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Vertex Turán problems in the hypercube

J Robert Johnson∗ John Talbot†

November 16, 2018

Abstract

Let Qn be the n-dimensional hypercube: the graph with vertex set
{0, 1}n and edges between vertices that differ in exactly one coordinate.
For 1 ≤ d ≤ n and F ⊆ {0, 1}d we say that S ⊆ {0, 1}n is F -free if
every embedding i : {0, 1}d → {0, 1}n satisfies i(F ) 6⊆ S. We consider
the question of how large S ⊆ {0, 1}n can be if it is F -free. In particular
we generalise the main prior result in this area, for F = {0, 1}2, due
to E.A. Kostochka and prove a local stability result for the structure of
near-extremal sets.

We also show that the density required to guarantee an embedded copy
of at least one of a family of forbidden configurations may be significantly
lower than that required to ensure an embedded copy of any individual
member of the family.

Finally we show that any subset of the n-dimensional hypercube of
positive density will contain exponentially many points from some em-
bedded d-dimensional subcube if n is sufficiently large.

1 Introduction

For n ≥ 1 let Vn = {0, 1}n. The n-dimensional hypercube, Qn, is the graph with
vertex set Vn and edges between vertices that differ in exactly one coordinate.

An embedding of Qd into Qn is an injective map i : Vd → Vn that preserves
the edges of Qd. (Note that the image of Vd under any such embedding consists
of 2d elements of Vn given by fixing n− d coordinates and allowing the other d
coordinates to vary.)

Given F ⊆ Vd, where 1 ≤ d ≤ n, we say that S ⊆ Vn is F -free if every
embedding i : Vd → Vn satisfies i(F ) 6⊆ S. For a family F of subsets of Vd we
say that S is F-free if S is F -free for all F ∈ F . We define

exc(n,F) = max{|S| : S ⊆ Vn is F -free}.
∗School of Mathematical Sciences, Queen Mary University of London, E1 4NS, UK
†Department of Mathematics, University College London, WC1E 6BT, UK. Email: tal-

bot@math.ucl.ac.uk. This author is a Royal Society University Research Fellow.

1

http://arxiv.org/abs/0904.1479v2


It is easy to see (via averaging) that for any family F of subsets of Vd the
ratio exc(n,F)/2n is non-increasing and bounded below (by zero). Hence we
can define the vertex Turán density by

λ(F) = lim
n→∞

exc(n,F)

2n
.

We write λ(F ) instead of λ({F}).
If x ∈ Vn and i ∈ [n] = {1, 2, . . . , n} then xi ∈ {0, 1} denotes the ith

coordinate of x. The support of x ∈ Vn is supp(x) = {i ∈ [n] : xi = 1} and the
weight of x is |x| = |supp(x)|. The set of all x ∈ Vn of weight r is called the rth
layer.

The quantity exc(n, V2) was determined by Kostochka [13] (and indepen-
dently by Johnson and Entringer [11]). They also showed that the unique largest
V2-free subset of Vn can be obtained by deleting every third layer of Vn.

Theorem 1 (Kostochka [13]) For n ≥ 2 we have exc(n, V2) = ⌈2n+1/3⌉. If
S ⊆ Vn is V2-free and |S| = exc(n, V2) then, up to automorphisms of Qn, S is

Si = {x ∈ Vn : |x| 6≡ i mod 3}

for some i ∈ {0, 1, 2}.

The problem of determining exc(n, Vd) has been considered by various au-
thors but mainly when d is close to n (see [12], [17], [19]) or when n is small
[10].

Recently, Alon, Krech and Szabó [1] described the problem of finding λ(Vd).
Their motivation was a related question of Erdős [8] who asked for the largest
number of edges in a Q2-free subgraph of Qn. The conjectured answer to this
is (1/2 + o(1))e(Qn) while the best upper bound is around 0.62256e(Qn) due
to Thomason and Wagner [20] extending earlier work of Chung [5]. A result
relating the maximum density of edges of a Qd-free subgraph of Qn to the
analagous density for certain other forbidden subgraphs was proved by Offner
[16] using the supersaturation method. He also proved a vertex version of this
result although our notion of containment as an embedded copy is slightly dif-
ferent from his. The general vertex version of the problem which we consider
here is extremely natural but does not seem to have received attention.

2 Results

Our first result is a generalisation of Theorem 1. We show that asymptotically
the density required to guarantee a copy of V2 is sufficient to ensure copies of
other larger configurations.

The configuration Gd will be the set of all vertices of Vd of weight zero or
one together with a set of vertices of weight two whose supports form the edge
set of a complete bipartite graph K(⌈d/2⌉, ⌊d/2⌋) (since all such configurations
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Figure 1: Forbidden configurations G2, G3 and G4 (black points)

are isomorphic the precise choice of bipartition is unimportant, we will take the
one given by parity of coordinates). Formally for d ≥ 2 we define

Gd = {x ∈ Vd : |x| = 0, 1 or (|x| = 2, supp(x) = {i, j}, i 6≡ j mod 2)}.

For example

G2 = V2, G3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)}.

The relationship of our result to Theorem 1 is rather like that of the Erdős–
Stone theorem for 3-chromatic graphs to Mantel’s theorem in extremal graph
theory.

We also show that if S ⊆ Vn is Gd-free and near-extremal in size then S
must locally resemble the “two-out-of three-layers” extremal construction given
in Theorem 1.

We require some notation. Denote the Hamming distance inQn by dist(x, y),
this is the number of coordinates in which x, y ∈ Vn differ. For l ≥ 0 and x ∈ Vn

let Γl(x) = {y ∈ Vn : dist(x, y) = l}. Given S ⊆ Vn we let hl(x) = |S ∩ Γl(x)|
denote the number of elements of S at distance l from x.

Although hl(x) depends on the set S, for ease of notation we will suppress
this. It will always be clear from the context what subset of Vn we are consid-
ering.

For x ∈ Vn, S ⊆ Vn and l ≥ 1 it is natural to view S ∩ Γl(x) as an l-uniform
hypergraph. Formally we define

Sl(x) = {supp(x)∆supp(y) : y ∈ S ∩ Γl(x)}.

For a set X and integer r ≥ 0 we write
(

X
r

)

for the family of all subsets of X

of size r. So A ∈
(

[n]
l

)

belongs to Sl(x) if flipping all of the coordinates of x
indexed by A yields an element y ∈ S.

The precise definition of local stability is given in Theorem 2 below but the
three conditions may be paraphrased as follows.

(a) For most x ∈ Vn \ S, most of the neighbours of x (in Qn) belong to S.

(b) For most x ∈ S, approximately half of the neighbours of x belong to S.
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(c) For most x ∈ S the graph S(2)(x) (corresponding to points at distance two
from x in S) is almost a clique on [n] with a clique on S(1)(x) removed.

Theorem 2 If d ≥ 2 and Gd is as defined above then

(i) (Vertex Turán density)

λ(Gd) =
2

3
.

(ii) (Local stability) If ǫ > 0 there exists δ = δ(ǫ, d) satisfying limǫ→0+ δ(ǫ, d) =
0 and n0 = n0(ǫ, d) such that if n ≥ n0 and S ⊆ Vn is Gd-free with |S| ≥
(2/3− ǫ)2n then locally S resembles the set S0 = {x ∈ Vn : |x| 6≡ 0 mod 3}
in the following sense. There exists T ⊆ Vn with |T | ≤ δ2n and

(a) h1(x) ≥ (1− δ)n for all x ∈ Vn \ (S ∪ T ).

(b) |h1(x) − n/2| ≤ δn for all x ∈ S \ T .

(c)
∣

∣

∣
S2(x)∆

(

(

[n]
2

)

\
(

S1(x)
2

)

)∣

∣

∣
≤ δ

(

n
2

)

for all x ∈ S \ T .

Note that a “global” stability result cannot hold for this problem in the
sense that there exist near-extremal size Gd-free subsets of Vn that cannot be
obtained from the “two-out-of-three-layers” construction by deleting/adding a
small number of points and taking an automorphism of the hypercube. For
example

S = {x ∈ Vn : |x| ≤ n/2, |x| 6≡ 0 mod 3} ∪
{x ∈ Vn : |x| ≥ n/2 + 3, |x∆[n/2]| 6≡ 0 mod 3}.

Our second result (Theorem 3) shows that the density required to ensure a
copy of at least one of a family of forbidden configurations may be significantly
lower than that required to ensure a copy of any individual member of the family.
This is in contrast to ordinary graph Turán densities where the Erdős–Stone–
Simonovits theorem implies that for any family F of graphs π(F) = min{π(F ) :
F ∈ F} (where π(F) is the classical Turán density of the family of graphs
F). This “non-principality” of the vertex Turán density is analogous to that
previously observed for r-uniform hypergraph Turán densities by Balogh [2] and
Mubayi and Pikhurko [15] when r ≥ 3.

Let
F1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)},

F2 = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, F3 = {(0, 0, 0), (1, 1, 1)}.
Theorem 3 determines λ(F) for all families F ⊆ {F1, F2, F3}. In particular
λ({F2, F3}) < λ({F1, F2}) < min{λ(F1), λ(F2), λ(F3)}.

4



Figure 2: Forbidden configurations F1, F2 and F3

Theorem 3 If F1, F2 and F3 are as defined above then

λ(F1) = λ(F2) = λ(F3) = λ({F1, F3}) =
1

2
,

λ({F1, F2}) =
1

3
, λ({F2, F3}) = λ({F1, F2, F3}) =

1

4
.

Finally we consider the following question: given a subset of Vn of positive
density how many vertices must it contain from some d-dimensional subcube?
For 1 ≤ t ≤ d let Fd,t = {F ⊆ Vd : |F | = t}. If λ(Fd,t) = 0 then for any ǫ > 0
and n ≥ n0(ǫ, d) sufficiently large, any subset of Vn of density at least ǫ will
contain at least t vertices from some d-dimensional subcube. We would like to
determine the value of

µ(d) = max{t : λ(Fd,t) = 0}.

The following construction does not contain vertices from more than one layer
of any d-dimensional subcube of Qn and has density approximately 1/(d+ 1)

Sd+1 = {x ∈ Vn : |x| ≡ 0 mod d+ 1}.

Since the largest layer of Vd has size
(

d
⌊d/2⌋

)

this proves the upper bound in

Theorem 4. The lower bound tells us that µ(d) is exponential in d.

Theorem 4 If d ≥ 2 then

t2(d) + t3(d) ≤ µ(d) ≤
(

d

⌊d/2⌋

)

,

where

t2(d) =

{

0, if ⌈d/3⌉ is odd,
1, otherwise.

t3(d) =







3d/3, d ≡ 0 mod 3,
4 · 3(d−4)/3, d ≡ 1 mod 3,

2 · 3(d−2)/3, d ≡ 2 mod 3.

5



3 Proofs

We will make use of a number of classical results from extremal graph and
hypergraph theory.

Theorem 5 (Mantel [14]) If G = (V,E) is a triangle-free graph with |V | = n
then |E| ≤ n2/4.

For s ≥ t ≥ 1 let K(s, t) denote the complete bipartite graph with vertex
classes of size s and t. For r ≥ 3 and t1 ≥ t2 ≥ · · · ≥ tr ≥ 1 let K(r)(t1, . . . , tr)
denote the complete r-partite r-graph with vertex classes of size t1, . . . , tr.

Theorem 6 (Erdős–Stone [9]) If G = (V,E) is a K(s, t)-free graph and
|V | = n then |E| = O(n2−1/t).

Theorem 7 (Erdős [7]) If the r-graph G = (V,E) is K(r)(t1, t2, . . . , tr)-free
and |V | = n then |E| = O(nr−1/t1).

We will make repeated use of the following special case of the Cauchy–
Schwarz inequality.

Lemma 8 If a1, . . . , as ∈ R and 1
s

∑s
i=1 ai ≥ A then

1

s

s
∑

i=1

a2i ≥ A2.

For x, y ∈ Vn let hl(x, y) denote the number of elements of S at distance l
from both x and y, i.e.

hl(x, y) = |S ∩ Γl(x) ∩ Γl(y)|.

The following simple lemma underpins all our results.

Lemma 9 If S ⊆ Vn and l ≥ 1 then

(i)
∑

v∈Vn

h2
l (v) =

∑

x∈S

(

2l

l

)

h2l(x) +O(n2l−12n).

(ii)
∑

v∈S

h2
l (v) =

∑

x∈S

∑

z∈S∩Γ2l(x)

hl(x, z) +O(n2l−12n).

Proof: For (i) consider the sum

∑

x∈S

∑

y∈Γl(x)

hl(y).
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For each v ∈ Vn the term hl(v) occurs once for each element of S at distance l
from v, i.e. hl(v) times. Hence

∑

x∈S

∑

y∈Γl(x)

hl(y) =
∑

v∈Vn

h2
l (v).

Moreover for a fixed choice of x ∈ S the inner sum counts elements of S that can
be reached from x by flipping l coordinates of x and then flipping l coordinates
of the resulting point. Hence if 0 ≤ k ≤ l then the sum counts those elements
of S at distance 2k from x precisely

(

2k
k

)(

n−2k
l−k

)

times. Thus

∑

x∈S

∑

y∈Γl(x)

hl(y) =
∑

x∈S

l
∑

k=0

(

2k

k

)(

n− 2k

l − k

)

h2k(x)

=
∑

x∈S

(

2l

l

)

h2l(x) +O(n2l−12n),

since h2k(x) = O(n2k) for any 0 ≤ k ≤ l and |S| ≤ 2n. Hence (i) holds.
For (ii) consider the sum

∑

x∈S

∑

y∈S∩Γl(x)

hl(y).

For each v ∈ S the term hl(v) occurs once for each element of S at distance l
from v, i.e. hl(v) times. Hence

∑

x∈S

∑

y∈S∩Γl(x)

hl(y) =
∑

v∈S

h2
l (v).

The same argument as used for (i) implies that the contribution to the LHS of
this sum from z ∈ S satisfying dist(x, z) < 2l is at most O(n2l−12n). Finally
z ∈ S ∩ Γ2l(z) contributes one to this sum for each choice of y ∈ S ∩ Γl(x) such
that dist(y, z) = l, i.e. hl(x, z) times. The result follows. ✷

Proof of Theorem 3: For the lower bounds note that the following sets are
F1, F2, {F1, F2} and {F2, F3}-free respectively:

S1 = {x ∈ Vn : |x| ≡ 0 mod 2}, S2 = {x ∈ Vn : |x| ≡ 0, 1 mod 4},

S1,2 = {x ∈ Vn : |x| ≡ 0 mod 3} S2,3 = {x ∈ Vn : |x| ≡ 0 mod 4}.
Moreover these sets have asymptotic densities 1/2, 1/2, 1/3 and 1/4 respectively.
Since S1 is also F3-free and S2,3 is also F1-free it is sufficient to prove that these
values are also upper bounds for the vertex Turán densities.
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Let T1 be F1-free with |T1| = α12
n. If x ∈ T1 then h1(x) = |T1 ∩Γ1(x)| ≤ 2,

hence

nα12
n =

∑

x∈Vn

h1(x)

≤
∑

x∈T1

2 +
∑

x∈Vn\T1

n

= 2α12
n + n(1− α1)2

n.

So α1 ≤ n/(2n− 2) and hence λ(F1) = 1/2.
Similarly if T3 is F3-free and |T3| = α32

n then h3(x) = |T3 ∩ Γ3(x)| = 0 for
all x ∈ T3. Hence

(

n

3

)

α32
n =

∑

x∈Vn

h3(x) ≤
(

n

3

)

|Vn \ T3| =
(

n

3

)

(1 − α3)2
n.

Thus α3 ≤ 1/2 and hence λ(F3) = 1/2.
Let T2 be F2-free with |T2| = α22

n. For x ∈ T2 let

T 2
2 (x) = {supp(x)∆supp(y) : y ∈ T2 ∩ Γ2(x)}.

Consider the graph with vertex set [n] and edge set T 2
2 (x). Since T2 is F2-free

this graph is triangle-free (a triangle would correspond to a, b, c ∈ T2 such that
{x, a, b, c} forms a copy of F2 in T2). Hence, by Mantel’s theorem, |T 2

2 (x)| ≤
n2/4. Thus for x ∈ T2 we have h2(x) = |T 2

2 (x)| ≤ n2/4, so Lemma 9 (i) with
l = 1 implies that

∑

x∈Vn

h2
1(x) ≤ n2α22

n−1 +O(n2n). (1)

Since
∑

x∈Vn
h1(x) = nα22

n, Cauchy–Schwarz implies that

n2α2
22

n ≤ n2α22
n−1 +O(n2n).

Hence α2 ≤ 1/2 + o(1) and so λ(F2) = 1/2.
Now let T1,2 be {F1, F2}-free with |T1,2| = α1,22

n. For each x ∈ T1,2 we have
both h1(x) ≤ 2 and h2(x) ≤ n2/4. So (1) holds with α2 replaced by α1,2 and

∑

x∈Vn\T1,2

h1(x) ≥ (n− 2)α1,22
n.

Hence Cauchy–Schwarz implies that

(

(n− 2)α1,2

1− α1,2

)2

(1− α1,2)2
n ≤ n2α1,22

n−1 +O(n2n).

So α1,2 ≤ n2/(2(n− 2)2 + n2) + o(1) and λ({F1, F2}) = 1/3.
Finally let T2,3 be {F2, F3}-free and |T2,3| = α2,32

n. Since T2,3 is F2-free,
(1) holds with α2 replaced by α2,3.
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Let Y = {x ∈ Vn : h1(x) ≥ 3} and |Y | = β2n. Since
∑

x∈Vn
h1(x) = nα2,32

n

and h1(x) ≤ 2 for x ∈ Vn \ Y we have

∑

x∈Y

h1(x) ≥ nα2,32
n − 2(1− β)2n.

Hence, using Cauchy–Schwarz,

∑

x∈Vn

h2
1(x) ≥

∑

x∈Y

h2
1(x) ≥

(α2,3n− 2 + 2β)22n

β
.

Thus

α2,3 ≤ β

2
+ o(1).

If we show that β ≤ 1/2 we will be done. If β > 1/2 then |Y | > 2n−1 and so
there exist y, z ∈ Y such that dist(y, z) = 1. Let a, b, c ∈ T2,3 \ {y, z} satisfy
dist(a, y) = dist(b, z) = dist(c, z) = 1 (such points exist by the definition of Y ).
Now either dist(a, b) = 3 or dist(a, c) = 3 and so T2,3 contains a copy of F3.
Hence β ≤ 1/2 and so α2,3 ≤ 1/4 + o(1) and λ({F2, F3}) = 1/4. ✷

For d ≥ 3 define

F d
1 = {x ∈ Vd : |x| = 0, 1}, F d

d = {x ∈ Vd : |x| = 0, d}.

F d
2 = {x ∈ Vd : |x| = 0 or (|x| = 2, supp(x) = {i, j}, i 6≡ j mod 2)}.

The proof of Theorem 3 is easily extended to give the following result.

Theorem 10 If d1, d2, d3 ≥ 3 with d3 odd then

λ(F d1

1 ) = λ(F d2

2 ) = λ(F d3

d3
) = λ({F d1

1 , F d3

d3
}) = 1

2
,

λ({F d1

1 , F d2

2 }) = 1

3
, λ({F d2

2 , F d3

d3
}) = λ({F d1

1 , F d2

2 , F d3

d3
}) = 1

4
.

In fact it is an immediate consequence of a result of Chung, Füredi, Graham
and Seymour [6] that exc(n, F d

1 ) = 2n−1 for n sufficiently large.

Proof of Theorem 2: We start by proving λ(Gd) = 2/3. Since

S0 = {x ∈ Vn : |x| 6≡ 0 mod 3}

is Gd-free we have λ(Gd) ≥ 2/3.
Let 2 ≤ d ≤ n and S ⊆ Vn be Gd-free. If |S| = α2n then we need to show

that α ≤ 2/3 + o(1).
For x ∈ S and l ≥ 1 recall that

Sl(x) = {supp(x)∆supp(y) : y ∈ S ∩ Γl(x)}.

9



The fact that S is Gd-free implies that for any x ∈ S the graph with vertex set
S1(x) and edge set S2(x) is K(⌈d/2⌉, ⌊d/2⌋)-free and hence K(d, d)-free. Thus
the Erdős–Stone theorem implies that it contains at most O(n2−1/d) edges.
Hence

h2(x) ≤
(

n

2

)

−
(

h1(x)

2

)

+O(n2−1/d). (2)

Applying Lemma 9 (i) with l = 1 we obtain

∑

x∈Vn

h2
1(x) ≤

∑

x∈S

(n2 − h2
1(x)) +O(n2−1/d2n). (3)

Now let β be defined by
∑

x∈S h1(x) = βαn2n, so 0 ≤ β ≤ 1. Using (3)
and applying Cauchy–Schwarz to the sums

∑

x∈S h2
1(x) and

∑

x∈Vn\S
h2
1(x) we

obtain

2β2n2α2n +

(

(1− β)αn

1− α

)2

(1− α)2n ≤ αn22n +O(n2−1/d2n).

So
α(2− 2β − β2) ≤ 1− 2β2 + o(1).

If 2− 2β − β2 > 0 then

α ≤ 1− 2β2

2− 2β − β2
+ o(1) (4)

and the RHS is maximised at β = 1/2 when it equals 2/3 + o(1). So suppose
that 2− 2β − β2 ≤ 0. Since 0 ≤ β ≤ 1 this implies that β ≥

√
3− 1.

If x ∈ S and z ∈ S∩Γ2(x) then h1(x, z) = |S∩Γ1(x)∩Γ1(z)| ≤ 2. Moreover
since S is Gd-free the Erdős–Stone theorem implies that

|{z ∈ S ∩ Γ2(x) : h1(x, z) = 2}| = O(n2−1/d).

Finally

|{z ∈ S ∩ Γ2(x) : h1(x, z) = 1}| ≤
(

n

2

)

−
(

h1(x)

2

)

.

Hence Lemma 9 (ii) with l = 1 implies that

∑

x∈S

h2
1(x) ≤

∑

x∈S

((

n

2

)

−
(

h1(x)

2

))

+O(n2−1/d2n).

Using
∑

x∈S h1(v) = βαn2n and Cauchy–Schwarz we obtain

3β2n2α2n−1 ≤ n2α2n−1 +O(n2−1/d2n).

Hence β ≤ 1/
√
3 + o(1) <

√
3− 1 for n large, and so λ(Gd) = 2/3.

We now need to show that the local stability conditions hold. Suppose that
S ⊆ Vn is Gd-free and has size |S| ≥ (2/3− ǫ)2n for some ǫ > 0. For n large (4)
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implies that |S| ≤ (2/3 + ǫ)2n. If ǫ ≥ 1/100 then we may take δ = 1 and the
conditions hold trivially so suppose that ǫ ≤ 1/100.

Since α ≥ 2/3− ǫ, (4) implies that |β−1/2| ≤ √
ǫ for n large. Let δ1 = 2ǫ1/4

and suppose there exists W ⊂ Vn \ S such that h1(x) < (1− δ1)n for all x ∈ W
and |W | ≥ δ12

n. Then

∑

x∈Vn\S

h1(x) ≤ |Vn \ (S ∪W )|n+ (1− δ1)n|W |

≤
(

1− α− 2ǫ1/4
)

n2n + 2ǫ1/4(1− 2ǫ1/4)n2n

≤
(

1

3
− 3

√
ǫ

)

n2n

But
∑

x∈Vn\S

h1(x) = (1− β)αn2n ≥
(

1

3
− 7

√
ǫ

6

)

n2n. (5)

Hence (a) holds for any δ ≥ 2ǫ1/4.
For (b) we will require the following defect form of the Cauchy–Schwarz

inequality (cf. Bollobás [3] page 125).

Lemma 11 If a1, . . . , as ∈ R, 1 ≤ t ≤ s, 1
s

∑s
i=1 ai = A, 1

t

∑t
i=1 ai ≥ A′,

t ≥ γs and A′ ≥ A+ η then

1

s

s
∑

i=1

a2i ≥ A2 + γη2.

Let δ2 = 2ǫ1/6 and suppose there exists W ⊂ S satisfying |W | ≥ δ22
n and

|h1(x)− n/2| ≥ δ2n for all x ∈ W . Let

W+ = {x ∈ W : h1(x) ≥ n/2 + δ2n}

and W− = W \W+. Suppose that |W+| ≥ δ22
n−1 (the case |W−| ≥ δ22

n−1 is
similar so we omit it).

Now
1

|S|
∑

x∈S

h1(x) = βn,
1

|W+|
∑

x∈W+

h1(x) ≥
n

2
+ δ2n

so using |β − 1/2| < √
ǫ we have

1

|W+|
∑

x∈W+

h1(x) ≥
1

|S|
∑

x∈S

h1(x) + n(δ2 −
√
ǫ).

Since |W+| ≥ δ22
n−1 ≥ δ2|S|/2, Lemma 11 (with A = βn, η = n(δ2 −

√
ǫ) and

γ = δ2/2) implies that

1

|S|
∑

x∈S

h2
1(x) ≥ β2n2 +

δ2n
2(δ2 −

√
ǫ)2

2
. (6)

11



Using (5) and Cauchy–Schwarz (Lemma 8) we also have

∑

x∈Vn\S

h2
1(x) ≥

1

3

(

1− 7
√
ǫ
)

n22n. (7)

Now (3) implies that for n large

∑

x∈S

2h2
1(x) +

∑

x∈Vn\S

h2
1(x) ≤ n2|S|+ ǫn22n.

Using (6) and (7) this yields

(

2

3
− ǫ

)

(

2β2 + δ2(δ2 −
√
ǫ)2

)

+
1

3

(

1− 7
√
ǫ
)

≤ 2

3
+ 2ǫ.

Substituting δ2 = 2ǫ1/6 and using β ≥ 1/2−√
ǫ, ǫ ≤ 1/100 we obtain a contra-

diction. Hence (b) holds for any δ ≥ 2ǫ1/6.
Finally for (c) let δ3 = 4ǫ1/4. Since S is Gd-free the Erdős–Stone theorem

implies that for any x ∈ S, S2(x) contains at most O(n2−1/d) edges from
(

S1(x)
2

)

.
Hence

∣

∣

∣

∣

S2(x) ∩
(

S1(x)

2

)∣

∣

∣

∣

= O(n2−1/d) ≤ δ3
2

(

n

2

)

,

for n large. So suppose there exists W ⊆ S such that |W | ≥ δ32
n and for all

x ∈ W
∣

∣

∣

∣

((

[n]

2

)

\
(

S1(x)

2

))

\ S2(x)

∣

∣

∣

∣

≥ δ3
2

(

n

2

)

.

Since (2) holds for all x ∈ S, Lemma 9 (i) with l = 1 implies that

∑

x∈Vn

h2
1(x) ≤

∑

x∈S

(n2 − h2
1(x) +O(n2−1/d))− δ23

(

n

2

)

2n.

So for n large

2
∑

x∈S

h2
1(x) +

∑

x∈Vn\S

h2
1(x) ≤ n2|S| − δ23

3
n22n.

Applying Cauchy–Schwarz to
∑

x∈S h2
1(x) and using (7) we obtain

2β2α+
1

3

(

1− 7
√
ǫ
)

≤ α− δ23
3
.

However this gives a contradiction using |β − 1/2| ≤ √
ǫ, α ≤ 2/3 + ǫ and

δ3 = 4ǫ1/4. Hence (c) holds for any δ ≥ 4ǫ1/4. Thus we can satisfy all of the
local stability conditions by taking δ = 4ǫ1/6, which clearly also satisfies the
condition limǫ→0+ δ(ǫ) = 0. ✷

12



Proof of Theorem 4: Let d ≥ 2 and ǫ > 0 be given. Let n be large and
S ⊆ Vn satisfy |S| ≥ ǫ2n. For r ≥ 1 we have

∑

x∈Vn

hr(x) =

(

n

r

)

|S|.

Hence |S| ≥ ǫ2n implies that for any r ≥ 1 there exists x ∈ Vn such that hr(x) ≥
ǫ
(

n
r

)

. Let r = ⌈d/3⌉ and 3 ≥ p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 satisfy
∑r

i=1 pi = d. If n is
sufficiently large relative to ǫ and d then Theorem 7 implies that the r-graph

Sr(x) = {supp(x)∆supp(y) : y ∈ S ∩ Γr(x)}

contains a copy ofK := K(r)(p1, p2, . . . , pr). It is easy to check that this r-graph
has t3 edges (where t3 is defined in the statement of Theorem 4). Moreover,
since K is an r-graph with d vertices, the corresponding subset of S lies in a
copy of Vd. Thus λ(Fd,t3) = 0.

If r = ⌈d/3⌉ is odd then t2 = 0 and the proof is complete so suppose that
⌈d/3⌉ is even. Now Lemma 9 (i) (with l = r/2) followed by an application of
Cauchy–Schwarz implies that

(

r

r/2

)

∑

x∈S

hr(x) =
∑

x∈Vn

h2
r/2(x) +O(nr−12n)

≥
(

n

r/2

)2

ǫ22n +O(nr−12n).

Hence there is x ∈ S such that

hr(x) ≥ ǫ

(

n

r

)

+O(nr−1).

The same argument as above implies that Sr(x) contains a copy of K. Hence
there is a copy of Vd containing t3 + 1 points from S, so λ(Fd,t3+t2) = 0. ✷

4 Questions

There are many open problems concerning the vertex Turán density. We collect
what seem to be the most appealing ones here.

All of the constructions we have considered are of the form {x ∈ Vn : |x| ∈ I}
for some I ⊆ [n].

Question 12 Is it true that for any family F = {F1, . . . , Fk} of subsets of Vd

there are sets In ⊆ [n] with

Sn = {x ∈ Vn : |x| ∈ In}

F-free for all n and

lim
n→∞

|Sn|
2n

= λ(F)?

13



All of our results are for the vertex Turán density, one could also ask for the
exact value of exc(n,F) and what the extremal examples are.

As we mentioned above the question of determining (or improving bounds
on) λ(Vd) was posed by Alon, Krech and Szabó [1]. This is perhaps the most
natural forbidden configuration to consider.

Recall that Fd,t = {F ⊆ Vd : |F | = t} and µ(d) = max{t : λ(Fd,t) = 0}. By
Theorem 4 we have µ(d) ≤

(

d
⌊d/2⌋

)

.

Question 13 Is it true that for all d ≥ 2, µ(d) =
(

d
⌊d/2⌋

)

?

Theorem 4 tells us that µ(3) = 3 and µ(4) ≥ 5. Whether or not µ(4) = 6 is
unresolved.
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[7] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J.
Math. 2 (1964), 183–190.
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