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GENERALIZED STIRLING PERMUTATIONS, FAMILIES OF INCREASIN G
TREES AND URN MODELS

SVANTE JANSON, MARKUS KUBA, AND ALOIS PANHOLZER

ABSTRACT. Bona[6] studied the distribution of ascents, plateauxdestents in the class of
Stirling permutations, introduced by Gessel and Stanldy. [Recently, Jansohn [18] showed
the connection between Stirling permutations and plangsaé@ trees and proved a joint nor-
mal law for the parameters considered by Bona. Here we wilkitier generalized Stirling
permutations extending the earlier results of [6]][18]] aslate them with certain families
of generalized plane recursive trees, and éks¢ 1)-ary increasing trees. We also give two
different bijections between certain families of increasirees, which both give as a special
case a bijection between ternary increasing trees and péaesive trees. In order to de-
scribe the (asymptotic) behaviour of the parameters ofésts, we study three (generalized)
Polya urn models using various methods.

1. INTRODUCTION

Stirling permutations were defined by Gessel and Stahlely M &tirling permutation is a
permutation of the multis€tl, 1,2, 2, ..., n,n} such that for each 1 < i < n, the elements
occuring between the two occurences afe larger tham. The name of these combinatorial
objects is due to relations with the Stirling numbers, 5& fdr details.

Let 0 = ajay---ay, be a Stirling permutation. Let the indéxor the gap(i,i + 1))
be called an ascent af if i = 0 ora; < a;41, leti be called a descent of if i = 2n
or a; > a;y1, and leti be called a plateau of if a; = a;,1. (It is convenient to define
ap = as,y1 = 0; this takes care of the special cases 0 and: = 2n.) Note thati runs from
0 to 2n, so the total number of ascents, descents and plate&ux-sl. Let Q,, denote the
set of Stirling permutation of1,1,2,2,...,n,n}; we say that these have orderBona [6]
showed that the parameters numbers of ascents, descemiateailix are equidistributed on
Q... Moreover, he showed a central limit theorem for the threaipaters.

A rooted tree of order. with the vertices labelled, 2, . . ., n, is an increasing tree if the
node labelled 1 is distinguished as the root, and for @ashkt < n, the labels of the nodes
in the unique path from the root to the node labelietbrm an increasing sequence. We
will consider several families of increasing trees. Thet finse is the family ofincreasing
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plane treesusually calledplane recursive treesvhere the children of a node are ordered
(from left to right, say). Note that plane recursive treeappear in literature under the
names plane-oriented recursive trees, heap-ordered tmeg@sometimes also as scale-free
trees. Further families will be defined later.

Let 7, denote the set of plane recursive trees witliertices. It was shown by Janson
[18] that plane recursive trees ant 1 vertices are in bijection with Stirling permutations on
{1,1,2,2,...,n,n}, T,.1 = Q,. Moreover, using this bijective correspondence, he showed
that the number of descents in the Stirling permutationesponds to the number of leaves
in the associated plane recursive tree. Furthermore, @ingn model and general theo-
rems, see [15] and alsb [16], Janson showed the joint nayr@lithe parameters ascent,
descent and plateau. The purpose of this work is to extesatminection between Stirling
permutations and plane recursive trees in Jansadn [18],rtergkzed Stirling permutations.
In particular, we give a bijection between Stirling perntigias on{1* 2% ... n*}, where
here and throughout this woik := 1, ..., 1, with [ > 1, which we callk-Stirling permuta-

l
tions, and(k + 1)-ary increasing trees; moreover we can also retaBtirling permutations
with a certain family of plane recursive trees, namelglane recursive trees. Concerning
Stirling permutations of the multisgt*, 2¢+2 ... n**+2} which we callk-bundled Stirling
permutations, we obtain a bijection with certain geneegliplane recursive trees, namely
k-bundled increasing trees. We also give two different liges between certain families
of increasing trees, which both give as a special case aibijeloetween ternary increasing
trees and plane oriented increasing trees. Moreover, weaisel several different methods,
combinatorial and probabilistic, to derive several resinltthis direction. More precisely, in
order to describe the (asymptotic) behaviour of the pararaeif interests, we study three
(generalized) Polya urn models.

The parametet: is fixed throughout the paper, and often omitted from the trmta All
unspecified limits are as — oo. In the results with a.s. convergence, we assume that the
randomk-Stirling permutation grows in the natural way by randomiadd of new labels;
in the other results, this does not matter.

2. PRELIMINARIES

2.1. Generalized Stirling permutations. A straightforward generalization of Stirling per-

mutations on the multisdtl, 1,2, 2, ..., n,n} is to consider permutations of a more general
multiset {1%1,2%2 . nk=} with k; € N for 1 < i < n. We call a permutation of the
multiset{1*1, 2k2 ... nk~} ageneralized Stirling permutatioif for eachi, 1 < i < n, the

elements occurring between two occurrencesast at least. (In other words, the elements
occurring between two consecutive occurrences are larger than.) Such permutations
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have already previously been considered by Brenti [7], T8Ble number of generalized Stir-
ling permutations of 151, 2%2 . nknlis
n—1 7
[T+ withe, ="k 1)
i=1 Jj=1
this is easy to see by induction, since thecopies ofn have to form a substring, and this
substring can be inserted ip_; + 1 positions (viz., anywhere, including first or last) in any
generalized Stirling permutation §t*1, 2% .. (n — 1)k-1},
We will consider two cases and give them special namésSarling permutatiorof order
n is a generalized Stirling permutation of the multi§gt, 2%, . .., n*}, and ak-bundled Stir-
ling permutationis a generalized Stirling permutation of the multiget, 2542, ... nk+2}.
Herek > 1, but note that -Stirling permutations are just ordinary permutations sowi!
usually considek-Stirling permutations fok > 2 only; the casé: = 2 yields the ordinary
Stirling permutations defined by Gessel and Stanley [14].

What we callk-Stirling permutations was suggested by Gessel and St§Mgyand has
been studied by Park [22, 23,124] under the n@nmeultipermutations.

In the following, letQ,, = Q,,(k) denote the set df-Stirling permutations of order and
let @, = Q. (k) denote the numbe,, (k)| of them. By [1),

el SL(n+1/k)
Qu(k) = 1Qu(R)] = [ [ (ki +1) = k" =775

=1
For k = 2 this number is just),,(2) = (2n — 1)!!. In the casé: = 3, we have for example
one permutation of order: 111; four permutations of orde?: 111222, 112221, 122211,
222111, etc.

Similarly, Igtén = 9, (k) denote the set of-bundled Stirling permutations of order
and letQ,, = Q,, (k) denote the number of them. We have, by (1),

n—1
_ _ , L IT(n=1/(k+2))
=19,k = | [(i(k+2)—1)=(k+2)"! :
@ = Qa0 = [Ttk +2) = 1) = (b +2 pr g g
We defineascents descentsand plateauxof a generalized Stirling permutation =
arag - - -ap of {1¥1,2%2 . nFn} (where the lengtll = >~ k;) as before: we lety =
apy1 = 0 and say that an indekx with 0 < 7 < /, is an ascent, descent or plateau if
a; < a;i1,a; > a;11 Of a; = a;11, respectively. Note that the total number of them is 1.

We introduce a natural refinement of ascents, descents atehpk, namely-ascents
j-descentsandj-plateaux An indexi, with 1 < i < /s called aj-ascent, ifi is an ascent
and there are exactly— 1 indicesi’ < i such that;; = a;; 1.€.,q; is the jth occurrence of
the symbok;, and similarly for plateaux. For a desceént; is always the last occurence of
that symbol (just as for an ascent, ; is the first of its kind), and we definejadescent as a
descent < /¢ such that, ., is the thejth occurrence of that symbol. (Note that we choose
not to allow: = 0 ori = ¢ in these definitions.)

(2)

3)
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Thus, for a generalized Stirling permutation{aft, 2*2, ... n*~}, the possible values of
j ranges from 1 tanax; k; for j-ascents ang-descents, and from 1 taax; k; — 1 for j-
plateaux. In particular, fok-Stirling permutations] < j < k for j-ascents ang-descents,
andl < j < k—1 for j-plateaux. Note also that if we refleck&Stirling permutation, we get
a newk-Stirling permutation, anglascents in one of them correspondie-1— j)-descents
in the other.

Example 1. Consider the 3-Stirling permutation = 112233321: Index 1 is a 1-plateau,
index 2 is a2-ascent, index 3 is a 1-plateau, index 4 i2-ascent, index 5 is a 1-plateau,
index6 is a 2-plateau, index 7 is&descent, and index 8 is a 3-descent. (Indices 0 and 9 are
not classified in this way.)

We are interested in the (joint) distributions of the randaamablesX, ;, Y,, ; andZ, ;,
defined as the numbers gfascents,j-descents ang-plateaux, respectively, in a random
k-Stirling permutation (chosen uniformly i@, (k)). Note that these trivially are 0 unless
1<j<kforX,;andY, ;, andl <j <k —1forZ,; andthat

k -1

1

e

J=1

<.
Il

We further letX,,, Y,, andZ, denote the total numbers of ascents, descents and plateaux,
respectively. Note that, recalling the special definitiahthe endpoints,

k

Xo=> Xuj+1, 4)
j=1
k
Yn = ZYn,j + 17 (5)
j=1
k
Zn - Z Zn,j~ (6)
j=1

It is easy to see that grascent withj < k corresponds to a latdr + 1)-descent, and
conversely, so

Xn,j = Yn,j+17 1 S,] <k-— 17 (7)

see also Theoref 2. However, there is no correspondindgorelfdr k-ascents, of for 1-
descents, and the total numbers of ascents and descenypiagdly different, even in the
casek = 2. Further, since only the last copy of a label can be a descent,

Xn,j+Zn,j:n7 1§j§k_17 (8)
and, similarly or by[(B),
Yn,j + Zn,j—l =n, 2 S] < k. (9)
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Moreover, we are also interested in the distribution of tikmber ofblocksin a randomk-
Stirling permutation of orden. A block in a generalized Stirling permutation= a; - - - a,
is a substringy, - - - a, with a, = q, that is maximal, i.e. not contained in any larger such
substring. There is obviously at most one block for every 1, ..., n, extending from the
first occurrence off to the last; we say that forms a block when this substring really is
a block, i.e. when it is not contained in a string - for some: < j. In particular, in a
k-Stirling permutation; forms a block if for anyi with 1 < ¢ < j — 1, there do not exist
indicesmo, ... my41 , With 1 < my < -+ < my41 < kn, such thato,,, = oy, , =i
ando,,, = --- = o,, = j. Itis easily seen by induction that any generalized Strlin
permutation has a unique decomposition as a sequence d¢balssb Note that if we add a
string (n + 1)*»+1 to a generalized Stirling permutation, this string willeit be swallowed
by one of the existing blocks, or form a block on its own; théglahappens when it is added
first, last, or in a gap between two blocks.

Example 2. The 3-Stirling permutatioar = 112233321445554666, has block decomposi-
tion [112233321][445554][666).

One may also consider the similar problems febundled Stirling permutations; simi-
larly defining random variableX,, ;, Y, ; andZ,, ;. However, for most results we restrict
ourselves td-Stirling permutations.

2.2. Generalized plane recursive trees and-ary increasing trees. In order to relate the
k-Stirling permutations to families of increasing trees v&e @ general setting based on
earlier considerations of Bergeron et al. [3] and PanhanerProdinger [21].

For a given degree-weight sequerigg).>o, the corresponding degree-weight generating
function ¢(t) is defined byp(t) == >°,., ¢xt*. The simple family of increasing treeg
associated with a degree-weight generating functién, can be described by the formal
recursive equation

T=Ox (po At V1T U THT Uy - T+T+T U o) =D x @(T), (20)

where(@ denotes the node labelled hy x the cartesian product) the disjoint union x

the partition product for labelled objects, apd7) the substituted structure (see e. g., the
books [30], [13]). This means that the elementgoére increasing plane trees, and that a
tree with (out-)degrees,, . . ., d, is given weighf[ [} ¢,,. By a random tree of order from

the family 7, we mean a tree of orderchosen randomly with probabilities proportional to
the weights.

Let T;, be the total weight of all such trees of orderlt follows from (10) that the expo-
nential generating functiofi(z) := >~ ., T,,%; of the total weights satisfies the autonomous
first order differential equation B

T'(z) = ¢(T(z)), T(0)=0. (11)
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The families that we will consider have degree-weights @& ohthe two following forms,
studied by Panholzer and Prodinger![21]:

(IJ#, for oo >0, 0 < —cy < c;, generalized plane recursive trees,
_;’_7 C:
p(t) = i

d
©o <1 + %) , for ¢o,c2 >0, d:= 2 +1€N\ {1}, d-aryincreasing trees

(12)
Consequently, by solving (IL1), we obtain exponential gatirey function?’(z)
= <71 o — 1), generalized plane recursive trees
T(Z) = (1—c12)“1 . . (13)
o —— — 1), d-ary increasing trees
€2 \ (1—(d—1)cpz) @1
and the total weightg,,,
—14c
7, =t - 01" 1), (1)
n pR—

Note that changing;. to ab*¢;, for some positive constangsandb will affect the weights of
all trees of a given ordet by the same factar”v"~!, which does not affect the distribution
of a random tree from the family. Hence, when consideringloam trees from these two
classesyy is irrelevant and:; andc, are relevant only through the ratio/c,. (We may
thus, if we like, normalizep, = 1 and either; or |c,|, but not both.)

As shown by Panholzer and Prodingerl|[21], random trees irtvtbeclasses of families
given in (12) can be grown as an evolution process in theatlg way. The process,
evolving in discrete time, starts with the root labelledlbyAt stepi + 1 the node with label
i + 1 is attached to any previous nodégwith out-degreel(v)) of the already grown tree of
order: with probabilitiesp(v) given by

(v) (adfl);fl with o := -1 — < > 0, generalized plane recursive trees
v g . .
P (j_‘f)(iﬁzl, d-ary increasing trees

Moreover, Panholzer and Prodinger|[21] showed that thex@aly three classes of simple
families that can be grown in this way (for suitabl@)): the two classes given if (12) and
the recursive trees given y(t) = @oet/#° with ¢, c; > 0 (which can be regarded as a
limiting case of any of the two classes above, letitng- 0.)

Example 3. Plane recursive treeare plane increasing trees such that all node degrees are
allowed, with all trees having weight 1. Thys = 1 and the degree-weight generating
function ise(t) = 1=, which is of the form in[(I2) withpy = 1, ¢; = 2 andc, = —1. We

have

T(z)=1-+v1-2z, and T,=1-3-5---(2n—3) = (2n —3)!!, forn > 1.

Furthermoreq = —1 — £ = 1, and consequently, the probability attaching to noadestep

i+ 1is given byp(v) = %-
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Example 4. For an integetl > 2, d-ary increasing treeare increasing trees where each node
hasd (labelled) positions for children. Thus, only outdegrees ., d are allowed; moreover,
for a node withk children in given order, there is thl@%) ways to attach them. Hence, this
family is given by vertex weightg, = (Z) and thus the degree-weight generating function
o(t) = 1+ t4, which is of the form in[(IR) withpy = 1, ¢; = d — 1 andc, = 1. By (I3),

—1/(d-1
T(z) = (1—(d—1)2) /Y —1,
3. INCREASING TREES ASSOCIATED TO GENERALIZEISTIRLING PERMUTATIONS

3.1. (k + 1)-ary increasing trees,k-plane recursive trees andk-Stirling permutations.
Recall from Examplgl4 that, far > 1, the degree-weight generating function(bf+ 1)-ary
increasing trees is given lpy(t) = (1+t)**!,i.e.py = 1, ¢; = k andc, = 1. Consequently,
the generating functioi(z) and the number¥,, of (k + 1)-ary trees of order. are given by

1 n
T() = ———— — 1, (—1)+1), n>1,
i St 1 (4

and the the probability of attaching to nodet stepi + 1 is given byp(v) = ££=4)

Note that7,, = @,, the number ofk-Stirling permutation, which makes the following
theorem reasonable.

Theorem 1(Gessel) Letk > 1. The familyA, = A, (k+ 1) of (k + 1)-ary increasing trees
of ordern is in a natural bijection withk-Stirling permutations A, (k + 1) = 9, (k).

Remark 1. The authors independently derived the result above, aed thscovered the
work of Park [22], in which Gessel's result was mentionedthetproof only sketched. The
result of Gessel never appeared in print except this mantyan Park [22], to the best of the
authors’ knowledge. We will give a detailed proof of the deabove, which has interesting
consequences regarding the (refined) parameters asceate&nts and plataeux, and also
number of blocks, which we will state in Theorém 2.

Remark 2. For k = 1 we obtain a bijection betweeRStirling permutations (ordinary per-
mutations) and binary increasing trees, which is very wedikn.

Proof. We use a slightly modified bijection to the one given by Jariadd8] for Stirling
permutation and plane recursive tree, and use a depth-ukt Whe depth-first walk of a
rooted (plane) tree starts at the root, goes first to the teftrohild of the root, explores that
branch (recursively, using the same rules), returns todbg and continues with the next
child of the root, until there are no more children left. Wenthof (k£ + 1)-ary increasing
trees, where the empty places are represented by “exteritasi. Hence, at any time, any
(interior) node hag + 1 children, some of which may be exterior nodes. Between these
k edges going out from a node labelledwe placek integersv. (Exterior nodes have no
children and no labels.) Now we perform the depth-first wailkl @ode thek + 1)-ary
increasing tree by the sequence of the labels visited as \aeogmd the tree (one may think
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of actually going around the tree like drawing the contoum)other words, we add label

to the code thé first times we return to node, but not the first time we arrive there or the
last time we return. Ak + 1)-ary increasing tree of order 1 is encodedibyA (k + 1)-ary
increasing tree of order is encoded by a string df - n integers, where each of the labels
1,...,n appears exactly times. In other words, the code is a permutation of the ratltis
{1% 2k ... n*}. Note that for eachi, 1 < i < n, the elements occurring between the two
occurrences of are larger tham, since we can only visit nodes with higher labels. Hence the
code is &-Stirling permutation. Moreover, adding a new nede 1 at one of théin+ 1 free
positions (i.e., the positions occupied by exterior nodes)esponds to inserting tietuple

(n + 1)¥ in the code at one ofn + 1 gaps; note (e.g., by induction) that there is a bijection
between exterior nodes in the tree and gaps in the code. Aitngsshat the code determines
the (k + 1)-ary increasing tree uniquely and that the coding is a bgectSee Figuréll for
an illustration.

The inverse, starting with & Stirling permutatiorv of ordern and constructing the cor-
responding k + 1)-ary increasing tree can be described as follows. We proesedsively
starting at step one by decomposing the permutationass; 1051 . ..010%,1, Where (af-
ter a proper relabelling) the’s are agairk-Stirling permutations. Now the smallest label in
eacho; is attached to the root node labelled 1. We recursively afipgyprocedure to each
o; to obtain the tree representation. 0J

i) <L L ﬁ\m
2|2 2]2 >To ) 2|2
3|3

FIGURE 1. The three ternary trees of orderencoded by 2211, 1221 and
1122; an order 3 ternary increasing tree encoded by the segq233211.

Now we relate the distribution gkascentsj-descents angplateaux ink-Stirling permu-
tations with certain parameters(ih+ 1)-ary increasing trees. In order to do so we introduce
two kinds of parameters. The paramefgy ;, standing for ¥jth children”, counts the num-
ber of nodes in a randoifk + 1)-ary increasing tree of order that are thejth children of
their respective parents, going from left to right, withk< 7 < k£ + 1. Similarly, the param-
eter L, ;, standing for “leaves” of typg, counts the number of exterior nodes that #te
children of their parentd, < ;7 < k£ + 1. We thus have

Ln,j:n_Dn,j7 1 S] §k+17 (15)
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and, counting the total numbers of interior and exterioldckn,

k+1 k+1
Y Dnj=n-—1, > Lnj=kn+1. (16)
j=1 j=1

Concerning the number of blocks iStirling permutation, we introduce one more pa-
rameter in(k + 1)-ary increasing trees. LdtR,, denote the number of (interior) nodes that
have the property that the path to the root consists ex@lysof the leftmost or rightmost
possible edge at each node, i.e., the edge in positiork}ot, and no other “inner” edges.
Subsequently, we will call such nodiedt-right nodes The root is trivially a left-right node.

Theorem 2. Letk > 1. Under the bijection in Theorem 1, the numberg @iscentsX,, ;,
j-descents’, ; andj-plateauxZ, ; in a k-Stirling permutation of order. coincide with the
(shifted) numbers of-children D, ;, and j-leavesL,, ; in a (k + 1)-ary increasing tree of
ordern by the formulas

Xn,j == Dn,j+1> 1 S] S ]{3,
Y. = Dy, 1<j <k,
Znj = Lnji1=n— Dy ji1, 1<j<k-—1.

As a consequence, for the numbers of ascents, descentsadal,

Xn =n— Dn,l = Ln,lu

Yn =n—- Dn,kz-‘,—l = Ln,k—l—h

k
Zn= Ln;
j=2
Furthermore, the number of blocl&s in a k-Stirling permutations of ordet coincides with
the number of left-right nodes in the correspondiigt 1)-ary increasing trees of order,

S, = LR,. (17)

Proof. Using the stated bijection we observe thaj a 1)-child, 1 < j < k, corresponds to
aj-ascent, since the step from the parent nottethe(j + 1)-child « corresponds to having
recorded; times the label of the parentand then another labet, with w > w«. Similar
considerations prove the results fpdescents ang-plateaux. The results foX,,, Y,,, Z,

then follow from [4)-(6) and (16).

Concerning the connection between blocks and left-riglitesove make the following
observation. Starting with@+1)-ary increasing tree, and inserting nodes one after another
we note that only a leftmost or rightmost child leads to a newelbin the corresponding-
Stirling permutation. Hence, the number of left-right nedeequal to the number of blocks,
since we start with a single blodk and a single left-right node (the root). 0J
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Remark 3. Note that the number of leaves (h + 1)-ary increasing trees of order > 2
corresponds to the number of locally maximal substritigs- [ - - -1, i.e. substringsi*;,
with 0 < i,7 <[, for2 <[ < n, in k-Stirling permutations of ordet, which can also be
seen from the bijection.

Remark 4. In the casé: = 2 we thus have the symmetric situation ttaf = L, 1, Y, =
L,s;andZ, = L, , which by Theoreml8 below gives a new proof thgt, Y,, andZ,, have
the same distribution, and further are exchangeable, agrshy [6] and [18]. We see also
that this will not hold for largek;, see for example Theordm 9.

Fork = 2, Theoreni L gives a bijection between Stirling permutatiot @rnary increas-
ing trees, while Janson [18] gives a bijection with planeirsive trees of ordet+ 1. (These
are related by a bijection given in Sectign 4.) Next we wilbstthat also fork > 2, there
is a suitable family of generalized plane recursive trees ihclosely related té-Stirling
permutations.

Definition 1. For &k > 2, the family of k-plane recursive trees specified by the degree-
weight generating functiop(t) = (1 — (k — 1)t)‘ﬁ, i.e. it is the family of generalized
plane recursive trees withy = 1, ¢; = k andc, = —(k —1). Explicitly, ¢4 = i]‘[le((k; —
1)(I — 1) + 1). Consequently, by"(13) anfi{14), the generating functi¢n) and the total
weightT,, are given by

1

k-1 = .
T(z):m@—(l—kz) ; ) Tn+1:111(k(l—1)+1),wnh T =Ty =1,

« = =, and the probability of attaching to nodet stepi + 1 is given byp(v) = iy =

ki .
/cfl_l

Fork = 2, these are the plane recursive trees in Exaimple 3.

Remark 5. We did not succeed in finding a bijective correspondence detw-Stirling
permutations and-plane recursive trees, in the casetof 2, generalizing the bijection in
[18] for & = 2, since fork > 2 it seems difficult to obtain a combinatorial interpretatan
the weights of the trees. We leave this as an open problemetemwthe distribution of the
leaves still coincides with the distribution of the numbéascents or descents.

Theorem 3. The number (total weight) of-plane recursive trees of order + 1 equals
the number of-Stirling permutations of orden, 7,,.; = @Q,. Moreover, the distribution
of the numberEnH of leaves oft-plane recursive trees of order + 1 coincides with the
distribution of the numbek,, of ascents (descents) biStirling permutations of orden.

Proof. The first part is already shown.
The second partis trivial for = 1, with one leaf and one ascent. We proceed by induction,

and suppose that the relation is trueiorL,, , 2 X,,. We observe that adding the new node
labelledn + 2 to a leaf does not change the number of leaves, whereas atldingew
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node at any other place gives rise to a new leaf. Further, &ydimula forp(v) above
with d(v)=0, the probability of adding node+ 2 to a given leaf in a tree of order+ 1 is

p(v) = Mnﬁ_l = knl—i-l' Hence, conditioned on the number of leaves, beingm, we
k—1

haveL, ., = m orm + 1 with
. m
Ckn4 1

P(Lyso=m | Lupr = m) (18)
Similarly, when adding a stringn + 1)* to a k-Stirling permutation of orden, we will
always create a new ascent, and we will destroy one if andibmlg add the string at an
ascent. Since there ake + 1 gaps where the new string can be added, conditioned on the
numberX,, of ascents being:, we haveX,,,; = morm + 1withP(X,, .o =m | X,,;1 =

m) = p=5. This is the same relation ds {18), and ths 4 X,+1, Which verifies the

induction step. O

Remark 6. The distribution of the number of leaves is fairly well stedi Let7'(z,v) =
Y st Tn,m%vm denote the bivariate generating function of the numbérplane recursive
trees having exactlyn leaves, also encoding the numbeS6tirling permutations of order
n — 1 havingm descents. Bergeron et all [3] determined the generatingitumi’(z, v) by
the implicit equation

/T dt

= Z’
o (v—="1)po+p(t)
Note that the implicit equation is true for a much larger slasincreasing trees; moreover
one may derive the normal limit of the number of leaves fromithplicit equation above,
see([3].

3.2. k-bundled increasing trees andk-bundled Stirling permutations.

Definition 2. For k& > 0, the family of (£ + 1)-bundled increasing treds specified by the

degree-weight generating functigrnit) = W i.e. it is the family of generalized plane

recursive trees withyy = 1, ¢; = k + 2 andey, = —1. Explicitly, p; = (’“;”) Consequently,

by (13) and[(14), the generating functidiiz) and the total weight’, are given by
n—1
T(z)=1-(1—(k+2)2)m2,  T,=]0k+2)-1),
=1

_ dv)+k+1
= ht2)i-1°

a = k+1, and the the probability attaching to nodat stepi+1 is given byp(v)

Remark 7. One may think of(k + 1)-bundled increasing trees of orderas consisting
of a root node labelled which hask + 1 positions, with a (possibly empty) sequence of
labelled (k¢ + 1)-bundled increasing trees attached to each position (Wijoidt sets of
labels, forming a partition of2,...,n}). Equivalently, one may think of each node as
havingk separation walls, which can be regarded as a special typigese
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Note that thel-bundled increasing trees are just ordinary plane recaitsges, cf. Exam-
ple[3, and that the bijection stated below also holds for ¢hise, which corresponds to the
result of [18] that53,,(1) = 7, = Q,_1(2), since obvioush,,(0) = Q,_1(2) by relabelling.

Theorem 4. The familys,, = B, (k + 1) of (k + 1)-bundled increasing trees of orderis in
a natural bijection withk-bundled Stirling permutationss,, (k + 1) = Q,,(k).

Proof. We proceed as before using a depth-first walk. We label eaxiliaty separation
wall of a node labelled by the label of the node. Moreover, we label any (proper) edge by
the label of the child. Hence, at any time, any node has at keastgoing edges, thinking
of the walls as a special type of edges. Now we perform thehdiést walk and code
the k-bundled increasing tree by the sequence of the label®disith the edges, under the
additional rule that a label on a separation wall only ctotieés once. Since every proper
edge is traversed twice, and every label except 1 occursautlgxone proper edge,(&+1)-
bundled increasing tree of ordeiis encoded by a string ¢ +2)(n — 1) + k integers, where
each of the label3, . .., n appears exactly + 2 times and label appears: times. In other
words, the code is a permutation of the multi§et, 2¢+2 ..., n**2}. Note that for each
7, 1 < i < n, the elements occurring between the two occurrenceésaoé larger thari,
since we can only visit nodes with higher labels. Hence th#ede ak-bundled Stirling
permutation. Moreover, adding a new node- 1 at one of the(k + 2)(n — 1) + k + 1
possible places corresponds to inserting(the- 2)-tuple (n + 1)**2 in the code, at one of
(k+2)(n — 1) + k + 1 possible places. This shows that the code determine§:thel )-
bundled increasing tree uniquely and that the coding is ectijn. See Figurel 2 for an
illustration. 0J

J
2 2

FIGURE 2. The two 2-bundled increasing trees of ordemcoded by 2221,
1222; Three 2-bundled increasing trees of oklencoded by the sequences
2333221, 3331222 and 3332221.

Next we relate the distribution of ascents, descents angala ink-bundled Stirling
permutations with certain parameterg in+ 1)-bundled increasing trees. In order to do so
we introduce three parameters fof/a+ 1)-bundled increasing tree. The parameteB 4
counts the number of ascents in the bundles,gblus the number of non-empty bundles,
plus 1 if the first bundle of the root is empty, where an asaeatbundle occurs if the root of
a subtree is smaller then the root of the next subtree, goomg keft to right. The parameter
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Bp counts the number descents in the bundles, giius the number of non-empty bundles,
plus 1 if the last bundle of the root is empty, where a desaeatbhundle occurs if the root
of subtree is larger then its neighbour. The numBgrcounts the number of empty bundles
of the nodes with labels larger than one plus the number otemper bundles of the root.
With these definitions, the following correspondences aeghtforward.

Theorem 5. Under the bijection in Theorelm 4, the numbers of ascentsgmes and plateaux
in a k-bundled Stirling permutation of order coincide with the parameteiS,, B, and B
in a (k + 1)-bundled increasing tree of order.

Remark 8. Note that the number of leaves (k + 1)-bundled increasing trees of order
corresponds to the number of sequences of the fbfth = [---[, with2 < [ < n, in
k-bundled Stirling permutations of order, as fork-ary increasing trees. Moreover, the
parameter “number of descendants of ngtlm a (k + 1)-bundled increasing tree of order
n, with 2 < j < n, counts the number of different entriewith ; < [ < n between the first
and the last occurrence ¢in the corresponding-bundled Stirling permutation of order

4. FURTHER BIJECTIONS

The bijections of Theoreimnl 1 (with = 2) and [18] (or Theorernl4 with: = 0) imply a
bijection between ordinary plane recursive trees of orderl and ternary increasing trees
of ordern, using the connections t&Stirling permutations. In the following we will give
two direct bijections, which both encompass this bijechetween plane recursive trees and
ternary increasing trees.

First we give a bijection between sequences-blundled increasing trees afid+ 2)-ary
increasing trees, which fdr = 1 just gives the desired bijection.

Let SEQB), = SEQB),(k) denote the family of sequences lodbundled increasing
trees with total order, labelled with disjoint sets of labels forming a partition{a, . .., n}.
(Note that our notation slightly abuses the common sequeoizgion SEQ of combinatorial
objects, since we also assume properly distributed Igbels.

Remark 9. By introducing a new root labelled 0, connecting all rootshef sequence with
the new root, and performing a proper relabelling, SBY is in bijection with the family

of increasing plane trees of order- 1 where each node except the rootibundled as in

Definition[2. (Equivalently, SE(3),, is in bijection with the family of¢-bundled increasing
trees of order. + 1 where the root has only the first bundle non-empty.)

Theorem 6. The familySEQ(B),, = SEQ(B), (k) of sequences di-bundled increasing
trees of total order: is in bijection with.A,,(k 4 2), the family of(k 4 2)-ary increasing trees
of ordern: SEQ(B).(k) = A, (k + 2).

Remark 10. Recall thatl-bundled increasing trees are exactly plane recursive.tidere-
over, in the case ok = 1, the bijection in Remarkl9 is the standard bijection between
sequences of plane recursive trees of total ordand plane recursive trees of ordes- 1;
hence SEQB), (1) = T,1. See Figurél3 for an illustration. It is easily seen thatfer 1,
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the bijection7,.; = SEQB),(1) = A,(3) constructed in the proof below yields the corre-
spondence between the two bijectiofs(3) = Q,(2) in Theorenill and,,; = Q,(2) in
[18] or B,11(1) = Q,41(0) = Q,(2) in Theoreni 4.

Proof. We use a recursive construction, see Fidgure 3. For a givemeseg ofk-bundled
increasing trees, we choose in the first step the tree of theesee with node labelled 1: this
node is going be the root of th& + 2)-ary increasing tree. Since(& + 2)-ary increasing
trees hag +2 (possibly empty) subtre€s, . . ., Sk, o, going from left to right, we proceed as
follows. The sequence éfbundled increasing trees to the left of the tree with rofrms
(recursively) the subtres;, conversely the sequence bfbundled increasing trees to the
right of the tree with root forms the subtre&) . ». Thek bundles, possibly empty, attached
to the tree with root labelled, form the subtrees,, ..., Sy, of the (k + 2)-ary increasing
tree. Now we can proceed recursively, since the bundlesharadelves just sequences of
k-bundled increasing trees.

Conversely, starting with & + 2)-ary increasing tree of order, we recursively build
a sequence of-bundled increasing trees as follows. In the first step wédlaitree with
root node labelled 1. The sequence to the left of the tree moibhlabelled 1 is built from
the subtrees; of the (k + 2)-ary increasing tree of order, the sequence on the right from
the subtrees;. o, and thek bundles are built from the subtress, . .., S..1. We proceed
recursively until the sequence is constructed. Note thahduhis process, we connect any
leftmost or rightmost child of a nodeto the same parent as 0J

FIGURE 3. A sequence of 1-bundled increasing trees of order 10, wikeq
alently a plane recursive tree of order 11, and the corredipgrternary in-
creasing tree of order 10.

Next we consider a bijection betweénrbundled increasing trees and so-callgd, .-
increasing trees. The family df} . .-increasing trees consists of modifiéd + 2)-ary
increasing trees: any node except the root df,a..-increasing tree hak + 2 labelled
positions where children may be attached, whereas the smobhlyk positions (and thus
outdegree bounded [&y). Note that fork = 1, the root has a single child and that chopping
off the root yields a simple bijection betweéh ;-increasing trees of order+ 1 and ternary
increasing trees of order. Thus the statement below implies for= 1 a bijection between
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ternary increasing trees and plane recursive trde$3) = B,,.1(1) = T,41, Which is just
the bijection discussed in Remark 10.

Theorem 7. The familyF,, = F, (k) of F xo-increasing trees of order, is in bijection
with the family oft-bundled increasing trees of order F,,(k) = B,,(k), k > 1.

Proof. For a givenk-bundled increasing tree of order we simply applyk times the bi-
jection between sequencesiebundled increasing trees afil+ 2)-ary increasing trees to
the £ bundles attached to the root and thgositions of the root of thé, ;. .-increasing
tree. ([l

Remark 11. To give an overview, we have provided the following bijeagoin Theo-
remd1[4[6 and 7.

Ak +1) = {Q"(“’

SEQB).(k—1),

Q(k),
Folk+1).

It is also possibly to give bijection®,, (k) = SEQB),(k — 1) andQ,,(k) = F,(k + 1), by
simple modifications of the stated bijections.

Bn(k+1)%{

Remark 12. The families SEQB) (k) of sequences-bundled increasing trees ad k) of
F}. k+2-increasing trees are non-standard in the sense that tee@yapart of the character-
ization given by Panholzer and Prodinger|[21]. However,atenting problem concerning
such tree families can be treated in a general manner, whithendiscussed elsewhere.

5. THE DISTRIBUTION OF j-ASCENTS j-DESCENTS ANDj-PLATEAUX

We are interested in the joint asymptotic distributionjedscents,, ;, j-descents, ;
andj-plateauxZ, ; in a k-Stirling permutations of ordet, or equivalently in the joint dis-
tribution of j-children D,, ; and j-leavesL,, ;,, in (k + 1)-ary increasing trees of order.
Following Jansorn [18] we use a (generalized) Polya urn made [15].

5.1. An urn model for the exterior leaves. Since we already know froni (1L5) that—
D, ; = L, ;, we can restrict ourselves to the study of the exterior notés will use the
following urn model.

UrnI. Consider an urn with balls &f + 1 colours, and letL,, 1, . . ., L, x+1) be the number

of balls of each colour at time. At each time step, draw one ball at random from the urn,
discard it, and add one new ball of each colour. Start Witfy, ..., Ly 4+1) = (1,1,...,1).
Note that the vectofL,, i, ..., L, x+1) exactlycoincides (in distribution) with the numbers
of the exterior nodes of typek ...,k + 1 in a random(k + 1)-ary increasing tree, see
Sectior 3.11.

Urn[ll is completely symmetric in thé + 1 colours, and we thus immediately see the
following.
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Theorem 8. For eachn > 1, the distribution of(L,, 1, ..., L, x+1) iS exchangeable, i.e.,
invariant under any permutation of thie+ 1 variables.

It is customary and convenient to formulate generalizelgdorns using drawings with
replacement. In the case of Uin I, we thus restate the déiserigbove and say instead that
we draw a ball and replace it together with one ball each ofttls¢her colours. In other
words, Urrl] is described by thé + 1) x (k + 1) replacement matrix

o1 1 --- 1 1 1

1 0 1 " "0 1

11 0 " oo 1
A=(1=bighzijer = [ o 0 T T T ]

T - 0 00 1 1

T - 0 01 0 1

r 1 1 -~ 1 1 O

whered; ; denotes the Kronecker delta.

5.2. Means. By Theoreni8, the variables, ;, j = 1,...,k + 1, have the same mean,
and since their sum isn + 1 by (18), we see that they each have mégﬁl. By (18) and
Theoreni P, we obtain the following exact formulas for the nzea

Theorem 9. The following hold, fom > 1 andk > 1:

kn+1
EL, = — '~ 1<j<k+l,
T k41 J *
n—1
ED,, = —, 1<j<k+1,
T k41 SJsE+
n—1
EX, . =EY, ; = : 1<j<k,
7.] 7.] k_'_l j
kn+1
EZ, = , 1<j<k—1,
T k41 J
k 1
EX, = EY, = "2+ >
k+1
kn+1
EZ, = (k-1
( )k:—l—l

5.3. Asymptotic distribution of j-ascents,j-descents andj-plateaux. We use the urn
model UrrJ to obtain asymptotic normality. We begin with ageal result.

Theorem 10. Consider an urn with balls of > 2 colours, where at each step one ball is
drawn at random and discarded, and one ball of each coloudieal. IfN,, ; is the number
of balls of colour; aftern steps, then, for any initial values, i, . .., Ny,

-1
Npj—T=n @)

\/ﬁ _)ij
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jointly for 5 = 1,...,¢q, where(; are jointly normal random variables with meafisand
(co)variances

q—1 -
Cov((,¢) = —— (g8, — 1), 1<i,j<gq.
OV(C CJ) qg(q_'_ 1) (q »J ) (2] q

Note thaty _{ ¢; = 0, for example becausg;; N, ; is deterministic.

Proof. This urn has replacement matuik = (1 — ¢; )7, = (1){,_; — I. Since the rank
1 matrix (1){ ,_, has one eigenvalugandq — 1 eigenvalues 0A has largest eigenvalue
A1 = ¢ — 1 andg — 1 eigenvalues-1. Theorem 3.22 in [15] applies, with = (q, ce ;),
and shows joint convergence (in distribution) to normaialales¢; with mean 0 and a certain
covariance matrix.. The formula forY in [15, Theorem 3.22] is complicated, so we use
[15, Lemma 5.4], withe = (a;)] = (1)] andm = A\ = ¢ — 1, Which yields¥ = mX;, with

Y; defined in[[15, (2.15)]. Herg; = (& ;)i = (1 — 5”)J 1 Bi = (656i0)5 121, v1i = 1/q

and, using the symmetry3 = (b;;)],_, with b;; = ‘1 andb” = % i # j; hence

B =2 A+ 1] Further,P; is the projection onto the eigenspacedfor the eigenvalue

—1, and thusP (9= 1ql 2. Further, on this eigenspage= — and thusB = 17, and [15,
(2.15)] yields, noting that all involved matrices are syntmesand commute,

&0 , 1 o 1
5= / Pre** Bt Ple™* ds = — Py / emsmsTlam s gs = Py
0 qa " Jo q(q+1)
?(q+1) Plg+1) )2,
Recalling that: = m>; = (¢ — 1)X;, we obtain the result. O

Remark 13. Similar calculations show, more generally, that if we athesiep add a fixed
numbers; balls of colouri, i = 1,...,q, independently of the colour of the drawn and
discarded ball, then='/(N,,; — Zgl tsin) 9, G, jointly, where(; are jointly normal
variables with meang and
lel—l( S; 58 )
Cov(Gi, ¢5) = Oij — =g | -
(G:6) dusi+t 1\ X s ! (D2 81)?
As an example, the numbeks,, Y,, andZ, of ascents, descents and plateaux in a ranklom

Stirling permutation can be seen as such an urn with replesewector(1, 1, k£ — 1), which
yields an alternative proof of the limit distribution fouatiove for them.

We apply Theorern 10, with = & + 1, to Urn[l and obtain usind (15) and Theorem 2 the
following.

Theorem 11.Letk > 1 and let(;, j = 1,...,k + 1, be jointly normal random variables
with meandg) and (co)variances
k
COV(CZ',CJ') = ((k’ + 1)627] — ].), 1 S 'L,] S kf -+ 1,

&+ 1)2(k +2)
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in particular Var((;) = qjgrr- Note that this implie3 """} ¢; = 0. Then, the following

holds, jointly for all variables,

k
anj T 1t (d)

D, — -tn
’J\/_’““ 9 ¢, 1<j<k+1,
n
Xoi = 71" @
\/ﬁ — g] = _Cj—i-l? 1< J < k?
Yoj = 50" @
\/ﬁ+ —>77j::_Cj7 1<j<l{3,
Z, i — Ln
v 1<k,
X *.n
nT g1t (d)
— &=
\/ﬁ 5 Cla
Yn k n (q
s Q) n = Ck—i—lu
n
7 _ k-1 k
n k41 (d)
(=) =-(—1
A simple calculation shows that the covariance matrixsof, ¢) is (cf. Remark 1)
K2 _ k _ k(k=1)
(F+1)2(k+2) (F+1)2(k+2) (F+1)2(k+2)
B k K2 _ k(k=1)
Fr1)2(h+2) (kD)2 (kt2) (F+1)2(k+2)
(k-1 _ k(k-1) 2 (k—1)
(h1)2(k+2) F+1)2(k+2) (b +1)2(k+2)

For k = 2, this yields the univariate limit theorems by Boha [6] and thultivariate limit
theorem by Janson [18] foX,,, Y,,, Z,,.

Fork = 1, the result forX,, orY,, reduces to the classical result on the asymptotics of the
number of ascents or descents in a random permutation.i¢loakeZ,, = 0.)

6. THE DISTRIBUTION OF THE NUMBER OF BLOCKS

The numbelS,, of blocks in a randonk-Stirling permutation is described by another urn
model.

Urn Il. This urn has balls of two colours, black and white. At eactetstep, draw a ball at
random from the urn, replace it and atdldurther balls: if the drawn ball was black, add
black balls; if the drawn ball was white, add 1 white ball énd 1 black. LetB,, andWW,, be
the numbers of black and white balls in the urn at timand start withV,, = 2, B,, = k—1.



STIRLING PERMUTATIONS, INCREASING TREES AND URN MODELS 19

We thus haveB,, + W,, = kn + 1 balls in the urn at time,, and it is easily seen that the
number of white balls can be interpreted as the number of lgeipgeen the blocks, or first or
last, in a randoni-Stirling permutation of orden, i.e. as the number of gaps where addition
of a string(n + 1)* create a new block. This is one more than the number of blacidsthus
we have the equality in distribution

S Lw 1. (19)

Urn[lllis thus a2 x 2 generalized Polya urn with ball replacement matvix= (%, ¢).
This urn model is a special case of the triang@lar2 urn models analysed in detail by Jan-
son [17], where the asymptotic distribution is given. Theaal case of balanced triangular
2 x 2 urn models was also studied by Flajolet etal. [12]. (An urnaBed balanced if the
total number of added balls is constant, independentlyebtiserved color.) For the special
case treated here we can add the exact distribution usingetheepresentation, the moments
of S,,, and almost sure convergence.

Theorem 12. The probability mass function of the random variaBlgcounting the number
of blocks in a randonk-Stirling permutation of order is given by

P{S, = m} = i (1) R

("5

The binomial moment&(*"*") are given by the explicit formula

~

S

r+1

n—147+H1 n—l+

E(Sn_'_r):w:(r‘kl)w? r=12,...
r (") (".5%)

(")

(n71+%

n—1

The random variable,, :=

(S, + 1) is a positive martingale and converges almost

surely to a limit¢, i.e.S, % ¢ further
as. L(1+1).
g, 2 ¢ = e B
(14 2)
The limits¢ and¢ can be specified by the moments
L1+ 1
7( +_’i3 , r>0.
L1+ 5=)
Further, ¢ has a density functiofi(z) that can be written ag(z) = I'(3 )z *g(z™*), 2 > 0,
whereg is the density function of a positi%estable distribution with Laplace transform
e=\""r it is thus given by the series expansion
I($) & DL+ 1)sinlf
fla) =—% > (—1y i ©, x>0

=1

E(C7) = (r+1)!
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Remark 14. The simple structure of the binomial moments and the almost®nvergence
is actually true for all balanced triangular urns of the farin= ( 4%, %), 0 < a < 3, which
is easily seen to be true by extending the martingale argtsnemnhie general case.

Proof. We use three different approaches to study the block steisfuin k-Stirling permu-
tations or equivalently the number of left-right eddes,, in (k+ 1)-ary increasing trees, see
(@7). In order to obtain the explicit results for the probiypdistribution of S,,, we analyze
LR,. We can use the tree decomposition| (10) in order to obtaidifferential equation

%T(z, v) = v(1+T(2,0))2(1+T()), T(0,v)=0,
whereT (z,v) =Y o, 3.~ P{S, = m}T,=;v™ denotes the bivariate generating function
of the numberd{S,, = m}T,, andT(z) = T(z,1) is the generating function of total
weights of(k + 1)-ary increasing trees. By Exampile %, T'(z) = (1 — kz)~'/*. Solving
the differential equation and adapting to the initial caiwch gives the solution

1
1—v(1— (1= kz)l/*) B

Extraction of coefficients gives then the stated resulttierdgrobability mass function. More-
over, the stated binomial moments may be obtained from thergéng function by extract-

ing coefficients,
Sp+r\ om0 1 1
E( . ) —ﬁ[z w ]1_wT(z, 1—w)'

For the almost sure convergence we proceed as followdi,et S,, + 1 be the number
of gaps between blocks, or, equivalently, the number ofeubstls in Urri D, se€ (19). Lek,,
denote ther-field generated by the first steps. Moreover denote by, = W,, — W,,_; =
Sy — Sp—1 € {0, 1} the increment at step. We have

E<Wn ‘ fn—l) = E<Wn—1 + An | fn—l) = Wn—l _'_E(An ‘ fn—l)-
Since the probability that a new white ball is generatedegi»sis proportional to the number
of existing white balls (at step — 1), we obtain further
Wn—l . k(n—1)+2
kEn—1)+1 kin—1)+1

T(z,v) =

E(Wn | fn—l) = Wn—l +

Wn—la n Z 2.

Hence, )
(") k(n—1) +2

n—1

(HE) k(n 1) +1

n—

E(Sn | fn—l) = Wn—l = Sn—la n > 2.

Hence,S, is a martingale. Since it is a positive martingale, it cogesralmost surely to
a limit ¢. By the well-known asymptotic formul@*®) ~ n®/I'(a + 1), for any fixed real
ra+2)
T(1+4)

nlkg, 2 ¢

n~Y*S, (providedS, — o0), and thusS, las), ¢ can also be written

a, Sn ~
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More generally, we similarly have for any positive integer
S +7r Sn—l +7r Sn—l +r Sn—l +1
E 1) = ol T
() )= )+ O D
. Sn—l +r\n— 14 T_—;;l
B r n—1+ % '

n—1+1
Hence (S"J”“) % is a martingale, which also leads to the stated result fomtbments
n— %

n—1
in an alternative way, using the recurrence relation foruteonditional expectation.
Lettingn — oo in the moment formula yields

n—142HL 1
k 1—‘ 1 =
E(Sn—i—’f’) :(T+1)( n—1 ) N(T—}—l) ( +k> nr/kz

r (") 1+ 54)
which leads t@&S” ~ (r+1)! fl(f,ﬁ)n’“/’f. Hence all moments of /%S, converge, and the

limits must be the moments qf Lettingr — 00, We see that the moments do not grow too
fast so that the moment generating functiu is finite for all¢, and thus the distribution is
determined by the moments.

Finally, we use the general results for urn models in Jan&@h [First, [17, Theorem

1.3(v)] yields the convergend#’,, N ¢ in distribution, and[[17, Theorem 1.7] yields the
moments of] that we just derived in a different way; note however that, [Ileorem 1.7]
yields the formula above also for non-integep> 0, with the standard interpretatign +
1)!' = I'(r + 2). Furthermore,[[17, Theorem 1.8] shows tgatas a density and gives the
explicit formulas stated above. OJ

7. THE SIZES OF THE BLOCKS

Recall that every block in &-Stirling permutation begins and ends with the same label,
which we can regard as a label of the block. We order the blioctee block decomposition
alel,.. K, according to this label (whereis the number of blocks); thus; is the block
extendlng from the first 1 to the lagt, is the block formed by the smallest label notkin,
and so on. We also lek; := |K;| denote the size of thih block in this order, and put
Ki=0,K; =0fori> s.

Alternatively, we may order the blocks according to dedregpsize. We letk; > K, >

. be the sizes of the blocks in this order, again with= 0 for i > s. Thus,(K;)$° is the
decreasmg rearrangement(df;)s°

For a randonk-Stirling permutation of orden, we use the notatiorﬁén,i, I?m and K, ;.
Note that) _, [?m => . K,;=kn.

To study these sizes we introduce another urn model. Canfsigiean urn with balls of
two colours K, ; —1 white balls representing the gaps inside the blogk andnk+2—K,, ;
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black balls representing the gaps outside. Adding thegstrin- 1)* at one of the gaps inside
K.. means increasing, ; by k, and adding it outside means keepifg; unchanged;
hence this is a Polya urn of the original type considered QgeBberger and Polya [11],
[28], where we draw a ball at random and replace it togethtr iwballs of the same colour.
We start withK; ; = k, and thust — 1 white and 2 black balls.

Next, let us study the second blod@w. At the firstn where this is non-empty, we have
k + 2 gaps outside the first blodk,, ;, k — 1 of them inK,, » and 3 outside both blocks. Let
us now ignore the first block and consider an urn vsiﬁ% — 1 white balls representing the
gaps ini&mg and black balls representing the gaps outside Kom andl%ng. The balls in
this urn are drawn at random times (when we do not add to a g’Eijx but when they are

drawn, the urn behaves exactly as f@{l: we replace the drawn ball together witlof the
same colour.

The same argument appliesl%q,m for anym > 2; if we ignore the preceding blocks and
additions to them, we have the same Polya urn again, but tested withm + 1 black balls,
representing the gaps outside the firsblocks. We hence make the following definition.

Urn lll. This is the standard Polya urn with balls of two colours arnére each drawn ball
is replaced together with balls of the same colour. Let Utnjjlibe the version where we
start withk — 1 white andm + 1 black balls, and letVy ,,, and By ,,, denote the numbers of
white and black balls afteN — 1 draws, when the urn contai®y ,,, + By, = kN +m
balls.

We can thus identify (with the urns UrnljllUrn[IILL, .. .independent), recalling that the
balls in urn Urrill,, . ; correspond to the black balls in urn Urnl |l

I?n,l = Wn,l + 17
I?mg = WN2’2 + 1, with ]{INQ +2= Bn,la

ng = WN;;,S -+ 1, with ]{,’Ng +3= BN271,
and so on.

Theorem 13. There exists a sequence of independent beta distributedbranvariables
B ~ Beta(21, ™) such that

1

(Ko Ky ) 55 (81 (1= B (1= (L= B)Ba,. ). (20)

Proof. The basic limit theorem for Pblya urns says that)as> oo,

%74 m (a.s.
k]j\f u) B ~ Beta(

k—1 m—l—l)
E 7k
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and thus’%iv—]’vm L)y BGm- (This is already in Pélya [28] for convergence in disttiba.

See, for example, [19] or [17, Section 11].) Consequently,

Kn,l _ Wn,l +1 (a.s.) 5
kn kn b
Kn 2 Bn 1 WN2 2+ 1 (a.s.)
L il ’ 1 _
kn ~ kn kN, +2 (1= 5B,
and so on. 0

Note that both sides of (20) are element$pthe space of non-negative sequenges®
with Y. p; = 1; P can be seen as the space of probability distribution&.oithe conver-
gence in the proof above was componentwise, i.e. in the ptadpology, but it is well-
known (and easy to verify) that oR, this topology is equivalent to th&-topology with
the metricd((p;), (p})) = >_, |pi — p;|, and also to the usual weak topology of probability
distributions; hence the theorem holds for any of theseltmpes.

Let V; = B; T2\ (1 — B;) be the elements of the limit sequence[in](20), and ¥gt*
denote the decreasing rearrangements of them. The distnkaf this random element ¢?
is denoted®D(+, 1), see Pitman and Yor [27] or Bertoinl [4].

Taking the decreasing rearrangement is a continuous o@e P, and thus we imme-
diately obtain from Theorem 13 the following.

Theorem 14.
1 (a.s.) 1 1
E(Kn,l,[(m,...)—>(V1,V2,...)~PD<E,E>. 1)
Corollary 1. The largest block size has the limit

K,1 (as. ~
.1 —>( ) Vi = max V.
kn i>1

Remark 15. These results can be compared with the classical resulthted¢éngths of the
cycles in a random permutation, arranged in decreasing ardkedivided by the size of the
permutation, converge (in distribution) RD(1) = PD(0, 1), see e.g.[]2, Sections 5.5 and
5.7].

Remark 16. For k = 2 we obtain in Theoreri 14 the limit distributidPD(3, 1) which
arises in other contexts too: it is the distribution of thgquence of excursion lengths in a
Brownian bridgel[26],[[25],[[1],[[27] (for a related charadtation fork > 2 seel[27]) and it
is the asymptotic distribution of the sizes of the tree congmis in a random mapping, see
[29] and [1]. It is an interesting problem to see whetherdheme more direct relations with

these objects.
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