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Abstract

We prove a vector space analog of a version of the Kruskal-Katona theorem due
to Lovász. We apply this result to extend Frankl’s theorem on r-wise intersecting
families to vector spaces. In particular, we obtain a short new proof of the Erdős-
Ko-Rado theorem for vector spaces.

1 Introduction

Let X be an n-element set and, for 0 ≤ k ≤ n, let
(
X
k

)
denote the family of all subsets

of X of cardinality k. For a family F ⊂
(
X
k

)
, we define the shadow of F , denoted ∂F , to

consist of those (k − 1)-subsets of X contained in at least one member of F ,

∂F :=

{
E ∈

(
X

k − 1

)
: E ⊂ F ∈ F

}
.

Kruskal [15] and Katona [13] determined the minimum size of the shadow of F as a
function of k and the size of F . Recall that the binomial coefficient(

n

k

)
:=

n(n− 1) · · · (n− k + 1)

k!

can be defined for all n ∈ R and k ∈ Z+. Lovász [16, Ex 13.31(b)] proved the following
weaker but more convenient version of the Kruskal-Katona theorem.

Theorem 1.1 (Lovász) Let F ⊂
(
X
k

)
and let y ≥ k be the real number defined by

|F| =
(
y
k

)
. Then |∂F| ≥

(
y
k−1

)
. If equality holds, then y ∈ Z+ and F =

(
Y
k

)
, where Y is a

y-subset of X.
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The Kruskal-Katona theorem can be used to prove many theorems about so-called
intersecting families of sets. A family F ⊂

(
X
k

)
is called r-wise intersecting if for all

F1, . . . , Fr ∈ F we have
⋂r
i=1 Fi 6= ∅. When r = 2, then r-wise is omitted. The maximum

size of an intersecting family was determined by Erdős, Ko, and Rado [6].

Theorem 1.2 (Erdős-Ko-Rado) Suppose F ⊂
(
X
k

)
is intersecting and n ≥ 2k. Then

|F| ≤
(
n−1
k−1

)
. Moreover, excepting the case r = 2 and n = 2k, equality holds if and only

if F =
{
F ∈

(
X
k

)
: x ∈ F

}
for some x ∈ X.

Daykin [4] gave a proof of Theorem 1.2 that essentially only uses Theorem 1.1. Frankl
[7] generalized Theorem 1.2 and found the maximum size of an r-wise intersecting family.

Theorem 1.3 (Frankl) Suppose that F ⊂
(
X
k

)
is r-wise intersecting and (r− 1)n ≥ rk.

Then |F| ≤
(
n−1
k−1

)
. Moreover, excepting the case r = 2 and n = 2k, equality holds if and

only if F =
{
F ∈

(
X
k

)
: x ∈ F

}
for some x ∈ X.

Theorem 1.1, Theorem 1.2, and Theorem 1.3 have natural extensions to vector spaces.
We let V always denote a n-dimensional vector space over a finite field of order q. For
k ∈ Z+, we write

[
V
k

]
q

to denote the family of all k-dimensional subspaces of V . For a ∈ R
and k ∈ Z+, define the Gaussian binomial coefficient by[

a

k

]
q

:=
∏

0≤i<k

qa−i − 1

qk−i − 1
.

A simple counting argument shows that the size of
[
V
k

]
q

is
[
n
k

]
q
. If k and q are fixed, then[

a
k

]
q

is a continuous function of a which is positive and strictly increasing when a ≥ k.

From now on, we will omit the subscript q.
The definition of the shadow of a family extends naturally to vector spaces. For a

family F ⊂
[
V
k

]
, we define the shadow of F , denoted ∂F , to consist of those (k − 1)-

dimensional subspaces of V contained in at least one member of F ,

∂F :=

{
E ∈

[
V

k − 1

]
: E ⊂ F ∈ F

}
.

In this paper, we will prove the following analog of Theorem 1.1.

Theorem 1.4 Let F ⊂
[
V
k

]
and let y ≥ k be the real number defined by |F| =

[
y
k

]
. Then

|∂F| ≥
[

y

k − 1

]
.

If equality holds, then y ∈ Z+ and F =
[
Y
k

]
, where Y is a y-dimensional subspace of V .

Not much is known about shadows in vector spaces. In [2], a partial analog of the Kruskal-
Katona theorem is given when V is a vector space over the field F2. The only other result
on shadows in vector spaces, which is known to the authors, appears in [8].

We will use Theorem 1.4 to extend Theorem 1.3 to vector spaces. A family F ⊂
[
V
k

]
is called r-wise intersecting if for all F1, . . . , Fr ∈ F we have

⋂r
i=1 Fi 6= {0}.
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Theorem 1.5 Suppose F ⊂
[
V
k

]
is r-wise intersecting and (r − 1)n ≥ rk. Then

|F| ≤
[
n− 1

k − 1

]
.

Moreover, equality holds if and only if F =
{
F ∈

[
V
k

]
: v ⊂ F

}
for some one-dimensional

subspace v ⊂ V , unless r = 2 and n = 2k.

The case r = 2 of Theorem 1.5 is the Erdős-Ko-Rado theorem for vector spaces, which
has been extensively studied. Hsieh [12] first proved the Erdős-Ko-Rado theorem for vector
spaces, but not for all relevant n and his proof involves many lengthy calculations. Later,
Frankl and Wilson [9] proved the Erdős-Ko-Rado theorem for vector spaces, essentially
by computing the eigenvalues of the so-called q-Kneser graph; the q-Kneser graph has
the k-dimensional subspaces of V as its vertices, where two subspaces α, β are adjacent
if α ∩ β = {0}. While Frankl and Wilson’s method is less computational than Hsieh’s,
finding the eigenvalues of the q-Kneser graph still requires some calculations. One nice
feature of Theorem 1.5’s proof is that it hardly involves any calculations.

It is unclear where the characterization of equality in the case n = 2k of the Erdős-
Ko-Rado theorem for vector spaces first appeared in the literature. Recently, Godsil and
Newman [10, 17] gave a characterization of equality in this case using techniques similar
to those of Frankl and Wilson [9]. A second nice feature of Theorem 1.5’s proof is that it
gives a simple proof of the characterization of equality when (r − 1)n > rk.

Greene and Kleitman [11] gave a very elegant proof to the Erdős-Ko-Rado theorem
for vector spaces when k|n. Deza and Frankl [5] sketched an inductive proof of the Erdős-
Ko-Rado theorem for vector spaces using Greene and Kleitman’s proof for the base case
n = 2k and a generalization of the shifting technique. Czabarka and Székely [3] assert
that there are counterexamples to Deza and Frankl’s proof and attempt a new inductive
proof, again using a generalization of shifting. We believe, however, that their definition
of shifting is also flawed, and that their proof is not valid. We remark that Theorem 1.5’s
proof proceeds by induction.

The rest of the paper is organized as follows. Section 2 gives a proof of Theorem 1.4. In
Section 3 we prove the bound in Theorem 1.5 and characterize equality when (r−1)n > rk.
Finally, in Section 4, we characterize equality when (r − 1)n = rk for completeness.

2 Proof of Theorem 1.4

Keevash [14] recently gave a short new proof of Theorem 1.1. In this section, we adapt
his argument to prove Theorem 1.4. We first collect some definitions and facts that will
be used in the proof of Theorem 1.4. If F ⊂

[
V
k

]
, then

Kk
k+1(F) :=

{
T ∈

[
V

k + 1

]
:

[
T

k

]
⊂ F

}
is the family of (k + 1)-dimensional subspaces in V all of whose k-dimensional subspaces
lie in F . If v ∈

[
V
1

]
, then

Kk
k+1(v) := {T ∈ Kk

k+1(F) : v ⊂ T}
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is the family of (k + 1)-dimensional subspaces in Kk
k+1(F) that contain v. For v ∈

[
V
1

]
,

define the degree of v, which is denoted by d(v), to be the number of elements of F that
contain v. If v ∈

[
V
1

]
and U ⊂ V is an (n−1)-dimensional subspace not containing v then

LU(v) :=

{
A ∈

[
U

k − 1

]
: A ∨ v ∈ F

}
is the family of (k− 1)-dimensional spaces in U whose linear span with v is an element of
F . Observe that d(v) = |LU(v)|.

Finally, we collect some notation and facts regarding the Gaussian binomial coeffi-
cients. When k = 1, we will write the Gaussian binomial coefficient

[
a
1

]
as [a]. For

a ∈ Z+, we define [a]! =
∏a

j=1[j]. A familiar relation involving binomial coefficients is
Pascal’s identity. We note two similar relations involving Gaussian binomial coefficients.

Lemma 2.1 If a ∈ R and k ∈ Z+, then[
a

k

]
= qa−k

[
a− 1

k − 1

]
+

[
a− 1

k

]
=

[
a− 1

k − 1

]
+ qk

[
a− 1

k

]
.

Keevash observed that the analog of Theorem 2.2 for sets implies Theorem 1.1.

Theorem 2.2 Let F ⊂
[
V
k

]
and let y ≥ k be the real number defined by |F| =

[
y
k

]
. Then

|Kk
k+1(F)| ≤

[
y

k + 1

]
.

Equality holds if and only if y ∈ Z+ and F =
[
Y
k

]
for some y-dimensional subspace Y ⊂ V .

We observe that Theorem 2.2 implies Theorem 1.4. Let F be as in Theorem 1.4, and let
x ≥ k − 1 be the real number defined by |∂F| =

[
x
k−1

]
. By Theorem 2.2,[

y

k

]
= |F| ≤ |Kk−1

k (∂F)| ≤
[
x

k

]
because F ⊂ Kk−1

k (∂F). Hence x ≥ y so |∂F| =
[
x
k−1

]
≥
[
y
k−1

]
. If |∂F| =

[
y
k−1

]
then x = y. Hence, |Kk−1

k (∂F)| =
[
y
k

]
and F = Kk−1

k (∂F). By Theorem 2.2, this

implies y ∈ Z+ and ∂F =
[
Y
k−1

]
for some y-dimensional subspace Y ⊂ V . Clearly,[

Y
k

]
= Kk−1

k (∂F) = F .

Proof of Theorem 2.2: We argue by induction on k. The base case k = 1 is easy:
Suppose F ⊂

[
V
1

]
and |F| = [y]. Since there are q + 1 one-dimensional spaces in a

two-dimensional space, |K1
2(v)| ≤ (1/q)([y]− 1) if v ∈ F and |K1

2(v)| = 0 otherwise. Now

(q + 1)|K1
2(F)| =

∑
v∈[V1 ]

|K1
2(v)| ≤ [y]([y]− 1)

q
, (2.1)
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which implies that |K1
2(F)| ≤

[
y
2

]
.

Suppose T ∈ Kk
k+1(v). Observe that the qk k-dimensional subspaces in T that do not

contain v are elements of F that do not contain v. Moreover, if U ⊂ V is an (n − 1)-
dimensional subspace that does not contain v, then T ∩U is a k-dimensional subspace in
Kk−1
k (LU(v)). The first condition implies that

qk|Kk
k+1(v)| =

∣∣∣∣{S ∈ [Vk
]

: v 6⊂ S ⊂ T ∈ Kk
k+1(v)

}∣∣∣∣ ≤ |F| − d(v),

and hence that |Kk
k+1(v)| ≤ (1/qk)(|F| − d(v)). The second condition implies that

|Kk
k+1(v)| ≤ |Kk−1

k (LU(v))| because if T1, T2 are distinct elements of Kk
k+1(v) then T1 ∩ U

and T2 ∩ U are distinct elements of Kk−1
k (LU(v)).

We claim that |Kk
k+1(v)| ≤ ([y−k]/[k])d(v) for all v ∈

[
V
1

]
, which is trivial if d(v) = 0.

Furthermore, if d(v) 6= 0, then equality is possible only when d(v) =
[
y−1
k−1

]
. To see this,

suppose first that d(v) ≥
[
y−1
k−1

]
. Then by the first condition and Lemma 2.1, it suffices to

observe that (1/qk)(
[
y
k

]
− d(v)) ≤ ([y − k]/[k])d(v). On the other hand, if d(v) ≤

[
y−1
k−1

]
,

then define the real number yv ≥ k by d(v) =
[
yv−1
k−1

]
. Since d(v) = |LU(v)|, the second

condition and the induction hypothesis imply that

|Kk
k+1(v)| ≤ |Kk−1

k (LU(v))| ≤
[
yv − 1

k

]
=

[yv − k]

[k]
d(v) ≤ [y − k]

[k]
d(v).

The equality conditions are clear so the claim holds in either case. Now

[k + 1]|Kk
k+1(F)| =

∑
v∈[V1 ]

|Kk
k+1(v)| ≤ [y − k]

[k]

∑
v∈[V1 ]

d(v) =
[y − k]

[k]
[k]|F|

= [y − k]

[
y

k

]
= [k + 1]

[
y

k + 1

]
.

Therefore, |Kk
k+1(F)| ≤

[
y
k+1

]
, and equality holds only when all one-dimensional subspaces

v with non-zero degree satisfy d(v) =
[
y−1
k−1

]
.

We now characterize the case of equality. Again the proof proceeds by induction on k.
The base case k = 1 is easy: Suppose F ⊂

[
V
1

]
, |F| = [y], and |K1

2(F)| =
[
y
2

]
. Then (2.1)

implies that |K1
2(v)| = (1/q)([y]− 1) for all v ∈ F . Hence, if v, w are distinct elements of

F , then every one-dimensional space in the two-dimensional space spanned by v and w
lies in F . It is easy to see by induction that if A is a subspace of dimension 1 ≤ d < dye
such that

[
A
1

]
⊂ F , then there exists a subspace B of dimension d + 1 that contains A

and for which
[
B
1

]
⊂ F . In particular, this proves that y ∈ Z+ and F =

[
Y
1

]
for some

y-dimensional subspace Y .
Now suppose F ⊂

[
V
k

]
, |F| =

[
y
k

]
, and |Kk

k+1(F)| =
[
y
k+1

]
. Choose v ∈

[
V
1

]
for which

d(v) 6= 0. Since |Kk
k+1(F)| =

[
y
k+1

]
, we have d(v) =

[
y−1
k−1

]
and |Kk

k+1(v)| =
[
y−1
k

]
. Let U

be an (n− 1)-dimensional subspace not containing v. We have |LU(v)| = d(v) =
[
y−1
k−1

]
so[

y − 1

k

]
= |Kk

k+1(v)| ≤ |Kk−1
k (LU(v))| ≤

[
y − 1

k

]
,
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which implies that |Kk−1
k (LU(v))| =

[
y−1
k

]
. By the induction hypothesis, LU(v) =

[
W
k−1

]
for some (y − 1)-dimensional space W , which implies y ∈ Z+. Moreover, for every k-
dimensional subspace A in Kk−1

k (LU(v)) =
[
W
k

]
, we have A ∨ v ∈ Kk

k+1(v). Hence all
k-dimensional subspaces in Y := W ∨ v lie in F . Since |F| =

[
y
k

]
and dim(Y ) = y, we

must have F =
[
Y
k

]
.

3 Proof of Theorem 1.5

We will prove the bound in Theorem 1.5 and characterize equality when (r−1)n > rk. The
proof proceeds by induction on (r−1)n− rk ∈ N. For the base case (r−1)n− rk = 0, we
generalize Greene and Kleitman’s argument in [11]. A family S of t-dimensional subspaces
of V is called a t-spread if every one-dimensional subspace of V is contained in exactly one
t-dimensional subspace in S. If the elements in S that lie in a subspace U form a t-spread
of U then we say that S induces a t-spread on U . A t-spread S is called geometric if S
induces a t-spread on each 2t-dimensional subspace generated by a pair of elements in S.
It is well-known [1] that V possesses a geometric t-spread if and only if t|n. In the base
case (r − 1)n− rk = 0, we have n = r(n− k) so V has a geometric (n− k)-spread. The
following facts concerning geometric t-spreads are easy to establish.

Lemma 3.1 If S is a geometric t-spread of V , then S induces a geometric t-spread on
any subspace of V that is generated by elements of S.

Lemma 3.2 If S is a geometric t-spread of V , then for any isomorphism π ∈ GL(V ), the
family π(S) := {π(S) : S ∈ S} is also a geometric t-spread of V .

Suppose r, n, k ∈ Z+ satisfy (r−1)n−rk = 0 and let F ⊂
[
V
k

]
be an r-wise intersecting

family. Endow V with the usual inner product, and consider the family

F⊥ := {F⊥ : F ∈ F} ⊂
[

V

n− k

]
.

Let B be a geometric (n−k)-spread of V . We want to determine the maximum number of
elements of B that lie in F⊥. Since F is r-wise intersecting, we have that F⊥ is r-wise co-
intersecting ; that is, any r elements of F⊥ are contained in a common (n−1)-dimensional
space. If r = 2 and n = 2k, the family F⊥ is both intersecting and co-intersecting; hence
only one element of the spread B can lie in F⊥ in this case. Lemma 3.3 determines
the maximum number of elements of B that lie in F⊥ whenever r, n, k ∈ Z+ satisfy
(r − 1)n− rk = 0.

Lemma 3.3 Let r, n, k ∈ Z+ satisfy (r−1)n−rk = 0. Let B be a geometric (n−k)-spread
of V . If B′ ⊂ B is a r-wise co-intersecting subfamily, then

|B′| ≤ q(r−1)(n−k) − 1

qn−k − 1
.

If equality holds, B′ is a (n− k)-spread of a (r − 1)(n− k)-dimensional space.

6



Proof. Let B1, . . . , Bm be a maximum subfamily of B′ such that dim (
∨m
i=1Bi) = m(n−k).

Hence, if B ∈ B′ then B ∩
∨m
i=1Bi 6= {0}. Since B is geometric, B induces a spread on∨m

i=1Bi by Lemma 3.1. As B ∩
∨m
i=1Bi 6= {0} for every B in B′, all elements in B′ lie in∨m

i=1Bi. Since B′ is r-wise co-intersecting, we must have m ≤ r − 1. Therefore,

|B′| ≤ q(r−1)(n−k) − 1

qn−k − 1
,

which is the number of elements in a (n−k)-spread of a (r−1)(n−k)-dimensional space.
Also, if equality holds, B′ is a (n− k)-spread of a (r − 1)(n− k)-dimensional space.

Now we prove the base case of Theorem 1.5; the case r = 2 of Lemma 3.4 is a result
of Greene and Kleitman [11].

Lemma 3.4 Suppose r, n, k ∈ Z+ satisfy (r − 1)n − rk = 0. If F ⊂
[
V
k

]
is r-wise

intersecting, then |F| ≤
[
n−1
k−1

]
.

Proof. Let B be a geometric (n− k)-spread of V and let π ∈ GL(V ) be an isomorphism.
By Lemma 3.2, the spread π(B) is also geometric. Consider the family F⊥ ⊂

[
V
n−k

]
. Since

F is r-wise intersecting, F⊥ is r-wise co-intersecting. By Lemma 3.3,

|F⊥ ∩ π(B)| ≤ q(r−1)(n−k) − 1

qn−k − 1
=

qk − 1

qn−k − 1
(3.2)

because F⊥ ∩ π(B) is a r-wise co-intersecting subfamily of π(B) and because we have
k = (r − 1)(n− k) when r, n, k satisfy (r − 1)n− rk = 0.

As |GL(V )| = qn(n−1)/2(q − 1)n[n]!, we have∑
π∈GL(V )

|F⊥ ∩ π(B)| ≤ qk − 1

qn−k − 1
· qn(n−1)/2(q − 1)n[n]!.

Now, given F⊥ ∈ F⊥ and B ∈ B there are qn(n−1)/2(q − 1)n[n − k]![k]! isomorphisms
π ∈ GL(V ) such that π(B) = F⊥. Consequently,(

qn − 1

qn−k − 1

)
|F⊥| qn(n−1)/2(q − 1)n[n− k]![k]!

= |B| |F⊥| |{π ∈ GL(V ) : π(B) = F⊥}|
=

∑
π∈GL(V )

|F⊥ ∩ π(B)|

≤ qk − 1

qn−k − 1
· qn(n−1)/2(q − 1)n[n]!.

Since |F| = |F⊥|, we have

|F| ≤
(

qn(n−1)/2(q − 1)n[n]!

qn(n−1)/2(q − 1)n[n− k]![k]!

)(
qn−k − 1

qn − 1

)(
qk − 1

qn−k − 1

)
=

[
n− 1

k − 1

]
.
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Proof of Theorem 1.5. The proof proceeds by induction on (r − 1)n − rk ∈ N. The
base case (r− 1)n− rk = 0 was proved in Lemma 3.4. Suppose Theorem 1.5 holds when
r, n, k satisfy (r − 1)n− rk = p for p ≥ 0. We will prove Theorem 1.5 holds when r, n, k
satisfy (r− 1)n− rk = p+ 1. Let F ⊂

[
V
k

]
be a maximum size r-wise intersecting family.

Now the family P := {P ∈
[
V
k

]
: v ⊂ P}, where v ⊂ V is some one-dimensional subspace,

is r-wise intersecting so |F| ≥ |P| =
[
n−1
k−1

]
. Let W be an (n + 1)-dimensional space over

Fq that contains V . Define the family

A :=

{
A ∈

[
W

k + 1

]
: ∃ F ∈ F with F ⊂ A

}
to be the family of all (k+ 1)-dimensional spaces in W that contain some F ∈ F . We will
partition A into the following subfamilies:

A1 := {A ∈ A : A 6⊂ V } , A2 := A \ A1.

First let us compute the size of A1. Observe that if A ∈
[
W
k+1

]
and A does not lie in V ,

then A intersects V in exactly a k-dimensional space. Therefore, A cannot contain two
distinct k-dimensional spaces in F . Any F ∈ F can be extended to a (k+ 1)-dimensional
space in A1 in qn−k ways. Therefore, |A1| = qn−k|F| ≥ qn−k

[
n−1
k−1

]
.

Now we will compute the size of A2. Observe that, by duality, we have F ⊂ A ∈ A2

for some F ∈ F if and only if F⊥ ⊃ A⊥ ∈
[

V
n−k−1

]
. Therefore, |A2| =

∣∣∂F⊥∣∣. Since

|F⊥| = |F| ≥
[
n− 1

k − 1

]
=

[
n− 1

n− k

]
, (3.3)

by applying Theorem 1.4 we obtain

|A2| =
∣∣∂F⊥∣∣ ≥ [ n− 1

n− k − 1

]
=

[
n− 1

k

]
. (3.4)

As A = A1∪̇A2, we have by Lemma 2.1 that

|A| = |A1|+ |A2| ≥ qn−k
[
n− 1

k − 1

]
+

[
n− 1

k

]
=

[
n

k

]
. (3.5)

Now F is r-wise intersecting so A is an r-wise intersecting family of (k + 1)-dimensional
spaces in W . Observe that r, n+ 1, k + 1 satisfy

(r − 1)(n+ 1)− r(k + 1) = (r − 1)n− rk − 1 = (p+ 1)− 1 = p.

By the induction hypothesis |A| ≤
[
n
k

]
, which implies equality everywhere in (3.3), (3.4),

and (3.5). As a result, qn−k|F| = |A1| = qn−k
[
n−1
k−1

]
, which implies |F| =

[
n−1
k−1

]
. Moreover,

|F⊥| =
[
n−1
n−k

]
and

∣∣∂F⊥∣∣ = |A2| =
[
n−1

n−k−1

]
. Therefore F⊥ satisfies equality in Theo-

rem 1.4, which implies that F⊥ =
[
Y
n−k

]
for some (n − 1)-dimensional subspace Y ⊂ V .

By duality, F = {F ∈
[
V
k

]
: v ⊂ F} for some one-dimensional subspace v ⊂ V .
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4 Characterizing Equality in the Base Case

We characterize equality in Theorem 1.5 when (r − 1)n − rk = 0. Godsil and Newman
[10, 17] recently characterized equality in the Erdős-Ko-Rado theorem for vector spaces
using the methods of [9]. Recall that the Erdős-Ko-Rado theorem for vector spaces is the
case r = 2 of Theorem 1.5. In particular, they showed

Theorem 4.1 (Godsil and Newman) If n = 2k and F ⊂
[
V
k

]
is a maximum size

intersecting family, then F = {F ∈
[
V
k

]
: v ⊂ F} for some one-dimensional subspace

v ⊂ V or F =
[
U
k

]
for some (2k − 1)-dimensional subspace U ⊂ V .

We use their result to characterize equality in Theorem 1.5 when (r − 1)n − rk = 0
and r ≥ 3. The proof proceeds by induction on r; the base case r = 2 and n = 2k is
Theorem 4.1. Let F ⊂

[
V
k

]
be a maximum size r-wise intersecting family. In this section,

it will be more natural to state results in terms of F⊥ ⊂
[
V
n−k

]
so we make the following

simple observation.

Lemma 4.2 We have F ⊂
[
V
k

]
is a maximum size r-wise intersecting family if and only

if F⊥ ⊂
[
V
n−k

]
is a maximum size r-wise co-intersecting family.

Lemma 4.5 allows us to use induction. We first state two simple corollaries of Lemma 3.4
that will be used in the proof of Lemma 4.5. Recall that V is r(n− k)-dimensional since
r, n, k satisfy (r − 1)n− rk = 0.

Corollary 4.3 Suppose r, n, k satisfy (r − 1)n − rk = 0. Let F ⊂
[
V
k

]
be r-wise inter-

secting. If there is a geometric (n− k)-spread B of V such that equality holds in (3.2) for
all π ∈ GL(V ), then F has maximum size.

Corollary 4.4 Suppose r, n, k satisfy (r − 1)n − rk = 0. If F ⊂
[
V
k

]
is a maximum size

r-wise intersecting family, then equality holds in (3.2) for every geometric (n− k)-spread
B of V and for every π ∈ GL(V ).

Lemma 4.5 Let F ⊂
[
V
k

]
be a maximum size r-wise intersecting family. Fix F⊥ in F⊥

and let U ⊂ V be an (r − 1)(n − k)-dimensional space that intersects F⊥ trivially; that
is F⊥ ∩ U = {0}. Then

F⊥|U := {E ∈ F⊥ : E ⊂ U}
is a maximum size (r − 1)-wise co-intersecting family in

[
U
n−k

]
.

Proof. Let S be a geometric (n − k)-spread of V . Choose S1, . . . , Sr in S such that∨r
i=1 Si = V . Since F⊥ ∩ U = {0}, there exists an isomorphism ρ ∈ GL(V ) such

that ρ(S1) = F⊥ and ρ (
∨r
i=2 Si) = U . The (n − k)-spread B := ρ(S) is geometric

by Lemma 3.2, and F⊥ ∈ B; moreover U =
∨r
i=2 ρ(Si) so B induces a geometric (n− k)-

spread B′ on U by Lemma 3.1.
Observe that F⊥|U is (r − 1)-wise co-intersecting since F⊥ ∩ U = {0}. To prove

that F⊥|U ⊂
[
U
n−k

]
is a maximum size (r − 1)-wise co-intersecting family, we will apply
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Lemma 4.2 and Corollary 4.3. That is, we will show that if α ∈ GL(U) then equality
holds in (3.2): ∣∣F⊥|U ∩ α(B′)

∣∣ =
q(r−2)(n−k) − 1

qn−k − 1
.

Let π ∈ GL(V ) be an isomorphism such that π(F⊥) = F⊥, π(U) = U , and π|U = α.
Since F⊥ is a maximum size r-wise co-intersecting family, F⊥ ∩ π(B) is a (n− k)-spread
of a (r− 1)(n− k)-dimensional space Wπ by Lemma 3.3 and Corollary 4.4. Consider the
subspace Wπ ∩ U and observe that dim(Wπ ∩ U) = (r − 2)(n− k) since F⊥ is contained
in Wπ and intersects U trivially.

The spread π(B) induces the spread F⊥∩π(B) on Wπ and induces the spread α(B′) on
U . Consider the elements of α(B′) that intersect Wπ ∩ U non-trivially; as these elements
are in π(B) and intersect Wπ, they must lie in Wπ and hence in Wπ ∩ U . Hence, the
elements of α(B′) that intersect Wπ ∩U non-trivially form a spread of Wπ ∩U . Moreover,
these elements lie in F⊥ ∩ π(B) so

F⊥|U ∩ α(B′) = (F⊥ ∩ π(B)) ∩ α(B′)

is the spread π(B) induces on Wπ ∩ U . Since Wπ ∩ U is (r − 2)(n − k)-dimensional,∣∣F⊥|U ∩ α(B′)
∣∣ satisfies (3.2) with equality. By Lemma 4.2 and Corollary 4.3, F⊥|U is a

maximum size (r − 1)-wise co-intersecting family in
[
U
n−k

]
.

Characterizing Equality in Theorem 1.5 when (r − 1)n − rk = 0 and r ≥ 3:
We characterize equality in Theorem 1.5 when (r − 1)n − rk = 0 and r ≥ 3. The proof
proceeds by induction on r; the base case r = 2 and n = 2k is Theorem 4.1.

Let r ≥ 3 and suppose the statement is proved for any 2 ≤ r′ < r. Let F ⊂
[
V
k

]
be

a maximum size r-wise intersecting family and observe that F⊥ ⊂
[
V
n−k

]
is a maximum

size r-wise co-intersecting family. We will show that F⊥ =
[
H
n−k

]
where H is a (n − 1)-

dimensional space of V . By duality, this implies that F = {F ∈
[
V
k

]
: v ⊂ F} for some

one-dimensional subspace v ⊂ V , which is the desired conclusion.
Fix some F⊥ ∈ F⊥. By Lemma 4.5, if U is a (r−1)(n−k)-dimensional subspace that

intersects F⊥ trivially, then F⊥|U is a maximum size (r − 1)-wise co-intersecting family
in
[
U
n−k

]
. When r = 3, then dimU = 2(n − k) and F⊥|U is a maximum size intersecting

and co-intersecting family in
[
U
n−k

]
; hence by Theorem 4.1

1. F⊥|U = {E ∈
[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U or

2. F⊥|U =
[
U ′

n−k

]
for some (2(n− k)− 1)-dimensional subspace U ′ ⊂ U .

If r > 3 then, by the induction hypothesis and duality, F⊥|U =
[
U ′

n−k

]
, where U ′ ⊂ U is

some ((r − 1)(n− k)− 1)-dimensional subspace.
Our first task is to eliminate the possibility that F⊥|U = {E ∈

[
U
n−k

]
: u ⊂ E}

for some one-dimensional subspace u ⊂ U in the case r = 3. We now show that if
F⊥|U = {E ∈

[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U , then every

element of F⊥ must intersect F⊥ ∨ u non-trivially.
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Claim 4.6 If F⊥|U = {E ∈
[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace u ⊂ U ,

then for all G ∈ F⊥ we have G ∩ (F⊥ ∨ u) 6= {0}.

Proof. Suppose, for a contradiction, that there exists G ∈ F⊥ such that G intersects
F⊥ ∨ u trivially. We have dim((F⊥ ∨G) ∩ U) = n− k because F⊥ intersects both G and
U trivially. Since u does not lie in F⊥ ∨G and F⊥|U = {E ∈

[
U
n−k

]
: u ⊂ E}, we can find

E ′ ∈ F⊥|U that intersects F⊥ ∨ G trivially. Hence F⊥ ∨ G ∨ E ′ = V , which contradicts
the fact that F⊥ is 3-wise co-intersecting.

We now show that if F⊥|U = {E ∈
[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace

u ⊂ U , then any (n − k)-dimensional space that meets F⊥ trivially but meets F⊥ ∨ u
non-trivially must lie in F⊥.

Claim 4.7 Suppose F⊥|U = {E ∈
[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace

u ⊂ U . If G ∈
[
V
n−k

]
, G ∩ F⊥ = {0}, and G ∩ (F⊥ ∨ u) 6= {0}, then G ∈ F⊥.

Proof. There exists a geometric (n − k)-spread B of V that contains both G and F⊥

because G ∩ F⊥ = {0}. Since B is a spread, all subspaces in (F⊥ ∩ B) \ {F⊥} meet
F⊥ ∨ u in a one-dimensional subspace that does not lie in F⊥ by Claim 4.6. Lemma 3.3
and Corollary 4.4 imply that F⊥ ∩ B is a spread of a 2(n − k)-dimensional space so
|(F⊥ ∩ B) \ {F⊥}| = qn−k. There are qn−k one-dimensional subspaces in F⊥ ∨ u that do
not lie in F⊥. Hence, each one-dimensional subspace in (F⊥ ∨ u) \ F⊥ meets a unique
subspace in (F⊥ ∩ B) \ {F⊥}. Since G meets F⊥ ∨ u in a one-dimensional subspace that
does not lie in F⊥ and G ∈ B, we must have G ∈ F⊥ ∩ B ⊂ F⊥.

We now eliminate the possibility that F⊥|U = {E ∈
[
U
n−k

]
: u ⊂ E} for some one-

dimensional subspace u ⊂ U . We will construct three (n− k)-dimensional subspaces that
together span V , and intersect F⊥∨u in a one-dimensional subspace not lying in F⊥. By
Claim 4.7, these three spaces lie in F⊥, which contradicts F⊥ being 3-wise co-intersecting.
To build these three subspaces, we first choose three one-dimensional subspaces v1

1, v
1
2, v

1
3

in (F⊥ ∨ u) \ F⊥ such that v1
3 6⊂ v1

1 ∨ v1
2. These one-dimensional subspaces exist because

dim(F⊥ ∨ u) = (n− k) + 1 ≥ 3 so, after picking v1
1 and v1

2, any one-dimensional subspace
of F⊥ ∨ u not in F⊥ ∪ (v1

1 ∨ v1
2) will do. Since the number of one-dimensional subspaces

in (F⊥ ∨ u) \ (F⊥ ∪ (v1
1 ∨ v1

2)) is qn−k − q > 0, we can indeed choose v1
3.

We construct a family of one-dimensional subspaces

{vji : i ∈ {1, 2, 3}, j ∈ {1, . . . , n− k}}

such that, for each i ∈ {1, 2, 3}, the subspace Vi =
∨n−k
j=1 v

j
i intersects F⊥ ∨ u in the

one-dimensional subspace v1
i 6⊂ F⊥ and

∨3
i=1 Vi = V . The subspaces V1, V2, V3 are the

desired three (n− k)-dimensional subspaces. We pick the one-dimensional subspaces one
after the other; we have to show that at each step there is a possible one-dimensional
subspace to pick. When picking the last one-dimensional subspace vn−k3 we must choose a
one-dimensional subspace from V that is not in V1∨V2∨

∨n−k−1
j=1 vj3 nor in F⊥∨

∨n−k−1
j=1 vj3.

By inclusion-exclusion, there are q3(n−k)−1−q2(n−k)−2 > 0 one-dimensional subspaces in V
that do not lie in V1 ∨ V2 ∨

∨n−k−1
j=1 vj3 nor in F⊥ ∨

∨n−k−1
j=1 vj3; thus it is indeed possible to
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construct the desired three (n−k)-dimensional subspaces. Therefore, we have eliminated
the possibility that F⊥|U = {E ∈

[
U
n−k

]
: u ⊂ E} for some one-dimensional subspace

u ⊂ U in the case r = 3.
We may now assume that r ≥ 3 and that if U is a (r − 1)(n − k)-dimensional space

that intersects F⊥ trivially then F⊥|U =
[
U ′

n−k

]
for some ((r − 1)(n− k)− 1)-dimensional

subspace U ′ ⊂ U . Our ultimate goal is to prove that F⊥ =
[
F⊥∨U ′
n−k

]
. Naturally, we first

show that if U1, U2 are two (r−1)(n−k)-dimensional subspaces that intersect F⊥ trivially,
then F⊥ ∨ U ′1 = F⊥ ∨ U ′2.

Claim 4.8 Let U1, U2 be two (r − 1)(n − k)-dimensional subspaces of V that intersect
F⊥ trivially. Let U ′1, U

′
2 be the ((r − 1)(n − k) − 1)-dimensional subspaces of U1 and U2

such that F⊥|U1 =
[
U ′1
n−k

]
and F⊥|U2 =

[
U ′2
n−k

]
. Then F⊥ ∨ U ′1 = F⊥ ∨ U ′2.

Proof. Suppose, for a contradiction, that F⊥ ∨ U ′1 6= F⊥ ∨ U ′2. Choose subspaces
W1, . . . ,Wr−2 in

[
U ′1
n−k

]
such that W1 is not contained in F⊥ ∨ U ′2 and dim

(∨r−2
i=1 Wi

)
=

(r − 2)(n− k).
The subspace F⊥ ∨

∨r−2
i=1 Wi is (r − 1)(n − k)-dimensional because U1 intersects F⊥

trivially. The subspace U ′2 is ((r − 1)(n− k)− 1)-dimensional and intersects F⊥ trivially
so

(r − 2)(n− k)− 1 ≤ dim

(
U ′2 ∩

(
F⊥ ∨

r−2∨
i=1

Wi

))
≤ (r − 2)(n− k).

Suppose that dim
(
U ′2 ∩

(
F⊥ ∨

∨r−2
i=1 Wi

))
= (r− 2)(n− k) for a contradiction. By defini-

tion of W1, we can choose a one-dimensional subspace w ⊂ W1 that does not lie in F⊥∨U ′2.
The subspace F⊥∨w is (n−k+1)-dimensional. The subspace F⊥∨

∨r−2
i=1 Wi is (r−1)(n−k)-

dimensional and contains F⊥ ∨ w. If dim
(
U ′2 ∩

(
F⊥ ∨

∨r−2
i=1 Wi

))
= (r − 2)(n − k), then

F⊥ ∨ w must intersect U ′2 non-trivially. This is a contradiction because w does not lie in
F⊥ ∨ U ′2 by construction. Therefore, dim

(
U ′2 ∩

(
F⊥ ∨

∨r−2
i=1 Wi

))
= (r − 2)(n− k)− 1.

Since U ′2 is ((r − 1)(n− k)− 1)-dimensional, this implies that there exists a subspace
Z in

[
U ′2
n−k

]
that intersects F⊥ ∨

∨r−2
i=1 Wi trivially. Now F⊥,W1, . . . ,Wr−2, Z lie in F⊥

since F⊥|U1 =
[
U ′1
n−k

]
and F⊥|U2 =

[
U ′2
n−k

]
. By construction, F⊥ ∨

∨r−2
i=1 Wi ∨ Z = V , which

contradicts F⊥ being r-wise co-intersecting. This proves F⊥ ∨ U ′1 = F⊥ ∨ U ′2.

Now we show that any (n − k)-dimensional subspace in F⊥ ∨ U ′ that intersects F⊥

trivially must lie in F⊥.

Claim 4.9 If G ∈
[
F⊥∨U ′
n−k

]
and G ∩ F⊥ = {0}, then G ∈ F⊥.

Proof. Since G∩F⊥ = {0}, there exists a (r− 1)(n− k)-dimensional subspace U(G) that
contains G and intersects F⊥ trivially. Let U(G)′ be the ((r− 1)(n− k)− 1)-dimensional
subspace of U(G) such that F⊥|U(G) =

[
U(G)′

n−k

]
. By Claim 4.8,

G ⊂ (F⊥ ∨ U ′) ∩ U(G) = (F⊥ ∨ U(G)′) ∩ U(G) = U(G)′.

Hence G ∈
[
U(G)′

n−k

]
⊂ F⊥.
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Now we are ready to prove F⊥ =
[
F⊥∨U ′
n−k

]
. Suppose, for a contradiction, that there

exists a subspace H ∈ F⊥ that is not in
[
F⊥∨U ′
n−k

]
. We will construct r − 1 subspaces in[

F⊥∨U ′
n−k

]
that each intersect F⊥ trivially and that together with H span V . By Claim 4.9,

these r − 1 subspaces lie in F⊥ which contradicts F⊥ being r-wise co-intersecting.
To build these r − 1 subspaces, we construct a family of one-dimensional subspaces

{vji : i ∈ {1, . . . , r − 1}, j ∈ {1, . . . , n− k}}

such that for each i ∈ {1, . . . , r−1}, the subspace Gi =
∨n−k
j=1 v

j
i lies in F⊥∨U ′, intersects

F⊥ trivially, and
∨r−1
i=1 Gi ∨ H = V . The subspaces G1, . . . , Gr−1 are the desired r − 1

subspaces. We pick the one-dimensional subspaces one after the other; we have to show
that at each step there is a possible one-dimensional subspace to pick. When picking
the last one-dimensional subspace vn−kr−1 we must pick a one-dimensional subspace from

F⊥ ∨ U ′ that is not in H ∨
∨r−2
i=1 Gi ∨

∨n−k−1
j=1 vjr−1 nor in F⊥ ∨

∨n−k−1
j=1 vjr−1. Since H is

not contained in F⊥ ∨ U ′, we have

dim

((
F⊥ ∨ U ′

)
∩

(
H ∨

r−2∨
i=1

Gi ∨
n−k−1∨
j=1

vjr−1

))
= r(n− k)− 2.

Hence, there are at least

qr(n−k)−2 − (q2(n−k)−2 + q2(n−k)−3 + · · ·+ 1) > 0

one-dimensional subspaces of F⊥ ∨ U ′ that do not lie in H ∨
∨r−2
i=1 Gi ∨

∨n−k−1
j=1 vjr−1 nor

in F⊥ ∨
∨n−k−1
j=1 vjr−1; thus it is indeed possible to construct the desired r − 1 subspaces.

This proves that F⊥ ⊆
[
F⊥∨U ′
n−k

]
, and since |F⊥| =

[
n−1
k−1

]
we have F⊥ =

[
F⊥∨U ′
n−k

]
. The

subspace F⊥ ∨ U ′ is (n − 1)-dimensional; by duality, F = {F ∈
[
V
k

]
: v ⊂ F} for some

one-dimensional subspace v ⊂ V , which is the desired conclusion.
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