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Abstract. A numerical set S with Frobenius number g is a set of integers

with min(S) = 0 and max(Z − S) = g, and its atom monoid is A(S) =

{n ∈ Z | n+ s ∈ S for all s ∈ S}. Let γg be the number of numerical sets S

having A(S) = {0} ∪ (g,∞) divided by the total number of numerical sets

with Frobenius number g. We show that the sequence {γg} is decreasing and

converges to a number γ∞ ≈ .4844 (with accuracy to within .0050). We also

examine the singularities of the generating function for {γg}. Parallel results

are obtained for the ratio γ σg of the number of symmetric numerical sets S with

A(S) = {0}∪(g,∞) by the number of symmetric numerical sets with Frobenius

number g. These results yield information regarding the asymptotic behavior

of the number of finite additive 2-bases.

Let Z denote the additive group of integers and let N denote the monoid of
nonnegative integers. Both of these sets are linearly ordered by the Archimedean
ordering and we will use standard interval notation to describe their convex subsets.
If n ∈ Z and S ⊆ Z then the translate of S by n is the set n+ S = {n+ s | s ∈ S}.

A numerical set S is a cofinite subset of N which contains 0, and its Frobenius
number is the maximal element in the complement N−S.1 Equivalently, a numerical
set S with Frobenius number g is a set of integers with min(S) = 0 and max(Z−S) =
g. A numerical set which is closed under addition is called a numerical monoid.
Every numerical set S has an associated atom monoid A(S) defined by

A(S) = {n ∈ Z | n+ S ⊆ S} ,

and this is easily seen to be a numerical monoid with the same Frobenius number as
S. Note that A(S) ⊆ S and that S is a numerical monoid if and only if A(S) = S.
The nonzero elements of A(S) are referred to as the atoms of S.

For each g ≥ 0 let Ng be the numerical monoid

Ng = N− [1, g] = {0} ∪ (g,∞) ,

which has Frobenius number g when g > 0.2 The atom monoid of every numerical
set S with Frobenius number g contains Ng and the complement S−Ng is a subset
of (0, g). Conversely, the union of Ng with any subset of (0, g) is a numerical set
with Frobenius number g. Therefore the set

S(g) = {S ⊆ N | S is a numerical set with Frobenius number g}

1This definition differs from that employed in [AM] where a ‘numerical set’ would be a translate

n + S of a numerical set S (in the sense given here) by an arbitrary integer n. Since the atom

monoid of n+ S equals the atom monoid of S, this variation of the definition should not lead to

any confusion.
2The Frobenius number of N0 = N is −1, and this is the only numerical set with nonpositive

Frobenius number.
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is in one-to-one correspondence with the power set P(0, g) consisting of all subsets
of (0, g), and S(g) has cardinality 2g−1. The subset of S(g) consisting of numerical
monoids is a much more difficult set to enumerate. This is examined in Backelin’s
paper [B] where it is shown that for large values of g roughly 3× 2b(g−1)/2c of the
2g−1 elements of S(g) are numerical monoids.

If M ∈ S(g) is a numerical monoid then the anti-atom set of M is the set

G(M) = {S ∈ S(g) | A(S) = M} .

This is contained in the larger set S(M) = {S ∈ S(g) |M ⊆ A(S)} whose elements
might be considered to be ‘M -modules’.3 Notice that S(g) = S(Ng) and we will
also write G(g) = G(Ng). This paper is motivated by the following question which
we shall refer to as the Anti-Atom Problem.

For a given numerical monoid M with Frobenius number g
how many numerical sets in S(g) have atom monoid M?

Thus, for a given monoid M , the Anti-Atom Problem asks to compute the cardi-
nality of G(M). This problem is certainly unwieldy given that it fundamentally
presupposes an enumeration of the set of numerical monoids in S(g)—an enumer-
ation which Backelin has shown to be intractable at best. Nevertheless we will be
able to frame aspects of the problem in a clearer light. Our main result will show
that there is one monoid M in S(g) (that monoid being M = Ng) which itself is the
atom monoid for approximately 48.4% of all numerical sets in S(g) for large values
of g. In order to describe this in more depth we first need to discuss symmetry
and pseudosymmetry in numerical sets. These concepts are important throughout
much of the theory of numerical monoids and numerical sets (see [FGH], [AM] and
[A] for example), and will play a role in many of our discussions.

A numerical set S ∈ S(g) is symmetric if an integer x is an element of S if
and only if g − x is not an element of S. In other words, S is symmetric when the
reflection on Z given by x 7→ g − x carries S onto its complement Z − S. Notice
that only numerical semigroups with odd Frobenius number can be symmetric.
A numerical set with even Frobenius number g is said to be pseudosymmetric if
g/2 /∈ S and for each integer x 6= g/2, x is an element of S if and only if g − x is
not an element of S. Symmetry and pseudosymmetry can also be described using
the notion of duality of numerical sets. If S ∈ S(g) then the dual of S is the
numerical set S∗ = {n ∈ Z | g − n /∈ S}, and it is not hard to show that S∗ ∈ S(g)
and that A(S∗) = A(S) (more background can be found in section 1 of [AM]). The
numerical set S is symmetric if and only if S∗ = S, and it is pseudosymmetric if
and only if g is even and S∗ = S ∪ {g/2}.4 For each numerical set S ∈ S(g) there
is a rational number type(S) no smaller than one, called the ‘type of S’, which
satisfies the property that S is symmetric if and only if type(S) = 1. The type of a
numerical monoid M ∈ S(g) is always an integer, and it equals the cardinality of its
omitted atom set O(M) =

{
n ∈ Z−M | n+

(
M − {0}

)
⊆M

}
. Since O(M) ⊂ N

and g ∈ O(M), the type of a numerical monoid M ∈ S(g) is in the interval [1, g],
and the largest possible value type(M) = g is only achieved when M = Ng. The

3In [BF] the elements of S(M) are called ‘relative ideals over M ’.
4 More generally, if the symmetric difference of S and S∗ contains no more than one ele-

ment then S is symmetric, pseudosymmetric or “dually pseudosymmetric” (meaning that S∗ is

pseudosymmetric).
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following elementary results allow us to solve the Anti-Atom Problem for symmetric
and pseudosymmetric numerical monoids.

Proposition 1. Suppose that M is a numerical monoid and that S is a numerical

set with A(S) = M . Then M ⊆ S ⊆M∗.

Proof. Let S be a numerical set in S(g) with A(S) = M and s ∈ S. If g − s were
an element of M then g = s+ (g − s) would be an element of S, which contradicts
g being the Frobenius number of S. Thus g − s /∈ M which implies that s ∈ M∗,
and M = A(S) ⊆ S ⊆M∗. �

Corollary 2. A numerical monoid M ∈ S(g) is symmetric if and only if there is

just one numerical set (which must be M itself) whose atom monoid is M . If M is

a pseudosymmetric numerical monoid then there are precisely two numerical sets

(which must be M and M∗) whose atom monoid is M .

Proof. Let M ∈ S(g) be a monoid. If M is not symmetric then M 6= M∗ but
A(M∗) = A(M) = M , and so there are at least two distinct numerical sets in G(M).
On the other hand, if M is symmetric and S ∈ G(M) then M ⊆ S ⊆M∗ = M and
S = M . If M is pseudosymmetric and S ∈ G(M) then M ⊆ S ⊆M∗ = M ∪{g/2},
so that S equals M or M∗. �

This corollary then provides the first positive answers to the Anti-Atom Prob-
lem: namely, that |G(M)| = 1 when M is symmetric and that |G(M)| = 2 when
M is pseudosymmetric.5 At the other end of the spectrum, we shall show that the
anti-atom set of Ng (which is the numerical monoid in S(g) farthest removed from
being symmetric since type(Ng) = g is the largest possible type among all monoids
in S(g)) is an order of magnitude larger in size than that of any other numerical
monoid with Frobenius number g. To establish this we will examine the sequence
γg = |G(g)|/|S(g)|. We introduce a combinatorially defined sequence of positive in-
tegers {Ak} with the property that 1−γg is a partial sum of the convergent infinite
series

∑∞
k=1 Ak4−k. This allows us to show that {γg} is a decreasing convergent

sequence and that the limit γ∞ is approximately equal to .484451, give or take
.0050. The integers Ak are combinatorially related to integers A′k which turn out
to equal |G(k)| (theorem 10) and there is a nice recursive relation between these
two sequences (theorem 11). This relationship will enable us to obtain informa-
tion about the singularities of the generating functions for the sequences {Ak} and
{A′k}.

In addition to forming a large subset of S(g), the numerical sets in G(g) have
nice properties in terms of the direct sum decompositions discussed in [AM]. Given
numerical sets S and T and relatively prime atoms a ∈ A(S) and b ∈ A(T ) the
direct sum of S and T is the numerical set bS ⊕ aT = {bs+ at | s ∈ S and t ∈ T}.
Every numerical set S can be trivially described as S = 1S ⊕ aN for any nonzero
a ∈ A(S), but if this is the only kind of direct sum decomposition of S then we say
that S is irreducible. Every numerical set can be expressed as a finite direct sum of
irreducibles. By [AM, Proposition 4.4], the only numerical set in

⋃
{G(g) | g ≥ 1}

which is not irreducible is N1 = 2N ⊕ 3N. Thus our results show that at least
47.94% of all numerical sets in S(g) are irreducible. Another nice property is that

5We showed that |G(M)| = 1 if and only if M is symmetric, but it is not hard to construct

numerical monoids M with |G(M)| = 2 that are not pseudosymmetric.
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the type function is multiplicative when restricted to
⋃
{G(g) | g ≥ 1} by [AM,

Proposition 5.3] (that is, the type of a direct sum is the product of the types of its
factors, if the factors have no small atoms). Multiplicativity of type was a central
theme in [AM]. We also mention that when a numerical set S is in G(g) its type
can be computed via the formula

type(S) =
|S ∩ [0, g)| |S∗ ∩ [0, g)|
|S ∩ S∗ ∩ [0, g)|2

,

which is readily derived from, but much simpler than, the general formula for the
type of an arbitrary numerical set given in [AM].

In the last two sections of the paper we explore parallel ideas for counting the
number of symmetric numerical sets in G(g). This study is suggested by Backelin’s
examination of the number of symmetric numerical monoids in S(g) in [B]. We
show that the ratio γ σg of the number of symmetric numerical sets in G(g) by the
total number of symmetric numerical sets with Frobenius number g has a limit
γ σ∞ which is approximately equal to .23644. We also obtain information about the
singularities of the generating function for the sequence {γ σg }. In many ways the
analysis of {γ σg } turns out to be more elementary than that of {γg}. For example,
in the symmetric setting we obtain two recursively related sequences of integers
{Aσ

k } and {Aσ ′
k }, and the odd terms in the second of these sequences coincides

with a well-known sequence consisting of the numbers of additive 2-bases for k.

Numerical sets with no small atoms

Let S be a numerical set with Frobenius number g. A small atom for S is a
(nonzero) atom for S which is less than g. A small atom for S is said to be large
if it is greater than g/2. The first result says that every numerical set which has a
small atom will have a large small atom.

Lemma 3. Let S be a numerical set in S(g). If S has a small atom then S has a

small atom larger than g/2.

Proof. If g is even then g/2 is not an atom of S since g/2 + g/2 /∈ S. Suppose S
has an atom less than g/2 and let k be the largest such atom. Then 2k is a small
atom of S, and 2k is greater than g/2 by the choice of k. �

The set S(g) is partitioned into two subsets

G(g) = G(Ng) = {S ∈ S(g) | S has no small atoms}

and
B(g) = {S ∈ S(g) | S has at least one small atom} .

For each g > 0, Ng ∈ G(g) and G(g) is nonempty. On the other hand, B(g) contains
all of the numerical monoids in S(g) other than Ng, and B(g) is nonempty when
g > 2. We are interested in the two ratios

βg =
|B(g)|
|S(g)|

=
|B(g)|
2g−1

and

γg =
|G(g)|
|S(g)|

=
|G(g)|
2g−1

.

Observe that 0 ≤ βg, γg ≤ 1 and that βg + γg = 1.
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For each S ∈ S(2n− 1) and ε ∈ Z2 = {0, 1} we define

S′ε =
(
S ∩ [0, n− 1]

)
∪ {ε n} ∪

(
1 + S ∩ [n,∞)

)
.

0

S

n−1

1

0

ML

S

2n

0

L

S 0

M+1

n−1 n 2n−1

n+1n−1 2nM+1L

n+1n

n

Figure 1. The numerical sets S′0 and S′1

Lemma 4. The correspondence (S, ε) 7→ S′ε is a bijection from S(2n − 1) × Z2 to

S(2n) which carries G(2n − 1) × Z2 onto G(2n). Furthermore, γ2n = γ2n−1 and

β2n = β2n−1.

Proof. The correspondence (S, ε) 7→ S′ε is injective by definition, and it is also
surjective: if S′ ∈ S(2n) then S′ = S′ε where S is the union of S′ ∩ [0, n − 1] and
−1 + (S ∩ [n+ 1,∞)), and ε equals 0 if n /∈ S′ and 1 if n ∈ S′.

It is not difficult to see that an integer x is a large small atom for S if and only
if 1 + x is a large small atom for S′ε. By lemma 3 this implies that a numerical set
S ∈ S(2n− 1) is in G(2n− 1) if and only if S′ε is in G(2n). To complete the proof,
we note that γ2n = |G(2n)|/22n−1 = 2|G(2n− 1)|/22n−1 = γ2n−1. �

For integers g and k with g > k > 0, let

B(g, k) = {S ∈ S(g) | g − k is the largest small atom of S} .

Note that B(g, k) is a subset of B(g) and that B(g, k) is empty whenever k ≥ g/2 by
lemma 3. In order to describe B(g, k) we are led to the next definition. An ordered
pair (L,M) of subsets of (0, k) is admissible if it satisfies two conditions:

(ad1) L ⊂M , and
(ad2) for every x ∈M there exists y ∈ L with x+ y ≤ k and x+ y /∈M .

Let A(k) be the set of all admissible pairs of subsets of (0, k), and let Ak = |A(k)|
denote the cardinality of this set. The power set P(k, g − k) of the set (k, g − k)
consists of all subsets of (k, g − k) and has cardinality 2g−2k−1.

Theorem 5. For integers g and k with g > 2k > 0 the set B(g, k) is in one-to-one

correspondence with A(k) × P(k, g − k). In particular, the cardinality of B(g, k)
equals Ak 2g−2k−1.
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M+g−kPL

0 g+1g−k gk

Figure 2. The numerical set S(L,M,P )

Proof. Suppose that (L,M) ∈ A(k) and P ∈ P(k, g − k). Then

S(L,M,P ) = Ng ∪ L ∪ P ∪ {g − k} ∪
(
g − k +M

)
(1)

is a numerical set with Frobenius number g. (See figure 2.) Since g − k + L ⊆
g − k +M by (ad1) and each nonzero element of S(L,M,P )− L is larger than k,
g − k is a small atom for S(L,M,P ). Suppose that x ∈ (g − k, g) ∩ S(L,M,P ).
Then x − g + k ∈ M and by (ad2) there is an integer y ∈ L such that y + x < g

and y + x /∈ g − x + M . This shows that y + x /∈ S(L,M,P ) and that x is not
an atom for S(L,M,P ). Thus g − k is the largest small atom for S(L,M,P ) and
(L,M,P ) 7→ S(L,M,P ) describes a function θ from A(k)×P(k, g−k) into B(g, k).

Now assume that S ∈ B(g, k), and define LS ⊆ (0, k), MS ⊆ (0, k) and PS ⊆
(g − k, g) by

LS = S ∩ (0, k), MS = k − g +
(
S ∩ (g − k, g)

)
, PS = S ∩ (k, g + k) .

Since g−k is a small atom of S then `+g−k ∈ S∩(g−k, g) for each ` ∈ LS , which
implies that ` ∈MS and that LS ⊆MS . Suppose that x ∈MS . Then g − k + x is
an element of S but not an atom of S (since g − k is the largest small atom of S)
and so there exists y ∈ S with g−k+x+y ≤ g and g−k+x+y /∈ S. It follows that
x+y ≤ k, y ∈ LS and x+y /∈MS . Thus the pair (LS ,MS) satisfies (ad1) and (ad2)
and (LS ,MS) ∈ A(k). Let Φ be the function from B(g, k) to A(k) × P(k, g − k)
given by S 7→ (LS ,MS , PS). The proof is completed by observing that θ and Φ are
inverses of each other. �

By lemma 3 the set B(g) can be expressed as the disjoint union of the sets
B(g, k) where k ranges from 1 to b(g − 1)/2c. Thus, the cardinality of B(g) is the
sum of the cardinalities of B(g, k) for 1 ≤ k ≤ b(g − 1)/2c.

Corollary 6. For each positive integer g, βg =
b(g−1)/2c∑

k=1

Ak 4−k.

Proof. Because of theorem 5 and the comment above, we have

βg =
|B(g)|
2g−1

=
b(g−1)/2c∑

k=1

|B(g, k)|
2g−1

=
b(g−1)/2c∑

k=1

Ak 2g−2k−1

2g−1
=
b(g−1)/2c∑

k=1

Ak 4−k.

�

By corollary 6 the sequence {βg} is increasing, and being bounded above by 1,
it must have a limit

β∞ = lim
g→∞

βg =
∞∑
k=1

Ak4−k .
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As a consequence the sequence {γg} = {1− βg} is decreasing with limit

γ∞ = lim
g→∞

γg = 1− β∞ .

By the next lemma, it is also possible to express γ∞ as the sum of a positive series
γ∞ =

∑∞
k=1(3k−1 −Ak)4−k.

Lemma 7. For each integer k > 0, 2b(k−1)/2c ≤ Ak ≤ 3k−1. Moreover γ2k−1 − γ∞
is positive and γ2k−1 − γ∞ = β∞ − β2k−1 ≤ (3/4)k−1

.

Proof. Let L be an arbitrary nonempty subset of (0, b(k + 1)/2c) ⊂ (0, k) with
maximal element `. For any element x ∈ L, ` + x ≤ 2` ≤ k and ` + x /∈ L. This
shows that (L,L) is an admissible pair of subsets of (0, k). Since there are 2b(k−1)/2c

distinct subsets of (0, b(k + 1)/2c), this verifies the inequality 2b(k−1)/2c ≤ Ak.

Suppose (L,M) is an element of A(k). Then for each x ∈ (0, k) we have three
distinct possibilities: (1) x /∈ M , (2) x ∈ M and x /∈ L, or (3) x ∈ L. Therefore
there are 3k−1 pairs of subsets (L,M) in (0, k) which satisfy (ad1), and it follows
that Ak ≤ 3k−1. Now by definition and corollary 6

γ2k−1 − γ∞ = β∞ − β2k−1 =
∞∑
i=k

Ai 4−i ≤
∞∑
i=k

3i−1 4−i = (3/4)k−1 .

�

Notice that (∅, ∅) is the only ordered pair of subsets of (0, 1) = ∅, and as it
is admissible, this shows that A1 = 1. Among ordered pairs of subsets of (0, 2),
condition (ad1) fails for ({1}, ∅) and condition (ad2) fails for (∅, {1}) while the two
remaining ordered pairs (∅, ∅) and ({1}, {1}) are in A(2), and so A2 = 2. With
lemma 7 and these values of A1 and A2,

β∞ ≤ β5 + (3/4)2 =
(

1
4

+
2
16

)
+

9
16

=
15
16
,

which shows that both γ∞ and β∞ are strictly between 0 and 1. Using this approach
with the more extensive data compiled in table 1, we see that β33 = .510538 . . .
approximates β∞ to within (3/4)16 = .0100226 . . .. Taking midpoints gives the
approximation β∞ ≈ .515549 accurate to within .005011, and subtracting from 1
gives γ∞ ≈ .484451 with the same degree of accuracy. This approximation can be
rephrased as saying that |G(g)| ≈ .484451× 2g−1 for large values of g.

If (L,M) is an admissible ordered pair of subsets of (0, k) and L′ and M ′

are subsets satisfying L ⊆ L′ ⊆ M ′ ⊆ M then (L′,M ′) is also admissible. In
particular, both (L,L) and (M,M) are elements of A(k) whenever (L,M) ∈ A(k).
The computer routine that was used to generate the data in table 1 starts by first
determining the collection of subsets L ⊆ (0, k) for which (L,L) is admissible.
(The cardinality of this collection is denoted by A′k in the table. These numbers
are important in their own right as we shall explain in the next section.) The
routine then isolates nested pairs of sets in this collection and tests only these pairs
for condition (ad2). Even with this, the algorithm has exponential complexity and
slows down quite rapidly.

From the results of this section we may draw some further conclusions which
directly address the Anti-Atom Problem for an arbitrary numerical monoid M .
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n A′n An β2n+1 β2n+1 + (3/4)n An−1/An
1 1 1 .250000 1.000000 -
2 2 2 .375000 .937500 .5000
3 3 3 .421875 .843750 .6667
4 6 8 .453125 .769531 .3750
5 10 18 .470703 .708008 .4444
6 20 50 .482910 .660889 .3600
7 37 135 .491150 .624634 .3704
8 74 385 .497025 .597137 .3506
9 140 1065 .501087 .576172 .3615
10 280 3053 .503999 .560312 .3488
11 542 8701 .506073 .548308 .3509
12 1084 25579 .507598 .539274 .3402
13 2118 73693 .508696 .532453 .3471
14 4236 217718 .509507 .527325 .3385
15 8337 635220 .510090 .523462 .3427
16 16674 1888802 .510538 .520561 .3363

Table 1. Bounds for β∞.

Theorem 8. Let M 6= Ng be a numerical monoid with Frobenius number g and

let g − k be the largest element of M ∩ (0, g). Then |G(M)| ≤ Ak4−k 2g−1 ≤
1
3 (3/4)k × 2g−1.

Proof. If M 6= Ng is a numerical monoid in S(g) and g − k is the largest element
in M ∩ (0, g) then g − k is the largest small atom of every numerical set S with
A(S) = M . Thus G(M) ⊆ B(g, k) and |G(M)| ≤ |B(g, k)| = Ak2g−2k−1. The last
inequality follows from lemma 7. �

The value of k in theorem 8 satisfies 0 < k < g/2. Since 1
3 (3/4)k × 2g−1 ≤

.25 × 2g−1 is less than .484451 × 2g−1 for all k, we see that among all monoids in
S(g) the one with largest anti-atom set is always Ng (which is not too surprising
since G(Ng) contains more than 48% of the elements of S(g)).

As k increases from 1 to b(g − 1)/2c the cardinality of B(g, k) decreases but the
number of monoids in B(g, k) decreases as well. For example, B(g, 1) contains all of
the symmetric and pseudosymmetric monoids in S(g), while, at the other extreme,
B(g, b(g − 1)/2c) contains only one monoid Dg which is defined by

Dg = Ng ∪ {b(g + 2)/2c}. (2)

Corollary 9. For each nonnegative integer n, we have |G(D2n+1)| = An and

|G(D2n+2)| = 2An.

Proof. It is not difficult to show that Dg is the only monoid in B(g, b(g − 1)/2c).
(If M is a monoid in B(g, b(g − 1)/2c) then M ∩ (b(g + 2)/2c , g) = ∅.) Thus Dg is
the atom monoid of every numerical set in B(g, b(g − 1)/2c), and this implies that
|G(Dg)| = |B(g, b(g − 1)/2c)| = Ab(g−1)/2c2g−2b(g−1)/2c−1, from which the corollary
follows. �
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When k is less than b(g − 1)/2c the set B(g, k) will always contain at least two
distinct numerical monoids (for example, Ng ∪{g− k} and Ng ∪{g− k− 1, g− k}).
Thus Dg is the only monoid in S(g) for which the first inequality of theorem 8 is
sharp.

The generating function for {γk}

For each integer k > 0 let A(k)′ denote the collection of all subsets L ⊆ (0, k)
for which (L,L) is admissible. Thus A(k)′ consists of those subsets L which satisfy
the condition that for each x ∈ L there is y ∈ L such that x+ y ≤ k and x+ y /∈ L.
The cardinality of A(k)′ will be denoted by A′k.

Theorem 10. There is a one-to-one correspondence between G(g) and A(g)′. In

particular, |G(g)| = A′g and γg = A′g /2
g−1.

Proof. For each L ∈ A(g)′ consider the numerical set Ng ∪ L ∈ S(g). If x ∈ L

then there is an integer y ∈ L such that 0 < x + y ≤ g and x + y /∈ L, which
implies that x+ y /∈ Ng ∪L. This shows that x is not an atom of Ng ∪L, and that
Ng∪L has no small atoms. Thus the correspondence L 7→ Ng∪L is a function from
A(g)′ to G(g), and clearly this function is injective. Now suppose S ∈ G(g) and let
x ∈ S ∩ (0, g). Since S has no small atoms, there is an integer y ∈ S such that
x + y /∈ S. Thus x + y ≤ g (since the Frobenius number of S is g), y ∈ S ∩ (0, g)
and x + y /∈ S ∩ (0, g). It follows that S ∩ (0, g) is an element of A(g)′, and the
function L 7→ Ng ∪ L is surjective. �

Theorem 11. For each k ≥ 1, A′2k = 2 A′2k−1 and A′2k+1 = 2 A′2k −Ak.

Proof. The first equation follows immediately from lemma 4 and theorem 10. For
the second equation we have

A′2k+1 = |G(2k + 1)| = |S(2k + 1)| − |B(2k + 1)| = 22k −
k∑
`=1

|B(2k + 1, `)|,

and by theorem 5

22k −
k∑
`=1

|B(2k + 1, `| = 4k −
k∑
`=1

A` 4k−` .

A similar computation shows that

A′2k =
1
2

(
4k −

k−1∑
`=1

A` 4k−`
)
.

Combining these gives A′2k+1 − 2A′2k = −Ak. �

The set G(2k + 1) can be constructed from G(2k − 1) by a process in which
each element of G(2k − 1) will spawn either three or four elements of G(2k + 1) as
follows. If S ∈ G(2k − 1) and Q is one of the four subsets of {k, k + 1} then let
S(Q) ∈ S(2k + 1) be given by

S(Q) = N2k+1 ∪
(
S ∩ [1, k − 1]

)
∪Q ∪

(
2 +

(
S ∩ [k, 2k − 2]

))
. (3)

Since S has no small atoms, S(Q) will not have any small atoms larger than k+ 1.
Furthermore, if Q is one of ∅, {k} or {k, k + 1} then k + 1 is not an atom of S(Q),
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2k+1

Q

S

S(Q)

Figure 3. The numerical set S(Q)

and S(Q) is an element of G(2k + 1). But if Q equals the singleton set {k + 1}
then sometimes k + 1 will be an atom for S(Q), in which case S(Q) is not an
element of G(2k + 1). From this we see that |G(2k + 1)| = A′2k+1 is four times
|G(2k − 1)| = A′2k−1 minus the number of elements of G(2k − 1) which spawn only
three elements of G(2k + 1), and, since A′2k+1 = 4A′2k−1 − Ak by theorem 11, the
number of elements of G(2k − 1) which spawn only three elements of G(2k + 1)
equals Ak.6 As a result of these comments we can view the union of all the sets
G(2k + 1) as the vertices of a downward opening rooted tree in which each vertex
is directly above the 3 or 4 vertices that it spawns, as pictured in figure 4. In the
illustration the vertex labeled by a 2×k matrix α =

( α1 α2 ··· αk
α2k α2k−1 ··· αk+1

)
with entries

in Z2 corresponds to the numerical set

S(α) = N2k+1 ∪ {i | αi = 1}

in G(2k + 1). Although we will not use it here, one can specify conditions on the
matrix α which guarantee that S(α) is in G(2k + 1): Call the 2 × k matrix α

quadrivalent if there is an integer ` with 1 ≤ ` ≤ k such that the `th column of α is
( 1

0 ) or ( 1
1 ) and the (k+1−`)th column is ( 1

0 ) or ( 0
0 ).7 Then S(α) ∈ G(2k+1) if and

only if whenever the ith column of α equals ( 0
1 ) then the 2× (i− 1) submatrix of

α to the left of that column is quadrivalent. We also note that as one moves down
the tree the ratio Ak/A′2k+1 of the number of vertices at level 2k + 1 which spawn
three vertices by the total number of vertices at that level limits to 0. Indeed Ak is
bounded above by the number of 2× k matrices α which are not quadrivalent and
that number is easily seen to equal 3k. Thus

Ak
A′2k+1

=
Ak

|G(2k + 1)|
=

Ak
γ2k+14k

≤ 1
γ2k+1

(
3
4

)k
and the latter limits to 0.

Let g(z) and f(z) be the analytic functions defined by

g(z) =
∞∑
k=1

Akz
k and f(z) =

∞∑
k=1

A′kz
k .

6This can also be verified by a combinatorial argument. If (L,M) ∈ A(k) then (L′, L′) is

an element of A(2k − 1)′ ∼= G(2k − 1) which spawns only three elements of G(2k + 1), where

L′ = L ∪ (M + k − 1).
7The reason for this terminology is that if S(α) is an element of G(2k + 1), then the matrix α

is quadrivalent if and only if S(α) spawns four elements of G(2k + 3).
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Figure 4. Rooted tree for
⋃
{G(2k + 1) | k ∈ N}.

Corollary 12. The functions f(z) and g(z) satisfy the relation(
2z − 1

)
f(z) = z

(
g(z2)− 1

)
.

Proof. Using theorem 11 we have

f(z) =
∞∑
k=1

A′2k−1z
2k−1 +

∞∑
k=1

A′2kz
2k = (2z + 1)

∞∑
k=1

A′2k−1z
2k−1 . (4)

Also Ak = 4A′2k−1 −A′2k+1 by theorem 11, and

g(z2) =
∞∑
k=1

(4A′2k−1 −A′2k+1)z2k

= 4z
∞∑
k=1

A′2k−1z
2k−1 − 1

z

∞∑
k=1

A′2k−1z
2k−1 +A′1

=
(2z − 1)(2z + 1)

z

∞∑
k=1

A′2k−1z
2k−1 + 1 =

2z − 1
z

f(z) + 1 ,

where the last equality follows from (4). �

Corollary 13. The analytic function f(z) has a singularity at z = 1/2, and its

radius of convergence at the origin equals 1/2. Other than z = 1/2, the singularities

of f(z) coincide with those of g(z2) and f(z)(z − 1/2) is continuous on |z| ≤ 1/2.

Proof. Since
∑∞
k=1 Ak4−k sums to β∞ = g(1/4),

∑∞
k=1 Akz

k converges absolutely
and f(z) is continuous on |z| ≤ 1/4. Note that f(z) has no singularities in |z| < 1/2
because g(z) has none in |z| < 1/4. The remainder of the proof follows from
corollary 12. �

By definition the integers A′k and Ak satisfy 0 ≤ A′k ≤ Ak for all k > 0,
and by corollary 13 we know that the series

∑∞
k=1 A

′
kz
k diverges when z = 1/2.

Therefore
∑∞
k=1 Akz

k must also diverge for z = 1/2 by the comparison test, and
this shows that the radius of convergence for g(z) at the origin is between 1/4
and 1/2. To find the precise value, the ratio test would lead one to examine the
sequence An−1/An. Empirical evidence from the last column of table 1 perhaps



12 JEREMY MARZUOLA AND ANDY MILLER

suggests that this sequence has a limit infimum larger than 1/4, but we have not
been able to ascertain this. So the determination of the radius of convergence of
g(z) at the origin remains open. Notice that if this radius of convergence is larger
than 1/4 then g(z2) is analytic in a neighborhood of z = 1/2 and

lim
z→1/2

(z − 1/2)f(z) = lim
z→1/2

z
(
g(z2)− 1

)
/2 = (β∞ − 1)/4 = −γ∞/4,

which would imply that f(z) has a simple pole with residue −γ∞/4 at z = 1/2.

Now the generating function for the sequence {γk} is

h(z) =
∞∑
k=1

γk z
k

which satisfies

h(z) =
∞∑
k=1

A′k
2k−1

zk = 2f (z/2) =
(

z

z − 1

)(
g(z2/4)− 1

)
.

By corollary 13 the radius of convergence of this series equals 1. If the radius of
convergence at the origin for g(z) is larger than 1/4 then g(z2/4)− 1 is analytic in
a disk with radius larger than 1 centered at the origin, and h(z) has a simple pole
at z = 1 whose residue is −γ∞ (and this is the only pole on |z| = 1).

Symmetric numerical sets with no small atoms

A numerical set S with Frobenius number g is negative semisymmetric provided
that g − x /∈ S whenever x ∈ S. For a positive integer g, define

S σ(g) = {S ∈ S(g) | S is maximal negative semisymmetric in S(g)}

where maximality is measured with respect to subset inclusion. Then S σ(g) consists
of the symmetric numerical sets in S(g) when g is odd, and the pseudosymmetric
numerical sets in S(g) when g is even. Each element of S σ(g) is the union of Ng
with a subset of (0, g) − {g/2} that is carried onto its complement by x 7→ g − x,
and hence the cardinality of S σ(g) equals 2b(g−1)/2c.

The set S σ(g) is partitioned into two subsets

G σ(g) = {S ∈ S σ(g) | S has no small atoms} = G(g) ∩ S σ(g)

and

B σ(g) = {S ∈ S σ(g) | S has at least one small atom} = B(g) ∩ S σ(g) .

We define

β σg =
|B σ(g)|
|S σ(g)|

=
|B σ(g)|

2b(g−1)/2c

and

γ σg =
|G σ(g)|
|S σ(g)|

=
|G σ(g)|

2b(g−1)/2c .

The next lemma describes a direct connection between symmetric and pseudosym-
metric numerical sets.
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Lemma 14. The correspondence S 7→ S′0 where

S′0 =
(
S ∩ [0, n− 1]

)
∪
(

1 + S ∩ [n,∞)
)

defines a bijection from S σ(2n−1) to S σ(2n) which carries G σ(2n−1) onto G σ(2n).
Therefore γ σ2n = γ σ2n−1 and β σ2n = β σ2n−1.

Proof. Notice that S′0 is the numerical set S′ε where ε = 0 as defined in lemma 4.
The proof follows upon observing that S is symmetric if and only if S′0 is pseu-
dosymmetric. �

For integers g and k with g > 2k > 0, let

B σ(g, k) = {S ∈ B σ(g) | g − k is the largest small atom of S}
(i.e. B σ(g, k) = B(g, k) ∩ S σ(g)). Then B σ(g) is the disjoint union of the sets
B σ(g, k) as k ranges between 1 and b(g − 1)/2c by lemma 3. In order to describe
B σ(g, k) we are led to the next definitions.

Let M be a subset of (0, k). Define

M+ = {m ∈M | k −m ∈M} ,
M− = {x ∈ (0, k) | x /∈M and k − x /∈M} ,

and
M∗ = {x ∈ (0, k) | k − x /∈M} .8

With these definitions, observe that M∗ = (M −M+) ∪M−.

A subset M ⊆ (0, k) is called σ-admissible if it satisfies the two conditions:

(σ-ad1) M− = ∅, and
(σ-ad2) for each x ∈M there is y ∈M∗ with x+ y < k and x+ y /∈M .

Let Aσ(k) be the set of all σ-admissible subsets of (0, k) and let Aσ
k denote the

cardinality of this set. Also, for integers k and g with g > 2k > 0 let P σ(k, g − k)
be the collection of all subsets of (k, g − k) − {g/2} that are carried onto their
complement by the reflection x 7→ g − x. The cardinality of this collection is
2b(g−2k−1)/2c. Recall the definition of the numerical set S(L,M,P ) as

S(L,M,P ) = Ng ∪ L ∪ P ∪ {g − k} ∪
(
M + g − k

)
from equation (1) in theorem 5.

Theorem 15. Let g and k be integers with g > 2k > 0. The correspondence

(M,P ) 7→ S(M∗,M, P ) defines a bijection from Aσ(k)×P σ(k, g−k) onto B σ(g, k).
In particular, the cardinality of B σ(g, k) is Aσ

k 2b(g−2k−1)/2c.

Proof. Let (M,P ) ∈ Aσ(k)×P σ(k, g−k). An integer x ∈ (0, k) is an element of M∗

if and only if k − x /∈ M , which is equivalent to asserting that g − x /∈ M + g − k.
This together with the fact that P is an element of P σ(k, g − k) implies that
S(M∗,M, P ) ∈ S σ(g). Since M− = ∅, M∗ = M −M+ ⊆ M . If x ∈ M∗ then
x ∈M and g−k+x ∈M + g−k ⊂ S(M∗,M, P ), and if x is an integer larger than
k then g − k + x > g and g − k + x ∈ S(M∗,M, P ). This shows that g − k is an
atom for S(M∗,M, P ). An element of S(M∗,M, P ) in the interval (g − k, k) has
the form x+g−k for some x ∈M . By the definition of Aσ(k) there is y ∈M∗ with

8This last definition is closely related to the definition of the dual S∗ of a numerical set S. If

S = Nk ∪M ∈ S(k) then S∗ = Nk ∪M∗.
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y < k−x and x+y /∈M . Thus y+(x+g−k) is an element of (g−k, g) which is not
an element of M + g − k, and x+ g − k is not an atom of S(M∗,M, P ). It follows
that g − k is the largest small atom of S(M∗,M, P ) and S(M∗,M, P ) ∈ B σ(g, k).

To complete the proof it only remains to show that each numerical set in
B σ(g, k) equals S(M∗,M, P ) for some (M,P ) ∈ Aσ(k) × P σ(k, g − k). Let T ∈
B σ(g, k), and set M = (T ∩ (g − k, g))− g + k ⊆ (0, k) and P = T ∩ (k, g − k). If
x ∈ T ∩ (0, k) then x + g − k ∈ T ∩ (g − k, g), since g − k is an atom of T , and
hence x ∈ M . Note further that k − x is not in T because if it were then both
k−x and g− (k−x) = x+g−k would be elements of T contradicting the negative
semisymmetry of T . This shows that x ∈ M∗ and T ∩ (0, k) ⊆ M∗. Moreover if
x ∈ M∗ then k − x /∈ M which means that g − k + (k − x) = g − x /∈ T and that
x ∈ T since T is maximally negative semisymmetric. Thus M∗ = T ∩ (0, k) and
S(M∗,M, P ) = T . Clearly P ∈ P σ(k, g − k) so to complete the proof it must be
shown that M ∈ Aσ(k). If M− 6= ∅ then there is x ∈ (0, k) such that x /∈ M and
k − x /∈M , and then (g − k) + k − x = g − x /∈ T and x /∈ T which contradicts the
maximality of T . This verifies that M− is empty. If x ∈ M then g − k + x is an
element of T ∩(0, g) larger than g−k so that g−k+x is not an atom of T since g−x
is the largest atom of T . It follows that there is an element y ∈ T with y < k − x
such that y+ g−k+x /∈ T (note that y cannot equal k−x because otherwise both
k − x and g − k + x would be elements of T contradicting the assumption that T
is negative semisymmetric), and M ∈ Aσ(k). �

By lemma 3 and the theorem we have

|B σ(g)| =
b(g−1)/2c∑

k=1

|B σ(g, k)| =
b(g−1)/2c∑

k=1

Aσ
k 2b(g−2k−1)/2c (5)

and dividing by 2b(g−1)/2c produces the next result.

Corollary 16. For each g > 0, β σg =
b(g−1)/2c∑

k=1

Aσ
k 2−k. �

Thus {β σg } is an increasing sequence, and it has a limit

β σ∞ =
∞∑
k=1

Aσ
k 2−k .

It follows immediately that {γ σg } is a decreasing sequence which converges to γ σ∞ =
1− β σ∞.

Corollary 17. For each positive integer n, Aσ
n ≤ 3b(n−3)/2c and

γ σ2n−1 − γ σ∞ = β σ∞ − β σ2n−1 ≤

(√
3

2

)n−1

.

Proof. Let M ⊆ (0, n) be an element of Aσ(n). Suppose that n = 2k + 1 is odd.
Then (0, n) is partitioned into k doubletons {i, n − i} where 1 ≤ i ≤ k. Since
M− = ∅ the intersection of {i, n− i} with M must be nonempty, and so there are
three possibilities for each of these intersections. Notice also that n−1 cannot be an
element of M by condition (σ-ad2), and the intersection of M with the doubleton
{1, n − 1} must be {1}. Thus there are at most 3k−1 = 3b(n−3)/2c possibilities
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for M . When n = 2k is even, (0, n) can be partitioned into (k − 1) doubletons
{i, n − i} where 1 ≤ i ≤ k − 1 and a singleton {k}. The intersection of M with
{k} must equal {k} since M− = ∅. By a similar argument as before there are at
most 3k−2 = 3b(n−3)/2c possibilities for M . Now β σ∞ − β σ2n−1 =

∑∞
k=nA

σ
k 2−k ≤∑∞

k=n 3b(k−3)/2c2−k ≤
(√

3
2

)n−1

. �

Some values of β σ2n−1 are given in table 2. Note that β σ63 = .76356 . . . ap-
proximates β σ∞ to within (

√
3/2)31 = .0115731 . . . by corollary 17. Subtracting

from 1 gives γ σ63 = .23644 . . ., which approximates γ σ∞ to within .0115731. Taking
midpoints gives the approximation γ σ∞ ≈ .230653 accurate to within .00579.

n Aσ ′
2n−1 Aσ

n β σ2n−1 Rn
1 1 1 0 1
2 1 0 .5 ∞
3 2 1 .5 1
4 3 0 .625 ∞
5 6 2 .625 .871
6 10 0 .6875 ∞
7 20 3 .6875 .855
8 37 1 .71094 1
9 73 7 .71484 .806
10 139 3 .72852 .896
11 275 17 .73145 .773
12 533 7 .73975 .850
13 1059 43 .74146 .749
14 2075 24 .74670 .797
15 4126 118 .74817 .728
16 8134 74 .75177 .764

n Aσ ′
2n−1 Aσ

n β σ2n−1 Rn
17 16194 330 .75290 .711
18 32058 206 .75542 .744
19 63910 888 .75620 .700
20 126932 612 .75790 .725
21 253252 2571 .75848 .688
22 503933 1810 .75971 .711
23 1006056 7274 .76014 .679
24 2004838 5552 .76100 .698
25 4004124 21099 .76134 .671
26 7987149 16334 .76196 .689
27 15957964 61252 .76221 .665
28 31854676 49025 .76266 .680
29 63660327 179239 .76285 .659
30 127141415 146048 .76318 .673
31 254136782 523455 .76332 .654
32 507750109 440980 .76356 .666

Table 2. Approximating β σ∞, where Rn = 1/ n
√
Aσ
n .

For a numerical monoid M ∈ S(g) let

Gσ(M) = G(M) ∩ S σ(g) = {S ∈ S σ(g) | A(S) = M} .

Note that M will not be an element of Gσ(M) unless M is symmetric or pseu-
dosymmetric, and that Gσ(M) may be empty. If M ∈ S(g) is a numerical monoid
in B(g, k) (which means that g − k is the largest integer in M ∩ (0, g)) then
Gσ(M) ⊆ B σ(g, k). Therefore

|Gσ(M)| ≤ |B σ(g, k)| = Aσ
k 2b(g−2k−1)/2c ≤ 1

3
√

3

(√
3

2

)k
× 2b(g−1)/2c

by corollary 17, and this is the symmetric analogue of the inequality in theorem 8. In
particular we see that |Gσ(Ng)| = |Gσ(g)| is larger than |Gσ(M)| for every numerical
monoid M ∈ S(g) other than Ng. Taking k = b(g − 1)/2c in the above shows that
|Gσ(D2k+1)| = |B σ(g, k)| = Aσ

k and that |Gσ(D2k+2)| = 2Aσ
k , where Dn is defined

in equation (2).
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The generating function for {γ σk }

We define Aσ(k)′ to be the subset of Aσ(k) consisting of all σ-admissible sets
M ⊆ (0, k) for which M+ has at most one element. If M ∈ Aσ(k)′ then there are
two possibilities: either k is odd and M+ = ∅ (because M+ has an even number of
elements whenever k is odd) or k is even and M+ = {k/2} (because k/2 must be
in M− or M+ whenever k is even, and M− = ∅). The cardinality of Aσ(k)′ will be
denoted by Aσ ′

k .

Theorem 18. There is a one-to-one correspondence between the sets G σ(g) and

Aσ(g)′. In particular, |G σ(g)| = Aσ ′
g and γ σg = Aσ ′

g 2−b(g−1)/2c.

Proof. Given M ∈ Aσ(g)′ define S = Ng ∪M∗. If g is odd then M− = M+ = ∅
so that M∗ = M and S is symmetric. If g is even then M− = ∅, M+ = {g/2}
and M∗ = M − {g/2} which implies that S is pseudosymmetric. In either case, S
is an element of S σ(g) and we can write M∗ = M − {g/2}. Suppose s is a large
small atom in S. Then s ∈M∗ ⊆M and by (σ-ad2) there exists y ∈M∗ such that
s + y < g and s + y /∈ M . Note that s + y /∈ M − {g/2} = M∗ since s is large.
Thus s+ y /∈ S in contradiction of the assumption that s ∈ A(S). This shows that
M 7→ S is an injective function from Aσ(g)′ to G σ(g). If S ∈ G σ(g) then it is not
hard to check that S = Ng ∪M∗ where M = (S ∩ (0, g))∗ ∈ Aσ(g)′, completing the
proof. �

Theorem 19. For each k ≥ 1, Aσ ′
2k = Aσ ′

2k−1 and Aσ ′
2k+1 = 2Aσ ′

2k −Aσ
k .

Proof. The first statement follows from lemma 14 and theorem 18. For the second
we have

Aσ ′
2k+1 = |G σ(2k + 1)| = |S σ(2k + 1)| − |B σ(2k + 1)| = 2k −

k∑
`=1

Aσ
` 2k−`

using equation (5), and Aσ ′
2k = 2k−1 −

∑k−1
`=1 Aσ

` 2k−`−1 by a similar computation.
Combining these two equations gives 2Aσ ′

2k −Aσ ′
2k−1 = Aσ

k . �

As in figure 4 we may view
⋃
{G σ(2k + 1) | k ∈ N} as the vertices of a downward

opening rooted tree. Here each element of G σ(2k−1) (represented by a vertex in the
kth level of the tree) will spawn either one or two elements of G σ(2k+1) (represented
by vertices at the (k+ 1)st level). If S ∈ G σ(2k− 1) and Q is either {k} or {k+ 1}
then let S(Q) be defined by equation (3) and observe that S(Q) ∈ S σ(2k + 1). As
before S(Q) has no small atoms when Q = {k} but k + 1 may be a small atom for
S(Q) when Q = {k + 1}. From this we see that |G σ(2k + 1)| = Aσ ′

2k+1 is two times
|G σ(2k − 1)| = Aσ ′

2k−1 minus the number of elements of G σ(2k − 1) which spawn
only one element of G σ(2k + 1), and it follows from theorem 19 that the number
of elements of G σ(2k− 1) which spawn only one element of G σ(2k+ 1) equals Aσ

k .
Figure 5 shows the first few levels of the rooted tree. In this illustration a labeling
sequence α = (α1, . . . , αk) with entries in Z2 represents the same numerical set in
G σ(2k+1)as the 2×k matrix

( α1 ··· αk

α∗1 ··· α
∗
k

)
represented in figure 4, where α∗i = 1−αi.

Call the sequence α bivalent if there is an integer ` with 1 ≤ ` ≤ k such that
α` = αk+1−` = 1. Then α represents an element of G σ(2k + 1) if and only if
(α1, . . . , αi−1) is bivalent whenever αi = 0.
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Figure 5. Rooted tree for
⋃
{G σ(2k + 1) | k ∈ N}.

If we associate α = (α1, . . . , αk) with the finite set F (α) = {0} ∪ {i | αi = 1}
then α is bivalent if and only if k + 1 ∈ F (α) + F (α). Furthermore, α represents
an element of G σ(2k + 1) precisely when F (α) is an ‘additive 2-basis for k’ (which
means that [0, k) ⊆ F (α) + F (α)). Thus Aσ ′

2k+1 equals the number of subsets
of [0, k) which are additive 2-bases for k. By theorem 18, Aσ ′

2k+1 = γ σk 2k which
is asymptotically equal to γ σ∞2k where γ σ∞ ≈ .230653 as described above. The
study of finite additive 2-bases for k has a long history, especially in relation to the
determination of bounds for the smallest cardinality of such bases. The introduction
of [GN] has a nice overview of this. The first 19 terms of the sequence {Aσ ′

2k−1}
have been posted at [S] by M. Torelli as sequence number A008929. The paper [T]
describes some related sequences. (In that paper a finite additive 2-basis is called
a (finite) ‘Goldbach sequence’.)

Let gσ(z) and fσ(z) be the analytic functions defined by

gσ(z) =
∞∑
k=1

Aσ
k z

k and fσ(z) =
∞∑
k=1

Aσ ′
k zk .

Corollary 20. The functions fσ(z) and gσ(z) satisfy the relation

(
2z2 − 1

)
fσ(z) = z(z + 1)

(
gσ(z2)− 1

)
.

Proof. First observe that

fσ(z) =
∞∑
k=1

Aσ ′
2k−1z

2k−1 +
∞∑
k=1

Aσ ′
2k z

2k = (z + 1)
∞∑
k=1

Aσ ′
2k−1z

2k−1 (6)
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by theorem 19. From the same theorem, Aσ
k = 2Aσ ′

2k−1 −Aσ ′
2k+1 and

gσ(z2) =
∞∑
k=1

2Aσ ′
2k−1z

2k −
∞∑
k=1

Aσ ′
2k+1z

2k

= 2z
∞∑
k=1

Aσ ′
2k−1z

2k−1 − 1
z

∞∑
k=1

Aσ ′
2k−1z

2k−1 +Aσ ′
1

=
(

2z − 1
z

) ∞∑
k=1

Aσ ′
2k−1z

2k−1 + 1 =
2z2 − 1
z(z + 1)

fσ(z) + 1.

�

Corollary 21. The analytic function fσ(z) has singularities at z = ±1/
√

2 and

its radius of convergence at the origin equals 1/
√

2. Except for z = ±1/
√

2 and

possibly for z = −1, the singularities of fσ(z) coincide with those of gσ(z2) and

fσ(z)(2z2 − 1) is continuous on the closed disk |z| ≤ 1/
√

2.

Proof. Since gσ(1/2) = β σ∞ the power series
∑∞
k=1 A

σ
k z

k converges absolutely and
gσ(z) is continuous on |z| ≤ 1/2. By corollary 20 fσ(z) has singularities at z =
±1/
√

2 and fσ(z) has radius of convergence 1/
√

2 at the origin. The last property
also follows immediately from corollary 20. �

Since 0 < Aσ ′
k < Aσ

k , the series
∑∞
k=1 A

σ
k

(
1/
√

2
)k

diverges by comparison with∑∞
k=1 A

σ ′
k

(
1/
√

2
)k

, and so the radius of convergence of gσ(z) at the origin must
be between 1/2 and 1/

√
2. The root test would equate this radius of convergence

with the limit infimum of Rn = 1/ n
√
Aσ
n . This value seems to be larger than 1/2

by the data in the last column of table 2, but we have not been able to ascertain
this.

Let hσ(z) =
∑∞
k=1 γ

σ
k z

k be the generating function for {γσk }. Using equation (6)
and corollary 20 we have

hσ(z) =
∞∑
k=1

Aσ ′
k

2b(k−1)/2c z
k =

∞∑
k=1

Aσ ′
2k−1

2k−1
z2k−1 +

∞∑
k=1

Aσ ′
2k

2k−1
z2k

=
√

2
(
z + 1

) ∞∑
k=1

Aσ ′
2k−1

(
z√
2

)2k−1

= 2
(
z + 1/z +

√
2
)
fσ
(
z/
√

2
)

=
(

z

z − 1

)(
gσ
(
z2/2

)
− 1
)
.

Therefore hσ(z) has radius of convergence 1 at the origin and has a singularity
at z = 1. If the radius of convergence of gσ(z) at the origin is larger than 1/2
then z = 1 is the only singularity of hσ(z) inside a circle with radius larger than 1
centered at the origin and hσ(z) would have a simple pole at z = 1 with residue

lim
z→1

(z − 1)hσ(z) = lim
z→1

z(gσ(z2/2)− 1) = gσ(1/2)− 1 = −γ σ∞ .
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