On a generalization of distance sets

Hiroshi Nozaki
Graduate School of Mathematics Kyushu University,
nozaki@math.kyushu-u.ac.jp
and
Masashi Shinohara
Suzuka National College of Technology
shinohara@genl.suzuka-ct.ac.jp

February 20, 2019

Abstract

A subset X in the d-dimensional Euclidean space is called a k-distance set if there are exactly k distinct distances between two distinct points in X and a subset X is called a locally k-distance set if for any point x in X, there are at most k distinct distances between x and other points in X.

Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally k-distance sets on a sphere. In the first part of this paper, we prove that if X is a locally k-distance set attaining the Fisher type upper bound, then determining a weight function $w,(X, w)$ is a tight weighted spherical $2 k$-design. This result implies that locally k-distance sets attaining the Fisher type upper bound are k-distance sets. In the second part, we give a new absolute bound for the cardinalities of k-distance sets on a sphere. This upper bound is useful for k-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in $(d-1)$-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in d-space with more than $d(d+1) / 2$ points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.

1 Introduction

Let \mathbb{R}^{d} be the d-dimensional Euclidean space. For $X \subset \mathbb{R}^{d}$, let $A(X)=\{d(x, y) \mid x, y \in X, x \neq y\}$ where $d(x, y)$ is the Euclidean distance between x and y in \mathbb{R}^{d}. We call X a k-distance set if $|A(X)|=k$. Moreover for any $x \in X$, define $A_{X}(x)=\{d(x, y) \mid y \in X, x \neq y\}$. We will abbreviate $A(x)=A_{X}(x)$ whenever there is no risk of confusion. A subset $X \subset \mathbb{R}^{d}$ is called a locally k-distance set if $\left|A_{X}(x)\right| \leq k$ for all $x \in X$. Clearly every k-distance set is a locally k-distance set. A locally k-distance set is said to be proper if it is not a k-distance set. Two subsets in \mathbb{R}^{d} are said to be isomorphic if there exists a similar transformation from one to the other. An interesting problem for k-distance sets (resp. locally k-distance set) is to determine the largest possible cardinality of k-distance sets (resp. locally k-distance set) in \mathbb{R}^{d}. We denote this number by $D S_{d}(k)$ (resp. $L D S_{d}(k)$) and a k-distance set X (resp. locally k-distance set X) in \mathbb{R}^{d} is said to be optimal if $|X|=D S_{d}(k)$ (resp. $L D S_{d}(k)$). Moreover we denote the maximum cardinality of a k-distance set (resp. locally k-distance set) in the unit sphere $S^{d-1} \subset \mathbb{R}^{d}$ by $D S_{d}^{*}(k)\left(\operatorname{resp} . L D S_{d}^{*}(k)\right)$.

For upper bounds on the cardinalities of distance sets in \mathbb{R}^{d}, Bannai-Bannai-Stanton [4] and Blokhuis [8] gave $D S_{d}(k) \leq\binom{ d+k}{k}$. For $k=2$, the numbers $D S_{d}(2)$ are known for $d \leq 8$ (Kelly [17], Croft [9]
and Lisoněk [19]). For $d=2$, the numbers $D S_{2}(k)$ are known and optimal k-distance sets are classified for $k \leq 5$ (Erdős-Fishburn [14, Shinohara [21, [22]). Moreover we have $D S_{3}(3)=12$ and every optimal three-distance set is isomorphic to the set of vertices of a regular icosahedron (Shinohara [23]).

$$
\begin{array}{c|ccccccccc|ccccc}
d & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline D S_{d}(2) & 3 & 5 & 6 & 10 & 16 & 27 & 29 & 45
\end{array} \begin{array}{cccccc}
k & 1 & 2 & 3 & 4 & 5 \\
\hline D S_{2}(k) & 3 & 5 & 7 & 9 & 12
\end{array}
$$

Table: Maximum cardinalities for two-distance sets and planar k-distance sets
We have an lower bound for $D S_{d}^{*}(2)$ of $d(d+1) / 2$ since the set of all midpoints of the edges of a d-dimensional regular simplex is a two-distance set on a sphere with $d(d+1) / 2$ points. Musin determined that $D S_{d}^{*}(2)=d(d+1) / 2$ for $7 \leq d \leq 21,24 \leq d \leq 39\left[20\right.$. For $2 \leq d \leq 6$, we have $D S_{d}^{*}(2)=D S_{d}(2)$ and for $d=22$, we have $D S_{d}^{*}(2)=275$. For $d=23, D S_{d}^{*}(2)=276$ or 277 [20].

Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distance sets on a sphere [10]. This upper bound also applies to locally k-distance sets on a sphere.

Theorem 1.1 (Fisher type inequality [10]). (i) Let X be a locally k-distance set on S^{d-1}. Then, $|X| \leq$ $\binom{d+k-1}{k}+\binom{d+k-2}{k-1}\left(=: N_{d}(k)\right)$.
(ii) Let X be an antipodal (i.e. for any $x \in X,-x \in X$) locally k-distance set on S^{d-1}. Then, $|X| \leq$ $2\binom{d+k-2}{k-1}\left(=: N_{d}^{\prime}(k)\right)$.

It is well known that if a k-distance set X attains this upper bound, then X is a tight spherical design. We will give the definition of spherical designs in the next section. Of course, k-distance sets which attain this upper bound are optimal. This optimal k-distance set is very interesting because of its relationship with the design theory. Classification of tight spherical t-designs have been well studied in [5, 6, 7]. Classifications of tight spherical t-designs are complete, except for $t=4,5,7$. This implies that classifications of k-distance sets (resp. antipodal k-distance sets) which attain this upper bound are complete, except for $k=2$ (resp. $k=3,4$). For $t=4$, a tight spherical four-design in S^{d-1} exists only if $d=2$ or $d=(2 l+1)^{2}-3$ for a positive integer l and the existence of a tight spherical four-design in S^{d-1} is known only for $d=2,6$ or 22 .

In Section 2 we prove the following theorem.
Theorem 1.2. (i) Let X be a locally k-distance set on S^{d-1}. If $|X|=N_{d}(k)$, then for some determined weight function $w,(X, w)$ is a tight weighted spherical $2 k$-design. Conversely, if (X, w) is a tight weighted spherical $2 k$-design, then X is a locally k-distance set (indeed, X is a k-distance set).
(ii) Let X be an antipodal locally k-distance set on S^{d-1}. If $|X|=N_{d}^{\prime}(k)$, then for some determined weight function $w,(X, w)$ is a tight weighted spherical $(2 k-1)$-design. Conversely, if (X, w) is a tight weighted spherical $(2 k-1)$-design, then X is an antipodal locally k-distance set (indeed, X is an antipodal k-distance set).

This theorem implies that the concept of locally distance sets is a natural generalization of distance sets, because this theorem is a generalization of the relationship between tight spherical designs and distance sets.

Indeed, Theorem 1.2 implies the following.
Theorem 1.3. (i) Let X be a locally k-distance set on S^{d-1}. If $|X|=N_{d}(k)$, then X is a k-distance set. (ii) Let X be an antipodal locally k-distance set on S^{d-1}. If $|X|=N_{d}^{\prime}(k)$, then X is a k-distance set.

In Section 3 we give a new upper bound for k-distance sets on S^{d-1}. This upper bound is useful for k-distance sets to which the linear programming bound is not applicable.

In Section 4. we discuss locally two-distance sets in \mathbb{R}^{d}. We first give an upper bound for the cardinalities of locally two-distance sets. Moreover, we mention that every proper locally two-distance set in \mathbb{R}^{d} with more than $d(d+1) / 2$ points contains a two-distance set in S^{d-2} which attains the Fisher type upper bound. Note that a two-distance set in \mathbb{R}^{d} with $d(d+1) / 2$ points exists. We also classify optimal locally two-distance sets in \mathbb{R}^{d} for $d<8$. In addition, we determine $L D S_{2}^{*}(d)$ for $d<40$ by using the value of $D S_{d}^{*}(2)$ for $d<40$. In particular, we do not know $D S_{23}^{*}(2)$ but can determine $L D S_{23}^{*}(2)$.

2 Locally distance sets and weighted spherical designs

We prove Theorem 1.2 in this section. First, we give the definition of weighted spherical designs.
Definition 2.1 (Weighted spherical designs). Let X be a finite set on S^{d-1}. Let w be a weight function: $w: X \rightarrow \mathbb{R}_{>0}$, such that $\sum_{x \in X} w(x)=1 .(X, w)$ is called a weighted spherical t-design if the following equality holds for any polynomial f in d variables and of degree at most t :

$$
\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) d \sigma(x)=\sum_{x \in X} w(x) f(x),
$$

where the left hand side involves the integral of f on the sphere. X is called a spherical t-design if $w(x)=1 /|X|$ for all $x \in X$.

We have the following lower bound for the cardinalities of weighted spherical t-designs.
Theorem 2.1 (Fisher type inequality [10, 11]). (i) Let X be a weighted spherical $2 e$-design. Then, $|X| \geq\binom{ d+e-1}{e}+\binom{d+e-2}{e-1}=N_{d}(e)$.
(ii) Let X be a weighted spherical $(2 e-1)$-design. Then, $|X| \geq 2\binom{d+e-2}{e-1}=N_{d}^{\prime}(e)$.

If equality holds, X is said to be tight. The following theorem shows a strong relationship between tight spherical t-designs and k-distance sets.

Theorem 2.2 (Delsarte, Goethals and Seidel [10). (i) X is a k-distance set on S^{d-1} with $N_{d}(k)$ points if and only if X is a tight spherical $2 k$-design.
(ii) X is an antipodal k-distance set on S^{d-1} with $N_{d}^{\prime}(k)$ points if and only if X is a tight spherical $(2 k-1)$-design.

Remark 2.1. In particular, X is a two-distance set on S^{d-1} with $N_{d}(2)$ points if and only if X is a tight spherical four-design. X is an antipodal three-distance set on S^{d-1} with $N_{d}^{\prime}(2)$ points if and only if X is a tight spherical five-design. Note that the existence of a tight spherical four-design on S^{d-2} is equivalent to the existence of a tight spherical five-design on S^{d-1}. Let X be a tight spherical five-design on S^{d-1}. Then, we can put $A(X)=\{\alpha, \beta, 2\}(\alpha<\beta)$. For a fixed $x \in X$, we define $X_{\alpha}:=\{y \in X \mid d(x, y)=\alpha\}$. Then, we can regard X_{α} as a tight spherical four-design on S^{d-2}. This relationship between tight fourdesigns and five-designs is important in Section 4

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set on S^{d-1}. Let $\operatorname{Harm}_{l}\left(\mathbb{R}^{d}\right)$ be the linear space of all real harmonic homogeneous polynomials of degree l, in d variables. We put $h_{l}:=\operatorname{dim}\left(\operatorname{Harm}_{l}\left(\mathbb{R}^{d}\right)\right)$. Let H_{l} be the characteristic matrix of degree l. Namely, H_{l} is indexed by X and an orthonormal basis $\left\{\varphi_{l, i}\right\}_{i=0,1, \ldots, h_{l}}$ of $\operatorname{Harm}_{l}\left(\mathbb{R}^{d-1}\right)$ with respect to the inner product $\langle f, g\rangle=\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) g(x) d \sigma(x)$ and that its (i, j) th element is $\varphi_{l, j}\left(x_{i}\right)$. The following gives the definition of Gegenbauer polynomials and discusses the Addition Formula which will be used in the succeeding discussion.

Definition 2.2. Gegenbauer polynomials are a set of orthogonal polynomials $\left\{G_{l}^{(d)}(t) \mid l=1,2, \ldots\right\}$ of one variable t. For each $l, G_{l}^{(d)}(t)$ is a polynomial of degree l, defined in the following manner.

1. $G_{0}^{(d)}(t) \equiv 1, G_{1}^{(d)}(t)=d t$.
2. $t G_{l}^{(d)}(t)=\lambda_{l+1} G_{l+1}^{(d)}(t)+\left(1-\lambda_{l-1}\right) G_{l-1}^{(d)}(t)$ for $l \geq 1$, where $\lambda_{l}=\frac{l}{d+2 l-2}$.

Note that $G_{l}^{(d)}(1)=\operatorname{dim}\left(\operatorname{Harm}_{l}\left(\mathbb{R}^{d}\right)\right)=h_{l}$.
Theorem 2.3 (Addition formula [10, 1]). For any x, y on S^{d-1}, we have

$$
\sum_{k=1}^{h_{l}} \varphi_{l, k}(x) \varphi_{l, k}(y)=G_{l}^{(d)}((x, y))
$$

The following is a key theorem to prove Theorem 1.3 .

Theorem 2.4. The following are equivalent:
(i) (X, w) is a weighted spherical t-design.
(ii) ${ }^{t} H_{e} W H_{e}=I$ and ${ }^{t} H_{e} W H_{r}=0$ for $e=\left\lfloor\frac{t}{2}\right\rfloor$ and $r=e-(-1)^{t}$. Here, $W=\operatorname{Diag}\left\{w\left(x_{1}\right), w\left(x_{2}\right), \ldots, w\left(x_{n}\right)\right\}$.

We require the two following two lemmas in order to prove Theorem 2.4.
Lemma 2.1 (Lemma 3.2.8 in [1] or [10]). We have the Gegenbauer expansion $G_{k}^{(d)} G_{l}^{(d)}=\sum_{i=0}^{k+l} q_{i}(k, l) G_{i}^{(d)}$. Then, the following hold.
(i) For any i, k and $l, q_{i}(k, l) \geq 0$.
(ii) For any k and $l, q_{0}(k, l)=h_{k} \delta_{k, l}$, where $\delta_{k, l}=1$ if $k=l$ and $\delta_{k, l}=0$ if $k \neq l$.
(iii) $q_{i}(k, l) \neq 0$ if and only if $|k-l| \leq i \leq k+l$ and $i \equiv k+l \bmod 2$.

For an $m \times n$ matrix M, we define $\|M\|^{2}:=\sum_{i=1}^{m} \sum_{j=1}^{n} M(i, j)^{2}$, namely the sum of squares of all matrix entries.

Lemma 2.2. For $k+l \geq 1$,

$$
\begin{equation*}
\left\|{ }^{t} H_{k} W H_{l}-\Delta_{k, l}\right\|^{2}=\sum_{i=1}^{k+l} q_{i}(k, l)\left\|^{t} H_{i} W H_{0}\right\|^{2} \tag{1}
\end{equation*}
$$

where

$$
\Delta_{k, l}=\left\{\begin{array}{ll}
I, & \text { if } k=l \\
0, & \text { if } k \neq l
\end{array} .\right.
$$

Proof. Note that

$$
\begin{align*}
& \left\|^{t} H_{k} W H_{l}\right\|^{2}=\sum_{i=1}^{h_{k}} \sum_{j=1}^{h_{l}}\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{l, j}(x)\right)^{2} \tag{2}\\
= & \sum_{x \in X} \sum_{y \in X} w(x) w(y) \sum_{i=1}^{h_{k}} \varphi_{k, i}(x) \varphi_{k, i}(y) \sum_{j=1}^{h_{l}} \varphi_{l, j}(x) \varphi_{l, j}(y) \tag{3}\\
= & \sum_{x \in X} \sum_{y \in X} w(x) w(y) G_{k}^{(d)}((x, y)) G_{l}^{(d)}((x, y)) .
\end{align*}
$$

When $l=0$, we have

$$
\begin{equation*}
\left\|{ }^{t} H_{k} W H_{0}\right\|^{2}=\sum_{x \in X} \sum_{y \in X} w(x) w(y) G_{k}^{(d)}((x, y)) \tag{4}
\end{equation*}
$$

If $k \neq l$, then

$$
\begin{aligned}
\left\|^{t} H_{k} W H_{l}\right\|^{2} & =\sum_{x \in X} \sum_{y \in X} w(x) w(y) G_{k}^{(d)}((x, y)) G_{l}^{(d)}((x, y)) \\
& =\sum_{x \in X} \sum_{y \in X} w(x) w(y) \sum_{i=0}^{k+l} q_{i}(k, l) G_{i}^{(d)}((x, y)) \\
& =\sum_{i=0}^{k+l} q_{i}(k, l)\left\|^{t} H_{i} W H_{0}\right\|^{2} \quad(\because \text { equality (4) }) \\
& =\sum_{i=1}^{k+l} q_{i}(k, l)\left\|^{t} H_{i} W H_{0}\right\|^{2} \quad(\because \text { Lemma (2.1) })
\end{aligned}
$$

If $k=l$, then the summation of the squares of the diagonal entries is

$$
\begin{aligned}
& \sum_{i=1}^{h_{k}}\left(\left({ }^{t} H_{k} W H_{k}-I\right)(i, i)\right)^{2}=\sum_{i=1}^{h_{k}}\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)-1\right)^{2} \\
= & \sum_{i=1}^{h_{k}}\left(\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)\right)^{2}-2 \sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)+1\right) \\
= & \sum_{i=1}^{h_{k}}\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)\right)^{2}-2 \sum_{x \in X} w(x) \sum_{i=1}^{h_{k}} \varphi_{k, i}(x) \varphi_{k, i}(x)+h_{k} \\
= & \sum_{i=1}^{h_{k}}\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)\right)^{2}-2 \sum_{x \in X} w(x) G_{k}^{(d)}(1)+h_{k} \\
= & \sum_{i=1}^{h_{k}}\left(\sum_{x \in X} w(x) \varphi_{k, i}(x) \varphi_{k, i}(x)\right)^{2}-h_{k}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left\|t H_{k} W H_{k}-I\right\|^{2} & =\left\|^{t} H_{k} W H_{k}\right\|^{2}-h_{k} \\
& =\sum_{i=0}^{2 k} q_{i}(k, k)\left\|^{t} H_{i} W H_{0}\right\|^{2}-h_{k} \\
& =\sum_{i=1}^{2 k} q_{i}(k, k)\left\|^{t} H_{i} W H_{0}\right\|^{2} . \tag{5}
\end{align*}
$$

Proof of Theorem 2.4. (i) \Rightarrow (ii) is clear. We prove (ii) \Rightarrow (i). By Lemma 2.4,

$$
\begin{equation*}
\left\|\left\|^{t} H_{e} W H_{e}-I\right\|^{2}=\sum_{i=1}^{2 e} q_{i}(e, e)\right\|^{t} H_{i} W H_{0} \|^{2}=0 \tag{6}
\end{equation*}
$$

We have ${ }^{t} H_{i} W H_{0}=0$ for even $i \leq t$, because $q_{i}(e, e)>0$ for even i, and $q_{i}(e, e)=0$ for odd i. On the other hand,

$$
\begin{equation*}
\left\|{ }^{t} H_{e} W H_{r}\right\|^{2}=\sum_{i=1}^{2 e-(-1)^{t}} q_{i}(e, r)\left\|^{t} H_{i} W H_{0}\right\|^{2}=0 \tag{7}
\end{equation*}
$$

We have ${ }^{t} H_{i} W H_{0}=0$ for odd $i \leq t$, because $q_{i}(e, r)>0$ for odd i, and $q_{i}(e, r)=0$ for even i. Therefore, these imply that for any $f \in \mathrm{P}_{t}\left(S^{d-1}\right)$, the following equality holds:

$$
\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} f(x) d \sigma(x)=\sum_{x \in X} w(x) f(x)
$$

Proof of Theorem 1.2. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a locally k-distance set on S^{d-1}. Suppose $|X|=$ $N_{d}(k)$. Let $($,$) be the standard inner product in \mathbb{R}^{d}$. For each $x \in X$, we define $A_{\text {inn }}(x):=\{(x, y) \mid x \neq$ $y \in X\}$. For each $x \in X$, we define the polynomial in d variables:

$$
F_{x}(\xi):=(x, \xi)^{k-\left|A_{i n n}(x)\right|} \prod_{\alpha \in A_{i n n}(x)} \frac{(x, \xi)-\alpha}{1-\alpha}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right) . F_{x}(\xi)$ is of degree k for all $x \in X$. For all $x_{i}, x_{j} \in X$,

$$
F_{x_{i}}\left(x_{j}\right)=\delta_{i, j}
$$

where $\delta_{i, j}=1$ if $i=j$ and $\delta_{i, j}=0$ if $i \neq j$. We have the Gegenbauer expansion:

$$
F_{x}(\xi)=\sum_{i=0}^{k} f_{i}^{(x)} G_{i}^{(d)}((x, \xi))
$$

where $f_{i}^{(x)}$ are real numbers and $G_{i}^{(d)}$ is the Gegenbauer polynomial of degree i normalized by $G_{i}^{(d)}(1)=$ $h_{i}=\operatorname{dim}\left(\operatorname{Harm}_{i}\left(\mathbb{R}^{d}\right)\right)$. In particular, we remark that $f_{k}^{(x)}>0$ for every $x \in X$. By the addition formula,

$$
\begin{equation*}
F_{x}(\xi)=\sum_{i=0}^{k} f_{i}^{(x)} G_{i}^{(d)}((x, \xi))=\sum_{i=0}^{k} f_{i}^{(x)} \sum_{j=1}^{h_{i}} \varphi_{i, j}(x) \varphi_{i, j}(\xi) \tag{8}
\end{equation*}
$$

for $\xi \in S^{d-1}$. We define the diagonal matrices $C_{i}:=\operatorname{Diag}\left\{f_{i}^{\left(x_{1}\right)}, f_{i}^{\left(x_{2}\right)}, \ldots, f_{i}^{\left(x_{n}\right)}\right\}$ for $0 \leq i \leq k$. [$\left.C_{0} H_{0}, C_{1} H_{1}, \ldots, C_{k} H_{k}\right]$ and $\left[H_{0}, H_{1}, \ldots H_{k}\right]$ are $n \times n$ matrices. By the equality (8), we have the equality:

$$
\left[C_{0} H_{0}, C_{1} H_{1}, \ldots, C_{k} H_{k}\right]\left[\begin{array}{c}
{ }^{t} H_{0} \tag{9}\\
{ }^{t} H_{1} \\
\vdots \\
{ }^{t} H_{k}
\end{array}\right]=\left[F_{x_{i}}\left(x_{j}\right)\right]_{i, j}=I
$$

Therefore, $\left[C_{0} H_{0}, C_{1} H_{1}, \ldots, C_{k} H_{k}\right]$ and $\left[H_{0}, H_{1}, \ldots H_{k}\right]$ are non-singular matrices. Thus,

$$
\begin{gather*}
{\left[\begin{array}{c}
{ }^{t} H_{0} \\
{ }^{t} H_{1} \\
\vdots \\
{ }^{t} H_{k}
\end{array}\right]\left[C_{0} H_{0}, C_{1} H_{1}, \ldots, C_{k} H_{k}\right]=I} \tag{10}\\
{\left[\begin{array}{cccc}
{ }^{t} H_{0} C_{0} H_{0} & { }^{t} H_{0} C_{1} H_{1} & \ldots & { }^{t} H_{0} C_{k} H_{k} \\
{ }^{t} H_{1} C_{0} H_{0} & { }^{t} H_{1} C_{1} H_{1} & \cdots & { }^{t} H_{1} C_{k} H_{k} \\
\vdots & \vdots & \ddots & \vdots \\
{ }^{t} H_{k} C_{0} H_{0} & { }^{t} H_{k} C_{1} H_{1} & \cdots & { }^{t} H_{k} C_{k} H_{k}
\end{array}\right]=I .} \tag{11}
\end{gather*}
$$

Therefore, ${ }^{t} H_{k} C_{k} H_{k}=I$ and ${ }^{t} H_{k-1} C_{k} H_{k}=0$. If we define the weight function $w(x):=f_{k}^{(x)}$ for $x \in X$, then X is a tight weighted spherical $2 k$-design on S^{d-1} by Theorem 2.4.

Antipodal case Let X be an antipodal k-distance set with $N_{d}^{\prime}(k)$. There exist a subset Y such that $X=Y \cup(-Y)$ and $|X|=2|Y|$. We define $A_{\text {inn }}^{2}(x):=\left\{(x, y)^{2} \mid y \in X, y \neq \pm x\right\}$ and

$$
\varepsilon=\left\{\begin{array}{l}
1, \text { if } k \text { is even } \\
0, \text { if } k \text { is odd }
\end{array}\right.
$$

For each $y \in Y$, we define the polynomial in d variables

$$
F_{y}(\xi):=(y, \xi)^{k-1-2\left|A_{i n n}^{2}(y) \backslash\{0\}\right|} \prod_{0 \neq \alpha^{2} \in A_{i n n}^{2}(y)} \frac{(y, \xi)^{2}-\alpha^{2}}{1-\alpha^{2}}
$$

$F_{y}(\xi)$ is of degree $k-1$ for all $y \in Y$. For all $y_{i}, y_{j} \in Y$,

$$
F_{y_{i}}\left(y_{j}\right)=\delta_{i, j}
$$

We have the Gegenbauer expansion:

$$
F_{y}(\xi)=\sum_{i=0}^{k-1} f_{i}^{(y)} G_{i}^{(d)}((y, \xi))
$$

Note that $f_{i}=0$ for $i \equiv k \bmod 2$. In particular, we remark that $f_{k-1}^{(y)}>0$ for every $y \in Y$. We define the diagonal matrices $C_{i}:=\operatorname{Diag}\left\{f_{i}^{\left(y_{1}\right)}, f_{i}^{\left(y_{2}\right)}, \ldots, f_{i}^{\left(y_{n / 2}\right)}\right\}$ for $0 \leq i \leq k-1$. Let $H_{l}^{(Y)}$ be the characteristic matrix with respect to $Y .\left[C_{\varepsilon} H_{\varepsilon}^{(Y)}, C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)}, \ldots, C_{k-1} H_{k-1}^{(Y)}\right]$ and $\left[H_{\varepsilon}^{(Y)}, H_{\varepsilon+2}^{(Y)}, \ldots, H_{k-1}^{(Y)}\right]$ are $n / 2 \times n / 2$ matrices. By the addition formula, we have the equality:

$$
\left[C_{\varepsilon} H_{\varepsilon}^{(Y)}, C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)}, \ldots, C_{k-1} H_{k-1}^{(Y)}\right]\left[\begin{array}{c}
{ }^{t} H_{\varepsilon}^{(Y)} \tag{12}\\
{ }^{t} H_{\varepsilon+2}^{(Y)} \\
\vdots \\
{ }^{t} H_{k-1}^{(Y)}
\end{array}\right]=I
$$

Therefore, $\left[C_{\varepsilon} H_{\varepsilon}^{(Y)}, C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)}, \ldots, C_{k-1} H_{k-1}^{(Y)}\right]$ and $\left[H_{\varepsilon}^{(Y)}, H_{\varepsilon+2}^{(Y)}, \ldots, H_{k-1}^{(Y)}\right]$ are non-singular matrices. Thus,

$$
\begin{gather*}
{\left[\begin{array}{c}
{ }^{t} H_{\varepsilon}^{(Y)} \\
{ }^{t} H_{\varepsilon+2}^{(Y)} \\
\vdots \\
{ }^{t} H_{k-1}^{(Y)}
\end{array}\right]\left[C_{\varepsilon} H_{\varepsilon}^{(Y)}, C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)}, \ldots, C_{k-1} H_{k-1}^{(Y)}\right]=I} \tag{13}\\
{\left[\begin{array}{cccc}
{ }^{t} H_{\varepsilon}^{(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & { }^{t} H_{\varepsilon}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \ldots & { }^{t} H_{\varepsilon}^{(Y)} C_{k-1} H_{k-1}^{(Y)} \\
{ }^{t} H_{\varepsilon+2}^{(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & { }^{t} H_{\varepsilon+2}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \ldots & { }^{t} H_{\varepsilon+2}^{(Y)} C_{k-1} H_{k-1}^{(Y)} \\
\vdots & \vdots & \ddots & \vdots \\
{ }^{t} H_{k-1}^{(Y)} C_{\varepsilon} H_{\varepsilon}^{(Y)} & { }^{t} H_{k-1}^{(Y)} C_{\varepsilon+2} H_{\varepsilon+2}^{(Y)} & \cdots & { }^{t} H_{k-1}^{(Y)} C_{k-1} H_{k-1}^{(Y)}
\end{array}\right]=I .} \tag{14}
\end{gather*}
$$

Therefore, ${ }^{t} H_{k-1}^{(Y)} C_{k-1} H_{k-1}^{(Y)}=I$. Let H_{l} be a characteristic matrix with respect to X. We select the weight function $w(x):=f_{k-1}^{(x)} / 2$ and $w(-x)=w(x)$ for $x \in X$. Since X is antipodal, this implies ${ }^{t} H_{k-1} W H_{k-1}=I$ and ${ }^{t} H_{k-1} W H_{k}=0$. Therefore, X is a tight weighted spherical $(2 k-1)$-design by Theorem 2.4
(\Leftarrow) It is known that tight weighted spherical $2 k$-designs (resp. $(2 k-1)$-design) are tight spherical $2 k$-design (resp. $(2 k-1$)-design) [24, 2, 3. Therefore, a tight weighted spherical $2 k$-design (resp. ($2 k-1$)design) is an k-distance set (resp. antipodal k-distance set).

Theorem 1.2 implies that (antipodal) locally k-distance sets attaining their Fisher type upper bound are (antipodal) k-distance sets .

3 A new upper bound for k-distance sets on S^{d-1}

The following upper bound for the cardinalities of k-distance sets is well known.
Theorem 3.1 (Linear programming bound [10]). Let X be a k-distance set on S^{d-1}. We define the polynomial $F_{X}(t):=\prod_{\alpha \in A_{\text {inn }}(X)}(t-\alpha)$ for X where $A_{\text {inn }}(X):=\{(x, y) \mid x, y \in X, x \neq y\}$. We have the Gegenbauer expansion

$$
F_{X}(t)=\prod_{\alpha \in A_{\text {inn }}(X)}(t-\alpha)=\sum_{i=0}^{k} f_{i} G_{i}^{(d)}(t)
$$

where f_{i} are real numbers. If $f_{0}>0$ and $f_{i} \geq 0$ for all $1 \leq i \leq k$, then

$$
|X| \leq \frac{F_{X}(1)}{f_{0}}
$$

This upper bound is very useful when $A_{i n n}(X)$ is given. However, if some f_{i} happens to be negative, then we have no useful upper bound for the cardinalities of k-distance sets. In this section, we give a useful upper bound for this case. Namely, we prove the following theorem in this section.

Theorem 3.2. Let X be a k-distance set on S^{d-1}. We define the polynomial $F_{X}(t)$ of degree k :

$$
F_{X}(t):=\prod_{\alpha \in A_{\text {inn }}(X)}(t-\alpha)=\sum_{i=0}^{k} f_{i} G_{i}^{(d)}(t)
$$

where f_{i} are real number. Then,

$$
\begin{equation*}
|X| \leq \sum_{i \text { with } f_{i}>0} h_{i} \tag{15}
\end{equation*}
$$

where the summation is over i with $0 \leq i \leq k$ satisfying $f_{i}>0$ and $h_{i}=\operatorname{dim}\left(\operatorname{Harm}_{i}\left(\mathbb{R}^{d}\right)\right)$.
If $f_{i}>0$ for all $0 \leq i \leq k$, then this upper bound is the same as the Fisher type inequality. The following lemma is a key lemma required in order to prove Theorem 3.2

Lemma 3.1. Let M be a symmetric matrix in $M_{n}(\mathbb{R})$ and N be an $m \times n$ matrix. N^{T} denotes the transpose matrix of $N . D_{u, v}$ is an $m \times m$ diagonal matrix such that the number of positive entries is u and the number of negative entries is v. If the equality

$$
N M N^{T}=D_{u, v}
$$

holds, then the number of positive (resp. negative) eigenvalues of M is bounded below by u (resp. v).
Proof. Let $\left\{p_{i}\right\}_{i=1,2, \ldots u}$ be row vectors in N satisfying $p_{i} M p_{i}^{T}>0$. Since for $i \neq j, p_{i} M p_{j}{ }^{T}=0$, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{u} a_{i} p_{i}\right) M\left(\sum_{i=1}^{u} a_{i} p_{i}\right)^{T}=\sum_{i=1}^{u} a_{i}^{2} p_{i} M p_{i}^{T} \tag{16}
\end{equation*}
$$

for real numbers a_{i}. If $\sum_{i=1}^{u} a_{i} p_{i}=0$, then all a_{i} are zero. Therefore, $\left\{p_{i}\right\}_{i=1,2, \ldots, u}$ are linearly independent, and $u \leq \min \{n, m\}$. In particular, $u \leq n$. There exist n-length row vectors $\left\{q_{i}\right\}_{i=u+1, u+2, \ldots, n}$, such that

$$
P=\left[p_{1}^{T} / \sqrt{p_{1} M p_{1}^{T}}, p_{2}^{T} / \sqrt{p_{2} M p_{2}^{T}}, \ldots, p_{u}^{T} / \sqrt{p_{u} M p_{u}^{T}}, q_{u+1}^{T}, q_{u+2}^{T}, \ldots, q_{n}^{T}\right]^{T}
$$

is a non-singular matrix. Then,

$$
P M P^{T}=\left[\begin{array}{cc}
I_{u} & S \tag{17}\\
S^{T} & M^{\prime}
\end{array}\right]
$$

where I_{u} is the identity matrix of degree u, M^{\prime} is an $(n-u) \times(n-u)$ symmetric matrix, and S is a $u \times(n-u)$ matrix. We put

$$
R_{1}=\left[\begin{array}{cc}
I_{u} & \mathbb{O} \\
-S^{T} & I_{n-u}
\end{array}\right]
$$

Then,

$$
R_{1} P M P^{T} R_{1}^{T}=\left[\begin{array}{cc}
I_{u} & \mathbb{O} \tag{18}\\
\mathbb{O} & M^{\prime}-S^{T} S
\end{array}\right]
$$

Since $M^{\prime}-S^{T} S$ is a symmetric matrix, there exists an orthogonal matrix Q, such that $Q\left(M^{\prime}-S^{T} S\right) Q^{T}$ is a diagonal matrix. We put

$$
R_{2}=\left[\begin{array}{ll}
I_{v} & \mathbb{O} \\
\mathbb{O} & Q
\end{array}\right]
$$

Then,

$$
R_{2} R_{1} P M\left(R_{2} R_{1} P\right)^{T}=R_{2} R_{1} P M P^{T} R_{1}^{T} R_{2}^{T}=\left[\begin{array}{cc}
I_{u} & \mathbb{O} \tag{19}\\
\mathbb{O} & Q\left(M^{\prime}-S^{T} S\right) Q^{T}
\end{array}\right] .
$$

Since $R_{2} R_{1} P$ is a non-singular matrix, the number of positive eigenvalues of M is equal to the number of positive diagonal entries of $R_{2} R_{1} P M\left(R_{2} R_{1} P\right)^{T}$. Therefore, the number of positive eigenvalues of M is at least u. This fact implies this lemma. The proof of the result for negative eigenvalues is a similar as above method.

Proof of Theorem 3.2. Let $X:=\left\{x_{1}, x_{2}, \ldots, x_{|X|}\right\}$ be a k-distance set on S^{d-1}. Let $\left\{\varphi_{l, k}\right\}_{1 \leq k \leq h_{l}}$ be an orthonormal basis of $\operatorname{Harm}_{l}\left(\mathbb{R}^{d}\right)$. H_{l} is the characteristic matrix. We have the Gegenbauer expansion $F_{X}(t)=\prod_{\alpha \in A_{\text {inn }}(X)} \frac{t-\alpha}{1-\alpha}=\sum_{i=0}^{s} f_{i} G_{i}^{(d)}(t)$. Then,

$$
\left[f_{0} H_{0}, f_{1} H_{1}, \ldots, f_{k} H_{k}\right] \quad \text { and } \quad\left[H_{0}, H_{1}, \ldots, H_{s}\right]
$$

are $|X| \times \sum_{i=0}^{k} h_{i}$ matrices. By the addition formula,

$$
I_{|X|}=\left[f_{0} H_{0}, f_{1} H_{1}, \ldots, f_{k} H_{k}\right]\left[\begin{array}{c}
{ }^{t} H_{0} \\
{ }^{t} H_{1} \\
\vdots \\
{ }^{t} H_{k}
\end{array}\right]=\left[H_{0}, H_{1}, \ldots, H_{k}\right] \operatorname{Diag}\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{1} \\
\vdots \\
f_{k} \\
\vdots \\
f_{k}
\end{array}\right]\left[\begin{array}{c}
{ }^{t} H_{0} \\
{ }^{t} H_{1} \\
\vdots \\
{ }^{t} H_{k}
\end{array}\right]
$$

where $I_{|X|}$ is the identity matrix of degree $|X|$, $\operatorname{Diag}[*]$ denotes a diagonal matrix, and the number of entries f_{i} is h_{i}. By Lemma 3.1,

$$
|X| \leq \sum_{i \text { with } f_{i}>0} h_{i} .
$$

By using a similar method, we prove a similar upper bound for the antipodal case.
Theorem 3.3 (Antipodal case). Let X be an antipodal k-distance set on S^{d-1}. We define the polynomial $F_{X}(t)$ of degree $k-1$:

$$
F_{X}(t):=\prod_{\alpha \in A_{\text {inn }}(X) \backslash\{-1\}}(t-\alpha)=\sum_{i=0}^{k-1} f_{i} G_{i}^{(d)}(t),
$$

where the f_{i} are real and $f_{i}=0$ for $i \equiv k \bmod 2$. Then,

$$
\begin{equation*}
|X| \leq 2 \sum_{i \text { with } f_{i}>0} h_{i} \tag{20}
\end{equation*}
$$

where the summation is over i with $0 \leq i \leq k$ satisfying $f_{i}>0$.
Corollary 3.1. Let X be a two-distance set and $A_{\text {inn }}(X)=\{\alpha, \beta\}$. Then, $F_{X}(t):=(t-\alpha)(t-\beta)=$ $\sum_{i=0}^{2} f_{i} G_{i}^{(d)}(t)$ where $f_{0}=\alpha \beta+1 / d, f_{1}=-(\alpha+\beta) / d$ and $f_{2}=2 /(d(d+2))$. If $\alpha+\beta \geq 0$, then

$$
|X| \leq h_{0}+h_{2}=\binom{d+1}{2}
$$

Musin proved this corollary by using a polynomial method in 20]. This corollary is used in proof of Theorem 4.2. The following examples attain this upper bound in Corollary 3.1.

Example 3.1. Let U_{d} be a d-dimensional regular simplex. We define

$$
X:=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in U_{d}, x \neq y\right\}
$$

for $d \geq 7$. Then, X is a two-distance set on $S^{d-1},|X|=d(d+1) / 2, f_{0}>0, f_{1} \leq 0$ and $f_{2}>0$.
Let us introduce some examples which attain the upper bound in Theorem 3.2 and 3.3 .
Corollary 3.2 (The case $k=1, f_{1}>0$ and $f_{0} \leq 0$). Let X be a 1-distance set and $A_{\text {inn }}(X)=\{\alpha\}$. Then, $F_{X}(t):=t-\alpha=\sum_{i=0}^{1} f_{i} G_{i}^{(d)}(t)$ where $f_{1}=1 / d$ and $f_{0}=-\alpha$. If $\alpha \geq 0$, then

$$
|X| \leq h_{1}=d
$$

Clearly, a d-point $(d-1)$-dimensional regular simplex with a nonnegative inner product on S^{d-1} attains this upper bound.

Corollary 3.3. Let X be an k-distance set on S^{d-1}. We have the Gegenbauer expansion $F_{X}(t)=$ $\prod_{\alpha \in A_{\text {inn }}(X)}(t-\alpha)=\sum_{i=0}^{k} f_{i} G_{i}^{(d)}(t)$. If $f_{i}>0$ for all $i \equiv k \bmod 2$ and $f_{i} \leq 0$ for all $i \equiv k-1 \bmod 2$, then

$$
|X| \leq \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor} h_{k-2 i}=\binom{d+k-1}{k}
$$

The following examples attain their upper bounds.
Example 3.2. Let X be a tight spherical $(2 k-1)$-design, that is, X is an antipodal k-distance set with $N_{d}^{\prime}(k)$ points. There exist a subset Y such that $X=Y \cup(-Y)$ and $|X|=2|Y| . Y$ is an ($k-1$)-distance set and $F_{Y}(t):=\sum_{i=0}^{k-1} f_{i} G_{i}^{(d)}(t)$. Then, $f_{i}=0$ for all $i \equiv k-2 \bmod 2$ and $f_{i}>0$ for all $i \equiv k-1$ $\bmod 2$ and $|Y|=\binom{d+k-2}{k-1}$.

4 Locally two-distance sets

In this section, we will consider locally two-distance sets. Recall that a locally two-distance set is said to be proper if it is not a two-distance set. The following examples imply that there are infinitely many proper locally two-distance sets when their cardinalities are small for their dimensions.

Example 4.1. Let U_{d} be the vertex set of a regular simplex in \mathbb{R}^{d} and O be the center of the regular simplex. Let y be a point on the line passing through $x \in U_{d}$ and O. Then $U_{d} \cup\{y\}$ is a locally two-distance set. Except for finitely many exceptions, such locally two-distance sets are proper.

Example 4.2. Let $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ be an orthonormal basis of \mathbb{R}^{d}. Let

$$
X=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{k-1}, y_{k-1}\right\}
$$

where

$$
x_{1}=e_{1}, \quad y_{1}=-e_{1}
$$

and

$$
x_{j}=\frac{1}{j} e_{2 j-2}+\frac{\sqrt{j^{2}-1}}{j} e_{2 j-1}, \quad y_{j}=\frac{1}{j} e_{2 j-2}-\frac{\sqrt{j^{2}-1}}{j} e_{2 j-1}
$$

for $2 \leq j \leq k-1$. Then X is a locally two-distance set and a k-distance set in $\mathbb{R}^{2 k-3}$.

4.1 An upper bound for the cardinalities of locally two-distance sets

Lemma 4.1. (i) Let $X \subset \mathbb{R}^{d}$ be a locally two-distance set with at least $d+2$ points. If $d \geq 2$, then there exist points $x, x^{\prime} \in X\left(x \neq x^{\prime}\right)$ such that $A(x)=A\left(x^{\prime}\right)=\left\{\alpha, \alpha^{\prime}\right\}$ for some $\alpha, \alpha^{\prime} \in \mathbb{R}_{>0}\left(\alpha \neq \alpha^{\prime}\right)$.
(ii) Let X be a locally two-distance set in \mathbb{R}^{d} with $n \geq d+2$ points. Then there exists $Y \subset X$ with $|Y|=n-d$ and $|A(x)|=2$ for any $x \in Y$.

Proof. (i) Let X be a locally two-distance set in \mathbb{R}^{d} with more than $d+1$ points. Let $B(\alpha ; x)=\{y \in$ $X \mid d(x, y)=\alpha\}$ for any $x \in X$ and $\alpha \in A(x)$. Since $D S_{d}(1)=d+1$, there exists $x \in X$ such that $|A(x)|=2$. Let $A(x)=\left\{\alpha_{1}, \alpha_{2}\right\}, Y_{1}=B\left(\alpha_{1} ; x\right)$ and $Y_{2}=B\left(\alpha_{2} ; x\right)$. For $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$, if $d\left(y_{1}, y_{2}\right) \in\left\{\alpha_{1}, \alpha_{2}\right\}$, then we have $A(x)=A\left(y_{1}\right)$ or $A(x)=A\left(y_{2}\right)$ and this lemma holds. Otherwise, there exists $\beta \notin\left\{\alpha_{1}, \alpha_{2}\right\}$ such that $d\left(y_{1}, y_{2}\right)=\beta$ for all $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$. Thus $A\left(y_{i}\right)=\left\{\alpha_{i}, \beta\right\}$ for any $y_{i} \in Y_{i}(i=1,2)$. Moreover, $\left|Y_{1}\right| \geq 2$ or $\left|Y_{2}\right| \geq 2$ since $|X| \geq 4$.
(ii) Let X be a locally two-distance set in \mathbb{R}^{d} with $n \geq d+2$ points. Let Y^{\prime} be the set of all points in X with $|A(x)|=1$. Then clearly $A(x)=A\left(x^{\prime}\right)$ for any $x, x^{\prime} \in Y^{\prime}$. Therefore Y^{\prime} is a one-distance set and $\left|Y^{\prime}\right| \leq d+1$. Moreover if $\left|Y^{\prime}\right|=d+1$, then $Y^{\prime} \cup\{y\}$ must be a one-distance set for any $y \in X \backslash Y^{\prime}$, which is a contradiction. Thus $\left|Y^{\prime}\right| \leq d$ and $\left|X \backslash Y^{\prime}\right| \geq n-d$.

Remark 4.1. When we consider optimal locally two-distance sets, the condition $|X| \geq d+2$ in Lemma 4.1 is not so important because there is a lower bound $d(d+1) / 2 \leq D S_{d}(2) \leq L D S_{d}(2)$ (cf. Example 3.1).

Let X be a locally two-distance set. A subset $Y \subset X$ is called a saturated subset if $|Y| \geq 2$ and Y is a maximal subset such that there exists $\alpha, \beta(\alpha \neq \beta)$ with $A_{X}(y)=\{\alpha, \beta\}$ for any $y \in Y$. Lemma 4.1 assures us that every locally two-distance set in \mathbb{R}^{d} with at least $d+2$ points contains a saturated subset. Let $Y=\left\{y_{1}, y_{2}, \ldots y_{m}\right\} \subset X$ be a saturated subset. Then Y is a two-distance set and $X \backslash Y$ is a locally two-distance set in the space $\left\{x \in \mathbb{R}^{d} \mid d\left(y_{1}, x\right)=d\left(y_{2}, x\right)=\cdots=d\left(y_{m}, x\right)\right\}$ by maximality. If $X \backslash Y \neq \emptyset$, then all points in Y are on a common sphere. Moreover $Y \cup\{x\}$ is a two-distance set for any $x \in X \backslash Y$.

Lemma 4.2. Let $Y=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\} \subset \mathbb{R}^{d}$. Without loss of generality, we may assume that y_{0} is the origin of \mathbb{R}^{d}. Let $\operatorname{dim}(Y)$ be the dimension of the space spanned by Y and $\operatorname{Sol}(Y)=\left\{x \in \mathbb{R}^{d} \mid d\left(y_{0}, x\right)=\right.$ $\left.d\left(y_{1}, x\right)=\cdots=d\left(y_{m-1}, x\right)\right\}$. Then $\operatorname{Sol}(Y)$ is contained in a $(d-\operatorname{dim}(Y))$-dimensional affine subspace if $\operatorname{Sol}(Y) \neq \emptyset$.
Proof. Let $y_{i}=\left(y_{i 1}, y_{i 2}, \ldots, y_{i d}\right)$ for $1 \leq i \leq m-1$ and let $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$. For $1 \leq i \leq m-1$, $d\left(y_{i}, x\right)=d\left(y_{0}, x\right)$ implies

$$
\sum_{k=1}^{d} y_{i k} x_{k}=\frac{1}{2} \sum_{k=1}^{d} y_{i k}^{2}
$$

Therefore

$$
\operatorname{Sol}(Y)=\left\{x \in \mathbb{R}^{d} \left\lvert\,\left(\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 d} \\
y_{21} & y_{22} & \cdots & y_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m-11} & y_{m-12} & \cdots & y_{m-1 d}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right)\right.\right\}
$$

where

$$
c_{i}=\frac{1}{2} \sum_{k=1}^{d} y_{i k}{ }^{2} .
$$

Since the rank of the above matrix is $\operatorname{dim}(Y), S o l(Y)$ is contained in a ($d-\operatorname{dim}(Y)$)-dimensional subspace if $\operatorname{Sol}(Y) \neq \emptyset$.

By Lemma 4.2, the following lemma holds.
Lemma 4.3. Let X be a locally two-distance set in \mathbb{R}^{d}. Let $Y \subset X$ be a saturated subset and $\operatorname{dim}(Y)=i$. Then $X \backslash Y$ is a locally two-distance set with $\operatorname{dim}(X \backslash Y) \leq d-i$.

Remark 4.2. Let X be a locally two-distance set and Y be a saturated subset of X in \mathbb{R}^{d}. Then we have $\operatorname{dim}(Y) \neq 0$ by Lemma 4.1. Moreover, if $\operatorname{dim}(Y)=d$, then $\operatorname{dim}(X \backslash Y)=0$ by Lemma 4.3, In this case, $|X \backslash Y| \leq 1$ and X is a two-distance set. Therefore $1 \leq \operatorname{dim}(Y) \leq d-1$ for every saturated subset Y of a proper locally two-distance set X in \mathbb{R}^{d}. Moreover all points in Y are on a common sphere since $X \backslash Y \neq \emptyset$.

From the above remark, we have an upper bound for the cardinality of a proper locally two-distance set.

Theorem 4.1. Let X be a proper locally two-distance set in \mathbb{R}^{d}. Then

$$
|X| \leq f(d)
$$

where

$$
f(d)=\max _{1 \leq i \leq d-1}\left\{D S_{i}^{*}(2)+L D S_{d-i}(2)\right\}
$$

In particular,

$$
L D S_{d}(2) \leq \max \left\{D S_{d}(2), f(d)\right\}
$$

Proof. Let X be a proper locally two-distance set in \mathbb{R}^{d} and Y be a saturated subset of X and $i=\operatorname{dim}(Y)$. Then $1 \leq i \leq d-1$ and all points in Y are on a common sphere by Remark 4.2 so $|Y| \leq D S_{i}^{*}(2)$. On the other hand, $|X \backslash Y| \leq L D S_{d-i}(2)$ by Lemma4.3. Therefore $|X| \leq D S_{i}^{*}(2)+L D S_{d-i}(2) \leq f(d)$.
Corollary 4.1. Every locally two-distance set in \mathbb{R}^{d} with at least $d(d+1) / 2+3$ points is a two-distance set. In particular $L D S_{d}(2) \leq\binom{ d+2}{2}$.
Proof. Let X be a proper locally two-distance set in \mathbb{R}^{d}. As we will see in Proposition 4.1, $L D S_{d}(2) \leq$ $\binom{d+2}{2}$ for small d. Assume $L D S_{i}(2) \leq\binom{ i+2}{2}$ for any $i \leq d-1$. By Theorem 4.1,

$$
\begin{aligned}
|X| & \leq \max _{1 \leq i \leq d-1}\left\{D S_{i}^{*}(2)+L D S_{d-i}(2)\right\} \\
& \leq \max _{1 \leq i \leq d-1}\left\{\frac{i^{2}+3 i}{2}+\frac{(d-i+2)(d-i+1)}{2}\right\} \\
& =\frac{1}{2} \max _{1 \leq i \leq d-1}\left\{2 i^{2}-2 d i+d^{2}+3 d+2\right\} \\
& =\frac{d(d+1)}{2}+2
\end{aligned}
$$

Therefore this corollary holds.
Remark 4.3. (i) Since the set of midpoints of a regular simplex in \mathbb{R}^{d} is a two-distance set with $d(d+1) / 2$ points, Corollary 4.1 implies $D S_{d}(2) \leq L D S_{d}(2) \leq D S_{d}(2)+2$. For $d \leq 8, d \neq 3$, we will see that $D S_{d}(2)=L D S_{d}(2)$ in Proposition 4.1.
(ii) For spherical cases, similarly we have $D S_{d}^{*}(2) \leq L D S_{d}^{*}(2) \leq D S_{d}^{*}(2)+1$.

Problem 4.1. When does $D S_{d}(2)<L D S_{d}(2)\left(\right.$ resp. $\left.D S_{d}^{*}(2)<L D S_{d}^{*}(2)\right)$ hold?
We will give partial results for general cases in Section 4.2 and give an answer for $d \leq 8$ in Section 4.4.

4.2 Partial answer of Problem 4.1

Lemma 4.4. (i) Let X be a proper locally two-distance set in \mathbb{R}^{d} for $d \geq 3$. If $d(d+1) / 2<|X|$, then there exist $N_{d-1}(2)$-point two-distance set in S^{d-2} or $\left(N_{d-1}(2)-1\right)$-point two-distance set Y in S^{d-2} with $A(Y)=\{1,2 / \sqrt{3}\}$.
(ii) Let X be a proper locally two-distance set in S^{d-1} for $d \geq 3$. If $d(d+1) / 2<|X|$, then there exist $N_{d-1}(2)$-point two-distance set Y in S^{d-2} with $\sqrt{2} \in A(Y)$ or $A(Y)=\left\{\alpha, \alpha / \sqrt{\alpha^{2}-1}\right\}$.

Proof. (i) For the case where $d \in\{3,4\}$, we will prove this proposition directly in Proposition 4.1. Therefore we assume that $d \geq 5$ in this proof. Let X be a proper locally two-distance set in \mathbb{R}^{d} with more than $d(d+1) / 2$ points and let Y be a saturated subset of X. We may assume that Y has maximum cardinality among saturated subsets of X. Let $i=\operatorname{dim}(Y)$. Then $1 \leq i \leq d-1$ since Y is a saturated subset and X is not a two-distance set. If $2 \leq i \leq d-2$, then $d(d+1) / 2 \geq|X|$ for $d \geq 5$ by Theorem 4.1. Moreover if $i=1$, then $|Y| \leq 2$ and $|X \backslash Y| \geq d(d+1) / 2-2>d(d-1)+3$ for $d \geq 3$. Since $X \backslash Y$ is a locally two-distance set in $\mathbb{R}^{d-1}, X \backslash Y$ is a two-distance set by Corollary 4.1, By Lemma 4.1, $X \backslash Y$ contains a saturated subset Y^{\prime} and $\left|Y^{\prime}\right|>|Y|$. This is a contradiction to the assumption. Therefore $i=d-1$. Since $|X| \geq d(d+1) / 2+1=N_{d-1}(2)+2$ and $|X \backslash Y| \leq L D S_{1}(2)=3,|Y| \geq N_{d-1}(2)-1$. It is enough to consider the case $|Y|=N_{d-1}(2)-1$, otherwise $|Y|=N_{d-1}(2)$ and this proposition holds. In this case, $|X \backslash Y|=3$. Let $A(Y)=\{\alpha, \beta\}$ and $X \backslash Y=\left\{x_{1}, x_{2}, x_{3}\right\}$. For any $i \in\{1,2,3\}, A\left(x_{i}\right) \neq\{\alpha, \beta\}$ since Y is a saturated subset. Moreover $d\left(x_{i}, y\right)=\alpha$ for all $y \in Y$ or $d\left(x_{i}, y\right)=\beta$ for all $y \in Y$. Since $\operatorname{dim}(X \backslash Y)=1$, there are four possibilities for the x_{i}. Without loss of generality, we may assume $d\left(x_{1}, y\right)=d\left(x_{2}, y\right)=\alpha$ for all $y \in Y$ and $d\left(x_{3}, y\right)=\beta$ for all $y \in Y$. Then $d\left(x_{1}, x_{3}\right)=d\left(x_{2}, x_{3}\right)=\gamma$ for $\gamma \notin\{\alpha, \beta\}$ and $d\left(x_{1}, x_{2}\right)=\alpha$. It follows from these conditions that Y is an $\left(N_{d-1}(2)-1\right)$-point two-distance set Y in S^{d-2} with $A(Y)=\{1,2 / \sqrt{3}\}$.
(ii) Let X be a proper locally two-distance set in S^{d-1} with more than $d(d+1) / 2$ points and let Y be a saturated subset of X. Similar to the above case, we may assume $i=\operatorname{dim}(Y)=d-1$. Since $|X| \geq N_{d-1}(2)+2$ and $|X \backslash Y| \leq L D S_{1}^{*}(2)=2,|Y| \geq N_{d-1}(2)$. Therefore, $|Y|=N_{d-1}(2)$.

Theorem 4.2. (i) If there exists a proper locally two-distance set X in \mathbb{R}^{d} with more than $d(d+1) / 2$ points, then there exists an $N_{d-1}(2)$-point two-distance set in S^{d-2}.
(ii) If there exists a proper locally two-distance set X in S^{d-1} with more than $d(d+1) / 2$ points, then there exists an $N_{d-1}(2)$-point two-distance set in S^{d-2}. In particular, a locally two-distance set in S^{d-1} with more than $d(d+1) / 2$ points is a subset of a tight spherical five-design.
Proof. (i) Let X be a proper locally two-distance set in \mathbb{R}^{d} with more than $d(d+1) / 2$ points. We assume that X does not contain $N_{d-1}(2)$-point two-distance set in S^{d-2}. Then X contains $\left(N_{d-1}(2)-1\right)$-point two-distance set $Y \subset S^{d-2}$ with $A(Y)=\{1,2 / \sqrt{3}\}$ by Lemma 4.4(i). However there does not exist such a two-distance set Y by Corollary 3.1
(ii) This is clear by Lemma 4.4 (ii) and Remark 2.1,

Remark 4.4. Since $d(d+1) / 2 \leq D S_{d}(2)$ (resp. $\left.d(d+1) / 2 \leq D S_{d}^{*}(2)\right)$, the assumption in Theorem4.2 (i) (resp. (ii)) can be replaced by $D S_{d}(2)<L D S_{d}(2)$ (resp. $\left.D S_{d}^{*}(2)<L D S_{d}^{*}(2)\right)$.

4.3 Classifications of optimal two-distance sets

Euclidean cases $D S_{d}(2)$ is determined for $d \leq 8$ and optimal two-distance sets are classified for $d \leq 7$ (Kelly [17], Croft [9], Einhorn-Schoenberg [13] and Lisoněk [19]). We introduce the results in this subsection.
$d=2: D S_{2}(2)$ and the optimal planar two-distance set is isomorphic to the set of vertices of a regular pentagon (Kelly [17], Einhorn-Schoenberg [13]). We denote the set of vertices of the regular pentagon with side length 1 by R_{5}. Then $A\left(R_{5}\right)=\{1, \tau\}$ where $\tau=(1+\sqrt{5}) / 2$.
$d=3: D S_{3}(2)$ and there are exactly six optimal two distance sets in \mathbb{R}^{3} (Croft [9, Einhorn-Schoenberg [13]). They are the set of vertices of a regular octahedron, a right prism which has a equilateral triangle base and square sides and the remaining four sets are subsets of a regular icosahedron.
$d=4: D S_{4}(2)=10$ and the optimal two-distance set in \mathbb{R}^{4} is isomorphic to the set of midpoints of the edges of a regular simplex in \mathbb{R}^{4}. This set corresponds to the Petersen graph.
$d=5: D S_{5}(2)=16$ and the optimal two-distance set in \mathbb{R}^{5} is isomorphic to the set given by the Clebsch graph. Points of the set are given by the following.

$$
\begin{gathered}
-e_{i}+\sum_{k=1}^{5} e_{k} \quad(1 \leq i \leq 5), \\
e_{i}+e_{j} \quad(1 \leq i<j \leq 5)
\end{gathered}
$$

and the origin O of \mathbb{R}^{5}.
$d=6: D S_{6}(2)=27$ and the optimal two-distance set in \mathbb{R}^{6} is isomorphic to the set obtained from the Schläfli graph.
$d=7: D S_{7}(2)=29$ and the optimal two-distance set in \mathbb{R}^{7} is isomorphic to the set which is given by the following points.

$$
\begin{gathered}
-e_{i}+\frac{1}{7}(3+\sqrt{2}) \sum_{k=1}^{7} e_{k} \quad(1 \leq i \leq 7) \\
e_{i}+e_{j} \quad(1 \leq i<j \leq 7)
\end{gathered}
$$

and

$$
\frac{1}{7}(2+3 \sqrt{2}) \sum_{k=1}^{7} e_{k}
$$

$d=8$: A two-distance set in \mathbb{R}^{8} with $\binom{10}{2}=45$ points is known. Let

$$
X_{1}=\left\{\left.e_{i}-\frac{1}{12} \sum_{k=1}^{8} e_{k} \right\rvert\, i=1,2, \ldots 8\right\} \cup\left\{-\frac{1}{3} \sum_{k=1}^{8} e_{k}\right\}
$$

and

$$
X_{2}=\left\{-(x+y) \mid x, y \in X_{1}, x \neq y\right\}
$$

Then X_{1} is the vertex set of a regular simplex and $X_{1} \cup X_{2}$ is a two-distance set with $A\left(X_{1} \cup X_{2}\right)=\{\sqrt{2}, 2\}$
Spherical cases For $2 \leq d \leq 6$, every optimal two-distance set in \mathbb{R}^{d} is on a sphere. Optimal two-distance sets in S^{6} are given from three Chang graphs or the set of midpoints of edges of a regular simplex in \mathbb{R}^{7}. Moreover, Musin [20] determined $D S_{d}^{*}(2)$ for $7 \leq d<40$.

Theorem 4.3. $D S_{d}^{*}(2)=d(d+1) / 2$ for the cases where $7 \leq d \leq 21,24 \leq d<40$. When $d=22,23$, $D S_{22}^{*}(2)=275$ and $D S_{23}^{*}(2)=276$ or 277 .

4.4 Optimal locally two-distance sets

Euclidean cases By using classifications of optimal two-distance sets and Theorem 4.1, we have the following proposition.
Proposition 4.1. Every optimal locally two-distance set in \mathbb{R}^{d} is a two-distance set for $d=2,4,5,6,8$. Moreover there are four seven-point locally two-distance set in \mathbb{R}^{3} up to isomorphism and five 29-point locally two-distance set in \mathbb{R}^{7} up to isomorphism. In particular $D S_{d}(2)=L D S_{d}(2)$ for $d=1,2,4 \leq d \leq 8$ and $L D S_{3}(2)=7$.

Proof. $d=1$: It is clear that every three-point set in \mathbb{R}^{1} which is not a one-distance set is a locally two-distance set and that there is no four-point locally two-distance set in \mathbb{R}^{1}.

For $2 \leq d \leq 7$, we classify optimal locally two-distance sets in \mathbb{R}^{d}. For each case, we pick a saturated subset Y of X and we let $Y^{\prime}=X \backslash Y$. Note that if X is not a two-distance set, then $1 \leq \operatorname{dim}(Y) \leq d-1$.
$d=2$: We will classify five-point locally two-distance sets X in \mathbb{R}^{2}. We may assume that $\operatorname{dim}(Y)=1$ and $|Y|=2$, otherwise X is a two-distance set. Let $Y=\left\{y_{1}, y_{2}\right\}, Y^{\prime}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $A\left(y_{1}\right)=A\left(y_{2}\right)=$ $\{\alpha, \beta\}$. Without of generality, we may assume $d\left(x_{1}, y_{i}\right)=d\left(x_{2}, y_{i}\right)=\alpha$ and $d\left(x_{3}, y_{i}\right)=\beta$ for $i \in\{1,2\}$ since there are exactly four possibilities for the x_{j}. If $d\left(x_{1}, x_{3}\right) \in\{\alpha, \beta\}$, then $A\left(x_{1}\right)=\{\alpha, \beta\}$ or $A\left(x_{3}\right)=$ $\{\alpha, \beta\}$. This is a contradiction to the maximality of the saturated subset Y. So $d\left(x_{1}, x_{3}\right)=\gamma \notin\{\alpha, \beta\}$. Similarly $d\left(x_{2}, x_{3}\right)=\gamma$. Therefore x_{3} is a midpoint of both the segment $y_{1} y_{2}$ and the segment $x_{1} x_{2}$. It is easy to check that such a locally two-distance set does not exist. Therefore $\operatorname{dim}(Y) \neq 1$ and X is a two-distance set. By the classification of five-point two-distance sets in $\mathbb{R}^{2}, X=R_{5}$.
$d=3$: We will classify seven-point locally two-distance sets X in \mathbb{R}^{3}. We may assume $1 \leq \operatorname{dim}(Y) \leq 2$, otherwise X is a two-distance set. We need to consider two cases (a) $\operatorname{dim}(Y)=1$ and (b) $\operatorname{dim}(Y)=2$.
(a) In this case, $|Y|=2$ and $Y^{\prime}=R_{5}$ by the above classification. Let $Y=\left\{y_{1}, y_{2}\right\}$ and $Y^{\prime}=$ $\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$. Then $d\left(x_{j}, y_{i}\right)=1$ for any $j \in\{1,2\}$ and $i \in\{1,2, \ldots, 5\}$ or $d\left(x_{j}, y_{i}\right)=\tau$ for any $j \in\{1,2\}$ and $i \in\{1,2, \ldots, 5\}$. In this case, there are two seven-point locally two-distance sets up to isomorphism.
(b) In this case, $|Y| \in\{4,5\}$. If $|Y|=4$, then $\left|Y^{\prime}\right|=3$. Similar to the case where $d=2$, there exists a point $x \in Y^{\prime}$ which is the midpoint of the other two points. Then $Y \cup\{x\}$ is a five-point locally twodistance set in \mathbb{R}^{2} and x is a center of the circle passing through other four points. By the classification of five-point locally two-distance sets in \mathbb{R}^{2}, such a locally two-distance set does not exist. If $|Y|=5$, then $\left|Y^{\prime}\right|=2$. In this case, $Y=R_{5}$ and there are four locally two-distance sets up to isomorphism. These sets contains the sets in case (a).
$d=4$: We will classify ten-point locally two-distance sets X in \mathbb{R}^{4}. If $\operatorname{dim}(Y) \neq 2$, then X is a twodistance set or $|X|<10$. Therefore we assume $\operatorname{dim}(Y)=2$. Then $|Y|=\left|Y^{\prime}\right|=5$ and both Y and Y^{\prime} are sets of vertices of a regular pentagon. Let

$$
Y=\left\{\left.\left(\cos \frac{2 \pi j}{5}, \sin \frac{2 \pi j}{5}, 0,0\right) \right\rvert\, j=0,1, \ldots 4\right\}
$$

and

$$
Y^{\prime}=\left\{\left.\left(0,0, r \cos \frac{2 \pi j}{5}, r \sin \frac{2 \pi j}{5}\right) \right\rvert\, j=0,1, \ldots 4\right\}
$$

Then $d(x, y)=\sqrt{1+r^{2}}>1$ for any $y \in Y$ and $x \in Y^{\prime}$. Therefore we may assume $d(x, y)=\tau$ where $\tau=(1+\sqrt{5}) / 2$. Then $r=\sqrt{\tau}$ and $A(x)=\left\{\tau^{1 / 2}, \tau, \tau^{3 / 2}\right\}$ for $x \in Y^{\prime}$. This is not a locally two-distance set. Therefore a ten-point locally two-distance set is a two-distance set.
$d=5$: We will classify sixteen-point locally two-distance sets X in \mathbb{R}^{5}. Since $D S_{i}^{*}(2)+L D S_{d-i}(2)<16$ for $1 \leq i \leq 4, X$ is a two-distance set.
$d=6$: We will classify 27 -point locally two-distance sets X in \mathbb{R}^{6}. By Corollary 4.1, every 27 -point locally two-distance set in \mathbb{R}^{6} is a two-distance set.
$d=7$: We will classify 29 -point locally two-distance sets X in \mathbb{R}^{7}. If $\operatorname{dim}(Y) \notin\{1,6\}$, then X is a two-distance set or $|X|<29$. We divide into two cases: (a) $\operatorname{dim}(Y)=1$ and (b) $\operatorname{dim}(Y)=6$.
(a) In this case, similar to the classification of case (a) for $d=3$, we prove that there are two 29-point locally two-distance sets up to isomorphism.
(b) In this case, similar to the classification of case (b) for $d=3$, we can prove that there are four locally two-distance sets which contain the sets in case (a).
$d=8$: We will consider 45-point locally two-distance sets in \mathbb{R}^{8}. By Corollary 4.1 every 45-point locally two-distance set in \mathbb{R}^{8} is a two-distance set.

Spherical cases For spherical cases, we have the following proposition by Theorem4.2 and Theorem 4.3.
Proposition 4.2. $L D S_{d}^{*}(2)=D S_{d}^{*}(2)$ for $2 \leq d<40$ and $d \notin\{3,7,23\}$. When $d \in\{3,7,23\}$, $L D S_{3}^{*}(2)=7, L D S_{7}^{*}(2)=29$ and $L D S_{23}^{*}(2)=277$. In particular, there is a unique optimal locally
two-distance set in S^{d-1} if $d \in\{3,7\}$ and there is a unique optimal locally two-distance set in S^{23} if $D S_{23}^{*}(2)=276$.

4.5 Optimal locally three-distance sets

It seems difficult to determine $L D S_{d}(k)$ and classify the optimal configurations for $k \geq 3$. However there is a result for $k=3$ and $d=2$ by Erdős-Fishburn [15] and Fishburn [16.

Figure 1.
Proposition 4.3. (i) Let X be an eight-point planar set. Then $\sum_{P \in X}\left|A_{X}(P)\right| \geq 24$.
(ii) Every eight-point planar set X with $\sum_{P \in X}\left|A_{X}(P)\right|=24$ is similar to Figure 1.
(iii) Every eight-point locally three-distance set in \mathbb{R}^{2} is similar to Figure 1. In particular, $L D S_{3}(3)=8$.

Proof. (i), (ii) See 15, 16.
(iii) This is immediate from (i), (ii).

The second author proved that $D S_{3}(3)=12$ and that every twelve-point three-distance set in \mathbb{R}^{3} is similar to the set of vertices of a regular icosahedron ([23).

Problem 4.2. Is every locally three-distance set in \mathbb{R}^{3} with twelve points similar to the set of vertices of a regular icosahedron?

In fact, there are many differences between k-distance sets and locally k-distance sets when cardinalities are small. Moreover we saw that $D S_{d}(k)<L D S_{d}(k)$ for some cases. However no known optimal k-distance sets are locally ($k-1$)-distance sets.

Problem 4.3. Are there any optimal k-distance sets which are locally $(k-1)$-distance sets?
Acknowledgements. We thank Oleg Musin. This work is greatly influenced by his paper [20. We also thank Eiichi Bannai for his helpful comments.

References

1 Ei. Bannai and Et. Bannai, Algebraic Combinatorics on Spheres(in Japanese), Springer Tokyo, 1999.
2 Ei. Bannai and Et. Bannai, On Euclidean tight 4-designs, J. Math. Soc. Japan, 58 (2006), no. 3, 775-804.

3 Et. Bannai, On antipodal Euclidean tight ($2 e+1$)-designs. J. Algebraic Combin. 24 (2006), no. 4, 391-414.

4 Ei. Bannai, Et. Bannai, and D. Stanton, An upper bound for the cardinality of an s-distance subset in real Euclidean space, II, Combinatorica 3 (1983), 147-152.

5 Ei. Bannai and R. M. Damerell, Tight spherical designs. I, J. Math. Soc. Japan, 31 (1979), no. 1, 199-207.

6 Ei. Bannai and R. M. Damerell, Tight spherical designs. II, J. London Math. Soc. (2) 21 (1980), no. 1, 13-30.

7 Ei. Bannai, A. Munemasa, and B. Venkov, The nonexistence of certain tight spherical designs. With an appendix by Y.-F. S. Petermann, Algebra i Analiz 16 (2004), no. 4, 1-23; translation in St. Petersburg Math. J. 16 (2005), no. 4, 609-625

8 A. Blokhuis, Few-distance sets, Ph. D. thesis, Eindhoven Univ. of Technology (1983), (CWI Tract (7) 1984).

9 H. T. Croft, 9-point and 7-point configuration in 3-space, Proc. London. Math. Soc. (3), 12 (1962), 400-424.

10 P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388

11 P. Delsarte and J. J. Seidel, Fisher type inequalities for Euclidean t-designs, Lin. Algebra and its Appl. 114/115 (1989), 213-230.

12 S. J. Einhorn and I. J. Schoenberg, On Euclidean sets having only two distances between points I, Nederl Akad. Wetensch. Proc. Ser. A69=Indag. Math. 28 (1966), 479-488.

13 S. J. Einhorn and I. J. Schoenberg, On Euclidean sets having only two distances between points II, Nederl Akad. Wetensch. Proc. Ser. A69=Indag. Math. 28 (1966), 489-504.

14 P. Erdős and P. Fishburn, Maximum planar sets that determine k distances, Discrete Math. , 160 (1996), 115-125.

15 P. Erdős and P. Fishburn, Distinct distances in finite planar sets, Discrete Math. 175 (1997), 97-132.
16 P. Fishburn, Convex nonagons with five intervertex distance, Discrete Math. 252 (2002), 103-122.
17 L. M. Kelly, Elementary Problems and Solutions. Isosceles n-points, Amer. Math. Monthly, 54 (1947), 227-229.

18 D. G. Larman, C. A. Rogers, and J. J. Seidel, On two-distance sets in Euclidean space, Bull. London Math. Soc., 9 (1977), 261-267.

19 P. Lisoněk, New maximal two-distance sets, J. Comb. Theory, Ser. A 77 (1997), 318-338.
20 O.R. Musin, On spherical two-distance sets, to appear in J. Combin. Theory Ser. A.
21 M. Shinohara, Classification of three-distance sets in two dimensional Euclidean space, Europ. J. Combinatorics, 25 (2004) 1039-1058.

22 M. Shinohara, Uniqueness of maximum planar five-distance sets, Discrete Math. 308 (2008), 30483055.

23 M. Shinohara, Uniqueness of maximum three-distance sets in the three-dimensional Euclidean Space, preprint.

24 M. A. Taylor, Cubature for the sphere and the discrete spherical harmonic transform, SIAM J. Numer. Math. 32 (1995), 667-670

