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8 GENERALIZED STIRLING PERMUTATIONS, FAMILIES OF INCREASIN G

TREES AND URN MODELS

SVANTE JANSON, MARKUS KUBA, AND ALOIS PANHOLZER

ABSTRACT. Bona [6] studied the distribution of ascents, plateaux anddescents in the class of
Stirling permutations, introduced by Gessel and Stanley [14]. Recently, Janson [18] showed
the connection between Stirling permutations and plane recursive trees and proved a joint nor-
mal law for the parameters considered by Bona. Here we will consider generalized Stirling
permutations extending the earlier results of [6], [18], and relate them with certain families
of generalized plane recursive trees, and also(k + 1)-ary increasing trees. We also give two
different bijections between certain families of increasing trees, which both give as a special
case a bijection between ternary increasing trees and planerecursive trees. In order to de-
scribe the (asymptotic) behaviour of the parameters of interests, we study three (generalized)
Pólya urn models using various methods.

1. INTRODUCTION

Stirling permutations were defined by Gessel and Stanley [14]. A Stirling permutation is a
permutation of the multiset{1, 1, 2, 2, . . . , n, n} such that for eachi, 1 ≤ i ≤ n, the elements
occuring between the two occurences ofi are larger thani. The name of these combinatorial
objects is due to relations with the Stirling numbers, see [14] for details.

Let σ = a1a2 · · · a2n be a Stirling permutation. Let the indexi (or the gap(i, i + 1))
be called an ascent ofσ if i = 0 or ai < ai+1, let i be called a descent ofσ if i = 2n
or ai > ai+1, and leti be called a plateau ofσ if ai = ai+1. (It is convenient to define
a0 = a2n+1 = 0; this takes care of the special casesi = 0 andi = 2n.) Note thati runs from
0 to 2n, so the total number of ascents, descents and plateaux is2n + 1. LetQn denote the
set of Stirling permutation of{1, 1, 2, 2, . . . , n, n}; we say that these have ordern. Bona [6]
showed that the parameters numbers of ascents, descents andplateaux are equidistributed on
Qn. Moreover, he showed a central limit theorem for the three parameters.

A rooted tree of ordern with the vertices labelled1, 2, . . . , n, is an increasing tree if the
node labelled 1 is distinguished as the root, and for each2 ≤ k ≤ n, the labels of the nodes
in the unique path from the root to the node labelledk form an increasing sequence. We
will consider several families of increasing trees. The first one is the family ofincreasing
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plane trees, usually calledplane recursive trees, where the children of a node are ordered
(from left to right, say). Note that plane recursive trees also appear in literature under the
names plane-oriented recursive trees, heap-ordered trees, and sometimes also as scale-free
trees. Further families will be defined later.

Let Tn denote the set of plane recursive trees withn vertices. It was shown by Janson
[18] that plane recursive trees onn+1 vertices are in bijection with Stirling permutations on
{1, 1, 2, 2, . . . , n, n}, Tn+1

∼= Qn. Moreover, using this bijective correspondence, he showed
that the number of descents in the Stirling permutation corresponds to the number of leaves
in the associated plane recursive tree. Furthermore, usingan urn model and general theo-
rems, see [15] and also [16], Janson showed the joint normality of the parameters ascent,
descent and plateau. The purpose of this work is to extend this connection between Stirling
permutations and plane recursive trees in Janson [18], to generalized Stirling permutations.
In particular, we give a bijection between Stirling permutations on{1k, 2k, . . . , nk}, where
here and throughout this work1l := 1, . . . , 1︸ ︷︷ ︸

l

, with l ≥ 1, which we callk-Stirling permuta-

tions, and(k + 1)-ary increasing trees; moreover we can also relatek-Stirling permutations
with a certain family of plane recursive trees, namelyk-plane recursive trees. Concerning
Stirling permutations of the multiset{1k, 2k+2, . . . , nk+2}, which we callk-bundled Stirling
permutations, we obtain a bijection with certain generalized plane recursive trees, namely
k-bundled increasing trees. We also give two different bijections between certain families
of increasing trees, which both give as a special case a bijection between ternary increasing
trees and plane oriented increasing trees. Moreover, we will use several different methods,
combinatorial and probabilistic, to derive several results in this direction. More precisely, in
order to describe the (asymptotic) behaviour of the parameters of interests, we study three
(generalized) Pólya urn models.

The parameterk is fixed throughout the paper, and often omitted from the notation. All
unspecified limits are asn → ∞. In the results with a.s. convergence, we assume that the
randomk-Stirling permutation grows in the natural way by random addition of new labels;
in the other results, this does not matter.

2. PRELIMINARIES

2.1. Generalized Stirling permutations. A straightforward generalization of Stirling per-
mutations on the multiset{1, 1, 2, 2, . . . , n, n} is to consider permutations of a more general
multiset{1k1, 2k2, . . . , nkn}, with ki ∈ N for 1 ≤ i ≤ n. We call a permutation of the
multiset{1k1, 2k2, . . . , nkn} a generalized Stirling permutation, if for eachi, 1 ≤ i ≤ n, the
elements occurring between two occurrences ofi are at leasti. (In other words, the elements
occurring between two consecutive occurrences ofi are larger thani.) Such permutations
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have already previously been considered by Brenti [7], [8].The number of generalized Stir-
ling permutations of{1k1, 2k2, . . . , nkn} is

n−1∏

i=1

(ℓi + 1) with ℓi =

i∑

j=1

kj; (1)

this is easy to see by induction, since thekn copies ofn have to form a substring, and this
substring can be inserted inℓn−1 + 1 positions (viz., anywhere, including first or last) in any
generalized Stirling permutation of{1k1, 2k2, . . . , (n− 1)kn−1}.

We will consider two cases and give them special names: ak-Stirling permutationof order
n is a generalized Stirling permutation of the multiset{1k, 2k, . . . , nk}, and ak-bundled Stir-
ling permutationis a generalized Stirling permutation of the multiset{1k, 2k+2, . . . , nk+2}.
Herek ≥ 1, but note that1-Stirling permutations are just ordinary permutations so we will
usually considerk-Stirling permutations fork ≥ 2 only; the casek = 2 yields the ordinary
Stirling permutations defined by Gessel and Stanley [14].

What we callk-Stirling permutations was suggested by Gessel and Stanley[14] and has
been studied by Park [22, 23, 24] under the namek-multipermutations.

In the following, letQn = Qn(k) denote the set ofk-Stirling permutations of ordern and
let Qn = Qn(k) denote the number|Qn(k)| of them. By (1),

Qn(k) = |Qn(k)| =
n−1∏

i=1

(ki+ 1) = knΓ(n+ 1/k)

Γ(1/k)
. (2)

For k = 2 this number is justQn(2) = (2n − 1)!!. In the casek = 3, we have for example
one permutation of order1: 111; four permutations of order2: 111222, 112221, 122211,
222111; etc.

Similarly, letQn = Qn(k) denote the set ofk-bundled Stirling permutations of ordern
and letQn = Qn(k) denote the number of them. We have, by (1),

Qn = |Qn(k)| =
n−1∏

i=1

(i(k + 2)− 1) = (k + 2)n−1Γ(n− 1/(k + 2))

Γ(1− 1/(k + 2))
. (3)

We defineascents, descentsand plateauxof a generalized Stirling permutationσ =
a1a2 · · · aℓ of {1k1, 2k2, . . . , nkn} (where the lengthℓ =

∑n
1 ki) as before: we leta0 =

aℓ+1 = 0 and say that an indexi, with 0 ≤ i ≤ ℓ, is an ascent, descent or plateau if
ai < ai+1, ai > ai+1 or ai = ai+1, respectively. Note that the total number of them isℓ+ 1.

We introduce a natural refinement of ascents, descents and plateaux, namelyj-ascents,
j-descents, andj-plateaux. An indexi, with 1 ≤ i ≤ ℓ is called aj-ascent, ifi is an ascent
and there are exactlyj − 1 indicesi′ < i such thatai′ = ai; ı.e.,ai is thejth occurrence of
the symbolai, and similarly for plateaux. For a descenti, ai is always the last occurence of
that symbol (just as for an ascent,ai+1 is the first of its kind), and we define aj-descent as a
descenti < ℓ such thatai+1 is the thejth occurrence of that symbol. (Note that we choose
not to allowi = 0 or i = ℓ in these definitions.)
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Thus, for a generalized Stirling permutation of{1k1, 2k2, . . . , nkn}, the possible values of
j ranges from 1 tomaxi ki for j-ascents andj-descents, and from 1 tomaxi ki − 1 for j-
plateaux. In particular, fork-Stirling permutations,1 ≤ j ≤ k for j-ascents andj-descents,
and1 ≤ j ≤ k−1 for j-plateaux. Note also that if we reflect ak-Stirling permutation, we get
a newk-Stirling permutation, andj-ascents in one of them correspond to(k+1−j)-descents
in the other.

Example 1. Consider the 3-Stirling permutationσ = 112233321: Index 1 is a 1-plateau,
index 2 is a2-ascent, index 3 is a 1-plateau, index 4 is a2-ascent, index 5 is a 1-plateau,
index6 is a 2-plateau, index 7 is a3-descent, and index 8 is a 3-descent. (Indices 0 and 9 are
not classified in this way.)

We are interested in the (joint) distributions of the randomvariablesXn,j, Yn,j andZn,j,
defined as the numbers ofj-ascents,j-descents andj-plateaux, respectively, in a random
k-Stirling permutation (chosen uniformly inQn(k)). Note that these trivially are 0 unless
1 ≤ j ≤ k for Xn,j andYn,j, and1 ≤ j ≤ k − 1 for Zn,j, and that

k∑

j=1

(Xn,j + Yn,j) +

k−1∑

j=1

Zn,j = kn− 1

We further letXn, Yn andZn denote the total numbers of ascents, descents and plateaux,
respectively. Note that, recalling the special definitionsat the endpoints,

Xn =
k∑

j=1

Xn,j + 1, (4)

Yn =
k∑

j=1

Yn,j + 1, (5)

Zn =

k∑

j=1

Zn,j. (6)

It is easy to see that aj-ascent withj < k corresponds to a later(j + 1)-descent, and
conversely, so

Xn,j = Yn,j+1, 1 ≤ j ≤ k − 1, (7)

see also Theorem 2. However, there is no corresponding relation for k-ascents, of for 1-
descents, and the total numbers of ascents and descents are typically different, even in the
casek = 2. Further, since only the last copy of a label can be a descent,

Xn,j + Zn,j = n, 1 ≤ j ≤ k − 1, (8)

and, similarly or by (8),

Yn,j + Zn,j−1 = n, 2 ≤ j ≤ k. (9)
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Moreover, we are also interested in the distribution of the number ofblocksin a randomk-
Stirling permutation of ordern. A block in a generalized Stirling permutationσ = a1 · · · aℓ
is a substringap · · · aq with ap = aq that is maximal, i.e. not contained in any larger such
substring. There is obviously at most one block for everyj = 1, . . . , n, extending from the
first occurrence ofj to the last; we say thatj forms a block when this substring really is
a block, i.e. when it is not contained in a stringi · · · i for somei < j. In particular, in a
k-Stirling permutation,j forms a block if for anyi with 1 ≤ i ≤ j − 1, there do not exist
indicesm0, . . .mk+1 , with 1 ≤ m0 < · · · < mk+1 ≤ kn, such thatσm0 = σmk+1

= i
andσm1 = · · · = σmk

= j. It is easily seen by induction that any generalized Stirling
permutation has a unique decomposition as a sequence of its blocks. Note that if we add a
string(n + 1)kn+1 to a generalized Stirling permutation, this string will either be swallowed
by one of the existing blocks, or form a block on its own; the latter happens when it is added
first, last, or in a gap between two blocks.

Example 2. The 3-Stirling permutationσ = 112233321445554666, has block decomposi-
tion [112233321][445554][666].

One may also consider the similar problems fork-bundled Stirling permutations; simi-
larly defining random variablesXn,j, Y n,j andZn,j. However, for most results we restrict
ourselves tok-Stirling permutations.

2.2. Generalized plane recursive trees andd-ary increasing trees. In order to relate the
k-Stirling permutations to families of increasing trees we use a general setting based on
earlier considerations of Bergeron et al. [3] and Panholzerand Prodinger [21].

For a given degree-weight sequence(ϕk)k≥0, the corresponding degree-weight generating
functionϕ(t) is defined byϕ(t) :=

∑
k≥0 ϕkt

k. The simple family of increasing treesT
associated with a degree-weight generating functionϕ(t), can be described by the formal
recursive equation

T = ©1 ×
(
ϕ0 · {ǫ} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (10)

where©1 denotes the node labelled by1, × the cartesian product,̇∪ the disjoint union,∗
the partition product for labelled objects, andϕ(T ) the substituted structure (see e. g., the
books [30], [13]). This means that the elements ofT are increasing plane trees, and that a
tree with (out-)degreesd1, . . . , dn is given weight

∏n
1 ϕdi. By a random tree of ordern from

the familyT , we mean a tree of ordern chosen randomly with probabilities proportional to
the weights.

Let Tn be the total weight of all such trees of ordern. It follows from (10) that the expo-
nential generating functionT (z) :=

∑
n≥1 Tn

zn

n!
of the total weights satisfies the autonomous

first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (11)
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The families that we will consider have degree-weights of one of the two following forms,
studied by Panholzer and Prodinger [21]:

ϕ(t) =






ϕ0

(1+
c2t
ϕ0

)
−

c1
c2

−1
, for ϕ0 > 0, 0 < −c2 < c1, generalized plane recursive trees,

ϕ0

(
1 + c2t

ϕ0

)d

, for ϕ0, c2 > 0, d := c1
c2
+ 1 ∈ N \ {1}, d-ary increasing trees.

(12)
Consequently, by solving (11), we obtain exponential generating functionT (z)

T (z) =





ϕ0

c2

(
1

(1−c1z)
c2
c1

− 1
)
, generalized plane recursive trees,

ϕ0

c2

(
1

(1−(d−1)c2z)
1

d−1
− 1

)
, d-ary increasing trees,

(13)

and the total weightsTn,

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
. (14)

Note that changingϕk to abkϕk for some positive constantsa andb will affect the weights of
all trees of a given ordern by the same factoranbn−1, which does not affect the distribution
of a random tree from the family. Hence, when considering random trees from these two
classes,ϕ0 is irrelevant andc1 andc2 are relevant only through the ratioc1/c2. (We may
thus, if we like, normalizeϕ0 = 1 and eitherc1 or |c2|, but not both.)

As shown by Panholzer and Prodinger [21], random trees in thetwo classes of families
given in (12) can be grown as an evolution process in the following way. The process,
evolving in discrete time, starts with the root labelled by1. At stepi+ 1 the node with label
i + 1 is attached to any previous nodev (with out-degreed(v)) of the already grown tree of
orderi with probabilitiesp(v) given by

p(v) =

{
d(v)+α

(α+1)i−1
with α := −1 − c1

c2
> 0, generalized plane recursive trees,

d−d(v)
(d−1)i+1

, d-ary increasing trees.

Moreover, Panholzer and Prodinger [21] showed that there are only three classes of simple
families that can be grown in this way (for suitablep(v)): the two classes given in (12) and
the recursive trees given byϕ(t) = ϕ0e

c1t/ϕ0 with ϕ0, c1 > 0 (which can be regarded as a
limiting case of any of the two classes above, lettingc2 → 0.)

Example 3. Plane recursive treesare plane increasing trees such that all node degrees are
allowed, with all trees having weight 1. Thusϕk = 1 and the degree-weight generating
function isϕ(t) = 1

1−t
, which is of the form in (12) withϕ0 = 1, c1 = 2 andc2 = −1. We

have

T (z) = 1−
√
1− 2z, and Tn = 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!, for n ≥ 1.

Furthermore,α = −1− c1
c2

= 1, and consequently, the probability attaching to nodev at step

i+ 1 is given byp(v) = d(v)+1
2i−1

.
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Example 4.For an integerd ≥ 2, d-ary increasing treesare increasing trees where each node
hasd (labelled) positions for children. Thus, only outdegrees0, . . . , d are allowed; moreover,
for a node withk children in given order, there is thus

(
d
k

)
ways to attach them. Hence, this

family is given by vertex weightsϕk =
(
d
k

)
and thus the degree-weight generating function

ϕ(t) = 1 + td, which is of the form in (12) withϕ0 = 1, c1 = d− 1 andc2 = 1. By (13),

T (z) =
(
1− (d− 1)z

)−1/(d−1) − 1.

3. INCREASING TREES ASSOCIATED TO GENERALIZEDSTIRLING PERMUTATIONS

3.1. (k + 1)-ary increasing trees,k-plane recursive trees andk-Stirling permutations.
Recall from Example 4 that, fork ≥ 1, the degree-weight generating function of(k+1)-ary
increasing trees is given byϕ(t) = (1+ t)k+1, i.e.ϕ0 = 1, c1 = k andc2 = 1. Consequently,
the generating functionT (z) and the numbersTn of (k+1)-ary trees of ordern are given by

T (z) =
1

(1− kz)
1
k

− 1, Tn =

n∏

l=1

(k(l − 1) + 1), n ≥ 1,

and the the probability of attaching to nodev at stepi+ 1 is given byp(v) = k+1−d(v)
ki+1

.
Note thatTn = Qn, the number ofk-Stirling permutation, which makes the following

theorem reasonable.

Theorem 1(Gessel). Letk ≥ 1. The familyAn = An(k+1) of (k+1)-ary increasing trees
of ordern is in a natural bijection withk-Stirling permutations,An(k + 1) ∼= Qn(k).

Remark 1. The authors independently derived the result above, and later discovered the
work of Park [22], in which Gessel’s result was mentioned butthe proof only sketched. The
result of Gessel never appeared in print except this mentioning in Park [22], to the best of the
authors’ knowledge. We will give a detailed proof of the result above, which has interesting
consequences regarding the (refined) parameters ascents, descents and plataeux, and also
number of blocks, which we will state in Theorem 2.

Remark 2. For k = 1 we obtain a bijection between1-Stirling permutations (ordinary per-
mutations) and binary increasing trees, which is very well known.

Proof. We use a slightly modified bijection to the one given by Jansonin [18] for Stirling
permutation and plane recursive tree, and use a depth-first walk. The depth-first walk of a
rooted (plane) tree starts at the root, goes first to the leftmost child of the root, explores that
branch (recursively, using the same rules), returns to the root, and continues with the next
child of the root, until there are no more children left. We think of (k + 1)-ary increasing
trees, where the empty places are represented by “exterior nodes”. Hence, at any time, any
(interior) node hask + 1 children, some of which may be exterior nodes. Between these
k edges going out from a node labelledv, we placek integersv. (Exterior nodes have no
children and no labels.) Now we perform the depth-first walk and code the(k + 1)-ary
increasing tree by the sequence of the labels visited as we goaround the tree (one may think
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of actually going around the tree like drawing the contour).In other words, we add labelv
to the code thek first times we return to nodev, but not the first time we arrive there or the
last time we return. A(k+ 1)-ary increasing tree of order 1 is encoded by1k. A (k+ 1)-ary
increasing tree of ordern is encoded by a string ofk · n integers, where each of the labels
1, . . . , n appears exactlyk times. In other words, the code is a permutation of the multiset
{1k, 2k, . . . , nk}. Note that for eachi, 1 ≤ i ≤ n, the elements occurring between the two
occurrences ofi are larger thani, since we can only visit nodes with higher labels. Hence the
code is ak-Stirling permutation. Moreover, adding a new noden+1 at one of thekn+1 free
positions (i.e., the positions occupied by exterior nodes)corresponds to inserting thek-tuple
(n + 1)k in the code at one ofkn + 1 gaps; note (e.g., by induction) that there is a bijection
between exterior nodes in the tree and gaps in the code. This shows that the code determines
the(k + 1)-ary increasing tree uniquely and that the coding is a bijection. See Figure 1 for
an illustration.

The inverse, starting with ak-Stirling permutationσ of ordern and constructing the cor-
responding(k + 1)-ary increasing tree can be described as follows. We proceedrecursively
starting at step one by decomposing the permutation asσ = σ11σ21 . . . σk1σk+1, where (af-
ter a proper relabelling) theσi’s are againk-Stirling permutations. Now the smallest label in
eachσi is attached to the root node labelled 1. We recursively applythis procedure to each
σi to obtain the tree representation. �

1

2

1 1

2 2

1

2

3

1 1

2 2

3 3

1

2

1 1

2 2

1

2

1 1

2 2
,

FIGURE 1. The three ternary trees of order2 encoded by 2211, 1221 and
1122; an order 3 ternary increasing tree encoded by the sequence 233211.

Now we relate the distribution ofj-ascents,j-descents andj-plateaux ink-Stirling permu-
tations with certain parameters in(k+1)-ary increasing trees. In order to do so we introduce
two kinds of parameters. The parameterDn,j, standing for “jth children” , counts the num-
ber of nodes in a random(k + 1)-ary increasing tree of ordern that are thejth children of
their respective parents, going from left to right, with1 ≤ j ≤ k + 1. Similarly, the param-
eterLn,j, standing for “leaves” of typej, counts the number of exterior nodes that arejth
children of their parents,1 ≤ j ≤ k + 1. We thus have

Ln,j = n−Dn,j, 1 ≤ j ≤ k + 1, (15)
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and, counting the total numbers of interior and exterior children,

k+1∑

j=1

Dn,j = n− 1,
k+1∑

j=1

Ln,j = kn + 1. (16)

Concerning the number of blocks ink-Stirling permutation, we introduce one more pa-
rameter in(k + 1)-ary increasing trees. LetLRn denote the number of (interior) nodes that
have the property that the path to the root consists exclusively of the leftmost or rightmost
possible edge at each node, i.e., the edge in position 1 ork + 1, and no other “inner” edges.
Subsequently, we will call such nodesleft-right nodes. The root is trivially a left-right node.

Theorem 2. Let k ≥ 1. Under the bijection in Theorem 1, the numbers ofj-ascentsXn,j,
j-descentsYn,j andj-plateauxZn,j in a k-Stirling permutation of ordern coincide with the
(shifted) numbers ofj-childrenDn,j, andj-leavesLn,j in a (k + 1)-ary increasing tree of
ordern by the formulas

Xn,j = Dn,j+1, 1 ≤ j ≤ k,

Yn,j = Dn,j, 1 ≤ j ≤ k,

Zn,j = Ln,j+1 = n−Dn,j+1, 1 ≤ j ≤ k − 1.

As a consequence, for the numbers of ascents, descents and plateaux,

Xn = n−Dn,1 = Ln,1,

Yn = n−Dn,k+1 = Ln,k+1,

Zn =
k∑

j=2

Ln,j.

Furthermore, the number of blocksSn in a k-Stirling permutations of ordern coincides with
the number of left-right nodes in the corresponding(k + 1)-ary increasing trees of ordern,

Sn = LRn. (17)

Proof. Using the stated bijection we observe that a(j + 1)-child, 1 ≤ j ≤ k, corresponds to
a j-ascent, since the step from the parent nodev to the(j+1)-child u corresponds to having
recordedj times the label of the parentv and then another labelw, with w ≥ u. Similar
considerations prove the results forj-descents andj-plateaux. The results forXn, Yn, Zn

then follow from (4)–(6) and (16).

Concerning the connection between blocks and left-right nodes we make the following
observation. Starting with a(k+1)-ary increasing tree, and inserting nodes one after another,
we note that only a leftmost or rightmost child leads to a new block in the correspondingk-
Stirling permutation. Hence, the number of left-right nodes is equal to the number of blocks,
since we start with a single block1k and a single left-right node (the root). �
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Remark 3. Note that the number of leaves in(k + 1)-ary increasing trees of ordern ≥ 2
corresponds to the number of locally maximal substringslk = l · · · l, i.e. substringsilkj,
with 0 ≤ i, j < l, for 2 ≤ l ≤ n, in k-Stirling permutations of ordern, which can also be
seen from the bijection.

Remark 4. In the casek = 2 we thus have the symmetric situation thatXn = Ln,1, Yn =
Ln,3 andZn = Ln,2, which by Theorem 8 below gives a new proof thatXn, Yn andZn have
the same distribution, and further are exchangeable, as shown by [6] and [18]. We see also
that this will not hold for largerk, see for example Theorem 9.

Fork = 2, Theorem 1 gives a bijection between Stirling permutation and ternary increas-
ing trees, while Janson [18] gives a bijection with plane recursive trees of ordern+1. (These
are related by a bijection given in Section 4.) Next we will show that also fork > 2, there
is a suitable family of generalized plane recursive trees that is closely related tok-Stirling
permutations.

Definition 1. For k ≥ 2, the family ofk-plane recursive treesis specified by the degree-
weight generating functionϕ(t) = (1− (k − 1)t)−

1
k−1 , i.e. it is the family of generalized

plane recursive trees withϕ0 = 1, c1 = k andc2 = −(k− 1). Explicitly, ϕd =
1
d!

∏d
l=1

(
(k−

1)(l − 1) + 1
)
. Consequently, by (13) and (14), the generating functionT (z) and the total

weightTn are given by

T (z) =
1

k − 1

(
1− (1− kz)

k−1
k

)
, Tn+1 =

n∏

l=1

(k(l − 1) + 1), with T1 = T2 = 1,

α = 1
k−1

, and the probability of attaching to nodev at stepi+1 is given byp(v) =
d(v)+ 1

k−1
ki

k−1
−1

.

Fork = 2, these are the plane recursive trees in Example 3.

Remark 5. We did not succeed in finding a bijective correspondence betweenk-Stirling
permutations andk-plane recursive trees, in the case ofk > 2, generalizing the bijection in
[18] for k = 2, since fork > 2 it seems difficult to obtain a combinatorial interpretationof
the weights of the trees. We leave this as an open problem. However, the distribution of the
leaves still coincides with the distribution of the number of ascents or descents.

Theorem 3. The number (total weight) ofk-plane recursive trees of ordern + 1 equals
the number ofk-Stirling permutations of ordern, Tn+1 = Qn. Moreover, the distribution
of the number̃Ln+1 of leaves ofk-plane recursive trees of ordern + 1 coincides with the
distribution of the numberXn of ascents (descents) ofk-Stirling permutations of ordern.

Proof. The first part is already shown.
The second part is trivial forn = 1, with one leaf and one ascent. We proceed by induction,

and suppose that the relation is true forn: L̃n+1
d
= Xn. We observe that adding the new node

labelledn + 2 to a leaf does not change the number of leaves, whereas addingthe new



STIRLING PERMUTATIONS, INCREASING TREES AND URN MODELS 11

node at any other place gives rise to a new leaf. Further, by the formula forp(v) above
with d(v)=0, the probability of adding noden + 2 to a given leaf in a tree of ordern + 1 is

p(v) =
1

k−1
k(n+1)
k−1

−1
= 1

kn+1
. Hence, conditioned on the number of leavesL̃n+1 beingm, we

haveL̃n+2 = m orm+ 1 with

P(L̃n+2 = m | L̃n+1 = m) =
m

kn + 1
. (18)

Similarly, when adding a string(n + 1)k to ak-Stirling permutation of ordern, we will
always create a new ascent, and we will destroy one if and onlyif we add the string at an
ascent. Since there arekn + 1 gaps where the new string can be added, conditioned on the
numberXn of ascents beingm, we haveXn+1 = m or m + 1 with P(Xn+2 = m | Xn+1 =

m) = m
kn+1

. This is the same relation as (18), and thusL̃n+2
d
= Xn+1, which verifies the

induction step. �

Remark 6. The distribution of the number of leaves is fairly well studied. LetT (z, v) =∑
n≥1 Tn,m

zn

n!
vm denote the bivariate generating function of the number ofk-plane recursive

trees having exactlym leaves, also encoding the numberk-Stirling permutations of order
n − 1 havingm descents. Bergeron et al. [3] determined the generating functionT (z, v) by
the implicit equation ∫ T

0

dt

(v − 1)ϕ0 + ϕ(t)
= z,

Note that the implicit equation is true for a much larger class of increasing trees; moreover
one may derive the normal limit of the number of leaves from the implicit equation above,
see [3].

3.2. k-bundled increasing trees andk-bundled Stirling permutations.

Definition 2. For k ≥ 0, the family of(k + 1)-bundled increasing treesis specified by the
degree-weight generating functionϕ(t) = 1

(1−t)k+1 , i.e. it is the family of generalized plane

recursive trees withϕ0 = 1, c1 = k + 2 andc2 = −1. Explicitly, ϕj =
(
k+j
j

)
. Consequently,

by (13) and (14), the generating functionT (z) and the total weightTn are given by

T (z) = 1− (1− (k + 2)z)
1

k+2 , Tn =

n−1∏

l=1

(l(k + 2)− 1),

α = k+1, and the the probability attaching to nodev at stepi+1 is given byp(v) = d(v)+k+1
(k+2)i−1

.

Remark 7. One may think of(k + 1)-bundled increasing trees of ordern as consisting
of a root node labelled1 which hask + 1 positions, with a (possibly empty) sequence of
labelled(k + 1)-bundled increasing trees attached to each position (with disjoint sets of
labels, forming a partition of{2, . . . , n}). Equivalently, one may think of each node as
havingk separation walls, which can be regarded as a special type of edges.
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Note that the1-bundled increasing trees are just ordinary plane recursive trees, cf. Exam-
ple 3, and that the bijection stated below also holds for thiscase, which corresponds to the
result of [18] thatBn(1) = Tn

∼= Qn−1(2), since obviouslyQn(0) ∼= Qn−1(2) by relabelling.

Theorem 4. The familyBn = Bn(k+ 1) of (k+ 1)-bundled increasing trees of ordern is in
a natural bijection withk-bundled Stirling permutations,Bn(k + 1) ∼= Qn(k).

Proof. We proceed as before using a depth-first walk. We label each auxilliary separation
wall of a node labelledv by the label of the nodev. Moreover, we label any (proper) edge by
the label of the child. Hence, at any time, any node has at least k outgoing edges, thinking
of the walls as a special type of edges. Now we perform the depth-first walk and code
thek-bundled increasing tree by the sequence of the labels visited on the edges, under the
additional rule that a label on a separation wall only contributes once. Since every proper
edge is traversed twice, and every label except 1 occurs on exactly one proper edge, a(k+1)-
bundled increasing tree of ordern is encoded by a string of(k+2)(n−1)+k integers, where
each of the labels2, . . . , n appears exactlyk + 2 times and label1 appearsk times. In other
words, the code is a permutation of the multiset{1k, 2k+2, . . . , nk+2}. Note that for each
i, 1 ≤ i ≤ n, the elements occurring between the two occurrences ofi are larger thani,
since we can only visit nodes with higher labels. Hence the code is ak-bundled Stirling
permutation. Moreover, adding a new noden + 1 at one of the(k + 2)(n − 1) + k + 1
possible places corresponds to inserting the(k + 2)-tuple(n + 1)k+2 in the code, at one of
(k + 2)(n − 1) + k + 1 possible places. This shows that the code determines the(k + 1)-
bundled increasing tree uniquely and that the coding is a bijection. See Figure 2 for an
illustration. �
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FIGURE 2. The two 2-bundled increasing trees of order2 encoded by 2221,
1222; Three 2-bundled increasing trees of order3 encoded by the sequences
2333221, 3331222 and 3332221.

Next we relate the distribution of ascents, descents and plateaux ink-bundled Stirling
permutations with certain parameters in(k + 1)-bundled increasing trees. In order to do so
we introduce three parameters for a(k + 1)-bundled increasing treeτ . The parameterBA

counts the number of ascents in the bundles ofτ , plus the number of non-empty bundles,
plus 1 if the first bundle of the root is empty, where an ascent in a bundle occurs if the root of
a subtree is smaller then the root of the next subtree, going from left to right. The parameter
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BD counts the number descents in the bundles ofτ , plus the number of non-empty bundles,
plus 1 if the last bundle of the root is empty, where a descent in a bundle occurs if the root
of subtree is larger then its neighbour. The numberBE counts the number of empty bundles
of the nodes with labels larger than one plus the number of empty inner bundles of the root.
With these definitions, the following correspondences are straightforward.

Theorem 5.Under the bijection in Theorem 4, the numbers of ascents, descents and plateaux
in a k-bundled Stirling permutation of ordern coincide with the parametersBA, BD andBE

in a (k + 1)-bundled increasing tree of ordern.

Remark 8. Note that the number of leaves in(k + 1)-bundled increasing trees of ordern
corresponds to the number of sequences of the formlk+2 = l · · · l, with 2 ≤ l ≤ n, in
k-bundled Stirling permutations of ordern, as fork-ary increasing trees. Moreover, the
parameter “number of descendants of nodej” in a (k + 1)-bundled increasing tree of order
n, with 2 ≤ j ≤ n, counts the number of different entriesl with j < l ≤ n between the first
and the last occurrence ofj in the correspondingk-bundled Stirling permutation of ordern.

4. FURTHER BIJECTIONS

The bijections of Theorem 1 (withk = 2) and [18] (or Theorem 4 withk = 0) imply a
bijection between ordinary plane recursive trees of ordern + 1 and ternary increasing trees
of ordern, using the connections to2-Stirling permutations. In the following we will give
two direct bijections, which both encompass this bijectionbetween plane recursive trees and
ternary increasing trees.

First we give a bijection between sequences ofk-bundled increasing trees and(k+2)-ary
increasing trees, which fork = 1 just gives the desired bijection.

Let SEQ(B)n = SEQ(B)n(k) denote the family of sequences ofk-bundled increasing
trees with total ordern, labelled with disjoint sets of labels forming a partition of {1, . . . , n}.
(Note that our notation slightly abuses the common sequencenotation SEQ of combinatorial
objects, since we also assume properly distributed labels.)

Remark 9. By introducing a new root labelled 0, connecting all roots ofthe sequence with
the new root, and performing a proper relabelling, SEQ(B)n is in bijection with the family
of increasing plane trees of ordern + 1 where each node except the root isk-bundled as in
Definition 2. (Equivalently, SEQ(B)n is in bijection with the family ofk-bundled increasing
trees of ordern + 1 where the root has only the first bundle non-empty.)

Theorem 6. The familySEQ(B)n = SEQ(B)n(k) of sequences ofk-bundled increasing
trees of total ordern is in bijection withAn(k+2), the family of(k+2)-ary increasing trees
of ordern: SEQ(B)n(k) ∼= An(k + 2).

Remark 10. Recall that1-bundled increasing trees are exactly plane recursive trees. More-
over, in the case ofk = 1, the bijection in Remark 9 is the standard bijection between
sequences of plane recursive trees of total ordern and plane recursive trees of ordern + 1;
hence SEQ(B)n(1) ∼= Tn+1. See Figure 3 for an illustration. It is easily seen that, fork = 1,
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the bijectionTn+1
∼= SEQ(B)n(1) ∼= An(3) constructed in the proof below yields the corre-

spondence between the two bijectionsAn(3) ∼= Qn(2) in Theorem 1 andTn+1
∼= Qn(2) in

[18] orBn+1(1) ∼= Qn+1(0) ∼= Qn(2) in Theorem 4.

Proof. We use a recursive construction, see Figure 3. For a given sequence ofk-bundled
increasing trees, we choose in the first step the tree of the sequence with node labelled 1: this
node is going be the root of the(k + 2)-ary increasing tree. Since a(k + 2)-ary increasing
trees hask+2 (possibly empty) subtreesS1, . . . , Sk+2, going from left to right, we proceed as
follows. The sequence ofk-bundled increasing trees to the left of the tree with root1 forms
(recursively) the subtreeS1, conversely the sequence ofk-bundled increasing trees to the
right of the tree with root1 forms the subtreeSk+2. Thek bundles, possibly empty, attached
to the tree with root labelled1, form the subtreesS2, . . . , Sk+1 of the(k + 2)-ary increasing
tree. Now we can proceed recursively, since the bundles are themselves just sequences of
k-bundled increasing trees.

Conversely, starting with a(k + 2)-ary increasing tree of ordern, we recursively build
a sequence ofk-bundled increasing trees as follows. In the first step we build a tree with
root node labelled 1. The sequence to the left of the tree withroot labelled 1 is built from
the subtreeS1 of the (k + 2)-ary increasing tree of ordern, the sequence on the right from
the subtreeSk+2, and thek bundles are built from the subtreesS2, . . . , Sk+1. We proceed
recursively until the sequence is constructed. Note that during this process, we connect any
leftmost or rightmost child of a nodev to the same parent asv. �
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FIGURE 3. A sequence of 1-bundled increasing trees of order 10, or equiv-
alently a plane recursive tree of order 11, and the corresponding ternary in-
creasing tree of order 10.

Next we consider a bijection betweenk-bundled increasing trees and so-calledFk,k+2-
increasing trees. The family ofFk,k+2-increasing trees consists of modified(k + 2)-ary
increasing trees: any node except the root of aFk,k+2-increasing tree hask + 2 labelled
positions where children may be attached, whereas the root has onlyk positions (and thus
outdegree bounded byk). Note that fork = 1, the root has a single child and that chopping
off the root yields a simple bijection betweenF1,3-increasing trees of ordern+1 and ternary
increasing trees of ordern. Thus the statement below implies fork = 1 a bijection between
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ternary increasing trees and plane recursive trees,An(3) ∼= Bn+1(1) = Tn+1, which is just
the bijection discussed in Remark 10.

Theorem 7. The familyFn = Fn(k) of Fk,k+2-increasing trees of ordern, is in bijection
with the family ofk-bundled increasing trees of ordern, Fn(k) ∼= Bn(k), k ≥ 1.

Proof. For a givenk-bundled increasing tree of ordern, we simply applyk times the bi-
jection between sequences ofk-bundled increasing trees and(k + 2)-ary increasing trees to
the k bundles attached to the root and thek positions of the root of theFk,k+2-increasing
tree. �

Remark 11. To give an overview, we have provided the following bijections in Theo-
rems 1, 4, 6 and 7.

An(k + 1) ∼=
{
Qn(k),

SEQ(B)n(k − 1),
Bn(k + 1) ∼=

{
Qn(k),

Fn(k + 1).

It is also possibly to give bijectionsQn(k) ∼= SEQ(B)n(k − 1) andQn(k) ∼= Fn(k + 1), by
simple modifications of the stated bijections.

Remark 12. The families SEQ(B)(k) of sequencesk-bundled increasing trees andF(k) of
Fk,k+2-increasing trees are non-standard in the sense that they are not part of the character-
ization given by Panholzer and Prodinger [21]. However, thecounting problem concerning
such tree families can be treated in a general manner, which will be discussed elsewhere.

5. THE DISTRIBUTION OFj-ASCENTS, j-DESCENTS ANDj-PLATEAUX

We are interested in the joint asymptotic distribution ofj-ascentsXn,j, j-descentsYn,j

andj-plateauxZn,j in a k-Stirling permutations of ordern, or equivalently in the joint dis-
tribution of j-childrenDn,j andj-leavesLn,j+1 in (k + 1)-ary increasing trees of ordern.
Following Janson [18] we use a (generalized) Pólya urn model, see [15].

5.1. An urn model for the exterior leaves. Since we already know from (15) thatn −
Dn,j = Ln,j, we can restrict ourselves to the study of the exterior nodes. We will use the
following urn model.

Urn I. Consider an urn with balls ofk+1 colours, and let(Ln,1, . . . , Ln,k+1) be the number
of balls of each colour at timen. At each time step, draw one ball at random from the urn,
discard it, and add one new ball of each colour. Start with(L1,1, . . . , L1,k+1) = (1, 1, . . . , 1).
Note that the vector(Ln,1, . . . , Ln,k+1) exactlycoincides (in distribution) with the numbers
of the exterior nodes of types1, . . . , k + 1 in a random(k + 1)-ary increasing tree, see
Section 3.1.

Urn I is completely symmetric in thek + 1 colours, and we thus immediately see the
following.
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Theorem 8. For eachn ≥ 1, the distribution of(Ln,1, . . . , Ln,k+1) is exchangeable, i.e.,
invariant under any permutation of thek + 1 variables.

It is customary and convenient to formulate generalized Pólya urns using drawings with
replacement. In the case of Urn I, we thus restate the description above and say instead that
we draw a ball and replace it together with one ball each of thek other colours. In other
words, Urn I is described by the(k + 1)× (k + 1) replacement matrix

A = (1− δi,j)1≤i,j≤k+1 =




0 1 1 · · · 1 1 1
1 0 1

. . . . . . . . . 1
1 1 0

. . . . . . . . . 1...
. . . . . . . . . . . . . . .

...
1

. . . . . . . . . 0 1 1
1

. . . . . . . . . 1 0 1
1 1 1 · · · 1 1 0




,

whereδi,j denotes the Kronecker delta.

5.2. Means. By Theorem 8, the variablesLn,j, j = 1, . . . , k + 1, have the same mean,
and since their sum iskn + 1 by (16), we see that they each have meankn+1

k+1
. By (15) and

Theorem 2, we obtain the following exact formulas for the means.

Theorem 9. The following hold, forn ≥ 1 andk ≥ 1:

ELn,j =
kn+ 1

k + 1
, 1 ≤ j ≤ k + 1,

EDn,j =
n− 1

k + 1
, 1 ≤ j ≤ k + 1,

EXn,j = EYn,j =
n− 1

k + 1
, 1 ≤ j ≤ k,

EZn,j =
kn+ 1

k + 1
, 1 ≤ j ≤ k − 1,

EXn = EYn =
kn+ 1

k + 1
,

EZn = (k − 1)
kn + 1

k + 1
.

5.3. Asymptotic distribution of j-ascents,j-descents andj-plateaux. We use the urn
model Urn I to obtain asymptotic normality. We begin with a general result.

Theorem 10. Consider an urn with balls ofq ≥ 2 colours, where at each step one ball is
drawn at random and discarded, and one ball of each colour is added. IfNn,j is the number
of balls of colourj aftern steps, then, for any initial valuesN0,1, . . . , N0,q,

Nn,j − q−1
q
n

√
n

(d)−→ ζj,
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jointly for j = 1, . . . , q, whereζj are jointly normal random variables with means0 and
(co)variances

Cov(ζi, ζj) =
q − 1

q2(q + 1)
(qδi,j − 1), 1 ≤ i, j ≤ q.

Note that
∑q

1 ζj = 0, for example because
∑

j Nn,j is deterministic.

Proof. This urn has replacement matrixA = (1 − δi,j)
q
i,j=1 = (1)qi,j=1 − I. Since the rank

1 matrix (1)qi,j=1 has one eigenvalueq and q − 1 eigenvalues 0,A has largest eigenvalue
λ1 = q − 1 andq − 1 eigenvalues−1. Theorem 3.22 in [15] applies, withv1 = (1

q
, . . . , 1

q
),

and shows joint convergence (in distribution) to normal variablesζj with mean 0 and a certain
covariance matrixΣ. The formula forΣ in [15, Theorem 3.22] is complicated, so we use
[15, Lemma 5.4], witha = (ai)

q
1 = (1)q1 andm = λ1 = q − 1, which yieldsΣ = mΣI , with

ΣI defined in [15, (2.15)]. Hereξi = (ξi,j)
q
j=1 = (1 − δi,j)

q
j=1, Bi = (ξi,jξi,l)

q
j,l=1, v1i = 1/q

and, using the symmetry,B = (bij)
q
i,j=1 with bi,i = q−1

q
and bi,j = q−2

q
, i 6= j; hence

B = q−2
q
A+ q−1

q
I. Further,PI is the projection onto the eigenspace ofA for the eigenvalue

−1, and thusPI =
(q−1)I−A

q
. Further, on this eigenspaceA = −I and thusB = 1

q
I, and [15,

(2.15)] yields, noting that all involved matrices are symmetric and commute,

ΣI =

∫ ∞

0

PIe
sABesA

′

P ′
Ie

−λ1s ds =
1

q
PI

∫ ∞

0

e−s−s−(q−1)s ds =
1

q(q + 1)
PI

=
(q − 1)I −A

q2(q + 1)
=

(
qδi,j − 1

q2(q + 1)

)q

i,j=1

.

Recalling thatΣ = mΣI = (q − 1)ΣI , we obtain the result. �

Remark 13. Similar calculations show, more generally, that if we at each step add a fixed
numbersi balls of colouri, i = 1, . . . , q, independently of the colour of the drawn and

discarded ball, thenn−1/2
(
Nn,i −

P

l sl−1
P

l sl
sin

) (d)−→ ζi, jointly, whereζi are jointly normal
variables with means0 and

Cov(ζi, ζj) =

∑
l sl − 1∑
l sl + 1

(
si∑
l sl

δi,j −
sisj

(
∑

l sl)
2

)
.

As an example, the numbersXn, Yn andZn of ascents, descents and plateaux in a randomk-
Stirling permutation can be seen as such an urn with replacement vector(1, 1, k− 1), which
yields an alternative proof of the limit distribution foundabove for them.

We apply Theorem 10, withq = k + 1, to Urn I and obtain using (15) and Theorem 2 the
following.

Theorem 11. Let k ≥ 1 and letζj, j = 1, . . . , k + 1, be jointly normal random variables
with means0 and (co)variances

Cov(ζi, ζj) =
k

(k + 1)2(k + 2)
((k + 1)δi,j − 1), 1 ≤ i, j ≤ k + 1,
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in particularVar(ζj) = k2

(k+1)2(k+2)
. Note that this implies

∑k+1
j=1 ζj = 0. Then, the following

holds, jointly for all variables,

Ln,j − k
k+1

n
√
n

(d)−→ ζj, 1 ≤ j ≤ k + 1,

Dn,j − 1
k+1

n
√
n

(d)−→ −ζj, 1 ≤ j ≤ k + 1,

Xn,j − 1
k+1

n
√
n

(d)−→ ξj := −ζj+1, 1 ≤ j ≤ k,

Yn,j − 1
k+1

n
√
n

(d)−→ ηj := −ζj, 1 ≤ j ≤ k,

Zn,j − k
k+1

n
√
n

(d)−→ ζj+1, 1 ≤ j ≤ k − 1,

Xn − k
k+1

n
√
n

(d)−→ ξ := ζ1,

Yn − k
k+1

n
√
n

(d)−→ η := ζk+1,

Zn − k(k−1)
k+1

n
√
n

(d)−→ ζ :=

k∑

j=2

ζj = −ξ − η.

A simple calculation shows that the covariance matrix of(ξ, η, ζ) is (cf. Remark 13)



k2

(k+1)2(k+2)
− k

(k+1)2(k+2)
− k(k−1)

(k+1)2(k+2)

− k
(k+1)2(k+2)

k2

(k+1)2(k+2)
− k(k−1)

(k+1)2(k+2)

− k(k−1)
(k+1)2(k+2)

− k(k−1)
(k+1)2(k+2)

2k(k−1)
(k+1)2(k+2)


 .

Fork = 2, this yields the univariate limit theorems by Bona [6] and the multivariate limit
theorem by Janson [18] forXn, Yn, Zn.

Fork = 1, the result forXn or Yn reduces to the classical result on the asymptotics of the
number of ascents or descents in a random permutation. (In this caseZn = 0.)

6. THE DISTRIBUTION OF THE NUMBER OF BLOCKS

The numberSn of blocks in a randomk-Stirling permutation is described by another urn
model.

Urn II. This urn has balls of two colours, black and white. At each time step, draw a ball at
random from the urn, replace it and addk further balls: if the drawn ball was black, addk
black balls; if the drawn ball was white, add 1 white ball andk− 1 black. LetBn andWn be
the numbers of black and white balls in the urn at timen, and start withWn = 2,Bn = k−1.
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We thus haveBn +Wn = kn + 1 balls in the urn at timen, and it is easily seen that the
number of white balls can be interpreted as the number of gapsbetween the blocks, or first or
last, in a randomk-Stirling permutation of ordern, i.e. as the number of gaps where addition
of a string(n+1)k create a new block. This is one more than the number of blocks,and thus
we have the equality in distribution

Sn
d
= Wn − 1. (19)

Urn II is thus a2 × 2 generalized Pólya urn with ball replacement matrixM =
(

k 0
k−1 1

)
.

This urn model is a special case of the triangular2× 2 urn models analysed in detail by Jan-
son [17], where the asymptotic distribution is given. The special case of balanced triangular
2 × 2 urn models was also studied by Flajolet et al. [12]. (An urn iscalled balanced if the
total number of added balls is constant, independently of the observed color.) For the special
case treated here we can add the exact distribution using thetree representation, the moments
of Sn, and almost sure convergence.

Theorem 12.The probability mass function of the random variableSn counting the number
of blocks in a randomk-Stirling permutation of ordern is given by

P{Sn = m} =

m∑

ℓ=0

(
m

l

)
(−1)ℓ

(
n− ℓ

k
−1

n

)
(
n+ 1

k
−1

n

) , 1 ≤ m ≤ n.

The binomial momentsE
(
Sn+r

r

)
are given by the explicit formula

E

(
Sn + r

r

)
=

(
n−1+ r+1

k
n

)
(
n−1+ 1

k
n

) = (r + 1)

(
n−1+ r+1

k
n−1

)
(
n−1+ 1

k
n−1

) , r = 1, 2, . . .

The random variableSn :=
(n−1+ 1

k
n−1 )

(n−1+ 2
k

n−1 )
(Sn + 1) is a positive martingale and converges almost

surely to a limitζ̃, i.e.Sn
(a.s.)−−−→ ζ̃, further

n−1/kSn
(a.s.)−−−→ ζ =

Γ(1 + 1
k
)

Γ(1 + 2
k
)
ζ̃ .

The limitsζ̃ andζ can be specified by the moments

E(ζr) = (r + 1)!
Γ(1 + 1

k
)

Γ(1 + r+1
k
)
, r ≥ 0.

Further,ζ has a density functionf(x) that can be written asf(x) = Γ( 1
k
)x−kg(x−k), x > 0,

whereg is the density function of a positive1
k
-stable distribution with Laplace transform

e−λ1/k
; it is thus given by the series expansion

f(x) =
Γ( 1

k
)

π

∞∑

j=1

(−1)j−1Γ(
j
k
+ 1) sin jπ

k

j!
xj , x > 0.
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Remark 14. The simple structure of the binomial moments and the almost sure convergence
is actually true for all balanced triangular urns of the formM =

(
α 0

β−α β

)
, 0 < α < β, which

is easily seen to be true by extending the martingale arguments to thie general case.

Proof. We use three different approaches to study the block structureSn in k-Stirling permu-
tations or equivalently the number of left-right edgesLRn in (k+1)-ary increasing trees, see
(17). In order to obtain the explicit results for the probability distribution ofSn, we analyze
LRn. We can use the tree decomposition (10) in order to obtain thedifferential equation

∂

∂z
T (z, v) = v(1 + T (z, v))2(1 + T (z))k−1, T (0, v) = 0,

whereT (z, v) =
∑

n≥1

∑
m≥1 P{Sn = m}Tn

zn

n!
vm denotes the bivariate generating function

of the numbersP{Sn = m}Tn, andT (z) = T (z, 1) is the generating function of total
weights of(k + 1)-ary increasing trees. By Example 4,1 + T (z) = (1 − kz)−1/k. Solving
the differential equation and adapting to the initial condition gives the solution

T (z, v) =
1

1− v
(
1− (1− kz)1/k

) − 1.

Extraction of coefficients gives then the stated result for the probability mass function. More-
over, the stated binomial moments may be obtained from the generating function by extract-
ing coefficients,

E

(
Sn + r

r

)
=

n!

Tn
[znwr]

1

1− w
T
(
z,

1

1− w

)
.

For the almost sure convergence we proceed as follows. LetWn = Sn + 1 be the number
of gaps between blocks, or, equivalently, the number of white balls in Urn II, see (19). LetFn

denote theσ-field generated by the firstn steps. Moreover denote by∆n = Wn −Wn−1 =
Sn − Sn−1 ∈ {0, 1} the increment at stepn. We have

E(Wn | Fn−1) = E(Wn−1 +∆n | Fn−1) = Wn−1 + E(∆n | Fn−1).

Since the probability that a new white ball is generated at stepn is proportional to the number
of existing white balls (at stepn− 1), we obtain further

E(Wn | Fn−1) = Wn−1 +
Wn−1

k(n− 1) + 1
=

k(n− 1) + 2

k(n− 1) + 1
Wn−1, n ≥ 2.

Hence,

E(Sn | Fn−1) =

(
n−1+ 1

k
n−1

)
(
n−1+ 2

k
n−1

)
k(n− 1) + 2

k(n− 1) + 1
Wn−1 = Sn−1, n ≥ 2.

Hence,Sn is a martingale. Since it is a positive martingale, it converges almost surely to
a limit ζ̃. By the well-known asymptotic formula

(
n+a
n

)
∼ na/Γ(a + 1), for any fixed real

a, Sn ∼ Γ(1+ 2
k
)

Γ(1+ 1
k
)
n−1/kSn (providedSn → ∞), and thusSn

(a.s.)−−−→ ζ̃ can also be written

n−1/kSn
(a.s.)−−−→ ζ .
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More generally, we similarly have for any positive integerr

E

((
Sn + r

r

) ∣∣∣∣ Fn−1

)
=

(
Sn−1 + r

r

)
+

(
Sn−1 + r

r − 1

)
Sn−1 + 1

k(n− 1) + 1

=

(
Sn−1 + r

r

)
n− 1 + r+1

k

n− 1 + 1
k

.

Hence,
(
Sn+r

r

) (n−1+ 1
k

n−1 )

(n−1+ r+1
k

n−1 )
is a martingale, which also leads to the stated result for themoments

in an alternative way, using the recurrence relation for theunconditional expectation.
Lettingn → ∞ in the moment formula yields

E

(
Sn + r

r

)
= (r + 1)

(
n−1+ r+1

k
n−1

)
(
n−1+ 1

k
n−1

) ∼ (r + 1)
Γ(1 + 1

k
)

Γ(1 + r+1
k
)
nr/k

which leads toESr
n ∼ (r+1)!

Γ(1+ 1
k
)

Γ(1+ r+1
k

)
nr/k. Hence all moments ofn−1/kSn converge, and the

limits must be the moments ofζ . Lettingr → ∞, we see that the moments do not grow too
fast so that the moment generating functionEetζ is finite for all t, and thus the distribution is
determined by the moments.

Finally, we use the general results for urn models in Janson [17]. First, [17, Theorem

1.3(v)] yields the convergenceWn
(d)−→ ζ in distribution, and [17, Theorem 1.7] yields the

moments ofζ that we just derived in a different way; note however that [17, Theorem 1.7]
yields the formula above also for non-integerr ≥ 0, with the standard interpretation(r +
1)! = Γ(r + 2). Furthermore, [17, Theorem 1.8] shows thatζ has a density and gives the
explicit formulas stated above. �

7. THE SIZES OF THE BLOCKS

Recall that every block in ak-Stirling permutation begins and ends with the same label,
which we can regard as a label of the block. We order the blocksin the block decomposition
asK̃1, . . . , K̃s according to this label (wheres is the number of blocks); thus̃K1 is the block
extending from the first 1 to the last,̃K2 is the block formed by the smallest label not inK̃1,
and so on. We also let̃Ki := |K̃i| denote the size of theith block in this order, and put
K̃i = ∅, K̃i = 0 for i > s.

Alternatively, we may order the blocks according to decreasing size. We letK1 ≥ K2 ≥
. . . be the sizes of the blocks in this order, again withKi = 0 for i > s. Thus,(Ki)

∞
1 is the

decreasing rearrangement of(K̃i)
∞
1 .

For a randomk-Stirling permutation of ordern, we use the notations̃Kn,i, K̃n,i andKn,i.
Note that

∑
i K̃n,i =

∑
i Kn,i = kn.

To study these sizes we introduce another urn model. Consider first an urn with balls of
two colours,K̃n,1−1 white balls representing the gaps inside the blockK̃n,1 andnk+2−K̃n,1
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black balls representing the gaps outside. Adding the string (n+1)k at one of the gaps inside
K̃n,1 means increasing̃Kn,1 by k, and adding it outside means keeping̃Kn,1 unchanged;
hence this is a Pólya urn of the original type considered by Eggenberger and Pólya [11],
[28], where we draw a ball at random and replace it together with k balls of the same colour.
We start withK̃1,1 = k, and thusk − 1 white and 2 black balls.

Next, let us study the second block,K̃n,2. At the firstn where this is non-empty, we have
k + 2 gaps outside the first block̃Kn,1, k − 1 of them inK̃n,2 and 3 outside both blocks. Let
us now ignore the first block and consider an urn withK̃n,2 − 1 white balls representing the
gaps inK̃n,2 and black balls representing the gaps outside bothK̃n,1 andK̃n,2. The balls in
this urn are drawn at random times (when we do not add to a gap inK̃n,1), but when they are
drawn, the urn behaves exactly as forK̃n,1: we replace the drawn ball together withk of the
same colour.

The same argument applies tõKn,m for anym ≥ 2; if we ignore the preceding blocks and
additions to them, we have the same Pólya urn again, but now started withm+1 black balls,
representing the gaps outside the firstm blocks. We hence make the following definition.

Urn III. This is the standard Pólya urn with balls of two colours and where each drawn ball
is replaced together withk balls of the same colour. Let Urn IIIm be the version where we
start withk − 1 white andm+ 1 black balls, and letWN,m andBN,m denote the numbers of
white and black balls afterN − 1 draws, when the urn containsWN,m + BN,m = kN +m
balls.

We can thus identify (with the urns Urn III1, Urn III2, . . . independent), recalling that the
balls in urn Urn IIIm+1 correspond to the black balls in urn Urn IIIm,

K̃n,1 = Wn,1 + 1,

K̃n,2 = WN2,2 + 1, with kN2 + 2 = Bn,1,

K̃n,3 = WN3,3 + 1, with kN3 + 3 = BN2,1,

and so on.

Theorem 13. There exists a sequence of independent beta distributed random variables
βm ∼ Beta(k−1

k
, m+1

k
) such that

1

kn
(K̃n,1, K̃n,2, . . . )

(a.s.)−−−→ (β1, (1− β1)β2, (1− β1)(1− β2)β3, . . . ). (20)

Proof. The basic limit theorem for Pólya urns says that, asN → ∞,

WN,m

kN

(a.s.)−−−→ βm ∼ Beta
(k − 1

k
,
m+ 1

k

)
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and thusBN,m

kN

(a.s.)−−−→ 1 − βm. (This is already in Pólya [28] for convergence in distribution.
See, for example, [19] or [17, Section 11].) Consequently,

K̃n,1

kn
=

Wn,1 + 1

kn

(a.s.)−−−→ β1,

K̃n,2

kn
=

Bn,1

kn
· WN2,2 + 1

kN2 + 2

(a.s.)−−−→ (1− β1)β2,

and so on. �

Note that both sides of (20) are elements ofP, the space of non-negative sequences(pi)
∞
1

with
∑

i pi = 1; P can be seen as the space of probability distributions onN. The conver-
gence in the proof above was componentwise, i.e. in the product topology, but it is well-
known (and easy to verify) that onP, this topology is equivalent to theℓ1-topology with
the metricd((pi), (p′i)) =

∑
i |pi − p′i|, and also to the usual weak topology of probability

distributions; hence the theorem holds for any of these topologies.

Let Ṽi = βi

∏i−1
j=1(1 − βj) be the elements of the limit sequence in (20), and let(Vi)

∞
1

denote the decreasing rearrangements of them. The distribution of this random element ofP
is denotedPD( 1

k
, 1
k
), see Pitman and Yor [27] or Bertoin [4].

Taking the decreasing rearrangement is a continuous operation onP, and thus we imme-
diately obtain from Theorem 13 the following.

Theorem 14.
1

kn
(Kn,1, Kn,2, . . . )

(a.s.)−−−→ (V1, V2, . . . ) ∼ PD
(1
k
,
1

k

)
. (21)

Corollary 1. The largest block size has the limit

Kn,1

kn

(a.s.)−−−→ V1 = max
i≥1

Ṽi.

Remark 15. These results can be compared with the classical result thatthe lengths of the
cycles in a random permutation, arranged in decreasing order and divided by the size of the
permutation, converge (in distribution) toPD(1) = PD(0, 1), see e.g. [2, Sections 5.5 and
5.7].

Remark 16. For k = 2 we obtain in Theorem 14 the limit distributionPD(1
2
, 1
2
) which

arises in other contexts too: it is the distribution of the sequence of excursion lengths in a
Brownian bridge [26], [25], [1], [27] (for a related characterization fork > 2 see [27]) and it
is the asymptotic distribution of the sizes of the tree components in a random mapping, see
[29] and [1]. It is an interesting problem to see whether there are more direct relations with
these objects.
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MARKUS KUBA , INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE, TECHNISCHE UNIVER-
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VERSITÄT WIEN, WIEDNER HAUPTSTR. 8-10/104, 1040 WIEN, AUSTRIA

E-mail address: Alois.Panholzer@tuwien.ac.at


	1. Introduction
	2. Preliminaries
	2.1. Generalized Stirling permutations
	2.2. Generalized plane recursive trees and d-ary increasing trees

	3. Increasing trees associated to generalized Stirling permutations
	3.1. (k+1)-ary increasing trees, k-plane recursive trees and k-Stirling permutations
	3.2. k-bundled increasing trees and k-bundled Stirling permutations

	4. Further bijections
	5. The distribution of j-ascents, j-descents and j-plateaux
	5.1. An urn model for the exterior leaves
	5.2. Means
	5.3. Asymptotic distribution of j-ascents, j-descents and j-plateaux

	6. The distribution of the number of blocks
	7. The sizes of the blocks
	References

