Hiroshi Nozaki

Graduate School of Mathematics Kyushu University,

nozaki@math.kyushu-u.ac.jp

and

Masashi Shinohara Suzuka National College of Technology shinohara@genl.suzuka-ct.ac.jp

February 20, 2019

Abstract

A subset X in the d-dimensional Euclidean space is called a k-distance set if there are exactly k distinct distances between two distinct points in X and a subset X is called a locally k-distance set if for any point x in X, there are at most k distinct distances between x and other points in X.

Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally k-distance sets on a sphere. In the first part of this paper, we prove that if X is a locally k-distance set attaining the Fisher type upper bound, then determining a weight function w, (X, w) is a tight weighted spherical 2k-design. This result implies that locally k-distance sets attaining the Fisher type upper bound are k-distance sets. In the second part, we give a new absolute bound for the cardinalities of k-distance sets on a sphere. This upper bound is useful for k-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in (d - 1)-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in d-space with more than d(d+1)/2 points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.

1 Introduction

Let \mathbb{R}^d be the *d*-dimensional Euclidean space. For $X \subset \mathbb{R}^d$, let $A(X) = \{d(x,y)|x, y \in X, x \neq y\}$ where d(x,y) is the Euclidean distance between x and y in \mathbb{R}^d . We call X a *k*-distance set if |A(X)| = k. Moreover for any $x \in X$, define $A_X(x) = \{d(x,y)|y \in X, x \neq y\}$. We will abbreviate $A(x) = A_X(x)$ whenever there is no risk of confusion. A subset $X \subset \mathbb{R}^d$ is called a *locally k*-distance set if $|A_X(x)| \leq k$ for all $x \in X$. Clearly every k-distance set is a locally k-distance set. A locally k-distance set is said to be proper if it is not a k-distance set. Two subsets in \mathbb{R}^d are said to be isomorphic if there exists a similar transformation from one to the other. An interesting problem for k-distance sets (resp. locally k-distance set) in \mathbb{R}^d . We denote this number by $DS_d(k)$ (resp. $LDS_d(k)$) and a k-distance set X (resp. locally k-distance set X) in \mathbb{R}^d is said to be optimal if $|X| = DS_d(k)$ (resp. $LDS_d(k)$). Moreover we denote the maximum cardinality of a k-distance set (resp. locally k-distance set) in the unit sphere $S^{d-1} \subset \mathbb{R}^d$ by $DS_d^*(k)$ (resp. $LDS_d^*(k)$).

For upper bounds on the cardinalities of distance sets in \mathbb{R}^d , Bannai-Bannai-Stanton [4] and Blokhuis [8] gave $DS_d(k) \leq {d+k \choose k}$. For k = 2, the numbers $DS_d(2)$ are known for $d \leq 8$ (Kelly [17], Croft [9] and Lisoněk [19]). For d = 2, the numbers $DS_2(k)$ are known and optimal k-distance sets are classified for $k \leq 5$ (Erdős-Fishburn [14], Shinohara [21], [22]). Moreover we have $DS_3(3) = 12$ and every optimal three-distance set is isomorphic to the set of vertices of a regular icosahedron (Shinohara [23]).

_	d	1	2	3	4	5	6	7	8		k	1	2	3	4	5
-	$DS_d(2)$	3	5	6	10	16	27	29	45		$DS_2(k)$	3	5	7	9	12
Ta	ble: Maxi	imu	m c	eard	inali	ties :	for ty	vo-di	stanc	e s	sets and p	lana	$\operatorname{ar} k$	-dis	stan	ce sets

We have an lower bound for $DS_d^*(2)$ of d(d+1)/2 since the set of all midpoints of the edges of a d-dimensional regular simplex is a two-distance set on a sphere with d(d+1)/2 points. Musin determined that $DS_d^*(2) = d(d+1)/2$ for $7 \le d \le 21, 24 \le d \le 39$ [20]. For $2 \le d \le 6$, we have $DS_d^*(2) = DS_d(2)$ and for d = 22, we have $DS_d^*(2) = 275$. For d = 23, $DS_d^*(2) = 276$ or 277 [20].

Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distance sets on a sphere [10]. This upper bound also applies to locally k-distance sets on a sphere.

Theorem 1.1 (Fisher type inequality [10]). (i) Let X be a locally k-distance set on S^{d-1} . Then, $|X| \leq 1$ $\begin{array}{l} (d+k-2) \\ (k+k-2) \\ (k+k-2)$

It is well known that if a k-distance set X attains this upper bound, then X is a tight spherical design. We will give the definition of spherical designs in the next section. Of course, k-distance sets which attain this upper bound are optimal. This optimal k-distance set is very interesting because of its relationship with the design theory. Classification of tight spherical t-designs have been well studied in [5, 6, 7]. Classifications of tight spherical t-designs are complete, except for t = 4, 5, 7. This implies that classifications of k-distance sets (resp. antipodal k-distance sets) which attain this upper bound are complete, except for k = 2 (resp. k = 3, 4). For t = 4, a tight spherical four-design in S^{d-1} exists only if d = 2 or $d = (2l+1)^2 - 3$ for a positive integer l and the existence of a tight spherical four-design in S^{d-1} is known only for d = 2, 6 or 22.

In Section 2, we prove the following theorem.

Theorem 1.2. (i) Let X be a locally k-distance set on S^{d-1} . If $|X| = N_d(k)$, then for some determined weight function w, (X, w) is a tight weighted spherical 2k-design. Conversely, if (X, w) is a tight weighted spherical 2k-design, then X is a locally k-distance set (indeed, X is a k-distance set).

(ii) Let X be an antipodal locally k-distance set on S^{d-1} . If $|X| = N'_d(k)$, then for some determined weight function w, (X, w) is a tight weighted spherical (2k - 1)-design. Conversely, if (X, w) is a tight weighted spherical (2k-1)-design, then X is an antipodal locally k-distance set (indeed, X is an antipodal k-distance set).

This theorem implies that the concept of locally distance sets is a natural generalization of distance sets, because this theorem is a generalization of the relationship between tight spherical designs and distance sets.

Indeed, Theorem 1.2 implies the following.

Theorem 1.3. (i) Let X be a locally k-distance set on S^{d-1} . If $|X| = N_d(k)$, then X is a k-distance set. (ii) Let X be an antipodal locally k-distance set on S^{d-1} . If $|X| = N'_d(k)$, then X is a k-distance set.

In Section 3, we give a new upper bound for k-distance sets on S^{d-1} . This upper bound is useful for $k\mbox{-distance}$ sets to which the linear programming bound is not applicable.

In Section 4, we discuss locally two-distance sets in \mathbb{R}^d . We first give an upper bound for the cardinalities of locally two-distance sets. Moreover, we mention that every proper locally two-distance set in \mathbb{R}^d with more than d(d+1)/2 points contains a two-distance set in S^{d-2} which attains the Fisher type upper bound. Note that a two-distance set in \mathbb{R}^d with d(d+1)/2 points exists. We also classify optimal locally two-distance sets in \mathbb{R}^d for d < 8. In addition, we determine $LDS_2^*(d)$ for d < 40 by using the value of $DS_d^*(2)$ for d < 40. In particular, we do not know $DS_{23}^*(2)$ but can determine $LDS_{23}^*(2)$.

2 Locally distance sets and weighted spherical designs

We prove Theorem 1.2 in this section. First, we give the definition of weighted spherical designs.

Definition 2.1 (Weighted spherical designs). Let X be a finite set on S^{d-1} . Let w be a weight function: $w: X \to \mathbb{R}_{>0}$, such that $\sum_{x \in X} w(x) = 1$. (X, w) is called a weighted spherical t-design if the following equality holds for any polynomial f in d variables and of degree at most t:

$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) d\sigma(x) = \sum_{x \in X} w(x) f(x),$$

where the left hand side involves the integral of f on the sphere. X is called a spherical t-design if w(x) = 1/|X| for all $x \in X$.

We have the following lower bound for the cardinalities of weighted spherical *t*-designs.

Theorem 2.1 (Fisher type inequality [10, 11]). (i) Let X be a weighted spherical 2e-design. Then, $|X| \ge \binom{d+e-1}{e} + \binom{d+e-2}{e-1} = N_d(e).$

(ii) Let X be a weighted spherical (2e-1)-design. Then, $|X| \ge 2\binom{d+e-2}{e-1} = N'_d(e)$.

If equality holds, X is said to be tight. The following theorem shows a strong relationship between tight spherical t-designs and k-distance sets.

Theorem 2.2 (Delsarte, Goethals and Seidel [10]). (i) X is a k-distance set on S^{d-1} with $N_d(k)$ points if and only if X is a tight spherical 2k-design. (ii) X is an antipodal k-distance set on S^{d-1} with $N'_d(k)$ points if and only if X is a tight spherical

(2k-1)-design.

Remark 2.1. In particular, X is a two-distance set on S^{d-1} with $N_d(2)$ points if and only if X is a tight spherical four-design. X is an antipodal three-distance set on S^{d-1} with $N'_d(2)$ points if and only if X is a tight spherical five-design. Note that the existence of a tight spherical four-design on S^{d-2} is equivalent to the existence of a tight spherical five-design on S^{d-1} . Let X be a tight spherical five-design on S^{d-1} . Then, we can put $A(X) = \{\alpha, \beta, 2\} (\alpha < \beta)$. For a fixed $x \in X$, we define $X_{\alpha} := \{y \in X \mid d(x, y) = \alpha\}$. Then, we can regard X_{α} as a tight spherical four-design on S^{d-2} . This relationship between tight fourdesigns and five-designs is important in Section 4.

Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite set on S^{d-1} . Let $\operatorname{Harm}_l(\mathbb{R}^d)$ be the linear space of all real harmonic homogeneous polynomials of degree l, in d variables. We put $h_l := \dim(\operatorname{Harm}_l(\mathbb{R}^d))$. Let H_l be the characteristic matrix of degree l. Namely, H_l is indexed by X and an orthonormal basis $\{\varphi_{l,i}\}_{i=0,1,\dots,h_l}$ of $\operatorname{Harm}_l(\mathbb{R}^{d-1})$ with respect to the inner product $\langle f,g\rangle = \frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x)g(x)d\sigma(x)$ and that its (i, j)th element is $\varphi_{l,j}(x_i)$. The following gives the definition of Gegenbauer polynomials and discusses the Addition Formula which will be used in the succeeding discussion.

Definition 2.2. Gegenbauer polynomials are a set of orthogonal polynomials $\{G_l^{(d)}(t) \mid l = 1, 2, ...\}$ of one variable t. For each l, $G_l^{(d)}(t)$ is a polynomial of degree l, defined in the following manner.

- 1. $G_0^{(d)}(t) \equiv 1, G_1^{(d)}(t) = dt.$
- 2. $tG_l^{(d)}(t) = \lambda_{l+1}G_{l+1}^{(d)}(t) + (1-\lambda_{l-1})G_{l-1}^{(d)}(t)$ for $l \ge 1$, where $\lambda_l = \frac{l}{d+2l-2}$.

Note that $G_l^{(d)}(1) = \dim(\operatorname{Harm}_l(\mathbb{R}^d)) = h_l$.

Theorem 2.3 (Addition formula [10, 1]). For any x, y on S^{d-1} , we have

$$\sum_{k=1}^{h_l} \varphi_{l,k}(x) \varphi_{l,k}(y) = G_l^{(d)}((x,y)).$$

The following is a key theorem to prove Theorem 1.3.

Theorem 2.4. The following are equivalent:

(i) (X, w) is a weighted spherical t-design.

(ii) ${}^tH_eWH_e = I$ and ${}^tH_eWH_r = 0$ for $e = \lfloor \frac{t}{2} \rfloor$ and $r = e - (-1)^t$. Here, $W = \text{Diag}\{w(x_1), w(x_2), \dots, w(x_n)\}$.

We require the two following two lemmas in order to prove Theorem 2.4.

Lemma 2.1 (Lemma 3.2.8 in [1] or [10]). We have the Gegenbauer expansion $G_k^{(d)}G_l^{(d)} = \sum_{i=0}^{k+l} q_i(k,l)G_i^{(d)}$. Then, the following hold.

(i) For any i, k and $l, q_i(k, l) \ge 0$.

(ii) For any k and l, $q_0(k,l) = h_k \delta_{k,l}$, where $\delta_{k,l} = 1$ if k = l and $\delta_{k,l} = 0$ if $k \neq l$. (iii) $q_i(k,l) \neq 0$ if and only if $|k-l| \leq i \leq k+l$ and $i \equiv k+l \mod 2$.

For an $m \times n$ matrix M, we define $||M||^2 := \sum_{i=1}^m \sum_{j=1}^n M(i,j)^2$, namely the sum of squares of all matrix entries.

Lemma 2.2. For $k + l \ge 1$,

$$\left|\left|{}^{t}H_{k}WH_{l} - \Delta_{k,l}\right|\right|^{2} = \sum_{i=1}^{k+l} q_{i}(k,l) \left|\left|{}^{t}H_{i}WH_{0}\right|\right|^{2}$$
(1)

where

$$\Delta_{k,l} = \begin{cases} I, & \text{if } k = l \\ 0, & \text{if } k \neq l \end{cases}$$

Proof. Note that

$$||^{t}H_{k}WH_{l}||^{2} = \sum_{i=1}^{h_{k}} \sum_{j=1}^{h_{l}} \left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{l,j}(x) \right)^{2}$$
(2)

$$= \sum_{x \in X} \sum_{y \in X} w(x)w(y) \sum_{i=1}^{n_k} \varphi_{k,i}(x)\varphi_{k,i}(y) \sum_{j=1}^{n_l} \varphi_{l,j}(x)\varphi_{l,j}(y)$$
(3)
$$= \sum_{x \in X} \sum_{y \in X} w(x)w(y)G_k^{(d)}((x,y)) G_l^{(d)}((x,y)).$$

When l = 0, we have

$$||^{t}H_{k}WH_{0}||^{2} = \sum_{x \in X} \sum_{y \in X} w(x)w(y)G_{k}^{(d)}((x,y)).$$
(4)

If $k \neq l$, then

$$\begin{aligned} ||^{t}H_{k}WH_{l}||^{2} &= \sum_{x \in X} \sum_{y \in X} w(x)w(y)G_{k}^{(d)}\left((x,y)\right)G_{l}^{(d)}\left((x,y)\right) \\ &= \sum_{x \in X} \sum_{y \in X} w(x)w(y)\sum_{i=0}^{k+l} q_{i}(k,l)G_{i}^{(d)}\left((x,y)\right) \\ &= \sum_{i=0}^{k+l} q_{i}(k,l)||^{t}H_{i}WH_{0}||^{2} \quad (\because \text{ equality } (4)) \\ &= \sum_{i=1}^{k+l} q_{i}(k,l)||^{t}H_{i}WH_{0}||^{2} \quad (\because \text{ Lemma 2.1}). \end{aligned}$$

If k = l, then the summation of the squares of the diagonal entries is

$$\sum_{i=1}^{h_k} \left(\left({^tH_kWH_k - I} \right)(i,i) \right)^2 = \sum_{i=1}^{h_k} \left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) - 1 \right)^2$$

$$= \sum_{i=1}^{h_k} \left(\left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) \right)^2 - 2\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) + 1 \right)$$

$$= \sum_{i=1}^{h_k} \left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) \right)^2 - 2\sum_{x \in X} w(x)\sum_{i=1}^{h_k} \varphi_{k,i}(x)\varphi_{k,i}(x) + h_k$$

$$= \sum_{i=1}^{h_k} \left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) \right)^2 - 2\sum_{x \in X} w(x)G_k^{(d)}(1) + h_k$$

$$= \sum_{i=1}^{h_k} \left(\sum_{x \in X} w(x)\varphi_{k,i}(x)\varphi_{k,i}(x) \right)^2 - h_k$$

Therefore,

$$\begin{aligned} \left| \left| {}^{t}H_{k}WH_{k} - I \right| \right|^{2} &= \left| \left| {}^{t}H_{k}WH_{k} \right| \right|^{2} - h_{k} \\ &= \sum_{i=0}^{2k} q_{i}(k,k) \left| {}^{t}H_{i}WH_{0} \right| \right|^{2} - h_{k} \\ &= \sum_{i=1}^{2k} q_{i}(k,k) \left| {}^{t}H_{i}WH_{0} \right| \right|^{2}. \end{aligned}$$

$$(5)$$

Proof of Theorem 2.4. (i) \Rightarrow (ii) is clear. We prove (ii) \Rightarrow (i). By Lemma 2.4,

$$\left|\left|{}^{t}H_{e}WH_{e} - I\right|\right|^{2} = \sum_{i=1}^{2e} q_{i}(e,e) \left|\left|{}^{t}H_{i}WH_{0}\right|\right|^{2} = 0.$$
(6)

We have ${}^{t}H_{i}WH_{0} = 0$ for even $i \leq t$, because $q_{i}(e, e) > 0$ for even i, and $q_{i}(e, e) = 0$ for odd i. On the other hand,

$$\left|\left|{}^{t}H_{e}WH_{r}\right|\right|^{2} = \sum_{i=1}^{2e-(-1)^{t}} q_{i}(e,r) \left|\left|{}^{t}H_{i}WH_{0}\right|\right|^{2} = 0.$$
(7)

We have ${}^{t}H_{i}WH_{0} = 0$ for odd $i \leq t$, because $q_{i}(e, r) > 0$ for odd i, and $q_{i}(e, r) = 0$ for even i. Therefore, these imply that for any $f \in P_{t}(S^{d-1})$, the following equality holds:

$$\frac{1}{|S^{d-1}|} \int_{S^{d-1}} f(x) d\sigma(x) = \sum_{x \in X} w(x) f(x).$$

Proof of Theorem 1.2. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a locally k-distance set on S^{d-1} . Suppose $|X| = N_d(k)$. Let (,) be the standard inner product in \mathbb{R}^d . For each $x \in X$, we define $A_{inn}(x) := \{(x, y) \mid x \neq y \in X\}$. For each $x \in X$, we define the polynomial in d variables:

$$F_x(\xi) := (x,\xi)^{k-|A_{inn}(x)|} \prod_{\alpha \in A_{inn}(x)} \frac{(x,\xi) - \alpha}{1 - \alpha},$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_d)$. $F_x(\xi)$ is of degree k for all $x \in X$. For all $x_i, x_j \in X$,

$$F_{x_i}(x_j) = \delta_{i,j},$$

where $\delta_{i,j} = 1$ if i = j and $\delta_{i,j} = 0$ if $i \neq j$. We have the Gegenbauer expansion:

$$F_x(\xi) = \sum_{i=0}^k f_i^{(x)} G_i^{(d)}((x,\xi))$$

where $f_i^{(x)}$ are real numbers and $G_i^{(d)}$ is the Gegenbauer polynomial of degree *i* normalized by $G_i^{(d)}(1) = h_i = \dim(\operatorname{Harm}_i(\mathbb{R}^d))$. In particular, we remark that $f_k^{(x)} > 0$ for every $x \in X$. By the addition formula,

$$F_x(\xi) = \sum_{i=0}^k f_i^{(x)} G_i^{(d)}((x,\xi)) = \sum_{i=0}^k f_i^{(x)} \sum_{j=1}^{h_i} \varphi_{i,j}(x) \varphi_{i,j}(\xi)$$
(8)

for $\xi \in S^{d-1}$. We define the diagonal matrices $C_i := \text{Diag}\{f_i^{(x_1)}, f_i^{(x_2)}, \dots, f_i^{(x_n)}\}$ for $0 \le i \le k$. $[C_0H_0, C_1H_1, \dots, C_kH_k]$ and $[H_0, H_1, \dots, H_k]$ are $n \times n$ matrices. By the equality (8), we have the equality:

$$[C_0H_0, C_1H_1, \dots, C_kH_k] \begin{bmatrix} {}^tH_0 \\ {}^tH_1 \\ \vdots \\ {}^tH_k \end{bmatrix} = [F_{x_i}(x_j)]_{i,j} = I.$$
(9)

Therefore, $[C_0H_0, C_1H_1, \ldots, C_kH_k]$ and $[H_0, H_1, \ldots, H_k]$ are non-singular matrices. Thus,

$$\begin{bmatrix} {}^{t}H_{0} \\ {}^{t}H_{1} \\ \vdots \\ {}^{t}H_{k} \end{bmatrix} \begin{bmatrix} C_{0}H_{0}, C_{1}H_{1}, \dots, C_{k}H_{k} \end{bmatrix} = I$$
(10)

$$\begin{bmatrix} {}^{t}H_{0}C_{0}H_{0} & {}^{t}H_{0}C_{1}H_{1} & \cdots & {}^{t}H_{0}C_{k}H_{k} \\ {}^{t}H_{1}C_{0}H_{0} & {}^{t}H_{1}C_{1}H_{1} & \cdots & {}^{t}H_{1}C_{k}H_{k} \\ \vdots & \vdots & \ddots & \vdots \\ {}^{t}H_{k}C_{0}H_{0} & {}^{t}H_{k}C_{1}H_{1} & \cdots & {}^{t}H_{k}C_{k}H_{k} \end{bmatrix} = I.$$
(11)

Therefore, ${}^{t}H_{k}C_{k}H_{k} = I$ and ${}^{t}H_{k-1}C_{k}H_{k} = 0$. If we define the weight function $w(x) := f_{k}^{(x)}$ for $x \in X$, then X is a tight weighted spherical 2k-design on S^{d-1} by Theorem 2.4.

Antipodal case Let X be an antipodal k-distance set with $N'_d(k)$. There exist a subset Y such that $X = Y \cup (-Y)$ and |X| = 2|Y|. We define $A^2_{inn}(x) := \{(x, y)^2 \mid y \in X, y \neq \pm x\}$ and

$$\varepsilon = \begin{cases} 1, \text{ if } k \text{ is even,} \\ 0, \text{ if } k \text{ is odd.} \end{cases}$$

For each $y \in Y$, we define the polynomial in d variables

$$F_y(\xi) := (y,\xi)^{k-1-2|A_{inn}^2(y)\setminus\{0\}|} \prod_{0 \neq \alpha^2 \in A_{inn}^2(y)} \frac{(y,\xi)^2 - \alpha^2}{1 - \alpha^2}.$$

 $F_y(\xi)$ is of degree k-1 for all $y \in Y$. For all $y_i, y_j \in Y$,

$$F_{y_i}(y_j) = \delta_{i,j}$$

We have the Gegenbauer expansion:

$$F_y(\xi) = \sum_{i=0}^{k-1} f_i^{(y)} G_i^{(d)}((y,\xi)).$$

Note that $f_i = 0$ for $i \equiv k \mod 2$. In particular, we remark that $f_{k-1}^{(y)} > 0$ for every $y \in Y$. We define the diagonal matrices $C_i := \text{Diag}\{f_i^{(y_1)}, f_i^{(y_2)}, \dots, f_i^{(y_{n/2})}\}$ for $0 \le i \le k-1$. Let $H_l^{(Y)}$ be the characteristic matrix with respect to Y. $[C_{\varepsilon}H_{\varepsilon}^{(Y)}, C_{\varepsilon+2}H_{\varepsilon+2}^{(Y)}, \dots, C_{k-1}H_{k-1}^{(Y)}]$ and $[H_{\varepsilon}^{(Y)}, H_{\varepsilon+2}^{(Y)}, \dots, H_{k-1}^{(Y)}]$ are $n/2 \times n/2$ matrices. By the addition formula, we have the equality:

$$[C_{\varepsilon}H_{\varepsilon}^{(Y)}, C_{\varepsilon+2}H_{\varepsilon+2}^{(Y)}, \dots, C_{k-1}H_{k-1}^{(Y)}] \begin{bmatrix} {}^{t}H_{\varepsilon}^{(Y)} \\ {}^{t}H_{\varepsilon+2}^{(Y)} \\ \vdots \\ {}^{t}H_{\kappa+1}^{(Y)} \end{bmatrix} = I.$$
(12)

Therefore, $[C_{\varepsilon}H_{\varepsilon}^{(Y)}, C_{\varepsilon+2}H_{\varepsilon+2}^{(Y)}, \dots, C_{k-1}H_{k-1}^{(Y)}]$ and $[H_{\varepsilon}^{(Y)}, H_{\varepsilon+2}^{(Y)}, \dots, H_{k-1}^{(Y)}]$ are non-singular matrices. Thus,

$$\begin{bmatrix} {}^{t}H_{\varepsilon}^{(Y)} \\ {}^{t}H_{\varepsilon+2}^{(Y)} \\ \vdots \\ {}^{t}H^{(Y)} \end{bmatrix} [C_{\varepsilon}H_{\varepsilon}^{(Y)}, C_{\varepsilon+2}H_{\varepsilon+2}^{(Y)}, \dots, C_{k-1}H_{k-1}^{(Y)}] = I$$
(13)

$$\begin{bmatrix} {}^{H_{k-1}} \end{bmatrix} = I.$$

$$\begin{bmatrix} {}^{H_{\varepsilon}(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & {}^{t} H_{\varepsilon}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \cdots & {}^{t} H_{\varepsilon}^{(Y)} C_{k-1} H_{k-1}^{(Y)} \\ {}^{t} H_{\varepsilon+2}^{(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & {}^{t} H_{\varepsilon+2}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \cdots & {}^{t} H_{\varepsilon+2}^{(Y)} C_{k-1} H_{k-1}^{(Y)} \\ \vdots & \vdots & \ddots & \vdots \\ {}^{t} H_{k-1}^{(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & {}^{t} H_{k-1}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \cdots & {}^{t} H_{k-1}^{(Y)} C_{k-1} H_{k-1}^{(Y)} \end{bmatrix} = I.$$
(14)

Therefore, ${}^{t}H_{k-1}^{(Y)}C_{k-1}H_{k-1}^{(Y)} = I$. Let H_{l} be a characteristic matrix with respect to X. We select the weight function $w(x) := f_{k-1}^{(x)}/2$ and w(-x) = w(x) for $x \in X$. Since X is antipodal, this implies ${}^{t}H_{k-1}WH_{k-1} = I$ and ${}^{t}H_{k-1}WH_{k} = 0$. Therefore, X is a tight weighted spherical (2k-1)-design by Theorem 2.4.

(\Leftarrow) It is known that tight weighted spherical 2k-designs (resp. (2k - 1)-design) are tight spherical 2k-design (resp. (2k - 1)-design) [24, 2, 3]. Therefore, a tight weighted spherical 2k-design (resp. (2k - 1)-design) is an k-distance set (resp. antipodal k-distance set).

Theorem 1.2 implies that (antipodal) locally k-distance sets attaining their Fisher type upper bound are (antipodal) k-distance sets .

3 A new upper bound for k-distance sets on S^{d-1}

The following upper bound for the cardinalities of k-distance sets is well known.

Theorem 3.1 (Linear programming bound [10]). Let X be a k-distance set on S^{d-1} . We define the polynomial $F_X(t) := \prod_{\alpha \in A_{inn}(X)} (t-\alpha)$ for X where $A_{inn}(X) := \{(x,y) \mid x, y \in X, x \neq y\}$. We have the Gegenbauer expansion

$$F_X(t) = \prod_{\alpha \in A_{inn}(X)} (t - \alpha) = \sum_{i=0}^k f_i G_i^{(d)}(t),$$

where f_i are real numbers. If $f_0 > 0$ and $f_i \ge 0$ for all $1 \le i \le k$, then

$$|X| \le \frac{F_X(1)}{f_0}$$

This upper bound is very useful when $A_{inn}(X)$ is given. However, if some f_i happens to be negative, then we have no useful upper bound for the cardinalities of k-distance sets. In this section, we give a useful upper bound for this case. Namely, we prove the following theorem in this section.

Theorem 3.2. Let X be a k-distance set on S^{d-1} . We define the polynomial $F_X(t)$ of degree k:

$$F_X(t) := \prod_{\alpha \in A_{inn}(X)} (t - \alpha) = \sum_{i=0}^k f_i G_i^{(d)}(t)$$

where f_i are real number. Then,

$$|X| \le \sum_{i \text{ with } f_i > 0} h_i, \tag{15}$$

where the summation is over i with $0 \le i \le k$ satisfying $f_i > 0$ and $h_i = \dim(\operatorname{Harm}_i(\mathbb{R}^d))$.

If $f_i > 0$ for all $0 \le i \le k$, then this upper bound is the same as the Fisher type inequality. The following lemma is a key lemma required in order to prove Theorem 3.2.

Lemma 3.1. Let M be a symmetric matrix in $M_n(\mathbb{R})$ and N be an $m \times n$ matrix. N^T denotes the transpose matrix of N. $D_{u,v}$ is an $m \times m$ diagonal matrix such that the number of positive entries is u and the number of negative entries is v. If the equality

$$NMN^T = D_{u,u}$$

holds, then the number of positive (resp. negative) eigenvalues of M is bounded below by u (resp. v).

Proof. Let $\{p_i\}_{i=1,2,\ldots,u}$ be row vectors in N satisfying $p_i M p_i^T > 0$. Since for $i \neq j$, $p_i M p_j^T = 0$, we have

$$\left(\sum_{i=1}^{u} a_i p_i\right) M\left(\sum_{i=1}^{u} a_i p_i\right)^T = \sum_{i=1}^{u} a_i^2 p_i M p_i^T$$
(16)

for real numbers a_i . If $\sum_{i=1}^{u} a_i p_i = 0$, then all a_i are zero. Therefore, $\{p_i\}_{i=1,2,...,u}$ are linearly independent, and $u \leq \min\{n, m\}$. In particular, $u \leq n$. There exist *n*-length row vectors $\{q_i\}_{i=u+1,u+2,...,n}$, such that

$$P = \left[p_1^T / \sqrt{p_1 M p_1^T}, p_2^T / \sqrt{p_2 M p_2^T}, \dots, p_u^T / \sqrt{p_u M p_u^T}, q_{u+1}^T, q_{u+2}^T, \dots, q_n^T \right]^T$$

is a non-singular matrix. Then,

$$PMP^{T} = \begin{bmatrix} I_{u} & S\\ S^{T} & M' \end{bmatrix},$$
(17)

where I_u is the identity matrix of degree u, M' is an $(n-u) \times (n-u)$ symmetric matrix, and S is a $u \times (n-u)$ matrix. We put

$$R_1 = \begin{bmatrix} I_u & \mathbb{O} \\ -S^T & I_{n-u} \end{bmatrix}.$$

Then,

$$R_1 P M P^T R_1^T = \begin{bmatrix} I_u & \mathbb{O} \\ \mathbb{O} & M' - S^T S \end{bmatrix}$$
(18)

Since $M' - S^T S$ is a symmetric matrix, there exists an orthogonal matrix Q, such that $Q(M' - S^T S)Q^T$ is a diagonal matrix. We put

$$R_2 = \left[\begin{array}{cc} I_v & \mathbb{O} \\ \mathbb{O} & Q \end{array} \right].$$

Then,

$$R_{2}R_{1}PM(R_{2}R_{1}P)^{T} = R_{2}R_{1}PMP^{T}R_{1}^{T}R_{2}^{T} = \begin{bmatrix} I_{u} & \mathbb{O} \\ \mathbb{O} & Q(M' - S^{T}S)Q^{T} \end{bmatrix}.$$
 (19)

Since R_2R_1P is a non-singular matrix, the number of positive eigenvalues of M is equal to the number of positive diagonal entries of $R_2R_1PM(R_2R_1P)^T$. Therefore, the number of positive eigenvalues of M is at least u. This fact implies this lemma. The proof of the result for negative eigenvalues is a similar as above method.

Proof of Theorem 3.2. Let $X := \{x_1, x_2, \dots, x_{|X|}\}$ be a k-distance set on S^{d-1} . Let $\{\varphi_{l,k}\}_{1 \le k \le h_l}$ be an orthonormal basis of $\operatorname{Harm}_l(\mathbb{R}^d)$. H_l is the characteristic matrix. We have the Gegenbauer expansion $F_X(t) = \prod_{\alpha \in A_{inn}(X)} \frac{t-\alpha}{1-\alpha} = \sum_{i=0}^s f_i G_i^{(d)}(t)$. Then,

$$[f_0H_0, f_1H_1, \dots, f_kH_k]$$
 and $[H_0, H_1, \dots, H_s]$

are $|X| \times \sum_{i=0}^{k} h_i$ matrices. By the addition formula,

$$I_{|X|} = [f_0H_0, f_1H_1, \dots, f_kH_k] \begin{bmatrix} {}^tH_0 \\ {}^tH_1 \\ \vdots \\ {}^tH_k \end{bmatrix} = [H_0, H_1, \dots, H_k] \text{Diag} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_1 \\ \vdots \\ f_k \\ \vdots \\ f_k \end{bmatrix} \begin{bmatrix} {}^tH_0 \\ {}^tH_1 \\ \vdots \\ {}^tH_k \end{bmatrix},$$

where $I_{|X|}$ is the identity matrix of degree |X|, Diag[*] denotes a diagonal matrix, and the number of entries f_i is h_i . By Lemma 3.1,

$$|X| \le \sum_{i \text{ with } f_i > 0} h_i.$$

By using a similar method, we prove a similar upper bound for the antipodal case.

Theorem 3.3 (Antipodal case). Let X be an antipodal k-distance set on S^{d-1} . We define the polynomial $F_X(t)$ of degree k-1:

$$F_X(t) := \prod_{\alpha \in A_{inn}(X) \setminus \{-1\}} (t - \alpha) = \sum_{i=0}^{k-1} f_i G_i^{(d)}(t),$$

where the f_i are real and $f_i = 0$ for $i \equiv k \mod 2$. Then,

$$|X| \le 2 \sum_{i \text{ with } f_i > 0} h_i, \tag{20}$$

where the summation is over i with $0 \le i \le k$ satisfying $f_i > 0$.

Corollary 3.1. Let X be a two-distance set and $A_{inn}(X) = \{\alpha, \beta\}$. Then, $F_X(t) := (t - \alpha)(t - \beta) = \sum_{i=0}^{2} f_i G_i^{(d)}(t)$ where $f_0 = \alpha\beta + 1/d$, $f_1 = -(\alpha + \beta)/d$ and $f_2 = 2/(d(d+2))$. If $\alpha + \beta \ge 0$, then

$$|X| \le h_0 + h_2 = \binom{d+1}{2}.$$

Musin proved this corollary by using a polynomial method in [20]. This corollary is used in proof of Theorem 4.2. The following examples attain this upper bound in Corollary 3.1.

Example 3.1. Let U_d be a *d*-dimensional regular simplex. We define

$$X := \left\{ \left. \frac{x+y}{2} \right| x, y \in U_d, x \neq y \right\}$$

for $d \ge 7$. Then, X is a two-distance set on S^{d-1} , |X| = d(d+1)/2, $f_0 > 0$, $f_1 \le 0$ and $f_2 > 0$.

Let us introduce some examples which attain the upper bound in Theorem 3.2 and 3.3.

Corollary 3.2 (The case k = 1, $f_1 > 0$ and $f_0 \le 0$). Let X be a 1-distance set and $A_{inn}(X) = \{\alpha\}$. Then, $F_X(t) := t - \alpha = \sum_{i=0}^{1} f_i G_i^{(d)}(t)$ where $f_1 = 1/d$ and $f_0 = -\alpha$. If $\alpha \ge 0$, then

$$|X| \le h_1 = d.$$

Clearly, a *d*-point (d-1)-dimensional regular simplex with a nonnegative inner product on S^{d-1} attains this upper bound.

Corollary 3.3. Let X be an k-distance set on S^{d-1} . We have the Gegenbauer expansion $F_X(t) = \prod_{\alpha \in A_{inn}(X)} (t-\alpha) = \sum_{i=0}^k f_i G_i^{(d)}(t)$. If $f_i > 0$ for all $i \equiv k \mod 2$ and $f_i \leq 0$ for all $i \equiv k-1 \mod 2$, then

$$|X| \le \sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} h_{k-2i} = \binom{d+k-1}{k}.$$

The following examples attain their upper bounds.

Example 3.2. Let X be a tight spherical (2k-1)-design, that is, X is an antipodal k-distance set with $N'_d(k)$ points. There exist a subset Y such that $X = Y \cup (-Y)$ and |X| = 2|Y|. Y is an (k-1)-distance set and $F_Y(t) := \sum_{i=0}^{k-1} f_i G_i^{(d)}(t)$. Then, $f_i = 0$ for all $i \equiv k-2 \mod 2$ and $f_i > 0$ for all $i \equiv k-1 \mod 2$ and $|Y| = \binom{d+k-2}{k-1}$.

4 Locally two-distance sets

In this section, we will consider locally two-distance sets. Recall that a locally two-distance set is said to be *proper* if it is not a two-distance set. The following examples imply that there are infinitely many proper locally two-distance sets when their cardinalities are small for their dimensions.

Example 4.1. Let U_d be the vertex set of a regular simplex in \mathbb{R}^d and O be the center of the regular simplex. Let y be a point on the line passing through $x \in U_d$ and O. Then $U_d \cup \{y\}$ is a locally two-distance set. Except for finitely many exceptions, such locally two-distance sets are proper.

Example 4.2. Let $\{e_1, e_2, \ldots, e_d\}$ be an orthonormal basis of \mathbb{R}^d . Let

$$X = \{x_1, y_1, x_2, y_2, \dots, x_{k-1}, y_{k-1}\}$$

where

$$x_1 = e_1, \quad y_1 = -e_1$$

and

$$x_j = \frac{1}{j}e_{2j-2} + \frac{\sqrt{j^2 - 1}}{j}e_{2j-1}, \quad y_j = \frac{1}{j}e_{2j-2} - \frac{\sqrt{j^2 - 1}}{j}e_{2j-1}$$

for $2 \leq j \leq k-1$. Then X is a locally two-distance set and a k-distance set in \mathbb{R}^{2k-3} .

4.1 An upper bound for the cardinalities of locally two-distance sets

Lemma 4.1. (i) Let $X \subset \mathbb{R}^d$ be a locally two-distance set with at least d + 2 points. If $d \ge 2$, then there exist points $x, x' \in X$ ($x \ne x'$) such that $A(x) = A(x') = \{\alpha, \alpha'\}$ for some $\alpha, \alpha' \in \mathbb{R}_{>0}$ ($\alpha \ne \alpha'$). (ii) Let X be a locally two-distance set in \mathbb{R}^d with $n \ge d + 2$ points. Then there exists $Y \subset X$ with |Y| = n - d and |A(x)| = 2 for any $x \in Y$.

Proof. (i) Let X be a locally two-distance set in \mathbb{R}^d with more than d + 1 points. Let $B(\alpha; x) = \{y \in X | d(x, y) = \alpha\}$ for any $x \in X$ and $\alpha \in A(x)$. Since $DS_d(1) = d + 1$, there exists $x \in X$ such that |A(x)| = 2. Let $A(x) = \{\alpha_1, \alpha_2\}$, $Y_1 = B(\alpha_1; x)$ and $Y_2 = B(\alpha_2; x)$. For $y_1 \in Y_1$ and $y_2 \in Y_2$, if $d(y_1, y_2) \in \{\alpha_1, \alpha_2\}$, then we have $A(x) = A(y_1)$ or $A(x) = A(y_2)$ and this lemma holds. Otherwise, there exists $\beta \notin \{\alpha_1, \alpha_2\}$ such that $d(y_1, y_2) = \beta$ for all $y_1 \in Y_1$ and $y_2 \in Y_2$. Thus $A(y_i) = \{\alpha_i, \beta\}$ for any $y_i \in Y_i$ (i = 1, 2). Moreover, $|Y_1| \ge 2$ or $|Y_2| \ge 2$ since $|X| \ge 4$. (ii) Let X be a locally two-distance set in \mathbb{R}^d with $n \ge d + 2$ points. Let Y' be the set of all points in X

(ii) Let X be a locally two-distance set in \mathbb{R}^{d} with $n \geq d+2$ points. Let Y' be the set of all points in X with |A(x)| = 1. Then clearly A(x) = A(x') for any $x, x' \in Y'$. Therefore Y' is a one-distance set and $|Y'| \leq d+1$. Moreover if |Y'| = d+1, then $Y' \cup \{y\}$ must be a one-distance set for any $y \in X \setminus Y'$, which is a contradiction. Thus $|Y'| \leq d$ and $|X \setminus Y'| \geq n-d$.

Remark 4.1. When we consider optimal locally two-distance sets, the condition $|X| \ge d+2$ in Lemma 4.1 is not so important because there is a lower bound $d(d+1)/2 \le DS_d(2) \le LDS_d(2)$ (cf. Example 3.1).

Let X be a locally two-distance set. A subset $Y \subset X$ is called a *saturated subset* if $|Y| \ge 2$ and Y is a maximal subset such that there exists α , β ($\alpha \ne \beta$) with $A_X(y) = \{\alpha, \beta\}$ for any $y \in Y$. Lemma 4.1 assures us that every locally two-distance set in \mathbb{R}^d with at least d+2 points contains a saturated subset. Let $Y = \{y_1, y_2, \ldots, y_m\} \subset X$ be a saturated subset. Then Y is a two-distance set and $X \setminus Y$ is a locally two-distance set in the space $\{x \in \mathbb{R}^d | d(y_1, x) = d(y_2, x) = \cdots = d(y_m, x)\}$ by maximality. If $X \setminus Y \ne \emptyset$, then all points in Y are on a common sphere. Moreover $Y \cup \{x\}$ is a two-distance set for any $x \in X \setminus Y$.

Lemma 4.2. Let $Y = \{y_0, y_1, \ldots, y_{m-1}\} \subset \mathbb{R}^d$. Without loss of generality, we may assume that y_0 is the origin of \mathbb{R}^d . Let dim(Y) be the dimension of the space spanned by Y and $Sol(Y) = \{x \in \mathbb{R}^d | d(y_0, x) = d(y_1, x) = \cdots = d(y_{m-1}, x)\}$. Then Sol(Y) is contained in a $(d - \dim(Y))$ -dimensional affine subspace if $Sol(Y) \neq \emptyset$.

Proof. Let $y_i = (y_{i1}, y_{i2}, \dots, y_{id})$ for $1 \le i \le m-1$ and let $x = (x_1, x_2, \dots, x_d)$. For $1 \le i \le m-1$, $d(y_i, x) = d(y_0, x)$ implies

$$\sum_{k=1}^{d} y_{i\,k} x_k = \frac{1}{2} \sum_{k=1}^{d} y_{i\,k}^2.$$

Therefore

$$Sol(Y) = \left\{ x \in \mathbb{R}^d | \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1d} \\ y_{21} & y_{22} & \cdots & y_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m-11} & y_{m-12} & \cdots & y_{m-1d} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_d \end{pmatrix} \right\}$$

where

$$c_i = \frac{1}{2} \sum_{k=1}^d y_{ik}^2.$$

Since the rank of the above matrix is $\dim(Y)$, Sol(Y) is contained in a $(d - \dim(Y))$ -dimensional subspace if $Sol(Y) \neq \emptyset$.

By Lemma 4.2, the following lemma holds.

Lemma 4.3. Let X be a locally two-distance set in \mathbb{R}^d . Let $Y \subset X$ be a saturated subset and dim(Y) = i. Then $X \setminus Y$ is a locally two-distance set with dim $(X \setminus Y) \leq d - i$. **Remark 4.2.** Let X be a locally two-distance set and Y be a saturated subset of X in \mathbb{R}^d . Then we have dim $(Y) \neq 0$ by Lemma 4.1. Moreover, if dim(Y) = d, then dim $(X \setminus Y) = 0$ by Lemma 4.3. In this case, $|X \setminus Y| \leq 1$ and X is a two-distance set. Therefore $1 \leq \dim(Y) \leq d-1$ for every saturated subset Y of a proper locally two-distance set X in \mathbb{R}^d . Moreover all points in Y are on a common sphere since $X \setminus Y \neq \emptyset$.

From the above remark, we have an upper bound for the cardinality of a proper locally two-distance set.

Theorem 4.1. Let X be a proper locally two-distance set in \mathbb{R}^d . Then

 $|X| \le f(d)$

where

$$f(d) = \max_{1 \le i \le d-1} \{ DS_i^*(2) + LDS_{d-i}(2) \}.$$

In particular,

$$LDS_d(2) \le \max\{DS_d(2), f(d)\}$$

Proof. Let X be a proper locally two-distance set in \mathbb{R}^d and Y be a saturated subset of X and $i = \dim(Y)$. Then $1 \leq i \leq d-1$ and all points in Y are on a common sphere by Remark 4.2, so $|Y| \leq DS_i^*(2)$. On the other hand, $|X \setminus Y| \leq LDS_{d-i}(2)$ by Lemma 4.3. Therefore $|X| \leq DS_i^*(2) + LDS_{d-i}(2) \leq f(d)$.

Corollary 4.1. Every locally two-distance set in \mathbb{R}^d with at least d(d+1)/2 + 3 points is a two-distance set. In particular $LDS_d(2) \leq \binom{d+2}{2}$.

Proof. Let X be a proper locally two-distance set in \mathbb{R}^d . As we will see in Proposition 4.1, $LDS_d(2) \leq \binom{d+2}{2}$ for small d. Assume $LDS_i(2) \leq \binom{i+2}{2}$ for any $i \leq d-1$. By Theorem 4.1,

$$|X| \leq \max_{1 \leq i \leq d-1} \{ DS_i^*(2) + LDS_{d-i}(2) \}$$

$$\leq \max_{1 \leq i \leq d-1} \left\{ \frac{i^2 + 3i}{2} + \frac{(d - i + 2)(d - i + 1)}{2} \right\}$$

$$= \frac{1}{2} \max_{1 \leq i \leq d-1} \{ 2i^2 - 2di + d^2 + 3d + 2 \}$$

$$= \frac{d(d+1)}{2} + 2$$

Therefore this corollary holds.

Remark 4.3. (i) Since the set of midpoints of a regular simplex in \mathbb{R}^d is a two-distance set with d(d+1)/2 points, Corollary 4.1 implies $DS_d(2) \leq LDS_d(2) \leq DS_d(2) + 2$. For $d \leq 8$, $d \neq 3$, we will see that $DS_d(2) = LDS_d(2)$ in Proposition 4.1.

(ii) For spherical cases, similarly we have $DS_d^*(2) \le LDS_d^*(2) \le DS_d^*(2) + 1$.

Problem 4.1. When does $DS_d(2) < LDS_d(2)$ (resp. $DS_d^*(2) < LDS_d^*(2)$) hold?

We will give partial results for general cases in Section 4.2 and give an answer for $d \le 8$ in Section 4.4.

4.2 Partial answer of Problem 4.1

Lemma 4.4. (i) Let X be a proper locally two-distance set in \mathbb{R}^d for $d \geq 3$. If d(d+1)/2 < |X|, then there exist $N_{d-1}(2)$ -point two-distance set in S^{d-2} or $(N_{d-1}(2) - 1)$ -point two-distance set Y in S^{d-2} with $A(Y) = \{1, 2/\sqrt{3}\}$.

(ii) Let X be a proper locally two-distance set in S^{d-1} for $d \ge 3$. If d(d+1)/2 < |X|, then there exist $N_{d-1}(2)$ -point two-distance set Y in S^{d-2} with $\sqrt{2} \in A(Y)$ or $A(Y) = \{\alpha, \alpha/\sqrt{\alpha^2 - 1}\}$.

Proof. (i) For the case where $d \in \{3, 4\}$, we will prove this proposition directly in Proposition 4.1. Therefore we assume that $d \geq 5$ in this proof. Let X be a proper locally two-distance set in \mathbb{R}^d with more than d(d+1)/2 points and let Y be a saturated subset of X. We may assume that Y has maximum cardinality among saturated subsets of X. Let $i = \dim(Y)$. Then $1 \le i \le d-1$ since Y is a saturated subset and X is not a two-distance set. If $2 \le i \le d-2$, then $d(d+1)/2 \ge |X|$ for $d \ge 5$ by Theorem 4.1. Moreover if i = 1, then $|Y| \le 2$ and $|X \setminus Y| \ge d(d+1)/2 - 2 > d(d-1) + 3$ for $d \ge 3$. Since $X \setminus Y$ is a locally two-distance set in \mathbb{R}^{d-1} , $X \setminus Y$ is a two-distance set by Corollary 4.1. By Lemma 4.1, $X \setminus Y$ contains a saturated subset Y' and |Y'| > |Y|. This is a contradiction to the assumption. Therefore i = d - 1. Since $|X| \ge d(d+1)/2 + 1 = N_{d-1}(2) + 2$ and $|X \setminus Y| \le LDS_1(2) = 3$, $|Y| \ge N_{d-1}(2) - 1$. It is enough to consider the case $|Y| = N_{d-1}(2) - 1$, otherwise $|Y| = N_{d-1}(2)$ and this proposition holds. In this case, $|X \setminus Y| = 3$. Let $A(Y) = \{\alpha, \beta\}$ and $X \setminus Y = \{x_1, x_2, x_3\}$. For any $i \in \{1, 2, 3\}, A(x_i) \neq \{\alpha, \beta\}$ since Y is a saturated subset. Moreover $d(x_i, y) = \alpha$ for all $y \in Y$ or $d(x_i, y) = \beta$ for all $y \in Y$. Since $\dim(X \setminus Y) = 1$, there are four possibilities for the x_i . Without loss of generality, we may assume $d(x_1, y) = d(x_2, y) = \alpha$ for all $y \in Y$ and $d(x_3, y) = \beta$ for all $y \in Y$. Then $d(x_1, x_3) = d(x_2, x_3) = \gamma$ for $\gamma \notin \{\alpha, \beta\}$ and $d(x_1, x_2) = \alpha$. It follows from these conditions that Y is an $(N_{d-1}(2) - 1)$ -point two-distance set Y in S^{d-2} with $A(Y) = \{1, 2/\sqrt{3}\}$.

(ii) Let X be a proper locally two-distance set in S^{d-1} with more than d(d+1)/2 points and let Y be a saturated subset of X. Similar to the above case, we may assume $i = \dim(Y) = d - 1$. Since $|X| \ge N_{d-1}(2) + 2$ and $|X \setminus Y| \le LDS_1^*(2) = 2$, $|Y| \ge N_{d-1}(2)$. Therefore, $|Y| = N_{d-1}(2)$.

Theorem 4.2. (i) If there exists a proper locally two-distance set X in \mathbb{R}^d with more than d(d+1)/2points, then there exists an $N_{d-1}(2)$ -point two-distance set in S^{d-2} .

(ii) If there exists a proper locally two-distance set X in S^{d-1} with more than d(d+1)/2 points, then there exists an $N_{d-1}(2)$ -point two-distance set in S^{d-2} . In particular, a locally two-distance set in S^{d-1} with more than d(d+1)/2 points is a subset of a tight spherical five-design.

Proof. (i) Let X be a proper locally two-distance set in \mathbb{R}^d with more than d(d+1)/2 points. We assume that X does not contain $N_{d-1}(2)$ -point two-distance set in S^{d-2} . Then X contains $(N_{d-1}(2)-1)$ -point two-distance set $Y \subset S^{d-2}$ with $A(Y) = \{1, 2/\sqrt{3}\}$ by Lemma 4.4(i). However there does not exist such a two-distance set Y by Corollary 3.1.

(ii) This is clear by Lemma 4.4 (ii) and Remark 2.1.

Remark 4.4. Since $d(d+1)/2 \leq DS_d(2)$ (resp. $d(d+1)/2 \leq DS_d^*(2)$), the assumption in Theorem 4.2 (i) (resp. (ii)) can be replaced by $DS_d(2) < LDS_d(2)$ (resp. $DS_d^*(2) < LDS_d^*(2)$).

Classifications of optimal two-distance sets 4.3

Euclidean cases $DS_d(2)$ is determined for $d \leq 8$ and optimal two-distance sets are classified for $d \leq 7$ (Kelly [17], Croft [9], Einhorn-Schoenberg [13] and Lisoněk [19]). We introduce the results in this subsection.

d = 2: $DS_2(2)$ and the optimal planar two-distance set is isomorphic to the set of vertices of a regular pentagon (Kelly [17], Einhorn-Schoenberg [13]). We denote the set of vertices of the regular pentagon with side length 1 by R_5 . Then $A(R_5) = \{1, \tau\}$ where $\tau = (1 + \sqrt{5})/2$.

d = 3: $DS_3(2)$ and there are exactly six optimal two distance sets in \mathbb{R}^3 (Croft [9], Einhorn-Schoenberg [13]). They are the set of vertices of a regular octahedron, a right prism which has a equilateral triangle base and square sides and the remaining four sets are subsets of a regular icosahedron.

d = 4: $DS_4(2) = 10$ and the optimal two-distance set in \mathbb{R}^4 is isomorphic to the set of midpoints of the edges of a regular simplex in \mathbb{R}^4 . This set corresponds to the Petersen graph.

d = 5: $DS_5(2) = 16$ and the optimal two-distance set in \mathbb{R}^5 is isomorphic to the set given by the Clebsch graph. Points of the set are given by the following.

$$-e_i + \sum_{k=1}^5 e_k \quad (1 \le i \le 5),$$
$$e_i + e_j \quad (1 \le i < j \le 5)$$

and the origin O of \mathbb{R}^5 .

d = 6: $DS_6(2) = 27$ and the optimal two-distance set in \mathbb{R}^6 is isomorphic to the set obtained from the Schläfli graph.

d = 7: $DS_7(2) = 29$ and the optimal two-distance set in \mathbb{R}^7 is isomorphic to the set which is given by the following points.

$$-e_i + \frac{1}{7}(3 + \sqrt{2})\sum_{k=1}^7 e_k \quad (1 \le i \le 7),$$
$$e_i + e_j \quad (1 \le i < j \le 7)$$

and

$$\frac{1}{7}(2+3\sqrt{2})\sum_{k=1}^{7}e_k.$$

d = 8: A two-distance set in \mathbb{R}^8 with $\binom{10}{2} = 45$ points is known. Let

$$X_1 = \{e_i - \frac{1}{12}\sum_{k=1}^8 e_k | i = 1, 2, \dots 8\} \cup \{-\frac{1}{3}\sum_{k=1}^8 e_k\}$$

and

$$X_2 = \{-(x+y) | x, y \in X_1, x \neq y\}$$

Then X_1 is the vertex set of a regular simplex and $X_1 \cup X_2$ is a two-distance set with $A(X_1 \cup X_2) = \{\sqrt{2}, 2\}$

Spherical cases For $2 \le d \le 6$, every optimal two-distance set in \mathbb{R}^d is on a sphere. Optimal two-distance sets in S^6 are given from three Chang graphs or the set of midpoints of edges of a regular simplex in \mathbb{R}^7 . Moreover, Musin [20] determined $DS^*_d(2)$ for $7 \le d < 40$.

Theorem 4.3. $DS_d^*(2) = d(d+1)/2$ for the cases where $7 \le d \le 21, 24 \le d < 40$. When d = 22, 23, $DS_{22}^*(2) = 275$ and $DS_{23}^*(2) = 276$ or 277.

4.4 Optimal locally two-distance sets

Euclidean cases By using classifications of optimal two-distance sets and Theorem 4.1, we have the following proposition.

Proposition 4.1. Every optimal locally two-distance set in \mathbb{R}^d is a two-distance set for d = 2, 4, 5, 6, 8. Moreover there are four seven-point locally two-distance set in \mathbb{R}^3 up to isomorphism and five 29-point locally two-distance set in \mathbb{R}^7 up to isomorphism. In particular $DS_d(2) = LDS_d(2)$ for $d = 1, 2, 4 \le d \le 8$ and $LDS_3(2) = 7$.

Proof. d = 1: It is clear that every three-point set in \mathbb{R}^1 which is not a one-distance set is a locally two-distance set and that there is no four-point locally two-distance set in \mathbb{R}^1 .

For $2 \le d \le 7$, we classify optimal locally two-distance sets in \mathbb{R}^d . For each case, we pick a saturated subset Y of X and we let $Y' = X \setminus Y$. Note that if X is not a two-distance set, then $1 \le \dim(Y) \le d-1$.

d = 2: We will classify five-point locally two-distance sets X in \mathbb{R}^2 . We may assume that dim(Y) = 1and |Y| = 2, otherwise X is a two-distance set. Let $Y = \{y_1, y_2\}$, $Y' = \{x_1, x_2, x_3\}$ and $A(y_1) = A(y_2) = \{\alpha, \beta\}$. Without of generality, we may assume $d(x_1, y_i) = d(x_2, y_i) = \alpha$ and $d(x_3, y_i) = \beta$ for $i \in \{1, 2\}$ since there are exactly four possibilities for the x_j . If $d(x_1, x_3) \in \{\alpha, \beta\}$, then $A(x_1) = \{\alpha, \beta\}$ or $A(x_3) = \{\alpha, \beta\}$. This is a contradiction to the maximality of the saturated subset Y. So $d(x_1, x_3) = \gamma \notin \{\alpha, \beta\}$. Similarly $d(x_2, x_3) = \gamma$. Therefore x_3 is a midpoint of both the segment y_1y_2 and the segment x_1x_2 . It is easy to check that such a locally two-distance set does not exist. Therefore dim $(Y) \neq 1$ and X is a two-distance set. By the classification of five-point two-distance sets in \mathbb{R}^2 , $X = R_5$.

d = 3: We will classify seven-point locally two-distance sets X in \mathbb{R}^3 . We may assume $1 \leq \dim(Y) \leq 2$, otherwise X is a two-distance set. We need to consider two cases (a) $\dim(Y) = 1$ and (b) $\dim(Y) = 2$. (a) In this case, |Y| = 2 and $Y' = R_5$ by the above classification. Let $Y = \{y_1, y_2\}$ and $Y' = \{x_1, x_2, \ldots, x_5\}$. Then $d(x_j, y_i) = 1$ for any $j \in \{1, 2\}$ and $i \in \{1, 2, \ldots, 5\}$ or $d(x_j, y_i) = \tau$ for any $j \in \{1, 2\}$ and $i \in \{1, 2, \ldots, 5\}$. In this case, there are two seven-point locally two-distance sets up to isomorphism.

(b) In this case, $|Y| \in \{4, 5\}$. If |Y| = 4, then |Y'| = 3. Similar to the case where d = 2, there exists a point $x \in Y'$ which is the midpoint of the other two points. Then $Y \cup \{x\}$ is a five-point locally twodistance set in \mathbb{R}^2 and x is a center of the circle passing through other four points. By the classification of five-point locally two-distance sets in \mathbb{R}^2 , such a locally two-distance set does not exist. If |Y| = 5, then |Y'| = 2. In this case, $Y = R_5$ and there are four locally two-distance sets up to isomorphism. These sets contains the sets in case (a).

d = 4: We will classify ten-point locally two-distance sets X in \mathbb{R}^4 . If $\dim(Y) \neq 2$, then X is a twodistance set or |X| < 10. Therefore we assume $\dim(Y) = 2$. Then |Y| = |Y'| = 5 and both Y and Y' are sets of vertices of a regular pentagon. Let

$$Y = \{(\cos\frac{2\pi j}{5}, \sin\frac{2\pi j}{5}, 0, 0) | j = 0, 1, \dots 4\}$$

and

$$Y' = \{(0, 0, r \cos \frac{2\pi j}{5}, r \sin \frac{2\pi j}{5}) | j = 0, 1, \dots 4\}.$$

Then $d(x, y) = \sqrt{1 + r^2} > 1$ for any $y \in Y$ and $x \in Y'$. Therefore we may assume $d(x, y) = \tau$ where $\tau = (1 + \sqrt{5})/2$. Then $r = \sqrt{\tau}$ and $A(x) = \{\tau^{1/2}, \tau, \tau^{3/2}\}$ for $x \in Y'$. This is not a locally two-distance set. Therefore a ten-point locally two-distance set is a two-distance set.

d = 5: We will classify sixteen-point locally two-distance sets X in \mathbb{R}^5 . Since $DS_i^*(2) + LDS_{d-i}(2) < 16$ for $1 \le i \le 4$, X is a two-distance set.

d = 6: We will classify 27-point locally two-distance sets X in \mathbb{R}^6 . By Corollary 4.1, every 27-point locally two-distance set in \mathbb{R}^6 is a two-distance set.

d = 7: We will classify 29-point locally two-distance sets X in \mathbb{R}^7 . If dim $(Y) \notin \{1, 6\}$, then X is a two-distance set or |X| < 29. We divide into two cases: (a) dim(Y) = 1 and (b) dim(Y) = 6.

(a) In this case, similar to the classification of case (a) for d = 3, we prove that there are two 29-point locally two-distance sets up to isomorphism.

(b) In this case, similar to the classification of case (b) for d = 3, we can prove that there are four locally two-distance sets which contain the sets in case (a).

d = 8: We will consider 45-point locally two-distance sets in \mathbb{R}^8 . By Corollary 4.1, every 45-point locally two-distance set in \mathbb{R}^8 is a two-distance set.

Spherical cases For spherical cases, we have the following proposition by Theorem 4.2 and Theorem 4.3.

Proposition 4.2. $LDS_d^*(2) = DS_d^*(2)$ for $2 \le d < 40$ and $d \notin \{3, 7, 23\}$. When $d \in \{3, 7, 23\}$, $LDS_3^*(2) = 7$, $LDS_7^*(2) = 29$ and $LDS_{23}^*(2) = 277$. In particular, there is a unique optimal locally

two-distance set in S^{d-1} if $d \in \{3,7\}$ and there is a unique optimal locally two-distance set in S^{23} if $DS_{23}^{*}(2) = 276.$

Optimal locally three-distance sets 4.5

It seems difficult to determine $LDS_d(k)$ and classify the optimal configurations for $k \geq 3$. However there is a result for k = 3 and d = 2 by Erdős-Fishburn [15] and Fishburn [16].

Figure 1.

Proposition 4.3. (i) Let X be an eight-point planar set. Then $\sum_{P \in X} |A_X(P)| \ge 24$. (ii) Every eight-point planar set X with $\sum_{P \in X} |A_X(P)| = 24$ is similar to Figure 1. (iii) Every eight-point locally three-distance set in \mathbb{R}^2 is similar to Figure 1. In particular, $LDS_3(3) = 8$.

Proof. (i), (ii) See [15], [16]. (iii) This is immediate from (i), (ii).

The second author proved that $DS_3(3) = 12$ and that every twelve-point three-distance set in \mathbb{R}^3 is similar to the set of vertices of a regular icosahedron ([23]).

Problem 4.2. Is every locally three-distance set in \mathbb{R}^3 with twelve points similar to the set of vertices of a regular icosahedron?

In fact, there are many differences between k-distance sets and locally k-distance sets when cardinalities are small. Moreover we saw that $DS_d(k) < LDS_d(k)$ for some cases. However no known optimal k-distance sets are locally (k-1)-distance sets.

Problem 4.3. Are there any optimal k-distance sets which are locally (k-1)-distance sets?

Acknowledgements. We thank Oleg Musin. This work is greatly influenced by his paper [20]. We also thank Eiichi Bannai for his helpful comments.

References

- 1 Ei. Bannai and Et. Bannai, Algebraic Combinatorics on Spheres (in Japanese), Springer Tokyo, 1999.
- 2 Ei. Bannai and Et. Bannai, On Euclidean tight 4-designs, J. Math. Soc. Japan, 58 (2006), no. 3, 775-804.
- 3 Et. Bannai, On antipodal Euclidean tight (2e + 1)-designs. J. Algebraic Combin. 24 (2006), no. 4, 391 - 414.
- 4 Ei. Bannai, Et. Bannai, and D. Stanton, An upper bound for the cardinality of an s-distance subset in real Euclidean space, II, Combinatorica 3 (1983), 147–152.
- 5 Ei. Bannai and R. M. Damerell, Tight spherical designs. I, J. Math. Soc. Japan, 31 (1979), no. 1, 199 - 207.

- 6 Ei. Bannai and R. M. Damerell, Tight spherical designs. II, J. London Math. Soc. (2) 21 (1980), no. 1, 13–30.
- 7 Ei. Bannai, A. Munemasa, and B. Venkov, The nonexistence of certain tight spherical designs. With an appendix by Y.-F. S. Petermann, *Algebra i Analiz* 16 (2004), no. 4, 1–23; translation in *St. Petersburg Math. J.* 16 (2005), no. 4, 609–625
- 8 A. Blokhuis, *Few-distance sets*, Ph. D. thesis, Eindhoven Univ. of Technology (1983), (CWI Tract (7) 1984).
- 9 H. T. Croft, 9-point and 7-point configuration in 3-space, Proc. London. Math. Soc. (3), 12 (1962), 400–424.
- 10 P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363–388
- 11 P. Delsarte and J. J. Seidel, Fisher type inequalities for Euclidean t-designs, Lin. Algebra and its Appl. 114/115 (1989), 213–230.
- 12 S. J. Einhorn and I. J. Schoenberg, On Euclidean sets having only two distances between points I, Nederl Akad. Wetensch. Proc. Ser. A69=Indag. Math. 28 (1966), 479–488.
- 13 S. J. Einhorn and I. J. Schoenberg, On Euclidean sets having only two distances between points II, Nederl Akad. Wetensch. Proc. Ser. A69=Indag. Math. 28 (1966), 489–504.
- 14 P. Erdős and P. Fishburn, Maximum planar sets that determine k distances, *Discrete Math.*, 160 (1996), 115–125.
- 15 P. Erdős and P. Fishburn, Distinct distances in finite planar sets, Discrete Math. 175 (1997), 97–132.
- 16 P. Fishburn, Convex nonagons with five intervertex distance, Discrete Math. 252 (2002), 103–122.
- 17 L. M. Kelly, Elementary Problems and Solutions. Isosceles n-points, Amer. Math. Monthly, 54 (1947), 227–229.
- 18 D. G. Larman, C. A. Rogers, and J. J. Seidel, On two-distance sets in Euclidean space, Bull. London Math. Soc., 9 (1977), 261–267.
- 19 P. Lisoněk, New maximal two-distance sets, J. Comb. Theory, Ser. A77 (1997), 318–338.
- 20 O.R. Musin, On spherical two-distance sets, to appear in J. Combin. Theory Ser. A.
- 21 M. Shinohara, Classification of three-distance sets in two dimensional Euclidean space, Europ. J. Combinatorics, 25 (2004) 1039–1058.
- 22 M. Shinohara, Uniqueness of maximum planar five-distance sets, Discrete Math. 308 (2008), 3048– 3055.
- 23 M. Shinohara, Uniqueness of maximum three-distance sets in the three-dimensional Euclidean Space, preprint.
- 24 M. A. Taylor, Cubature for the sphere and the discrete spherical harmonic transform, SIAM J. Numer. Math. 32 (1995), 667–670