common difference or

when min{|A|, |B|} = 1.

Theorem C. Let A, B ⊆ Z be finite nonempty subsets with 0 = minA = minB, maxA ≥ maxB

and gcd(A) = 1. Let δ = 1 if maxA = maxB, and let δ = 0 otherwise. If

|A+B| = |A|+ |B|+ r ≤ |A|+ 2|B| − 3− δ,

then maxA ≤ |A|+ r.
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2 Lower Bound Estimates via Compression

2.1 Discrete Sets

Let X = (x1, x2, . . . , xd) be an ordered basis for R
d, and let Xi = 〈x1, . . . , xi〉 for i = 0, . . . , d.

Let A ⊆ R
d be a finite subset. The linear compression of A with respect to xi ∈ X, denoted

Ci(A) = CX,i(A), is the set obtained by compressing and shifting A along each line Rxi+a, where

a ∈ R
d, until the resulting set Ci(A) ∩ (Rxi + a) is an arithmetic progression with difference xi

whose first term is contained in the hyperplane H = 〈x1, . . . , xi−1, xi+1, . . . , xd〉. More concretely,

we define the set Ci(A) piecewise by its intersections with the lines (Rxi + a), a ∈ R
d, by letting

Ci(A) ∩ (Rxi + a) be the subset of Rxi + a satisfying

φH(Ci(A) ∩ (Rxi + a)) = {0, xi, 2xi, . . . , (r − 1)xi},
where r = |A ∩ (Rxi + a)| and the right hand side is considered empty if r = 0. We let

CX(A) = Cd(Cd−1 . . . (C1(A)))

be the fully compressed subset obtained by iteratively compressing A in all d dimensions. Observe

that

|φXi
(CX(A))| = |φXi

(A)|, (6)

for i = 0, . . . , d.

Compression techniques in the study of sumsets have been used by various authors, including

Freiman [5], Kleitman [9], Bollobás and Leader [2], and Green and Tao [8]. The reason for intro-

ducing the notion of compression is that it gives a useful lower bound for the sumset of an arbitrary

pair of finite subsets A, B ⊆ R
d. Namely, letting H be as above and letting Ct denote C ∩ (Rxi+ t)

below, we have in view of Theorem B that

|A+B| =
∑

t∈H
|(A+B)t|

≥
∑

t∈H
max{|As +Bt−s| : As 6= ∅, Bt−s 6= ∅}

≥
∑

t∈H
max{|As|+ |Bt−s| − 1 : As 6= ∅, Bt−s 6= ∅}

= |Ci(A) +Ci(B)|, (7)

and consequently (by iterative application of (7)),

|A+B| ≥ |CX(A) +CX(B)|. (8)

We now restrict our attention to the case d = 2, which is the object of study for this paper. Let

m = |φX1
(A)|, n = |φX1

(B)|, Ai = CX(A)∩ (Rx1+(i− 1)x2) and Bi = CX(B)∩ (Rx1+(i− 1)x2).

Note that |A1| ≥ |A2| ≥ . . . ≥ |Am| and |B1| ≥ |B2| ≥ . . . ≥ |Bn|. If |Ai| = ai and |Bj | = bj , then

|CX(A) +CX(B)| =
m+n
∑

l=2

max
i

{ai + bl−i | 1 ≤ i ≤ m, 1 ≤ l − i ≤ n} − (m+ n− 1). (9)
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Consequently, the following lemma provides a lower bound for |A +B| based upon the number of

parallel lines that cover A and B, which will imply (3) in Theorem 1.2.

Lemma 2.1. If a1, . . . , am, b1, . . . , bn ∈ R, then

1

m+ n− 1

m+n
∑

i=2

max
j

{aj + bi−j : 1 ≤ j ≤ m, 1 ≤ i− j ≤ n} ≥ 1

m

m
∑

i=1

ai +
1

n

n
∑

i=1

bi. (10)

Proof. The proof is by induction on m + n. The result clearly holds if either m = 1 or n = 1.

Assume that m, n ≥ 2. Let a = (a1, . . . , am) and b = (b1, . . . , bn). For a vector x = (x1, x2, . . . , xk),

we denote by x = 1
k

k
∑

i=1
xi. Also, if y = (y1, . . . , yl), we denote by

u(x, y) =
k+l
∑

i=2

max
j

{xj + yi−j : 1 ≤ j ≤ k, 1 ≤ i− j ≤ l}.

Thus we want to prove

u(a, b) ≥ (m+ n− 1)(ā + b̄).

Let a′ = (a2, . . . , am) and b′ = (b2, . . . , bn). We may assume that ā− ā′ ≤ b̄− b̄′. We clearly have

u(a, b) ≥ u(a′, b) + a1 + b1. Thus by the induction hypothesis,

u(a, b) ≥ (m+ n− 2)(ā′ + b̄) + a1 + b1

= (m+ n− 2)(ā′ + b̄) +mā− (m− 1)ā′ + nb̄− (n− 1)b̄′

= (m+ n− 1)(ā+ b̄) + (n− 1)(ā′ − ā) + (n− 1)(b̄− b̄′)

≥ (m+ n− 1)(ā+ b̄),

as claimed.

Note that taking ai =
1
m

m
∑

k=1

ak and bj =
1
n

n
∑

k=1

bk for all i and j shows that equality can hold in

(10). More generally, equality holds whenever a1, . . . , am and b1, . . . , bn are arithmetic progressions

of common difference. We now prove Theorem 1.2.

Proof. of Theorem 1.2. The bound in (3) follows from Lemma 2.1, (9), (8) and (6). Consider the

bound given by (3) as a discrete function in the variable n. If m = |A|, then maximizing n will

minimize (3). Otherwise, it is a routine discrete calculus minimization question to determine that

l = ⌊
√

1
4 + (m−1)|B|

|A|/m−1 + 1
2⌋ is the value of n which minimizes (3), and that l − 1 also minimizes the

bound when
√

1
4 +

(m−1)|B|
|A|/m−1 + 1

2 ∈ Z. Rearranging the expression for l yields (iii). If m ≥ n and

|A| ≤ |B|+m, then l ≥ m ≥ n follows, whence the minimum of (3) occurs instead at the boundary

value n = m, yielding (i). If |A| ≥ |B|+m, then (3) implies that

|A+B| ≥ |A|+ |B|+ n− 1

m
(|B|+m) +

m− 1

n
|B| − (m+ n− 1).

7



Considering the left hand side as a discrete function in n, it is another routine discrete calculus

computation to determine n = m minimizes the bound. This yields (ii). Note that when |B| =
|A| + m the bounds in (ii) and (i) are equal. Finally, considering the bound given by (3) as a

continuous function in n, it follows that n =
√

(m−1)|B|
|A|/m−1 minimizes the bound in (3) when |A| > m.

This yields (iv) except in the case |A| = m, in which case the trivial bound |A+ B| ≥ |B| implies

(iv) instead.

2.2 Measurable Sets

Let µd be the Lebesgue measure on the space Rd, d ≥ 1, and let {x1, . . . , xd} be the d standard

unit coordinate vectors for Rd. In this subsection, we briefly show how the results of the previous

section are related to sumset volume estimates, such as the Brunn-Minkowski Theorem [15, 7]. In

what follows, we make implicit use of the basic analytic theory regarding the Lebesgue measure

(see e.g. [12]).

Theorem D (Brunn-Minkowski Theorem). If A, B ⊆ R
d and A + B are nonempty, measurable

subsets, then

µd(A+B)1/d ≥ µd(A)
1/d + µd(B)1/d. (11)

Let φi : R
2 → R denote the canonical projection onto the i-th coordinate, i = 1, 2. Theorem

2.2 below can be regarded as an extension of Theorem 1.2 to the continuous case. Since there are

measurable sets X ⊂ R
2 with φ1(X) not µ1–measurable, the assumption of φ1(A) and φ1(B) being

measurable in Theorem 2.2 is necessary. However, without this condition, one may always find

subsets A′ ⊂ A and B′ ⊂ B with µ2(A \A′) = µ2(B \B′) = 0 such that φ1(A
′), φ1(B

′) and A′+B′

are measurable (this will be evident from the proof). Thus, Theorem 2.2 implies the 2-dimensional

Brunn-Minkowski bound, with equality between the two bounds only possible when

µ1(φ1(A
′))

√

µ2(B) = µ1(φ1(B
′))

√

µ2(A).

The condition 0 < µ1(φ1(A
′)), µ1(φ1(B

′)) < ∞ is not highly restrictive since µ1(φ1(A
′)) = 0 implies

µ2(A) = 0, and if µ1(φ1(A
′)) = ∞, then either µ2(A+ B) = ∞ or µ2(B) = 0. Thus the condition

could be omitted if all indefinite expressions were interpreted to equal zero.

Theorem 2.2. If A, B ⊆ R
2, φ1(A), φ1(B) and A + B are nonempty measurable subsets with

0 < µ1(φ1(A)), µ1(φ1(B)) < ∞, then

µ2(A+B) ≥
(

µ2(A)

µ1(φ1(A))
+

µ2(B)

µ1(φ1(B))

)

(µ1(φ1(A)) + µ1(φ1(B))). (12)

Proof. The theory of compressions can be extended to include measurable subsets of Rd, though

some care is needed to verify all the basic properties still hold. For simplicity, we restrict our

attention to the case d = 2. Due to the extra care that needs to be taken concerning nullsets and

the measurability of various sets, we have included many more details than would otherwise be

8



necessary. We may assume that µ2(A + B) is finite, and thus µ2(A) and µ2(B) as well, else the

theorem is either trivial or meaningless.

For a subset X ⊆ R
2 and i ∈ {1, 2}, let fX,i : φ3−i(X) → [0,∞] be defined as fX,i(φ3−i(x)) =

µ1(X ∩ (Rxi + x)) if X ∩ (Rxi + x) is measurable and otherwise fX,i(φ3−i(x)) = 0. We define the

linear compression Ci(X), for i = 1, 2, by it intersections with the lines (Rxi + a), a ∈ R
2, by

letting Ci(X) ∩ (Rxi + a) be the subset of Rxi + a defined by

φi(Ci(X) ∩ (Rxi + a)) = [0, fX,i(φ3−i(a))],

if X ∩ (Rxi + a) is nonempty, and letting Ci(X) ∩ (Rxi + a) be empty otherwise. Let

Ei(X) := {x ∈ Ci(X) | φi(x) = fX,i(φ3−i(x))}

be those points with maximal xi coordinate in Ci(X).

We recall that an arbitrary measurable subset A ⊆ R
2 contains an Fσ–set A

′ with µ2(A \A′) =

0. By the continuity of addition, the sumset of two Fσ–sets is an Fσ–set, and thus measurable.

Similarly, the projection φ1(A
′) is also an Fσ-set and thus µ1-measurable.

Suppose now that φ1(A) is measurable. Then U = φ1(A) \ φ1(A
′) is also measurable. Let

U ′ ⊂ U be an Fσ–set with µ1(U \ U ′) = 0. Then Ã = A′ ∪ (φ−1
1 (U ′) ∩ Rx1) is also an Fσ–set with

µ2(Ã) = µ2(A) and µ1(φ1(Ã)) = µ1(φ1(A)).

Since each closed subset can be written as a countable union of compact subsets, we have

Ã =
⋃∞

i=1 Fi with F1 ⊆ F2 ⊆ . . . and each Fi a compact subset. Furthermore, each Fi =
⋂∞

j=1 S
i
j ,

with Si
1 ⊇ Si

2 ⊇ . . . and each Si
j a finite union of cubes (a cartesian product of closed intervals).

Passing through cubes and compact sets, it follows that any section Ã ∩ (Rxi + a) of an Fσ–

set is also an Fσ–set (with respect to µ1). By the upper continuity of µ1, we have Ck(Ã) =

Ck(
⋃∞

i=1 Fi) =
⋃∞

i=1Ck(Fi) ∪ Ã1, for k = 1, 2, where Ã1 is a disjoint subset contained in Ek(A
′)

and φ3−k(Ck(Ã)) = φ3−k(
⋃∞

i=1 Ck(Fi)). On the other hand, since each compact set Fi is bounded,

then the lower continuity of µ1 implies Ck(
⋂∞

j=1 S
i
j) =

⋂∞
j=1Ck(S

i
j), for k = 1, 2. Note that

Ck(S
i
j), for k = 1, 2, is still a finite union of cubes. Consequently, Ck(Ã) \ Ã1 is an Fσ–set. We call

C(A) = C1(C2(Ã) \ Ã1) the compression of A. We have

µ1(φ1(A)) = µ1(φ1(Ã)) = µ1(φ1(C2(Ã))) = µ1(φ1(C2(Ã) \ Ã1)) = µ1(φ1(C(A)). (13)

Likewise define B̃, B̃1 and C(B), and note that the corresponding equality in (13) holds for

C(B) as well.

Since µ2(A + B) ≥ µ1(Ã ∩ (Rx2 + a))µ1(φ1(B)) for each a ∈ R
2, then µ1(φ1(B)) > 0 and

µ2(A+B) < ∞ imply sup{fÃ,2(x) | x ∈ φ1(Ã)} < ∞. Likewise for B̃.

Let Sz = (C2(Ã) \ Ã1) ∩ (Rx1 + z) be an x1–section. Observe that, if φ2(z) ≤ φ2(z
′) then

Sz′ ⊆ Sz and thus µ1(Sz′) ≤ µ1(Sz). Consequently, C(A) consists precisely in the area between

the graph of the monotonic decreasing L+–function f
C2(Ã)\Ã1,1

: [0,M) → [0, µ1(φ1(A))] and the

x2-axis, where M = sup{fÃ,2(x) | x ∈ φ1(Ã)} (the interval of domain may possibly be closed
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[0,M ] as well). As both µ1(φ1(A)) and M are finite, C(A) is Riemann integrable, and thus also

measurable. The same is true for C(B), from which it is then easily observed that their sumset

C(A) +C(B) also consists of the area between the graph of a monotonic decreasing L+–function

and the x2-axis, and hence is measurable.

As C(A), Ã and C2(Ã) \ Ã1 are measurable, by Fubini’s Theorem we have

µ2(C(A)) =

∫∫

χ
C1(C2(Ã)\Ã1)

dx1dx2 =

∫∫

χ
C2(Ã)\Ã1

dx1dx2 = µ2(C2(Ã) \ Ã1) (14)

=

∫∫

χ
C2(Ã)\Ã1

dx2dx1 =

∫∫

χ
C2(Ã)dx2dx1 =

∫∫

χÃdx2dx1 = µ2(Ã) = µ2(A),

where χT denotes the characteristic function of the set T . Likewise,

µ2(C(B)) = µ2(B). (15)

Since Ã and B̃ are Fσ-sets, each x2-section of Ã or B̃ is also an Fσ–set (with respect to µ1).

Hence, letting Xz denote in (16) below the x2-section (Rx2 + z) ∩X of X ⊆ R
2,

µ1((A+B)z) = µ1(
⋃

x+y=z

(Ax +By)) ≥ sup{µ1(Ãx + B̃y) | x+ y = z}

≥ sup{µ1(Ãx) + µ1(B̃y) | x+ y = z} = µ1((C2(Ã) +C2(B̃))z), (16)

for z ∈ R
2 such that (A + B)z is µ1-measurable, where the second inequality follows from the

inequality µ1(X+Y ) ≥ µ1(X)+µ1(Y ) (which is the case d = 1 in the Brunn-Minkowski Theorem).

Using Fubini’s Theorem and (16) (for the first inequality; the second one follows by an analogous

argument), we infer

µ2(A+B) =

∫∫

χA+Bdx2dx1 ≥
∫∫

χ
C2(Ã)+C2(B̃)dx2dx1

=

∫∫

χ(C2(Ã)\Ã1)+(C2(B̃)\B̃1)
dx2dx1 = µ2((C2(Ã) \ Ã1) + (C2(B̃) \ B̃1))

=

∫∫

χ(C2(Ã)\Ã1)+(C2(B̃)\B̃1)
dx1dx2 ≥

∫∫

χ
C1(C2(Ã)\Ã1)+C1(C2(B̃)\B̃1)

dx1dx2

= µ2(C(A) +C(B)). (17)

In view of (17), (14), (15) and (13), we see that it suffices to prove the theorem for A = C(A)

and B = C(B). Since these are Riemann integrable, and thus can be approximated by rectangular

strips of fixed height log2n(µ1(φ2(A))) and log2n(µ1(φ2(B))) when n → ∞, it thus suffices to prove

the theorem for unions of 2n rectangular strips of equal height, n ∈ Z
+. We proceed by induction.

If n = 1, so that both A and B are themselves rectangles of width µ1(φ1(A)) and µ1(φ1(B))

and height µ2(A)
µ1(φ1(A)) and µ2(B)

µ1(φ1(B)) , respectively, then (12) follows trivially. So we assume n > 1.

Translate A and B so that the x2-axis passes through the midpoints of φ1(A) and φ1(B), and let

A+ ⊆ A and B+ ⊆ B be those points with nonnegative x1-coordinate, and let A− ⊆ A and B− ⊆ B

be those with non-positive x1-coordinate. Observing that µ2(A+B) ≥ µ2(A
++B+)+µ2(A

−+B−)
and applying the induction hypothesis to each of A+ + B+ and A− + B− yields (12), completing

the proof.
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3 Two-Dimensional Sets

Recall that h1(A,B) denotes the minimal positive integer s such that there exist 2s (not nec-

essarily distinct) parallel lines ℓ1, . . . , ℓs, ℓ
′
1, . . . , ℓ

′
s with A ⊆ ⋃s

i=1 ℓi and B ⊆ ⋃s
i=1 ℓ

′
i. The next

Lemma is analogous to [14, Lemma 2.2] and provides an inductive step in the proof of Theorem

1.1.

Lemma 3.1. Let s ≥ 3 be an integer, and let A, B ⊆ R
2 be finite subsets, with |A| ≥ |B| ≥ s, such

that there are no s collinear points in either A or B. Then either:

(a) h1(A,B) ≤ 2s − 3, or

(b) there exist a, b ∈ R
2, a line ℓ, a nonempty subset A0 ⊆ A and a subset B0 ⊆ B, such that

A0 ⊆ a+ ℓ, B0 ⊆ b+ ℓ, |B0| ≤ |A0| ≤ s− 1, and

|A′ +B′| ≤ |A+B| − 2(|A0|+ |B0|), (18)

where A′ = A \A0 and B′ = B \B0.

Proof. Let Conv(X) denote the boundary of the convex hull of X. Note, since |A| ≥ |B| ≥ s and

since neither A nor B contains s collinear points, that both A and B must be 2-dimensional. We

assume (b) is false and proceed to show (a) holds. Note Claim 1 below implies that A and B are

also contained in a translate of the lattice generated by a1 − a0 and a′1 − a0, though the particular

translate may vary from A to B to A+B.

Claim 1. If f and f ′ are two consecutive edges of Conv(A) incident at the vertex a0, with a1, a
′
1 ∈

Conv(A) ∩A the closest elements to a0 in each of the edges f and f ′, respectively, then the sumset

A+B is contained in a translate of the lattice generated by the two vectors a1 − a0 and a′1 − a0.

Proof. We use an argument by Ruzsa [13]. Let b0 be a vertex of Conv(B) such that A∗ = A \ {a0}
and B∗ = (B \ {b0}) + (a0 − b0) are contained in the same open half plane determined by some

line through a0. We may w.l.o.g. assume that a0 = b0 = (0, 0) and that both A∗ and B∗ are

contained in the open half plane of points with positive abscissa. Let x ∈ A + B, x 6= (0, 0), and

consider all the expressions of x written as a sum of elements taken from (A+B) \ {(0, 0)}. Since

A and B are finite sets, and since all points in A∗ and B∗ have positive abscissa, it follows that the

number of summands in any such expression is bounded. Take one expression x = x1+x2+ · · ·+xk
with a maximum number of summands. If xi ∈ A∗ + B∗ for some i, then xi can be split into two

summands, one in A∗ and one in B∗, contradicting the maximality of k. Therefore x can be written

as a sum of elements in C = (A+B) \ ((A∗ +B∗) ∪ {(0, 0)}).
Since (b) does not hold, it follows that |C| ≤ 2. Hence all elements in A + B are contained in

the lattice generated by the two elements of C. Let e and e′ be the two edges incident with b0.

Note we may assume the convex hull of the two rays parallel to e and e′ with base point b0 = (0, 0)

is contained in the convex hull of two rays parallel to f and f ′ with base point a0 = (0, 0), since

otherwise by removing a0 from A we lose all the points in either |a0 + (B ∩ e)| or |a0 + (B ∩ e′)|,
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yielding (b). However, in this case, it is easily seen that {a1, a′1} ⊆ C, whence |C| = 2 implies

C = {a1, a′1}, completing the claim.

Claim 2. For each side e of Conv(B), there is a side f of Conv(A), parallel to e, such that both

A− f + e and B are contained in the same half plane defined by e. Moreover, |B ∩ e| ≤ |A ∩ f |.

Proof. Let ℓ be the line parallel to e that intersects A, and for which A − ℓ + e and B are both

contained in the same half plane defined by e. Let f = ℓ∩Conv(A) and let Af = A∩ ℓ. In view of

Theorem B, we see that by removing the elements of Af we lose |Af +Be| ≥ |Af |+ |Be|−1 elements

from A + B, where Be = B ∩ e. Since (b) does not hold, it follows that |Af | + |Be| − 1 < 2|Af |,
whence 2 ≤ |Be| ≤ |Af |. In particular, f is an edge of the convex hull of A.

Let e and e′ be two consecutive edges of Conv(B), and let f and f ′ be the corresponding parallel
edges in Conv(A) as given by Claim 2. Denote the elements in Be := B∩e by b0, b1, . . . , bt, ordered

as they occur in the edge e, and the ones in Af := A ∩ f by a0, a1, . . . , ar, ordered in the same

direction as those of Be. Likewise define b′0 = b0, b
′
1, . . . , b

′
t′ and a′0, a

′
1, . . . , a

′
r′ for the points in

Be′ := B ∩ e′ and Af ′ := A∩ f ′. Note a0 = a′0 need not hold, though as we will soon see (Claim 4)

this cannot fail by much.

Claim 3. With the notation above, b0 − b1 = a0 − a1.

Proof. Let f ′′ 6= f be the edge adjacent to a0 and let a′′ 6= a1 be the element of Conv(A) ∩ A

adjacent to a0. If the claim is false, then, by removing a0 from Af and b0 from Be, we lose from

A+B the distinct elements a0 + b0, a0 + b1, a1 + b0 and either b0 + a′′ or a0 + b′1, yielding (b).

Claim 4. With the notation above, either: (i) f and f ′ are also consecutive, or (ii) they are

separated by a single edge g of Conv(A), and A ∩ g contains exactly two points.

Proof. Traverse the convex hull of A, beginning at a0 and in the direction not given by f . Let

a0, c1, c2, . . . , ck, a
′
0 be the sequence of points on Conv(A) encountered until the first point a′0 of f ′

is reached. If the claim is false, then k ≥ 1. Hence, by removing a0 from A and b0 from B, we lose

from A+B the elements a0 + b0, b0 + a1, b0 + ci for i = 1, . . . , k, and b0 + a′0, yielding (b).

Following our current notation, let e′′ 6= e and f ′′ 6= f be the edges of Conv(B) and Conv(A)

incident to bt and ar, respectively. Denote by a′′0 = ar, a
′′
1 , . . . , a

′′
r′′ and b′′0 = bt, b

′′
1, . . . , b

′′
t′′ the

elements of Af ′′ := A ∩ f ′′ and Be′′ := B ∩ e′′, ordered as they occur in their respective edge.

By an appropriate affine transformation, we may assume that b0 = (0, 0), b1 = (1, 0) and

b′1 = (0, 1) and that both A and B are contained in the positive first quadrant. We denote by

φ1 : R
2 → R the projection onto the first coordinate. Let Ai = A∩{y = i} and let Bi = B∩{y = i}.

If φ1(bt) > φ1(ar)−φ1(a0), and in particular, if φ1(bt) > φ1(ar), then the removal of A0 from A

results in a loss of at least |b0+A0|+ |bt+A0| = 2|A0| elements from A+B, yielding (b). Therefore,

φ1(bt) ≤ φ1(ar)− φ1(a0). (19)
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Furthermore, if φ1(bt) = φ1(ar)−φ1(a0), then we likewise conclude that (b) holds, by removing A0

from A, unless A0 + B0 = {b0, bt}+ A0. However, in view of Claims 1 and 3, this is only possible

if A0 is an arithmetic progression of difference a1 − a0. We proceed in two cases.

Case A: Claim 4(i) holds for the pair f and f ′. In this case, a0 = a′0 and w.l.o.g. a0 = b0 =

(0, 0). By Claim 3, it follows that

b0 − b1 = a0 − a1 and b0 − b′1 = a0 − a′1. (20)

Thus a1 = b1 = (1, 0) and a′1 = b′1 = (0, 1). By Claim 1, it follows in view of 0 ∈ A ∩B that A, B,

and A+B are contained in the integer lattice. Moreover, in view of Claim 3 and Claim 1 applied

to ar, it follows that

bt − bt−1 = ar − ar−1 = a1 − a0 = (1, 0) and a′′1 ∈ A1. (21)

Figure 1 shows a picture of the situation. In view of Claim 2 and (19), it follows that A ∪ B is

t❢

t❢

t❢ t t

a0 = b0

a′1 = b′1

a1 = b1 ar−1 ar = a′′0

a′′1t

e′, f ′

e, f
❝

❝
❝

❝
❝

❝
❝
f ′′

Figure 1: A picture of Case A.

contained in the region defined by the lines y = 0, x = 0 and the line defined by f ′′.

Subcase A.1: A0 is not in arithmetic progression. Thus it follows, in view of the equality

conditions for (19), that

φ1(bt) < φ1(ar). (22)

In view of Theorem B and the assumption of the subcase, it follows that |A0 + B0| ≥ |A0|+ |B0|.
Hence

|B0| < |A0| ≤ s− 1, (23)

since otherwise |(A\A0)+B| ≤ |A+B|−(|A0|+ |B0|) ≤ |A+B|−2|A0| yielding (b). Consequently,

φ1(a
′′
1) ≤ φ1(ar), (24)

since otherwise deletion of A0 from A and B0 from B decreases A+B by at least

|A0 +B0|+ |A0 + b′1|+ |B0 + a′′1| ≥ 2(|A0|+ |B0|)

elements, yielding (b) (note Claim 2 gives |B0| ≤ |A0|).
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If φ1(ar) ≤ 2s− 4, then in view of (24) it follows that A ∪B is contained in the 2s− 3 vertical

lines x = i, 0 ≤ i ≤ 2s−4, and (a) holds. Therefore we may assume φ1(ar) ≥ 2s−3 ≥ |A0|+|B0|−1.

Since gcd(φ1(A0)) = 1, we can apply the Theorem C to A0 and B0, with δ = 0 in view of (22).

Thus, since φ1(ar) ≥ |A0|+ |B0| − 1, it follows that by removing the elements of A0 and B0 from

A and B, respectively, we decrease the cardinality of A+B by at least

|A0 +B0|+ |(A0 +B1) ∪ (B0 +A1)| ≥ (|A0|+ 2|B0| − 2) + |(A0 +B1) ∪ (B0 +A1)|. (25)

If |B1| ≥ 2, then, from Theorem B and the assumption of the subcase, it follows that |A0 + B1| ≥
|A0|+ |B1| ≥ |A0|+2, whence (25) yields (b). Therefore |B1| = 1 and |(B0 +A1) \ (A0 +B1)| ≤ 1.

Consequently,

φ1(a
′′
1) ≤ φ1(ar)− φ1(bt−1), (26)

with equality possible only if a′′1 + bt is a unique expression element in A+B.

Let b be the intersection of e′′ with the line y = 1. By Claim 2 and (24), the slope of e′′ is no

steeper than the slope of f ′′. Hence (26) and (21) yield

φ1(bt)− φ1(b) ≥ φ1(ar)− φ1(a
′′
1) ≥ φ1(bt−1) = φ1(bt)− 1. (27)

Consequently, φ1(b) ≤ 1. If φ1(b) = 0, then it follows in view of (23) that |B| = |B0|+ 1 ≤ s − 1,

a contradiction. Therefore φ1(b) > 0, which is only possible if equality holds in (26), else the

estimate from (27) improves by 1. Thus a′′1 + bt is a unique expression element, so that if e′′ and
f ′′ were parallel, then by removing ar from A and bt from B we would lose the elements ar + bt,

ar+bt−1 = ar−1+bt, a
′′
1+bt and ar+b′′1, yielding (b). So we may assume e′′ and f ′′ are not parallel,

whence the estimate in (27) becomes strict, yielding 0 < φ1(b) < 1.

As a result, if |B0| ≥ 3, then (23) implies |B| ≤ |B0| + 1 ≤ s − 1, a contradiction. Therefore

|B0| = 2. Thus, since |A0 +B0| ≥ |A0|+ |B0| = |A0|+2 and since |(A0 \ ar) + (B0 \ bt)| = |A0 \ ar|
(in view of |B0 \ bt| = 1), it follows that removing ar from A0 and bt from B0 deletes at least three

points from A+B contained in A0 +B0 as well as the unique expression element a′′1 + bt, yielding

(b), and completing the subcase.

Subcase A.2: A0 is in arithmetic progression. We proceed to verify that

φ1(a
′′
1) ≤ φ1(ar) + 1. (28)

Suppose (28) is false. Since (b) does not hold, it follows that

|A0 +B0|+ |(A0 +B1) ∪ (A1 +B0)| < 2(|A0|+ |B0|), (29)

where the left hand side is a lower bound for the number of elements deleted from A + B when

removing A0 from A and B0 from B. Since |(A0 + B1) ∪ (A1 + B0)| ≥ |A0 + b′1| + |a′′1 + B0| (in
view of (28) not holding), we see that (29) implies |A0 + B0| = |A0| + |B0| − 1. Hence Theorem

B implies that both A0 and B0 are arithmetic progressions with the same difference. Moreover,

|(A0 +B1) ∪ (A1 +B0)| = |A0 + b′1|+ |a′′1 +B0|, whence (28) not holding implies that ar + (1, 1) /∈
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(A0+B1)∪ (A1+B0). From the previous two sentences, we see that if ar = a+ bi, with a ∈ A1 and

i < t, then bi+(1, 0) = bi+1 ∈ B0 and ar+(1, 1) = a+bi+(1, 0) ∈ A1+B0, a contradiction. Likewise,

if ar = ai+b, with b ∈ B1, then i = r. As a result, we conclude that ar+b′1 = ar+(0, 1) has at most

two expressions in A+B, the second one being possibly a+bt for some a ∈ A1. Hence, by deleting ar
from A0 and bt from B0, we lose the four elements ar+bt, ar+bt−1 = ar−1+bt, ar+b′1 = ar+(0, 1),

and z, where z is the element of A + B contained on the line y = 1 with φ1(z) maximal (note

φ1(z) ≥ φ1(a
′′
1 + bt) > φ1(ar + b′1)). Thus (b) follows, and so we may assume that (28) does indeed

hold.

We can now conclude Case A. If either A0 or A
′
0 = A∩{x = 0} are not in arithmetic progression,

then (a) holds by Subcase A.1 applied to either the lines y = 0 or x = 0. Otherwise, both A0 and

A′
0 are arithmetic progressions and, by (28) and (19) applied both to the lines x = 0 and y = 0, it

follows in view of Claim 2 that A ∪B is contained in the at most 2s− 3 lines with slope 1 passing

through the points in A0 ∪A′
0, yielding (a).

Case B: Claim 4(ii) holds for the pair f and f ′. This case is slightly simpler than Case A, and

we use very similar arguments. Recall that b0 = (0, 0), b1 = (1, 0), b′1 = (0, 1) and both A and B are

contained in the positive first quadrant. We may also assume f is contained in the horizontal axis

and f ′ is contained in the vertical axis; furthermore, by the same arguments used to establish (21),

we have a0 = (1/d, 0), a1 = (1/d + 1, 0), a′0 = (0, 1/d′) and a′1 = (0, 1/d′ + 1), for some d, d′ ∈ R
+,

and a′′1 ∈ A1/d′ . From Claim 1 (applied both to f and g and to g and f ′) we conclude d, d′ ∈ Z
+

and that the lines defined by a′0 and a0 and by a′1 and a1 must be parallel, which implies d = d′

(Figure 2 illustrates the argument); moreover, we have that A + B is contained within the lattice

◗
◗◗

◗
◗
◗
◗
◗
◗
◗
◗
◗
◗◗1/d′

1/d

ra′0

ra′1

r

a0

r

a1

1
1

1

Figure 2: Why d = d′.

(1/d, 0) + Z(1, 0) + Z(−1/d, 1/d). As in Case A, we have A contained in the region defined by the

lines x = 0, y = 0 and the line defined by f ′′.

Since A + B is contained within the lattice (1/d, 0) + Z(1, 0) + Z(−1/d, 1/d), by removing b0
from B and a0 and a′0 from A, we lose all the elements of A + B contained within the two lines

with slope −1 passing through a0 and a1, i.e., all the elements from

(b0 + {a0, a′0}) ∪ (b0 + {a1, a′1}) ∪ ({a0, a′0}+ {b1, b′1}) =
{(0, 1/d), (1/d, 0), (1 + 1/d, 0), (0, 1 + 1/d), (1, 1/d), (1/d, 1)}.

If d > 1, then the above 6 elements are distinct, and (b) follows. Therefore we may assume d = 1.

As a result, b0 = (0, 0), a0 = b1 = (1, 0), a1 = (2, 0) a′0 = b1 = (1, 0), a′1 = (2, 0), and A, B and
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A+B are contained in the integer lattice.

Let us show that

φ1(a
′′
1) ≤ φ1(ar). (30)

Suppose on the contrary that (30) does not hold. Then it follows, in view of Theorem B and

a′′1 ∈ A1, that by removing A0 from A and B0 from B we lose at least

|A0+B0|+|(A0+B1)∪(A1+B0)| ≥ |A0|+|B0|−1+|b′1+A0|+|a′′1+B0|+|{a′1+b0}| = 2(|A0|+|B0|)
(31)

elements from A+B, yielding (b). So we may assume (30) holds.

Now, if φ1(ar) ≤ 2s − 4, then it follows, in view of (30), Claim 2 and (19), that A ∪ B is

contained in the 2s− 3 parallel lines x = i, 0 ≤ i ≤ 2s− 4, yielding (a). Therefore we may assume

φ1(ar) ≥ 2s−3. Hence, since 2s−3 ≥ s for s ≥ 3, it follows that A0 is not in arithmetic progression.

Furthermore, with the same argument used to deduce (23), we conclude |B0| < |A0| ≤ s − 1. The

remainder of the proof is now just a simplification of that of Case A.1, which proceeds as follows.

Since φ1(ar) ≥ 2s−3 and |A0| > |B0|, we have φ1(ar)−1 ≥ |A0|+s−3 ≥ |A0|+|B0|−1. Thus, by

the same argument used in Case A, we conclude that (25) holds. If |(A0+B1)∪(A1+B0)| ≥ |A0|+2,

then (25) implies (b). Therefore we may assume |(A0+B1)∪(A1+B0)| ≤ |A0|+1, and consequently,

since {a′1 + b0} ∪ (b′1 + A0) ⊆ (A0 + B1) ∪ (A1 + B0) with |{a′1 + b0} ∪ (b′1 + A0)| = |A0| + 1, we

conclude that

(A0 +B1) ∪ (A1 +B0) = {a′1 + b0} ∪ (b′1 +A0).

As a result, φ1(a
′′
1) + φ1(bt) ≤ φ1(ar).

Let b be the intersection of the edge e′′ with the line y = 1. In view of in view of (30) and Claim

2, the slope of e′′ is no steeper than that of f ′′. Thus, since φ1(a
′′
1)+φ1(bt) ≤ φ1(ar), it follows that

φ1(bt)− φ1(b) ≥ φ1(ar)− φ1(a
′′
1) ≥ φ1(bt), implying φ1(b) = 0. Hence |B| ≤ |B0 ∪ {b′1}| ≤ s− 1 (in

view of |B0| < |A0|), a contradiction. This completes the proof.

The following lemma will allow us to improve, in a very particular case, the bound given in

Theorem 1.2 by one, which will be a crucial improvement needed in the proof of Theorem 1.1 for

the extremal case |A|+ |B| ≤ 4s2 − 5s− 1.

Lemma 3.2. Let X = (x1, x2) be a basis for R
2, let s ≥ 2 be an integer, let A, B ⊆ R

2 be finite,

nonempty subsets with ||A| − |B|| ≤ s and 4s2 − 6s + 3 ≤ |A| + |B| ≤ 4s2 − 5s − 1. Suppose that

|φX1
(A)| ≤ |φX1

(B)| = 2s− 2, where X1 = Rx1, and that some line parallel to Rx1 intersects A in

at least 2s− 2 points. Then

|A+B| ≥ 2|A| + 2|B| − 6s + 7. (32)

Proof. We may w.l.o.g. assumeCX(A) = A and CX(B) = B. Let m = |φX1
(A)| and n = |φX1

(B)|.
Let Ai = A∩ (Zx1+(i−1)x2), Bj = (Zx1+(j−1)x2), |Ai| = ai and |Bi| = bi, for i = 1, . . . ,m and

j = 1, . . . , n. By hypothesis, we have a1 ≥ 2s− 2 and m ≤ n = 2s− 2. Assume by contradiction

|A+B| ≤ 2|A| + 2|B| − 6s + 6. (33)
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Suppose m < n = 2s− 2. Then, since ||A| − |B|| ≤ s ≤ 2s − 2, from the proof of Theorem 1.2

we know that (3) is minimized for the boundary value m = n− 1. Hence

|A+B| ≥ |A|+ |B| − (n+ n− 1− 1) +
n− 1

n− 1
|A|+ n− 2

n
|B| = 2|A| + 2|B| − 4s+ 6− 2

2s− 2
|B|,

which together with (33) implies |B| ≥ s(2s−2). Consequently, |A|+|B| ≥ 2|B|−s ≥ 2s(2s−2)−s =

4s2 − 5s, contradicting our hypotheses. So we may assume m = n = 2s− 2.

Observe that, for each j = 1, . . . , s− 1, we have the following estimates:

|A+B|+ 4s − 5 ≥
j−1
∑

i=1

(ai + b1) +

2s−2−j
∑

i=1

(aj + bi) +

2s−2
∑

i=j

(ai + b2s−j−1) +

2s−2
∑

i=2s−j

(a2s−2 + bi)

= |A|+ |B|+ (j − 1)(a2s−2 + b1) + (2s − 2− j)(aj + b2s−j−1), (34)

|A+B|+ 4s − 5 ≥
j−1
∑

i=1

(a1 + bi) +

2s−2−j
∑

i=1

(ai + bj) +

2s−2
∑

i=j

(a2s−j−1 + bi) +

2s−2
∑

i=2s−j

(ai + b2s−2)

= |A|+ |B|+ (j − 1)(b2s−2 + a1) + (2s − 2− j)(bj + a2s−j−1), (35)

|A+B|+ 4s − 5 ≥
2s−3
∑

i=1

(ai + bi + ai+1 + bi) + a2s−2 + b2s−2 = 2|A|+ 2|B| − a1 − b2s−2,(36)

|A+B|+ 4s − 5 ≥
2s−3
∑

i=1

(ai + bi + ai + bi+1) + a2s−2 + b2s−2 = 2|A|+ 2|B| − b1 − a2s−2.(37)

In view of (33) and (34) with j = 1, it follows that |A|+ |B| ≥ (2s− 3)(a1 + b2s−2) + 2s− 1. Thus

|A| + |B| ≤ 4s2 − 5s − 1 implies that a1 + b2s−2 ≤ 2s − 1. However, in view of (36) and (33), it

follows that a1 + b2s−2 ≥ 2s− 1. Consequently,

a1 + b2s−2 = 2s− 1. (38)

Repeating these arguments with (35) and (37) instead, we likewise conclude

b1 + a2s−2 = 2s− 1. (39)

If aj + b2s−j−1 ≥ 2s, then, in view of (39), (33) and (34), it follows that

|A|+ |B| ≥ j(2s − 1) + (2s − 2− j)(2s) = 4s2 − 4s− j ≥ 4s2 − 5s+ 1,

contradicting that |A|+ |B| ≤ 4s2 − 5s− 1. Therefore we may assume

aj + b2s−j−1 ≤ 2s− 1, (40)

for all j = 1, . . . , s − 1. Repeating this argument with (35) and (38) instead, we likewise conclude

bj + a2s−j−1 ≤ 2s− 1, (41)

for all j = 1, . . . , s − 1. However, summing (40) and (41) over j = 1, . . . , s− 1 yields

|A|+ |B| ≤ 2(s − 1)(2s − 1) = 4s2 − 6s+ 2,

contradicting our hypotheses, and completing the proof.
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The proof of Theorem 1.1 is by induction on s and it uses the following version, which is

essentially equivalent to Theorem 1.1.

Theorem 3.3. Let s ≥ 3 be an integer, and let A, B ⊆ R
2 be finite subsets such that there are no

s collinear points in either A or B.

(i) If ||A| − |B|| ≤ s and |A|+ |B| ≥ (s − 1)(4s − 6) + 1, then

|A+B| ≥ 2|A| + 2|B| − 6s + 7.

(ii) If |A| ≥ |B|+ s and |B| ≥ 1
2 (s− 1)(4s − 7), then

|A+B| ≥ |A|+ 3|B| − 5s+ 7.

We first show that part (ii), in both Theorem 3.3 and 1.1, is a very simple consequence of the

corresponding part (i).

Lemma 3.4. Let s ≥ 2 be a positive integer. (a) If s ≥ 3 and Theorem 3.3(i) holds for s, then

Theorem 3.3(ii) holds for s. (b) If Theorem 1.1(i) holds for s, then Theorem 1.1(ii) holds for s.

Proof. We first prove (a). Observe that |(A \ x)+B| < |A+B| for any vertex x in the convex hull

of A. Thus, by iteratively deleting vertices from the convex hull, we can obtain a subset A′ ⊆ A

with |A′| = |B|+ s and

|A′ +B| ≤ |A+B| − |A \ A′|. (42)

Since |B| ≥ 1
2(s− 1)(4s− 7), it follows that |A′|+ |B| = 2|B|+ s ≥ (s− 1)(4s− 6) + 1, whence

we can apply Theorem 3.3(i) to A′+B. Thus |A′+B| ≥ 2|A′|+2|B|−6s+7 = |A′|+3|B|−5s+7,

whence the theorem follows in view of (42).

Next we prove (b). Suppose by contradiction that h1(A,B) ≥ s. As in the previous part,

observe that |(A \ x) + B| < |A+B| for any vertex x in the convex hull of A. Thus by iteratively

deleting vertices from the convex hull we can obtain a sequence of subsets A0 = A ⊇ A1 ⊇ . . . ⊇
A|A|−|B|−s = Ak, with |Ai| = |A| − i and

|Ai +B| ≤ |A+B| − |A \Ai| < |Ai|+ 3|B| − s− 2|B|
s

, (43)

where the last inequality follows from (2).

Since |Ai| = |Ai−1| − 1 and Ai ⊆ Ai−1, it follows that h1(Ai, B) ≥ h1(Ai−1, B) − 1 for all i.

Consequently, if h(Ak, B) < s, then it would follow in view of h(A,B) ≥ s that h(Aj , B) = s for

some j, whence Theorem 1.2(i)(ii) would contradict (43) for i = j (note the bound in Theorem

1.2(i) implies that in Theorem 1.2(ii) in view of |Aj | ≥ |Ak| = |B|+ s). Therefore we may assume

h(Ak, B) ≥ s.

Since |B| ≥ 2s2 − 7
2s +

3
2 , it follow that |Ak| + |B| = 2|B| + s ≥ 4s2 − 6s + 3. Hence we can

apply Theorem 1.1(i) to Ak +B, whence h1(Ak, B) ≥ s implies

|Ak +B| ≥ 2|Ak|+ 2|B| − 2s + 1− |Ak|+ |B|
s

= |Ak|+ 3|B| − s− 2|B|
s

,
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contradicting (43) for i = k, and completing the proof.

We will prove Theorems 3.3 and 1.1 simultaneously using an inductive argument on s: the

case s − 1 of Theorem 1.1 will be used to prove the case s of Theorem 3.3, while the case s of

Theorem 3.3 will be used to prove the case s of Theorem 1.1 (except for the case s = 2, where a

trivial argument will be used instead). Thus both Theorem 3.3 and 1.1 follow immediately from

the following two lemmas. This also shows that Theorem 3.3 and Theorem 1.1 are in some sense

equivalent statements.

Lemma 3.5. Let s ≥ 3 be a positive integer. Suppose that the statement in Theorem 1.1 holds for

s− 1. Then Theorem 3.3 holds for s.

Proof. In view of Lemma 3.4, it suffices to show part (i) holds, so suppose on the contrary that

Theorem 3.3(i) is false for s. Let A, B ⊆ R
2 be a counterexample with |A| + |B| minimum. Thus

||A| − |B|| ≤ s, |A|+ |B| ≥ (s− 1)(4s − 6) + 1 and

|A+B| < 2|A| + 2|B| − 6s + 7. (44)

We may assume |A| ≥ |B|.
Since neither A nor B contains s collinear points, and since |A| + |B| ≥ (s − 1)(4s − 6) + 1,

it follows from the pigeonhole principle that h1(A,B) > 2s − 3. By Lemma 3.1 (in view of (44)),

there is a nonempty subset A0 ⊆ A and B0 ⊆ B with |B0| ≤ |A0| ≤ s− 1 and

|A′ +B′| ≤ |A+B| − 2(|A0|+ |B0|) < 2|A′|+ 2|B′| − 6s+ 7, (45)

where A′ = A \ A0 and B′ = B \ B0. Furthermore, ||A′| − |B′|| = ||A| − |B| − (|A0| − |B0|)| ≤ s.

Therefore, by the minimality of |A|+ |B|, we have

|A′|+ |B′| ≤ (s− 1)(4s − 6).

As a result,

|A|+ |B| ≤ |A′|+ (s− 1) + |B′|+ (s− 1) ≤ (s− 1)(4s − 6) + 2(s − 1) = 4(s − 1)2. (46)

If |A| < |B|+ s, then, since h1(A,B) > 2s− 3 ≥ s− 1 and since

|A|+ |B| ≥ (s− 1)(4s − 6) + 1 > (s− 1)(4s − 9) + 3 = 4(s − 1)2 − 5(s − 1) + 3,

it follows, in view of (44) and the case s− 1 of Theorem 1.1(i), that

2|A|+ 2|B| − 2(s− 1) + 1− |A|+ |B|
s− 1

≤ |A+B| ≤ 2|A| + 2|B| − 6s+ 6.

Hence |A|+ |B| ≥ (4s−3)(s−1) > 4(s−1)2, contradicting (46). On the other hand, if |A| = |B|+s,

then, since h1(A,B) > 2s− 3 ≥ s− 1 and since

2|B|+ s = |A|+ |B| ≥ (s− 1)(4s − 6) + 1 = 4s2 − 10s + 7

≥ 4s2 − 14s + 14 = 4(s − 1)2 − 7(s− 1) + 3 + s,
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it follows, in view of (44) and the case s− 1 of Theorem 1.1(ii), that

2|A|+2|B|− 2s+1− |A|+ |B| − s

s− 1
= |A|+3|B|− (s− 1)− 2|B|

s− 1
≤ |A+B| ≤ 2|A|+2|B|− 6s+6.

Hence |A|+ |B| ≥ (4s− 5)(s− 1)+ s = 4s2− 8s+5 > 4(s− 1)2, contradicting (46), and completing

the proof.

Lemma 3.6. Let s ≥ 2 be a positive integer. If s ≥ 3, suppose that the statement of Theorem 3.3

holds for s. Then Theorem 1.1 holds for s.

Proof. In view of Lemma 3.4, it suffices to show part (i) holds. Let A, B ⊆ R
2 verify the hypothesis

of Theorem 1.1(i) for s, and assume by contradiction that h1(A,B) ≥ s.

Suppose neither A nor B contain s collinear points. Thus |A| + |B| ≥ 3 implies that s ≥ 3.

Hence, in view of Theorem 3.3(i) and (1), it follows that

2|A|+ 2|B| − 6s + 7 ≤ |A+B| < 2|A|+ 2|B| − 2s+ 1− |A|+ |B|
s

.

Thus |A|+ |B| < 4s2 − 6s, contradicting that |A|+ |B| ≥ 4s2 − 6s+ 3. So we may assume w.l.o.g.

that A contains at least s collinear points on the line Zx1 + a1. Let X = (x1, x2) be an ordered

basis for R2

Since h1(A,B) ≥ s, so that max{|φX1
(A)|, |φX1

(B)|} ≥ s, it follows in view of (6) that

max{|φX1
(CX(A))|, |φX1

(CX(B))|} ≥ s. Hence, since A contains s collinear points on a line par-

allel to Zx1, it follows that h1(CX(A),CX(B)) ≥ s. Consequently, we conclude from (8) that

it suffices to prove the theorem on compressed sets, and w.l.o.g. we assume A = CX(A) and

B = CX(B). Let |φX1
(A)| = m and |φX1

(B)| = n. Let Ai = A ∩ (Zx1 + (i − 1)x2), 1 ≤ i ≤ m,

and Bi = B ∩ (Zx1 + (i − 1)x2), 1 ≤ i ≤ n. Note, since both A and B are compressed, that

|A1| ≥ |A2| ≥ . . . ≥ |Am| and |B1| ≥ |B2| ≥ . . . ≥ |Bn|. Since A contains s collinear points along a

line parallel to Zx1, it follows that |A1| ≥ s.

By our assumption to the contrary, we have max{m, n} ≥ s. Thus it follows, from Theorem

1.2(i) (applied with the line Zx1) and (1), that

max{m, n} ≥
⌊ |A|+ |B|

2s

⌋

+ 1. (47)

Since max{|A1|, |B1|} ≥ s, it follows, from Theorem 1.2(i) (applied with the line Zx2) and (1), that

max{|A1|, |B1|} ≥
⌊ |A|+ |B|

2s

⌋

+ 1. (48)

Let k = |A|+ |B|, and let

x =

⌊ |A|+ |B|
2s

⌋

+ 1 =
|A|+ |B| − α

2s
+ 1,
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so that k = |A|+ |B| ≡ α mod 2s, with 0 ≤ α ≤ 2s− 1. With this notation, (1) yields

|A+B| ≤ 2(k − s− x+ 1)− δ, (49)

where δ = 0 if α < s and otherwise δ = 1.

We proceed to show that

|A+B| < k − (2x− 2) +
x− 2

x
|A|+ |B|. (50)

Suppose (50) does not hold. In this case, if δ = 0, then α ≤ s − 1 whence from (49) we conclude

that

|A| ≥ sx = s(
|A|+ |B| − α

2s
+ 1) ≥ s(

2|A| − s− α

2s
+ 1) ≥ s(

2|A| − 2s+ 1

2s
+ 1) > |A|,

a contradiction. On the other hand, if δ = 1, then from (49) we instead conclude that

2|A| ≥ (2s+ 1)x ≥ (2s + 1)
|A|+ |B|+ 1

2s
≥ (2s + 1)

2|A| − s+ 1

2s
,

whence

|A| ≤ s2 − s

2
− 1

2
. (51)

However, since 2|A| + s ≥ |A| + |B| ≥ 4s2 − 6s + 3, it follows that |A| ≥ ⌈2s2 − 7
2s +

3
2⌉, which

contradicts (51). Thus we conclude that (50) holds.

For each r ∈ {1, . . . , n}, we have the estimate

|A+B| ≥ |A1 +
r−1
⋃

i=1

Bi|+ |A+Br|+ |Am +
n
⋃

i=r+1

Bi|

=

r−1
∑

i=1

|Bi|+ (r − 1)(|A1| − 1) + |A|+m(|Br| − 1) +

n
∑

i=r+1

|Bi|+ (n− r)(|Am| − 1)

≥ |A|+ |B| − 1 + (|A1| − 1)(r − 1) + (m− 1)(|Br| − 1). (52)

Averaging this estimate over all r, we obtain

|A+B| ≥ |A|+ |B| − 1 + (|A1| − 1)(
n + 1

2
− 1) + (m− 1)(

|B|
n

− 1). (53)

In view of (47) and (48), we have max{m, n} ≥ x and max{|A1|, |B1|} ≥ x. We consider two

cases according to whether these maxima are achieved in the same set or in different sets.

Case A: Either min{m, |B1|} ≥ x or min{n, |A1|} ≥ x. By symmetry we may assume that

the latter holds. We have the estimate

|A+B| ≥ |A1 + (B \Bn)|+ |A+Bn|
= |B| − |Bn|+ (n− 1)(|A1| − 1) + |A|+m(|Bn| − 1)

≥ |A|+ |B| − 1 + (n− 1)(|A1| − 1)

≥ |A|+ |B| − 1 + (x− 1)2. (54)
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In view of (49) and (54), it follows that

k ≥ x2 + 2s− 2 + δ =
k2 − 2αk + α2

4s2
+

k − α

s
+ 2s − 1 + δ.

Hence,

k2 − 2(2s2 − 2s+ α)k + (8s3 − 4s2 + 4δs2 − 4αs + α2) ≤ 0.

Thus, since α− δ ≤ 2s− 2, it follows that

k ≤ 2s2 − 2s+ α+ 2s
√

s2 − 4s + 2 + α− δ < 4s2 − 4s+ α.

Since |A|+ |B| ≡ α mod 2s, the above bound implies that

|A|+ |B| = k ≤ 4s2 − 6s+ α ≤ 4s2 − 4s − 1. (55)

Hence, since k ≥ 4s2 − 6s+ 3, it follows that k = 4s2 − 6s+ α, with α ≥ 3 and x = 2s − 2.

Suppose max{m,n} = x. If α < s, then Lemma 3.2 contradicts (49). Therefore α ≥ s and

δ = 1. Hence Theorem 1.2(i) and (49) imply that

2k − 2x− 2s+ 1 ≥ 2k − 2x+ 1−
⌊

k

x

⌋

= 2k − 2x+ 1− (2s− 1), (56)

a contradiction. So we may assume max{m,n} > x.

Suppose n ≥ x + 1. Hence (54) now implies that |A + B| ≥ |A| + |B| − 1 + x(x − 1), which,

when combined with (49) and x = 2s − 2, yields k ≥ 4s2 − 4s − 1 + δ, contradicting (55). So we

can assume n = x and m > x. By this same argument, we also conclude that |A1| = x.

If |B1| ≥ x, then interchanging the roles of A andB and repeating the above argument completes

the proof. Therefore |B1| ≤ x− 1. Since |A1| = x, we can apply (3) with the line Zx2 to obtain

|A+B| ≥
( |A|

x
+

|B|
|B1|

− 1

)

(x+ |B1| − 1) = k − (x+ |B1| − 1) +
|B1| − 1

x
|A|+ x− 1

|B1|
|B|.

Considering this bound as a function of |B1|, it follows by the same calculation used in the proof of

Theorem 1.2, and in view of |B1| < x and ||A| − |B|| ≤ s ≤ 2s − 2 = x, that it is minimized when

|B1| = x− 1, contradicting (50), and completing the case.

Case B: Either min{m, |A1|} ≥ x or min{n, |B1|} ≥ x. By symmetry we may assume that the

former holds. Note that we can assume |B1| < x and n < x, else the previous case completes the

proof.

If m = x, then, in view of n ≤ x−1 and ||A|−|B|| ≤ s ≤ x = m, it follows that the bound given

by (3), considered as a function of n, is minimized for the boundary value n = x− 1, contradicting

(50). Therefore we may assume m > x. Applying the same arguments with the roles of x1 and x2
swapped, we also conclude that |A1| > x. Thus (53) implies that

|A+B| ≥ |A|+ |B| − 1 +
1

2
x(n+ 1 +

2|B|
n

)− 2x ≥ k − 1 + x(
√

2|B|+ 1

2
)− 2x.
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Hence in view of (49), it follows that

x(
√

2|B|+ 1

2
) ≤ k − δ − 2s+ 3, (57)

and consequently,

(
k − 2s+ 1

2s
+ 1)(

√

2|B|+ 1

2
) ≤ k − 2s+ 3.

Thus
√

2|B|+ 1
2 < 2s, implying that |B| ≤ 2s2 − s, whence |A|+ |B| ≤ 4s2 − s. As a result,

x =











2s, 4s2 − 2s ≤ k ≤ 4s2 − s

2s − 1, 4s2 − 4s ≤ k ≤ 4s2 − 2s− 1

2s − 2, 4s2 − 6s+ 3 ≤ k ≤ 4s2 − 4s− 1.

(58)

There are three cases based on the value of x.

If x = 2s, then (58) implies that k − δ ≤ 4s2 − s− 1, whence (57) implies

k ≤ 2|B|+ s ≤ (2s− 2 +
1

s
)2 + s ≤ 4s2 − 7s + 8,

contradicting that k ≥ 4s2 − 2s.

If x = 2s− 1, then (58) implies that k − δ ≤ 4s2 − 2s− 2, whence (57) implies that

k ≤ 2|B|+ s ≤ ⌊(2s − 3

2
)2 + s⌋ ≤ 4s2 − 5s + 2.

Hence k ≥ 4s2 − 4s implies that s = 2, whence the above inequality becomes k ≤ 4s2 − 5s+2 = 8.

Thus (57) then implies that k ≤ 2|B|+ s ≤ (73 − 1
2)

2 + 2 ≤ 6, contradicting that k ≥ 4s2 − 4s = 8.

Finally, if x = 2s− 2, then (58) implies that k − δ ≤ 4s2 − 4s − 2, whence (57) implies

k ≤ 2|B|+ s ≤ ⌊(2s − 3

2
− 1

2s − 2
)2 + s⌋ ≤ 4s2 − 5s.

However, k ≤ 4s2−5s and (57) imply that k ≤ 2|B|+s ≤ (2s−2)2+s = 4s2−7s+4, contradicting

that k ≥ 4s2 − 6s+ 3, and completing the proof.

Finally, we conclude with the proof of Theorem 1.3.

Proof. of Theorem 1.3. If s = 1, then the result follows from Theorem B. If s = 2, then |A| > |B|,
and the result follows from [15, Corollary 5.16 with n = |A|, t = |A| − |B| ≥ 1, d = 2]. So we may

assume s ≥ 3. If |B| = 1, the result is trivial. So |B| ≥ 2. By hypothesis,

|A| ≥ 1

2
s(s− 1)|B|+ s. (59)

Let X = (x1, x2) be an arbitrary ordered basis for R
2, where Rx1 = Z1 and Rx2 = Z2. Let

m = |φZ1
(A)| and n = |φZ1

(B)|. Note max{m, n} ≥ s by hypothesis.
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Suppose m < s. Then n ≥ s > m with |B| < |A|, whence Theorem 1.2(i) implies that

|A+B| ≥ 2|A|+ 2|B| − 2n+ 1− |A|+ |B|
n

. (60)

Note (59) and s ≥ 3 imply |A| ≥ 3|B|+ s so that 2 ≤ s ≤ n ≤ |B| ≤ |A|+|B|
4 . As a result, (60) and

(59) yield

|A+B| ≥ 2|A| + 2|B| − 3− |A|+ |B|
2

≥ |A|+
1
2s(s− 1)|B|+ s

2
+

3

2
|B| − 3

= |A|+ (
1

4
s2 − 1

4
s+

3

2
)|B|+ s

2
− 3 ≥ |A|+ (

1

4
s2 − 1

4
s+

3

2
)|B| − s ≥ |A|+ s|B| − s,

as desired. So we may assume |φZ1
(A)| = m ≥ s. Moreover, if m = s, then (4) follows in view of

Theorem 1.2(iii) and (59). Therefore |φZ1
(A)| = m > s. Since X was arbitrary, this means that

|φZ(A)| > s for any one-dimensional subspace Z. In particular, by letting Z be a line such that

|φZ(B)| < |B| (recall |B| ≥ 2), we conclude that |A+B| ≥ |A|+ |φZ(A)| ≥ |A|+ s. Thus we may

assume |B| ≥ 3, else the proof is complete.

If n = 1, then (4) follows from (3) and m > s. Therefore, as X is arbitrary, it follows that n ≥ 2

and that |φZ(B)| ≥ 2 for any one-dimensional subspace Z.

Now assume to the contrary that (4) is false. We will throughout the course of the proof find

that the following bound holds for varying values of n′ ≥ 1:

|A|+ |B| −m− n′ + 1 +
n′ − 1

m
|A|+ m− 1

n′ |B| ≤ |A+B| ≤ |A|+ s|B| − s− 1. (61)

Inequality (3) shows that the lower bound above holds with n′ = n. Rearranging the terms in (61),

we obtain

(
|B|
n′ − 1)m2 − (s|B| − |B|+ |B|

n′ + n′ − s− 2)m+ (n′ − 1)|A| ≤ 0. (62)

Applying the estimate (59) yields

(
|B|
n′ − 1)m2 − (s|B| − |B|+ |B|

n′ + n′ − s− 2)m+ (n′ − 1)(
1

2
s(s− 1)|B|+ s) ≤ 0. (63)

When |B| > n′, the discriminant of the above quadratic in m must be nonnegative, i.e.,

(s|B| − |B|+M − s− 2)2 − 2(|B| + 1−M)(s2|B| − s|B|+ 2s) ≥ 0, (64)

where M := |B|
n′ + n′. Collecting terms, we obtain

M2 + (2s2|B|+ 2s− 2|B| − 4)M + 4 + 4|B| − 4s2|B|+ |B|2 − s2|B|2 − 4s|B|+ s2 ≥ 0. (65)

Noting that (2s2|B|+2s−2|B|−4) ≥ 0, we conclude that (65) must hold for the maximum allowed

value for M .

Claim 1. (61) cannot hold with n′ = 2; consequently, |φZ(B)| ≥ 3 for any one-dimensional

subspace Z.
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Proof. We know that (61) holds with n′ = n. Thus we need only prove the first part of the claim.

Suppose to the contrary that (61) holds with n′ = 2. Thus considering (62) as a quadratic in m,

we conclude that the discriminant is nonnegative, i.e., that

|A| ≤ (s|B| − |B|
2 − s)2

2|B| − 4
=

(2s − 1)2|B| − 4(2s − 1)s|B|+ 4s2

8|B| − 16
(66)

=
1

8
(2s − 1)2|B| − 1

4
(2s − 1) +

(s− 1)2

2|B| − 4
, (67)

which contradicts the hypothesis of (a). Thus we may assume the hypothesis of (b) holds. From

(63), we have

(|B| − 2)m2 − (2s|B| − |B| − 2s)m+ s(s− 1)|B|+ 2s ≤ 0. (68)

Considering (68) as a quadratic in m, we see that its minimum occurs for

m =
(2s− 1)|B| − 2s

2|B| − 4
= s− 1

2
+

s− 1

|B| − 2
.

However, the hypothesis |B| ≥ 2s+4
3 of (b) implies that s− 1

2 + s−1
|B|−2 ≤ s+ 1. Consequently, since

m ≥ s+ 1, we conclude that (68) is minimized for the boundary value m = s+ 1, whence

0 ≥ (|B| − 2)(s + 1)2 − (2s|B| − |B| − 2s)(s+ 1) + s(s− 1)|B|+ 2s = 2|B| − 2,

contradicting that |B| ≥ 3, and completing the claim.

Claim 2. If (61) holds with n′ = 3, then |B| ≤ 6; consequently, if |B| ≥ 7, then |φZ(B)| ≥ 4 for

any one-dimensional subspace Z.

Proof. As in the previous claim, we need only prove the first part. Assuming (61) holds with n′ = 3,

so that M = |B|
3 + 3, it follows in view of (65) and s ≥ 3 that

0 ≤ −s2|B|2 − 10s|B|+ 6s2|B|+ 4

3
|B|2 − 4|B|+ 3 + 18s + 3s2 (69)

≤ −s2|B|2 + 6s2|B|+ 4

3
|B|2 + 3ss = −(

23

27
+

4

27
)s2|B|2 + 6s2|B|+ 4

3
|B|2 + 3s2

≤ −23

27
s2|B|2 + 6s2|B|+ 3s2,

which implies |B| ≤ 7. However, it can be individually checked that (69) cannot hold for |B| = 7,

completing the claim.

Claim 3. If (61) holds with n′ = 4, then |B| ≤ 8; consequently, if |B| ≥ 9, then |φZ(B)| ≥ 5 for

any one-dimensional subspace Z.
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Proof. Assuming (61) holds with n′ = 4, so that M = |B|
4 + 4, it follows in view of (65) and s ≥ 3

that

0 ≤ −s2|B|2 − 7s|B|+ 8s2|B|+ 9

8
|B|2 − 6|B|+ 8 + 16s + 2s2 (70)

< −s2|B|2 + 8s2|B|+ 9

8
|B|2 + 2s2 = −(

7

8
+

1

8
)s2|B|2 + 8s2|B|+ 9

8
|B|2 + 2s2

≤ −7

8
s2|B|2 + 8s2|B|+ 2s2

which implies |B| ≤ 9. However, it can be individually verified that (70) cannot hold for |B| = 9,

completing the claim.

Claim 4. If |B| ≥ 7 and Z is any one-dimensional subspace, then

|φZ(A)| >
s|B|
4

, when s ≥ 4 (71)

|φZ(A)| >
s|B|
5

, when s = 3. (72)

Proof. Suppose to the contrary that

m ≤ s|B|
4

, when s ≥ 4 (73)

m ≤ s|B|
5

, when s = 3. (74)

Note (73) and (74) each implies m < |A|. Let l :=
√

m(m−1)|B|
|A|−m .

If s ≥ 4, then (59) and (73) imply

l ≤
√

m2|B|
1
2s(s− 1)|B|+ s−m

<

√

s2|B|3/16
1
2s(s− 1)|B| − s|B|

4

=
|B|
4

√

s2

1
2s

2 − 3
4s

≤
√
5

5
|B|. (75)

If s = 3, then (59) and (74) imply

l ≤
√

m2|B|
1
2s(s− 1)|B|+ s−m

<

√

9
25 |B|3

3|B| − 3
5 |B| ≤

√
15

10
|B|. (76)

From the proof of Theorem 1.2, we know that l minimizes (3), and thus that (61) holds with

n′ = l. If l ≤ 3, then (3) will be minimized for either n′ = 1, n′ = 2 or n′ = 3, whence Claims 1

and 2 imply |B| ≤ 6. Note that 1
3 < max{

√
5
5 ,

√
15
10 }. Hence if s ≥ 4, then (75) implies that

M =
|B|
l

+ l ≤ 5√
5
+

√
5

5
|B| < 9

20
|B|+ 9

4
, (77)

while if s = 3, then (76) implies that

M =
|B|
l

+ l ≤ 10√
15

+

√
15

10
|B| < 2

5
|B|+ 13

5
. (78)
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Combining (77) and (65) and applying the estimate s ≥ 4, we obtain

0 ≤ − 1

10
s2|B|2 − 31

10
s|B|+ 1

2
s2|B|+ 121

400
|B|2 − 11

40
|B|+ 1

16
+

9

2
s+ s2 (79)

≤ − 1

10
s2|B|2 + 1

2
s2|B|+ 121

400
|B|2 + s2 ≤ −(

19

240
+

1

48
)s2|B|2 + 1

2
s2|B|+ 1

3
|B|2 + s2

≤ − 19

240
s2|B|2 + 1

2
s2|B|+ s2,

which implies |B| ≤ 7. However, individually checking the case |B| = 7 in (79) shows that in fact

|B| ≤ 6. Combining (78) and (65) and assuming s = 3, we obtain

−36|B|2 + 12|B|+ 624 ≥ 0,

which implies |B| ≤ 4, completing the claim.

Claim 5. There are s collinear points in A.

Proof. Suppose instead that A contains no s collinear points. Then it follows from the pigeonhole

principle and (59) that

|φZ(A)| >
1

2
s|B|+ 1, (80)

for any one-dimensional subspace Z. Consequently, if B has at least 3 collinear points contained

in a line parallel to (say) Z, then Theorem B implies

|A+B| ≥ |A|+ 2|φZ(A)| > |A|+ 2(
1

2
s|B|+ 1) = |A|+ s|B|+ 2,

as desired. Therefore we may assume B contains no 3 collinear points.

Suppose h1(B,B) < |B| − 1. Then, since B contains no 3 collinear points, it follows that

there exists a pair of parallel lines each containing 2 points of B. Hence, by an appropriate

affine transformation, we may w.l.o.g assume (0, 0), (1, 0), (0, 1), (x, 1) ∈ B, for some x > 0. Let

x1 = (1, 0) and x2 = (0, 1). Let A1 ⊆ A be the subset obtained by choosing for each element

of φZ1
(A) the element of A with largest x1-coordinate. Let A2 ⊆ A be likewise defined using Z2

instead of Z1. Note A1 + (1, 0) contains |φZ1
(A)| points in A+B disjoint from A.

Let z + Rx1 be an arbitrary line parallel to Rx1, and let a1, . . . , ar be the elements of A2 ∩
(z + Rx1). Moreover, if A1 ∩ (z + (0, 1) + Rx1) is nonempty, then there is a unique element

y ∈ A1 ∩ (z+(0, 1)+Rx1), and so let as, . . . , ar be those elements of A2 ∩ (z+Rx1) with φZ1
(ai) ≥

φZ1
(y) + 1. If A1 ∩ (z + (0, 1) + Rx1) is empty, let s = r + 1. Note that for each ai, i < s, the

element ai + (0, 1) is an element of A+B contained in neither A nor A1 + (1, 0), while for each ai,

i ≥ s, the element ai + (x, 1) is an element of A + B contained in nether A nor A1 + (1, 0) (since

x > 0). Consequently, since z is arbitrary and since A1+(1, 0) contains |φZ1
(A)| points from A+B

disjoint from A, we conclude that

|A+B| ≥ |A+ {(0, 0), (1, 0), (0, 1), (x, 1)}| ≥ |A|+ |φZ1
(A)| + |φZ2

(A)| ≥ |A|+ s|B|+ 2,
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where the latter inequality follows by (80) applied both with Z = Rx1 and Z = Rx2. Thus (4)

holds, as desired, and so we may assume h1(B,B) = |B| − 1.

Choose x1 such that |φZ1
(B)| < |B|, and let A′ = CX(A), B′ = CX(B), Ai = A′ ∩ (Zx1 +

(i − 1)x2) and Bj = B′ ∩ (Zx1 + (j − 1)x2), for i = 1, . . . ,m and j = 1, . . . , n. Note, since

h1(B,B) = |B| − 1 and |φZ1
(B)| < |B|, that n = |B| − 1, |B1| = 2, and |Bi| = 1 for i > 1. Since

A contains no s collinear points, we have |Ai| ≤ s − 1 for all i. Observe, for j = 1, . . . ,m, that we

have the following estimate:

|A+B| ≥
j−1
∑

i=1

|Ai +B1|+
|B|−1
∑

i=1

|Aj +Bi|+
m
∑

i=j+1

|Ai +Bn| =

|A|+ (|B| − 2)|Aj |+ |B|+ (j − 1)|B1|+ (m− j)|Bn| − (m+ |B| − 2) = |A|+ (|B| − 2)|Aj |+ j.

Thus, assuming (4) is false, we conclude that

|Aj | ≤
s(|B| − 1)− j − 1

|B| − 2
= s+

s− j − 1

|B| − 2
, (81)

for j = 1, . . . ,m. Consequently, for j such that s+ (k− 1)(|B| − 2) ≤ j ≤ s+ k(|B| − 2)− 1, where

k = 1, 2, . . ., we infer that

|Aj | ≤ s− k. (82)

Note that

|Aj | ≤ s− 1 (83)

for j = 1, . . . , s − 1, as remarked earlier. Summing (82) and (83) over all possible j, we conclude

that

|A| ≤ (s− 1)2 + (|B| − 2)

s−1
∑

k=1

(s− k) = (s− 1)2 + (|B| − 2)
s(s− 1)

2
=

1

2
s(s− 1)|B| − s+ 1,

contradicting (59), and completing the claim.

In view of Claim 5, choose x1 so that there are s points on some line parallel to Zx1. Let

A′ = CX(A) and B′ = CX(B). Since |φZ1
(A)| ≥ s and since A contains s collinear points on a

line parallel to Zx1, it follows that h1(A
′, B′) ≥ h1(A

′, A′) ≥ s, whence A′ and B′ also satisfy the

hypotheses of the theorem. Furthermore, if |A′+B′| ≥ |A′|+s(|B′|−1) = |A|+s(|B|−1), then the

proof is complete in view of (8). Thus we can w.l.o.g. assume A = A′ and B = B′ are compressed

subsets.

Let Ai = A∩ (Zx1+(i−1)x2) and Bj = B∩ (Zx1+(j−1)x2) for i = 1, . . . ,m and j = 1, . . . , n.

By the same estimate used for (54), we have

|A+B| ≥ |A|+ |B|+ (n− 1)(|A1| − 1) +m(|Bn| − 1)− |Bn|
≥ |A|+ |B| − 1 + (n− 1)(|A1| − 1). (84)
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If |B| ≥ 9, then Claims 1, 2 and 3 imply n ≥ 5, whence Claim 4 and (84) imply that

|A+B| ≥ |A|+ |B| − 1 + 4(
s|B|+ 1

4
− 1) = |A|+ (s+ 1)|B| − 4,

if s ≥ 4, and that

|A+B| ≥ |A|+ |B| − 1 + 4(
3|B|+ 1

5
− 1) = |A|+ 17

5
|B| − 21

5
> |A|+ 3|B| − 1,

if s = 3. In both cases (4) follows, as desired. So we may assume |B| ≤ 8. In view of Claim 1

applied with Z = Zx1 and Z = Zx2, we infer that |B| ≥ 5.

Using the estimate from (53) (with the roles of A and B reversed), we obtain

|A|+ |B| − 1 + (|B1| − 1)
m− 1

2
+ (n− 1)(

|A|
m

− 1) ≤ |A+B| ≤ |A|+ s|B| − s− 1.

Multiplying by m, applying (59), and rearranging terms yields

|B1| − 1

2
·m2 − (s|B| − |B|+ |B1| − 3

2
+ n− s)m+ (n− 1)(

1

2
s(s− 1)|B|+ s) ≤ 0.

Consequently, the discriminant of the above quadratic in m must be nonnegative, implying

(s|B| − |B|+ |B1| − 3

2
+ n− s)2 − (|B1| − 1)(n − 1)(s(s − 1)|B|+ 2s) ≥ 0 (85)

If |B| = 5, then from Claim 1, applied with Z = Zx1 and Z = Zx2, we conclude n = |B1| = 3.

Thus (85) implies 4s2+4s−4 ≤ 0, contradicting s ≥ 3. If |B| = 7, then from Claims 1 and 2, applied

with Z = Zx1 and Z = Zx2, we conclude n = |B1| = 4. Thus (85) implies 27s2 − 15s − 25
4 ≤ 0,

contradicting s ≥ 3. If |B| = 8, then from Claims 1 and 2, applied with Z = Zx1 and Z = Zx2,

we conclude n ≥ 4 and |B1| ≥ 4. Thus (85) implies 23s2 − 5s − 49
4 ≤ 0, contradicting s ≥ 3.

Consequently, it remains only to handle the case |B| = 6.

In view of Claim 1 and by swapping the roles of x1 and x2 if necessary, we may assume n = 3.

Hence (3) implies that (61) holds with n′ = 3. Thus considering (62) as a quadratic in m, we

conclude that the discriminant is nonnegative, i.e., that

|A| ≤ (5s − 3)2

8
=

1

8
(2s− 1)2|B| − 1

4
(2s− 1) +

(s− 1)2

2(|B| − 2)
. (86)

This completes the proof in case (a) holds. From (64), we have

0 ≤ (5s− 3)2 − 24s2 + 16s = s2 − 14s+ 9, (87)

which implies s ≥ 14. Thus |B| ≥ 2s+4
3 ≥ 32

3 > 6, contradicting the hypothesis of (b), and

completing the proof.
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