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Abstract

Point-determining graphs are graphs in which no two vertices have the same neighbor-
hoods, co-point-determining graphs are those whose complements are point-determining, and
bi-point-determining graphs are those both point-determining and co-point-determining. Bi-
colored point-determining graphs are point-determining graphs whose vertices are properly
colored with white and black. We use the combinatorial theory of species to enumerate these
graphs as well as the connected cases.

0 Introduction
A point-determining graph (also called a mating-type graph, mating graph, or M-graph) is a graph
in which no two vertices have the same neighborhood. The term “point-determining” was intro-
duced by Sumner [21]. If we start with any graph, and identify vertices with the same neighbor-
hood, we obtain a point-determining graph. This was the motivation for their use by Bull and
Pease [2] to represent mating systems: Let each vertex of a graph denote an individual animal and
let two vertices be joined if the two animals can mate. If two animals have identical compatibilities
they are said to be of the same mating type, and in that case they don’t need to be represented by
different vertices. Thus we may represent animals with the same mating type by the same vertex,
resulting in a graph in which no two vertices have identical neighborhoods.

Point-determining graphs (both labeled and unlabeled) were counted by Read [15], using this
reduction of arbitrary graphs to point-determining graphs, and we shall follow the same approach
in this paper.

Complements of point-determining graphs, which we call co-point-determining graphs (they
have also been called “point-distinguishing”), are graphs in which no two vertices have the same
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closed neighborhood. (The closed neighborhood of a vertex is the vertex together with its neigh-
borhood.) The enumeration of co-point-determining graphs is of course the same as the enu-
meration of point-determining graphs, but counting connected point-determining and co-point-
determining graphs is different. Surprisingly, the number of unlabeled point-determining and co-
point-determining graphs is the same, but for the labeled versions, the number of point-determining
and co-point-determining graphs on n vertices differ by (n− 1)!.

Next we count graphs which are both point-determining and co-point-determining, which we
call bi-point-determining. (They have also been called “totally point-determining”.) These graphs
may also be characterized by the property that their automorphism groups contain no transposi-
tions; i.e., they are not fixed by switching any pair of vertices. Just as an arbitrary graph can be
reduced to a point-determining graph by identifying graphs with the same neighborhood, an arbi-
trary graph may be reduced to a bi-point-determining graph by a more complicated compression
in which the fibers are cographs (graphs obtained from edgeless graphs by complementation and
union).

We use the combinatorial theory of species [11, 12, 1] as our framework for graphical enu-
meration. In section 1, we introduce some terminology and basic results of species theory. The
superimposition of graphs is defined and related to composition of species in Lemma 1.4. In sec-
tion 2, we enumerate point-determining graphs through a functional relation between the species
of point-determining graphs and the well-known species of graphs (Theorem 2.2), and examine the
species of connected point-determining graphs and connected co-point-determining graphs (The-
orem 2.3). In section 3, we describe connection between unlabeled connected point-determining
graphs and unlabeled connected graphs without endpoints (Corollary 3.2), which was previously
studied in [5], [22], and [13]. In section 4, we find a functional relation between the species of bi-
point-determining graphs and the species of graphs (Theorem 4.4). The enumeration of connected
bi-point-determining graphs is carried out using virtual species (Corollary 4.7). In section 5, we
examine the 2-sort species of bicolored graphs (Theorem 5.1), which are graphs whose vertices
are properly colored with white and black, and develop ways to enumerate the bicolored point-
determining graphs and the connected ones (Theorem 5.3, 5.4).

A list of species covered in this paper is given in appendix A. In appendix B we list some
computational results on the cycle indices and molecular decompositions of species.

1 Combinatorial Species and Superimposition of Graphs
The combinatorial theory of species was initiated by Joyal in [11] and [12]. For detailed definitions
and descriptions about species, readers are referred to [1]. A species is a functor from the category
of finite sets with bijections to itself. A species F generates for each finite set U a finite set
F [U ], called the set of F -structures on U , and for each bijection σ : U → V a bijection F [σ] :
F [U ]→ F [V ], called the transport of F -structures along σ. The symmetric group Sn acts on the
set F [n] = F [{1, 2, . . . , n}] by transport of structures. The Sn-orbits under this action are called
unlabeled F -structures of order n.

Each species F is associated with three generating series: the exponential generating series
F (x) =

∑
n≥0 |F [n]|xn/n!, the type generating series F̃ (x) =

∑
n≥0 fn x

n, where fn is the num-
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ber of unlabeled F -structures of order n, and the cycle index

ZF = ZF (p1, p2, . . . ) =
∑
n≥0

(∑
λ`n

fix F [λ]
pλ
zλ

)
,

where fix F [λ] denotes the number of F -structures on [n] = {1, 2, . . . , n} fixed by F [σ] for some σ
that is a permutation of [n] with cycle type λ, zλ is the number of permutations in Sn that commute
with a permutation of cycle type λ, and pλ is the power sum symmetric function (see [19, p. 297])
indexed by the partition λ of n, defined by

pn = pn[x] =
∑
i

xni , n ≥ 1

pλ = pλ[x] = pλ1pλ2 · · · =
∏
k≥1

p
ck(λ)
k , if λ = (1c1(λ), 2c2(λ), . . . ),

where ci(λ) is the number of parts of length i in the partition λ, and hence
∑

i ici(λ) = n. The
pλ form a basis for the ring of symmetric functions in the variables x1, x2, . . . . We can also define
power sum symmetric functions in the variables y1, y2, y3, . . . , written as pλ[y], in a similar fashion.

The following identities [1, p. 18] illustrate the importance of the cycle index in the theory of
species.

F (x) = ZF (x, 0, 0, . . . ),

F̃ (x) = ZF (x, x2, x3, . . . ).

We may apply operations on species to generate new species, and the operations of species
translate into operations of the generating series of species systematically. For details about oper-
ations of species, readers are referred to [1, pp. 1–58]. The species operations that are frequently
used in this paper are the sum Φ + Ψ, the product ΦΨ or Φ ·Ψ, and the composition Φ(Ψ) or Φ ◦Ψ
of species Φ and Ψ. We recall here the definition of the composition of Φ and Ψ [1, p. 41]: A
Φ ◦ Ψ-structure on a finite set U is a triple of the form (π, f, γ), where π is a partition of U , f is
a Φ-structure on the set of blocks of π, and γ = (γB)B∈π, where for each block B of π, γB is a
Ψ-structure on B. The formulas for the associated series of Φ ◦Ψ are given by

(Φ ◦Ψ)(x) = Φ(Ψ(x)),

(Φ̃ ◦Ψ)(x) = ZΦ(Ψ̃(x), Ψ̃(x2), . . . ),

ZΦ◦Ψ = ZΦ ◦ ZΨ,

where ◦ is the operation of plethysm on symmetric functions (see [19, p. 447]).
If F is a species of structures, we denote by Fn, for a nonnegative integer n, the species of

F -structures concentrated on the cardinality n (see [1, p. 30]), and by F≥n the F -structures of
cardinality at least n. Hence F≥n = Fn + Fn+1 + · · · . We usually write F≥1 as F+.

A species M is called a molecular species (see [23] and [24]) if there is only one isomorphism
class of M -structures. Thus a molecular species is one that is indecomposable under addition.
Every species can be expressed uniquely as the sum of molecular species, and this expression is
called its molecular decomposition (see [1, p. 141]).
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Throughout this paper, we consider only simple graphs (without loops or multiple edges). A
graph G is thought of as an ordered pair (V,E), where V = V (G) is the vertex set of G, and
E = E(G) is the edge set of G, a set of 2-subsets of V . Two graphs are called disjoint if they have
no common vertices. An unlabeled graph is formally defined as an isomorphism class of graphs,
though we think of an unlabeled graph as simply a graph without vertex labels. A graph with no
vertices is called empty. The empty graph is not considered to be a connected graph. The empty
species, denoted by 0, is defined by 0[U ] = ∅ for all U . The species of the empty graph is 1. The
species of the singleton graph is denoted by X . We denote by E the species of sets. A fundamental
property of E that we shall use several times is that for any species (or virtual species) F and G,
E (F +G) = E (F )E (G).

The cycle index of the species G of graphs was given in [1, p. 79] and [16, p. 334, Theorem 2]:

ZG =
∑
n≥0

(∑
λ`n

fix G [λ]
pλ
zλ

)
,

where
fix G [λ] = 2

1
2

P
i,j≥1 gcd(i, j) ci(λ)cj(λ)− 1

2

P
k≥1(k mod 2) ck(λ).

A virtual species is a formal difference of species (see [1, p. 121]). Since there is only one
(1 + X)-structure on the empty set, the species 1 + X satisfies (1 + X)(0) = 1. Proposition 18
of [1, p. 129] asserts that there exists a unique virtual species which we denote by (1 + X)c, the
virtual species of “connected (1 + X)-structures” with 1 + X = E ◦ (1 + X)c, or equivalently,
X = E+ ◦ (1 + X)c. Thus (1 + X)c is referred to as the “combinatorial logarithm of the species
1 +X” (see [1, p. 131]), or the compositional inverse of E+.

Lemma 1.1. The associated series of (1 +X)c are

(1 +X)c(x) = log(1 + x),

˜(1 +X)c(x) = x− x2

Z(1+X)c =
∑
k≥1

µ(k)

k
log(1 + pk),

where µ denotes the Möbius function, defined by

µ(k) =


0, if n has one or more repeated prime factors,
1, if n = 1,
(−1)j, if n is a product of j distinct primes.

Proof. The first and third formulas are special cases of general formulas for combinatorial loga-
rithms given in [1, p. 131]. For the second formula, we have from [1, p. 131, eq. (58)],

˜(1 +X)c(x) =
∑
k≥1

µ(k)

k
log ˜(1 +X)(xk) =

∑
k≥1

µ(k)

k
log(1 + xk). (1.1)

The coefficient of xn in (1.1) is easily seen to be 1
n

∑
d|n µ(d)(−1)n/d−1. Now define g by g(1) = 1,

g(2) = −2, and g(n) = 0 for n > 2. Then
∑

d|n g(d) = (−1)d−1, so by Möbius inversion,∑
d|n µ(d)(−1)n/d−1 = g(n).
A different proof of the second formula was given by Read [15].
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We denote by K the species of complete graphs, which are graphs in which each pair of
vertices are adjacent. The complement of a complete graph is called an edgeless graph. The
species of edgeless graphs, which are graphs with isolated vertices, may be identified with the
species E of sets. We see that there is a natural transformation α that produces for every finite set
U a bijection between E [U ] and K [U ], namely, sending the edgeless graph on U to the complete
graph with vertex set U . Note that this bijection is carried through the complementation of graphs.
The following diagram commutes for any finite sets U , V and any bijection σ : U → V :

E [U ]
E [σ]−−−→ E [V ]

α

y yα
K [U ]

K [σ]−−−→ K [V ]

In this case we call these two species isomorphic to each other (see [1, p. 21] for the general def-
inition of two species being isomorphic). Two isomorphic species essentially possess the “same”
combinatorial properties. Thus we write Φ = Ψ to mean the species Φ is isomorphic to the species
Ψ, and say there is a combinatorial equality (see [1, p. 21]) between them.

The theory of multisort species (see [1, p. 100]) is analogous to multivariate functions. A 2-
sort species F (X, Y ) generates for each finite two-set U = (U1, U2) a finite set F [U1, U2], where
elements in F [U1, U2] are called F -structures on U . Furthermore, for any multibijection

σ = (τ1, τ2) : (U1, U2)→ (V1, V2),

where τ1 is a bijection from U1 to V2 and τ2 is a bijection from U2 to V2, the transport of F (X, Y )-
structures along σ is

F [σ] = F [τ1, τ2] : F [U1, U2]→ F [V1, V2].

Moreover, the functions F [σ] must satisfy the functoriality properties. In this paper, we consider
the 2-sort species H (X, Y ) of connected graphs in which vertices of degree one have sort Y and
all other vertices have sort X (in section 3), and G (X, Y ) of bicolored graphs in which white
vertices are of sort X and black vertices are of sort Y (in section 5).

We introduce a kind of decomposition for graphs that will be helpful in counting point-determining
and especially bi-point-determining graphs.

Definition 1.2. Let H1, . . . , Hm be graphs with disjoint vertex sets, and let G be a graph with
vertex set {V (H1), . . . , V (Hm)}. We define the superimpositionG|H1,...,Hm ofG on {H1, . . . , Hm}
to be the graph with vertex set

⋃m
i=1 V (Hi) in which {u, v} is an edge if it is an edge of some Hi

or if u ∈ V (Hi) and v ∈ V (Hj) for some i 6= j, and {V (Hi), V (Hj)} ∈ E(G).

Figure 1 illustrates the superimposition of a graph G on a set of graphs {H1, H2, H3}.
We introduce two special cases of superimposition. Let n be any positive integer. The edgeless

graph of order n is a graph with n isolated vertices, denoted En. The complete graph of order n is
a graph with n vertices each pair of which is adjacent to each other, denoted Kn.

Definition 1.3. Let {G1, . . . , Gn} be a set of nonempty pairwise disjoint graphs. We define the
union of {G1, . . . , Gn} to be the superimposition En|G1,...,Gn , and the join of {G1, . . . , Gn} to be
the superimposition Kn|G1,...,Gn , where the vertex set of En and Kn is {V (G1), . . . , V (Gn)}.
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Figure 1: The superimposition G|H1, H2, H3 .

The operation of superimposition of species of graphs is closely related to composition of
species. Let Φ and Ψ be two species of graphs; i.e., for every finite set U , Φ[U ] and Ψ[U ] are
sets of graphs with vertex set U . We define a species Φ � Ψ for which (Φ � Ψ)[U ] is the set of all
superimpositions G|H1,...,Hm in which H1, . . . , Hm are Ψ-graphs with

⋃m
i=1 V (Hi) = U and G is a

Φ-graph with vertex set {V (H1), . . . , V (Hn)}.
It is clear from the definitions that there is a species map (see Definition 12, [1, p. 21]), from

Φ ◦ Ψ to Φ � Ψ. The following lemma, whose proof is straightforward, will be essential in our
enumerative applications of superimposition.

Lemma 1.4. Let Φ and Ψ be species of graphs such that every Φ � Ψ-graph can be expressed
uniquely as a superimposition of a Φ-graph on a set of Ψ-graphs. Then Φ ◦ Ψ is isomorphic to
Φ �Ψ.

Note that the definition of superimposition of species of graphs is not a species operation in the
sense that isomorphic species are not equivalent with respect to superimposition. For example, the
species E+ of nonempty edgeless graphs is isomorphic to the species K+ of nonempty complete
graphs, but E �K+ is the species of graphs all of whose connected components are complete and
E � E+ is E , the species of edgeless graphs.

It is clear that superimposition is compatible with complementation of graphs, and that the
following lemma holds.

Lemma 1.5. Suppose that the species of graphs Φ and Ψ satisfy the hypotheses of Lemma 1.4. Let
Φ̄ be the species of complements of Φ-graphs and let Ψ̄ be the species of complements of Ψ-graphs.
Then Φ̄ ◦ Ψ̄ is isomorphic to Φ̄ � Ψ̄, which is the species of complements of Φ � Φ-graphs.

2 Point-Determining Graphs
Let v be a vertex of a graph G. The neighborhood N(v) of v in G is the set of vertices adjacent
to v. That is, N(v) = {w ∈ V (G) : {v, w} ∈ E(G)}. The closed neighborhood N̄(v) of v is
N̄(v) = N(v)∪{v}. Note that if N(v) = N(w), then v is not adjacent to w, and if N̄(v) = N̄(w),
then v is adjacent to w. In [3], vertices with the same neighborhoods are called weak siblings, and
vertices with the same closed neighborhoods are called strong siblings.
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Definition 2.1. A point-determining graph is a graph G in which distinct vertices have distinct
neighborhoods. A graph is called co-point-determining if its complement is a point-determining
graph.

Note that a graph is co-point-determining if and only if distinct vertices have distinct closed
neighborhoods. Since the neighborhood of an isolated vertex (a vertex of degree 0) is the empty
set, a point-determining graph has at most one isolated vertex. We regard the empty graph as both
point-determining and co-point-determining.

Since the complement of a point-determining graph is co-point-determining, the species P
of point-determining graphs and the species Q of co-point-determining graphs are isomorphic,
written as P = Q. Note that, as in this case, two species of graphs can be isomorphic without the
corresponding graphs being isomorphic.

Theorem 2.2. For the species G of graphs, the species P of point-determining graphs, the
species E+ of nonempty edgeless graphs, the species Q of co-point-determining graphs, and the
species K+ of nonempty complete graphs, we have

G = P ◦ E+ = Q ◦K+. (2.1)

Proof. We show that every graph can be expressed uniquely as a superimposition of a point-
determining graph on a set of edgeless graphs. We first prove uniqueness. Suppose that G is a
superimposition P |H1,...,Hm where P is point-determining and each Hi is edgeless. (See Figure 2
for an example of this construction.) We define an equivalence relation on V (G) in which vertices
u and v are equivalent if they have the same neighborhood. Then since Hi is edgeless, any two
vertices of V (Hi) must have the same neighborhood in G, so V (Hi) is contained in an equiva-
lence class. If V (Hi) and V (Hj) were contained in the same equivalence class, where i 6= j, then
V (Hi) and V (Hj) would have the same neighborhood in P , so P would not be point-determining.
Therefore the vertex sets V (Hi) must be the equivalence classes. It is easily seen that P must be
the graph on the equivalence classes V (H1), . . . , V (Hm) in which there is an edge from V (Hi) to
V (Hj) if and only if there is an edge of G from each element of V (Hi) to each element of V (Hj).
Conversely, it is easily seen that this construction does indeed express G as a superimposition of a
point-determining graph on a set of edgeless graphs.

The second equality follows from Lemma 1.5.

Recall that (1 +X)c is the compositional inverse of E+. It follows from (2.1) that

P = Q = G ◦ (1 +X)c, (2.2)

which gives rise to several identities that can be used to compute the associated series of P:

P(x) = Q(x) = G (log(1 + x)), (2.3)

P̃(x) = Q̃(x) = ZG (x− x2, x2 − x4, . . . ), (2.4)

ZP = ZQ = ZG

(∑
k≥1

µ(k)

k
log(1 + pk),

∑
k≥1

µ(k)

k
log(1 + p2k), . . .

)
.

Read derived formulas (2.3) and (2.4) in [15]. Figure 3 shows the unlabeled nonempty point-
determining graphs on n ≤ 5 vertices.
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Figure 2: G = P |H1,...,Hm

Figure 3: Unlabeled nonempty point-determining graphs on at most 5 vertices.

Let G c be the species of connected graphs. The observation that every graph is a set of con-
nected graphs gives rise to the species identity

G = E ◦ G c, (2.5)

which can be written as G c = (1 +X)c ◦ G+.
Connected point-determining graphs and connected co-point-determining graphs may be enu-

merated by looking at the connected components of point-determining graphs and co-point-determining
graphs. In contrast to point-determining graphs and co-point-determining graphs, the species of
connected point-determining graphs and connected co-point-determining graphs are not isomor-
phic.

Theorem 2.3. For the species P of point-determining graphs, Q of co-point-determining graphs,
Pc of connected point-determining graphs, and Qc of connected co-point-determining graphs, we
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have
P = Q = (1 +X) · (E ◦Pc

≥2) = E ◦Qc. (2.6)

Proof. A point-determining graph can have at most one isolated vertex, and its other connected
components are connected point-determining graphs with at least two vertices. Therefore, P =
(1 + X) · (E ◦Pc

≥2). On the other hand, a graph is co-point-determining if and only if all its
connected components are. Therefore, Q = E ◦Qc.

Lemma 2.4. Let species Φ and Ψ satisfy E (Φ) = E (Ψ). Then Φ = Ψ.

Proof. It follows from E+(Φ) = E+(Ψ) that (1 + X)c ◦ E+(Φ) = (1 + X)c ◦ E+(Ψ). Since
(1 +X)c ◦ E+ = X, we have Φ = Ψ.

Corollary 2.5. The species Qc of connected co-point-determining graphs and G c of connected
graphs satisfy

Qc = G c ◦ (1 +X)c. (2.7)

Proof. Since the composition of species is associative [1, p. 53, Exercise 1], we deduce from (2.5)
and (2.2) that

Q = G ◦ (1 +X)c = E ◦ G c ◦ (1 +X)c.

The result follows immediately from Theorem 2.3 and Lemma 2.4.

Theorem 2.3 gives Qc = (1 +X)c ◦P+. We have the following formulas for Qc:

Qc(x) = log(P(x)),

Q̃c(x) =
∑
k≥1

µ(k)

k
log(P̃(xk)),

ZQc =
∑
k≥1

µ(k)

k
log(ZP ◦ pk).

A consequence of Theorem 2.3 is

(1 +X) · (E ◦Pc
≥2) = E ◦ ((1 +X)c + Pc

≥2) = E ◦Qc.

Therefore, Lemma 2.4 gives
(1 +X)c = Qc −Pc

≥2. (2.8)

We have the following functional equations relating the associated series of Pc and those of Qc:

Qc(x)−Pc(x) = log(1 + x)− x,

Q̃c(x)− P̃c(x) = −x2, (2.9)

ZQc − ZPc =
∑
k≥1

µ(k)

k
log(1 + pk)− p1.

Note that the only unlabeled connected graph on two vertices is point-determining, and this ac-
counts for the right-hand side of (2.9). Thus (2.9) says that for n > 2 there are as many unlabeled
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connected point-determining as unlabeled connected co-point-determining graphs. A combinato-
rial bijection between these two sets might be interesting.

Proposition 7 of [1, p. 122] states that every virtual species Φ can be written uniquely in its
reduced form

Φ = Φ+ − Φ−,

where Φ+ and Φ− are species with no molecular components in common. Now (2.8) gives a way
to write the virtual species (1+X)c as the difference of two species. However Qc−Pc

≥2 is not the
reduced form of (1 + X)c, since Qc share the same molecular components as Pc

≥2. For example,
we can write the first few terms of the molecular decompositions of Pc and Qc as follows:

Pc = X + E2 + E3 +
(
E2 ◦X2 +X2E2 + E4

)
+ · · ·

Qc = X +XE2 +
(
E2 ◦X2 +XE3 + E2 ◦ E2

)
+ · · ·

For any finite setU , the intersection Pc[U ]∩Qc[U ] is the set of connected bi-point-determining
graphs on U , denoted Bc[U ] (enumeration of bi-point-determining graphs is carried out in sec-
tion 4). The species Bc is a subspecies (see [1, p. 120]) of both Pc and Qc, and

(1 +X)c = (Qc −Bc)− (Pc −Bc).

However, further examination shows that this is still not a reduced form of (1 +X)c.

3 Graphs Without Endpoints
Let H (X, Y ) be the 2-sort species of connected graphs in which every vertex of degree one has
sort Y and every other vertex has sort X .

Theorem 3.1. The 2-sort species H (X, Y ) satisfies

H (X,X + Y ) = G c ◦ (XE (Y )) + E2(Y ), (3.1)

where G c is the species of connected graphs, and E2 is the species of 2-element sets.

Proof. An H (X,X + Y )-structure is a connected graph in which every vertex of degree one has
sort either X or Y , and every other vertex has sort X . Such a graph either is a graph with two
vertices, both of sort Y , which is an E2(Y )-structure, or has at least one vertex of sort X . An
H (X,X + Y )-structure with at least one vertex of sort X consists of a connected graph whose
vertices all have sort X , together with some additional vertices of sort Y , each adjacent to one of
the vertices of sort X .

An XE (Y )-structure is a singleton X-structure connected to a set, possibly empty, of Y -
structures. (See Figure 4.) We get a G c ◦ (XE (Y ))-structure by replacing each vertex of a con-
nected graph with an XE (Y )-structure. Such a graph is the same as an H (X,X + Y )-structure
with at least one vertex of sort X . See Figure 5 for an illustration of an H (X,X + Y )-structure
decomposed into a connected graph with each vertex replaced with an XE (Y )-structure.

10



Figure 4: Some XE (Y )-structures.

Figure 5: H (X,X + Y )− E2(Y ) = G c ◦ (XE (Y )).

Let M be the species of graphs without endpoints, i.e., graphs without vertices of degree one,
including the empty graph. Let M c be the species of connected graphs without endpoints. Since a
graph has no endpoints if and only if all of its connected components have no endpoints, we have

M = E ◦M c. (3.2)

Note that M c(X) = H (X, 0). Replacing Y with −X in (3.1), we get an expression for the
species M c in terms of virtual species

M c = H (X, 0) = G c ◦ (XE (−X)) + E2(−X). (3.3)

The type generating series for E2(−X) is 0, and the cycle index series for E2(−X) is (p2
1 − p2)/2.

We get the associated generating series of M c:

M c(x) = G c(xe−x) +
x2

2
, (3.4)

M̃ c(x) = ZG c( ˜XE (−X)(x), ˜XE (−X)(x2), . . . ), (3.5)

ZM c = ZG c(ZXE (−X) ◦ p1, ZXE (−X) ◦ p2, . . . ) +
1

2
(p2

1 − p2).

Formula (3.4) was given by Wright [22, p. 206, Theorem 1] and by Goulden and Jackson [5,
p. 180, Theorem 1] and leads to the exponential generating series of the species M of graphs
without endpoints

M (x) =

(∑
n≥0

2

(
n
2

)
(xe−x)n

n!

)
exp

(
x2

2

)
.
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Corollary 3.2. For the species M of graphs without endpoints, M c of connected graphs without
endpoints, Q of co-point-determining graphs, and Qc of connected co-point-determining graphs,
we have the following identities for their type generating series:

M̃ (x) = Q̃(x). (3.6)

M̃ c(x) = Q̃c(x), (3.7)

Proof. Let B = XE (−X). The type generating function of B is

B̃(x) = xZE (−x,−x2, . . . ) = x exp

(
−
∑
n≥1

xn

n

)
= x− x2 = ˜(1 +X)c(x),

where the virtual species (1 +X)c is the compositional inverse of E+. Recall (2.7):

Q̃c(x) = ZG c( ˜(1 +X)c(x), ˜(1 +X)c(x2), . . . ).

We get (3.7) from (3.5). The equation (3.6) follows from (2.6) and (3.2).

Kilibarda [13] gave a bijective proof of Corollary 3.2.
Robinson gave a formula [16, p. 353, Theorem 8] (see also [9, p. 191, equation (8.7.11)]) for

enumerating connected graphs without endpoints. Let A be the species of trees, and let A r be the
species of rooted trees. Robinson’s formula may be expressed in terms of species as

G c = A + (M c −X) ◦A r, (3.8)

which is equivalent to our next result.

Corollary 3.3. We have another expression for the species M c in terms of virtual species

M c = X + (G c −A ) ◦B,

where B = XE (−X), and G c and A denote the species of connected graphs and trees, respec-
tively.

Proof. We start with the dissymmetry theorem for trees [1, p. 280, Theorem 1]

A r + E2 ◦A r = A + (A r)2,

and rewrite it in terms of virtual species

A = (X + E2 −X2) ◦A r.

We apply the identity for virtual species [1, p. 128]

E2(−X) = X2 − E2(X),

and get
A = (X − E2(−X)) ◦A r.

Since B is the compositional inverse of the species A r of rooted trees (see [1, p. 132]), we have

A ◦B = X − E2(−X).

The result follows from (3.3).

Equation (3.8) also appeared in [1, p. 303, Example 5] as an application of the dissymmetry
theorem for graphs [1, p. 301, Theorem 3].
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4 Bi-Point-Determining Graphs
Definition 4.1. A cograph, also called a complement-reducible graph is defined recursively as
follows (see [3]):

(i) A graph on a single vertex is a cograph.

(ii) For a set of cographs {G1, . . . , Gn}, their union En|G1,...,Gn is also a cograph.

(iii) If G is a cograph, then so is its complement.

Note that the complement of En|G1,...,Gn isKn|H1,...,Hn where eachHi is the complement ofGi.
It follows from the definition that the join of a set of cographs is a cograph. Let C be the species
of cographs, and let C c be the species of connected cographs.

Lemma 4.2. The species C of cographs satisfies the combinatorial equality

C = E+ ◦
(

C +X

2

)
.

Proof. Since a cograph is connected if and only if its complement is a disconnected cograph,
the species C c of connected cographs is isomorphic to the species C − C c + X of disconnected
cographs. That is, C c = C − C c +X, which gives

C c =
C +X

2
.

On the other hand, each cograph consists of at least one connected component each of which is a
C c-structure. This gives

C = E+ ◦ C c = E+ ◦
(

C +X

2

)
.

Note that the species C c of connected cographs satisfies C c = X + E≥2 ◦C c, so C c is isomor-
phic to the species of phylogenetic trees [3, 4, 17], which are rooted trees with labeled leaves and
unlabeled internal vertices, in which every internal vertex has at least two children. Labeled and
unlabeled cographs have been counted by Guruswami [6].

Lemma 4.3. The compositional inverse of the species C of cographs is

C 〈−1〉 = 2(1 +X)c −X.

Proof. Recall that (1 +X)c ◦ E+ = X. It follows from Lemma 4.2 that

(1 +X)c ◦ C =
C +X

2
.

Therefore,
2(1 +X)c ◦ C − C = (2(1 +X)c −X) ◦ C = X.
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Since the species C satisfies C0 = 0,C1 = X , by Proposition 19 on [1, p. 130] there exists a
unique virtual species C 〈−1〉 such that

C 〈−1〉 ◦ C = C ◦ C 〈−1〉 = X.

The result follows.

A bi-point-determining graph is a point-determining graph whose complement is also point-
determining. As we noted earlier, a graph is bi-point-determining if and only if its automorphism
group contains no transpositions, and it is not difficulty to show that the automorphism group of a
bi-point-determining graph cannot contain any 3-cycles or 4-cycles.

The following theorem is the key to enumerating bi-point-determining graphs.

Theorem 4.4. The species G of graphs is the composition of the species B of bi-point-determining
graphs and C of cographs. That is,

G = B ◦ C .

First we prove a lemma. Following [3], let us call two distinct vertices weak siblings if they
have the same neighborhood and strong siblings if they have the same closed neighborhood.

Lemma 4.5. In any graph, if t and u are weak siblings and v and w are strong siblings, then the
sets {t, u} and {v, w} are disjoint.

Proof. Suppose that t and u are weak siblings and that t and v are strong siblings. Since t and
u have the same neighborhood, t and u are not adjacent. Since t and v have the same closed
neighborhood, u and v are not adjacent but t and v are adjacent. Now, since t and u have the same
neighborhood, u and v are adjacent, a contradiction.

Proof of Theorem 4.4. We show that every graph can be expressed uniquely as a superimposition
of a bi-point-determining graph on a set of cographs. Let K be any graph. We consider the
set S(K) of pairs (G, {H1, · · · , Hm}) such that G|H1,...,Hm = K and H1, . . . , Hk are cographs.
First, we note that S(K) is nonempty, because it contains the pair (K0, V0), where V0 is the set
of singleton graphs on the vertices of K and K0 is the graph obtained from K by replacing each
vertex v of K with {v}.

Next we make S(K) into a digraph. We say that there is an edge from (G, {H1, . . . , Hm})
to (G′, {H1, . . . , Hm−2, H

′
m−1}) if V (Hm−1) and V (Hm), as vertices of G, have either the same

neighborhood or the same closed neighborhood, G′ is obtained from G by replacing vertices
V (Hm−1) and V (Hm) with the new vertex V (Hm−1) ∪ V (Hm) (with the same neighbors that
V (Hm−1) and V (Hm) had in G), and H ′m−1 is the induced subgraph of K on V (Hm−1)∪ V (Hm).
Note that H ′m−1 is a cograph since it is either a union or join of two cographs.

It is clear that the sinks of this digraph are the pairs (G, {H1, · · · , Hm}) in whichG is bi-point-
determining. Thus to prove the theorem we need to show that S(K) has a unique sink. This will
follow from the “diamond lemma” of Newman [14] if we can prove the following two properties
of S(K).

1. S(K) has a unique source, the pair (K0, V0) defined above.

14



2. If α, β, and γ are vertices of S(K) such that there is an edge in S(K) from α to β and an
edge from α to γ, then there is a vertex δ of S(K) such that there is an edge from β to δ and
an edge from γ to δ.

To prove (1), we note that (K0, V0) is the only pair (G, {H1, · · · , Hm}) in S(K) for which
H1, . . . , Hm are all singleton graphs. So it is enough to show that if (G, {H1, · · · , Hm}) ∈ S(K)
and Hm is not a singleton graph, then (G, {H1, · · · , Hm}) has a predecessor in S(K) (i.e., there
is an edge from some element of S(K) to (G, {H1, · · · , Hm})). Since Hm is a cograph that is
not a singleton graph, Hm can be expressed as either a join or union of two nonempty cographs.
Suppose first that Hm is the union of H ′m and H ′m+1. Then (G′, {H1, · · · , Hm−1, H

′
m, H

′
m+1}) is

a predecessor of (G, {H1, · · · , Hm}), where G′ is obtained from G by “splitting” vertex V (Hm)
into vertices V (H ′m) and V (H ′m+1); these new vertices are adjacent in G′ to all the neighbors of
V (Hm) in G but not to each other. The case in which Hm is a join is similar.

To prove property (2), we note that if β and γ are both obtained from α by amalgamating pairs
of vertices with the same neighborhood, or are both obtained by amalgamating pairs with the same
closed neighborhood then the existence of δ is clear. If β is obtained by amalgamating a pair of
vertices with the same neighborhood and γ is obtained by amalgamating a pair of vertices with the
same closed neighborhood, then by Lemma 4.5, the four amalgamated vertices are all distinct, and
thus the existence of δ is again clear.

Corollary 4.6. In terms of virtual species, the species of bi-point-determining graphs B is related
to the species of graphs G and the virtual species (1 +X)c in the following way:

B = G ◦ (2(1 +X)c −X). (4.1)

Proof. It follows immediately from Theorem 4.4 and Lemma 4.3.

Equation (4.1) gives rise to identities for computing the associated series of B:

B(x) = G (2 log(1 + x)− x),

B̃(x) = ZG (x− 2x2, x2 − 2x4, . . . ),

ZB = ZG

(
2
∑
k≥1

µk
k

log(1 + pk)− p1, 2
∑
k≥1

µk
k

log(1 + p2k)− p2, . . .

)
.

There are no bi-point-determining graphs on 3 vertices. The unlabeled bi-point-determining
graphs with 4 or 5 vertices are shown in Figure 6.

Figure 6: Unlabeled bi-point-determining graphs on n vertices, n = 4, 5.

Next we enumerate connected bi-point-determining graphs.
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Corollary 4.7. The species Bc of connected bi-point-determining graphs is expressed, in terms
of virtual species, by both of the following combinatorial identities

Bc = (1 +X)c ◦B+ − (1 +X)c +X, (4.2)
Bc = G c ◦ (2(1 +X)c −X)− (1 +X)c +X, (4.3)

where B+ is the species of nonempty bi-point-determining graphs, G c is the species of connected
graphs, and (1 +X)c is the compositional inverse of E+.

Proof. A bi-point-determining graph can have at most one vertex of degree zero and the other con-
nected components are connected bi-point-determining graphs with more than one vertex. Hence
we have

B = (1 +X) · E ◦ (Bc −X).

Since (1 +X)c satisfies 1 +X = E ◦ (1 +X)c, we have

B+ = E+ ◦ ((1 +X)c + Bc −X),

and (4.2) follows.
Corollary 4.6 gives

B+ = G+ ◦ C .

Since
(1 +X)c ◦ G+ = G c,

we have
(1 +X)c ◦B+ = G c ◦ C .

Now (4.3) follows from (4.2).

Corollary 4.7 allows us to enumerate the Bc-structures based on our enumeration results on
B-structures or G c-structures. For example, the exponential generating series of Bc can be written
in two ways:

Bc(x) = log(B(x))− log(1 + x) + x,

Bc(x) = G c(2 log(1 + x)− x)− log(1 + x) + x.

5 Point-Determining Bicolored Graphs
A proper coloring of a graph is an assignment of colors to the vertices of the graph where no two
adjacent vertices are assigned the same color. A bicolorable graph is a graph that can be properly
colored with two colors. A bicolored graph (or 2-colored graph) is a graph in which all vertices are
properly bicolored. The enumeration of bicolorable and bicolored graphs was studied in [8], [10],
and [7]. For simplicity, we call the two colors in a bicolored graph white and black.

We denote by G (X, Y ) the 2-sort species of bicolored graphs. To be more specific, for a two-
set U = (W,B), G [U ] is a bicolored graph in which the vertices colored white are elements of
W and the vertices colored black are elements of B. Furthermore, for any multibijection σ =
(τ1, τ2) : (W1, B1) → (W2, B2), where τ1 is a bijection from W1 to W2 and τ2 is a bijection from
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B1 to B2, the transport of G (X, Y )-structures along σ is G [σ], which is a bijection from the set of
bicolored graphs with vertex set (W1, B1) to the set of bicolored graphs with vertex set (W2, B2)
that preserves the colors of all vertices. The isomorphism classes of (unlabeled) bicolored graphs
are called color-non-isomorphic bicolored graphs in [10].

A quick observation is that in a bicolored graph, each edge must connect one vertex of sort X
and one vertex of sort Y , and hence there are 2mn labeled bicolored graphs with m white vertices
and n black vertices. Therefore, the exponential generating series of G (X, Y ) is

G (x, y) =
∞∑

m,n=0

2mn
xm

m!

yn

n!
.

Theorem 5.1. Let G (X, Y ) be the 2-sort species of bicolored graphs. Then the cycle index of
G (X, Y ) is given by

ZG (X,Y ) =
∑
m,n≥0

( ∑
λ`m,µ`n

2
P

i,j gcd(λi, µj) pλ[x]

zλ

pµ[y]

zµ

)
.

Proof. Let (λ, µ) be an ordered pair of partitions, and let (σ, π) be an ordered pair of permutations
with σ having cycle type λ and π having cycle type µ. Let fix (σ, π) = fix G [λ, µ] be the number
of bicolored graphs fixed by (σ, π).

To start with, we consider the simpler case when σ is a k-cycle and π is an l-cycle. Let Kk,l

denote the complete bipartite graph on [k, l], and let E(Kk,l) be its edge set. Then |E(Kk,l)| = kl.
Without loss of generality, we let the labeling of left-hand side vertices of Kk,l be {1, 2, . . . , k},
and the labeling of right-hand side vertices of Kk,l be {1′, 2′, . . . , l′}. Then each edge of Kk,l is
represented by an ordered pair (i, j′), for some i ∈ [k] and j ∈ [l]. The pair of permutations (σ, π)
acts on the set E(Kk,l) by letting σ act on the set {1, 2, . . . , k} and π act on the set {1′, 2′, . . . , l′}.
This action partitions the kl edges of Kk,l into orbits {A1, A2, . . . }. We observe that there are
lcm(k, l) edges in each of the orbits, since all edges of the form (ir, j

′
r), where ir = σr(i) and

jr = πr(j) for some r = 1, 2 . . . , lcm(k, l)− 1, are in the same orbit as the edge (i, j′), and hence
this action of (σ, π) on the set E(Kk,l) results in (kl)/lcm(k, l) = gcd(k, l) orbits. Note that each
bicolored graph with vertex set [k, l] can be identified with a subset of E(Kk,l). If a subset S of
E(Kk,l) is fixed by the pair of permutations (σ, π), then whenever an edge (i, j′) is in S, all edges
in the same orbit as (i, j′) under the action of (σ, π) on E(Kk,l) is in S as well. This means that
the number of bicolored graphs fixed by the pair of permutations (σ, π) is the same as the number
of subsets of {A1, A2, . . . , Agcd(k,l)}. Therefore,

fix (σ, π) = 2gcd(k,l).

For the general case, we write λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ). It is straightforward to
see that each ordered pair (λi, µj), for some integers i and j, gives rise to a factor 2gcdλi,µj in the
number fix (σ, π), and hence

fix G [λ, µ] =
∏
i,j

2 gcd(λi, µj) = 2
P

i,j gcd(λi, µj).
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Theorem 5.1 enables us to compute the associated series of G (X, Y ). Equations (B.1), (B.2),
and (B.3) appeared in [8] and [10]. The argument given in the proof of Theorem 5.1 also gives
a way to count bicolored graphs by the number of edges. Let bm,n(x) be the ordinary generating
function for bicolored graphs, in which m vertices are colored white and n vertices colored black,
by the number of edges. We get the following expression for bm,n(x), which agrees with the result
of Harary and Palmer [9, p. 95]:

bm,n(x) =
∑

λ`m,µ`n

1

zλzµ

m,n∏
k,l=1

(
1 + xlcm(k, l)

)ck(λ)cl(µ) gcd(k, l)

,

where ci(λ) denotes the number of parts in λ with length i. As illustrated in Figure 7, there are
three unlabeled bicolored graphs with four edges and five vertices, two colored white, three colored
black, hence the coefficient of x4 in b2,3(x) is 3.

Figure 7: Unlabeled bicolored graphs with four edges and five vertices.

The canonical decomposition of a graph into connected components applies to bicolored graphs.

Proposition 5.2. The species G c(X, Y ) of connected bicolored graphs and the species G (X, Y )
of bicolored graphs satisfy

G (X, Y ) = E ◦ G c(X, Y ).

If follows that
G c(X, Y ) = (1 +X)c ◦ G+(X, Y ). (5.1)

Figure 8 shows the unlabeled connected bicolored graphs with at most four vertices.

Figure 8: Unlabeled connected bicolored graphs with n vertices, n ≤ 4.
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A bicolored graph is called point-determining if the underlying graph is point-determining.
A bicolored graph is called semi-point-determining if all vertices of the same color have distinct
neighborhoods. Note that the notion of co-point-determining bicolored graphs is not interesting,
since any two adjacent vertices in a bicolored graph are colored differently, so that there is no
vertex that could be adjacent to both of them.

Theorem 5.3. For the species P(X, Y ) of bicolored point-determining graphs, Ps(X, Y ) of bi-
colored semi-point-determining graphs, and Pc(X, Y ) of bicolored connected point-determining
graphs, we have

Ps(X, Y ) = (1 +X)(1 + Y ) E ◦Pc
≥2(X, Y ), (5.2)

P(X, Y ) = (1 +X + Y ) E ◦Pc
≥2(X, Y ). (5.3)

Proof. Let K be a bicolored semi-point-determining graph. We observe that a connected com-
ponent of K could be either a single vertex colored white, a single vertex colored black, or a
bicolored connected point-determining graph with at least two vertices. At the same time, K can
have at most one isolated vertex colored with each color, due to the fact that all vertices in K of
the same color must have distinct neighborhoods. Equation (5.2) follows by translating the above
into combinatorial equalities.

Figure 9: Ps(X, Y ) = (1 +X + Y ) E ◦Pc
≥2(X, Y ).

Let H be a bicolored point-determining graph. As in the above discussion we see that a con-
nected component ofH could be either a single vertex colored white, a single vertex colored black,
or a bicolored connected point-determining graph with at least two vertices. But this time, since
the underlying graph of H is a point-determining graph, H can have at most one isolated vertex.
Hence the term (1 +X)(1 + Y ) in (5.2) is replaced with the term 1 +X + Y in (5.3).

Theorem 5.4. For the species G (X, Y ) of bicolored graphs and Ps(X, Y ) of bicolored semi-
point-determining graphs, we have

G (X, Y ) = Ps(E+(X),E+(Y )).

Proof. The proof uses the same idea as the proof of Theorem 2.2. To be more precise, given any
bicolored graph, we define equivalence relations on the vertex sets by setting two same-colored
vertices to be equivalent if they have the same neighborhoods, and get a new bicolored graph whose
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Figure 10: P(X, Y ) = (1 +X + Y ) E (Pc
≥2(X, Y )).

vertex set is the set of equivalence classes and the adjacency in the original graph is accordingly
preserved. We observe that the resulting new graph is a bicolored semi-point-determining graph,
and the rest is straightforward.

Recall the virtual species (1 +X)c, the compositional inverse of E+. Theorem 5.4 gives

Ps(X, Y ) = G ((1 +X)c(X), (1 +X)c(Y )),

which, together with 5.2 and 5.3, allows us to compute the associated series of the species Ps(X, Y ),
P(X, Y ), and Pc(X, Y ). Figure 11 shows the unlabeled nonempty point-determining bicolored
graphs with at most five vertices and at least one vertex of each color.

Figure 11: Unlabeled nonempty point-determining bicolored graphs on n vertices, n ≤ 5.
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A Index of Species
0 empty species.

1 characteristic of the empty set.

X species of singletons.

A species of trees.

A r species of rooted trees.

B/Bc species of (connected) bi-point-determining graphs.

C /C c species of (connected) cographs.

Dn molecular species of regular n-gons.

G /G c species of (connected) simple graphs.

G (X, Y )/G c(X, Y ) 2-sort species of (connected) bicolored graphs in which white vertices
are of sort X and black vertices are of sort Y .

E species of edgeless graphs.

K species of complete graphs.

G species of graphs.

G (X, Y ) 2-sort species of bicolored graphs in which white vertices are of sort X
and black vertices are of sort Y .

(1 +X)c virtual species known as the compositional inverse of E+.

H (X, Y ) 2-sort species of connected graphs in which vertices of degree one have sort Y
and all other vertices have sort X .

M /M c species of (connected) graphs with no endpoints.

P/Pc species of (connected) point-determining graphs.

P(X, Y ) 2-sort species of point-determining bicolored graphs.

Ps(X, Y ) 2-sort species of semi-point-determining bicolored graphs.

Pc(X, Y ) 2-sort species of connected point-determining bicolored graphs.

Q/Qc species of (connected) co-point-determining graphs.

B Cycle Indices and Molecular Decompositions
In this section we give the first terms of the cycle indices and molecular decompositions of the
species discussed in this paper. The cycle indices were computed with the help of John Stem-
bridge’s SF package [20] for Maple. We have submitted the numbers of labeled and unlabeled
structures to the Online Encyclopedia of Integer Sequences [18] when they were not previously
there, and thus rather than listing the numbers here, we give references to [18].
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B.1 The Species P of Point-Determining Graphs
The numbers of labeled and unlabeled point-determining graphs are given in [18, A006024, A004110].
Theorem 2.2 allows us to compute the cycle index ZP of point-determining graphs from the cycle
index ZG of graphs.

ZP = 1 + p1 +

(
1

2
p2

1 +
1

2
p2

)
+

(
1

3
p3 + p1p2 +

2

3
p3

1 +
3

2
p2

1p2

)
+

(
1

2
p4 +

4

3
p4

1 + p2
2 +

2

3
p1p3

)
+

(
p2

1p3 +
49

10
p5

1 +
11

3
p3

1p2 +
1

3
p2p3 +

3

5
p5 + p1p4 +

9

2
p1p

2
2

)
+ · · · .

The molecular decomposition of P (see Figure 3) begins with

P = 1 +X + E2 + (X · E2 + E3) + (E2 ◦X2 +X · E3 + E2 ◦ E2 +X2 · E2 + E4)

+ (X · E2 ◦ E2 + 5X · E2 ◦X2 + 4X3 · E2 +X2 · E3 +X · E2 · E2 +X · E4

+ D5 + E2 · E3 + E5) + · · · ,

where D5 = X5/D5 is the molecular species of pentagons.
The numbers of labeled and unlabeled connected point-determining graphs are given in [18,

A092430, A004108]. Theorem 2.3 allows us to compute ZQc and ZPc from ZP :

ZQc = p1 +

(
1

2
p1p2 +

1

2
p3

1

)
+

(
19

24
p4

1 +
3

4
p2

1p2 +
1

3
p1p3 +

7

8
p2

2 +
1

4
p4

)
+

(
7

3
p3

1p2 +
1

6
p2p3 +

77

20
p5

1 +
13

4
p1p

2
2 +

1

2
p2

1p3 +
2

5
p5 +

1

2
p1p4

)
+ · · · .

ZPc = p1 +

(
1

2
p2

1 +
1

2
p2

)
+

(
1

6
p3

1 +
1

3
p3 +

1

2
p1p2

)
+

(
25

24
p4

1 +
5

8
p2

2 +
3

4
p2

1p2 +
1

3
p1p3 +

1

4
p4 +

1

2
p2

1p3 +
13

4
p1p

2
2

)
+

(
7

3
p3

1p2 +
3

5
p5 +

73

20
p5

1 +
1

6
p2p3 +

1

2
p1p4

)
+ · · · .

B.2 The Species M of Graphs without Endpoints
The numbers of labeled and unlabeled graphs without endpoints are given in [18, A059166,
A004108]. The equation M = E ◦M c allows us to compute ZM :

ZM = 1 + p1 +

(
1

2
p2

1 +
1

2
p2

)
+

(
1

3
p3

1 + p1p2 +
2

3
p3

)
+

(
13

24
p4

1 +
7

4
p2

1p2 +
4

3
p1p3 +

5

8
p2

2 +
3

4
p4

)
+ · · ·

The molecular decomposition of the species M begins with

M = 1 +X + E2 + 2E3 + (2XE3 + 2E4 + D4) + · · · ,
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where D4 = X4/D4 is the molecular species of squares.
The numbers of labeled and unlabeled connected graphs without endpoints are given in [18,

A059166, A004108]. Equation (3.3) allows us to compute ZM c:

ZM c = p1 +

(
1

6
p3

1 +
1

2
p1p2 +

1

3
p3

)
+

(
5

12
p4

1 + p2
1p2 +

1

3
p1p3 +

3

4
p2

2 +
1

2
p4

)
+

(
253

120
p5

1 +
31

12
p3

1p2 +
2

3
p2

1p3 +
29

8
p1p

2
2 +

3

4
p1p4 +

2

3
p2p3 +

3

5
p5

)
+ · · · .

B.3 The Species C of Cographs
The numbers of labeled and unlabeled cographs are given in [18, A006351, A000084]. Lemma 4.2
gives a way to compute the cycle index ZC of cographs recursively:

ZC = p1 + (p2
1 + p2) +

(
4

3
p3

1 + 2p1p2 +
2

3
p3

)
+

(
13

6
p4

1 + 2p2
1p2 +

4

3
p1p3 + p2

2 + p4

)
+

(
59

15
p5

1 +
8

3
p2

1p3 + 5p1p
2
2 +

26

3
p3

1p2 + 2p1p4 +
4

3
p2p3 +

2

5
p5

)
+

(
344

45
p6

1 +
4

5
p1p5 +

59

3
p4

1p2 +
52

9
p3

1p3 + 15p2
1p

2
2 + 4p2

1p4 +
16

3
p1p2p3

+3p2p4 + p6

)
+ · · · .

B.4 The Species B of Bi-Point-Determining Graphs
The numbers of labeled and unlabeled bi-point-determining graphs are given in [18, A129583,
A129584]. We obtain from Corollary 4.6 the cycle index ZB of bi-point-determining graphs from
the cycle index ZG of graphs.

ZB = p1 +

(
1

2
p4

1 +
1

2
p2

2

)
+

(
13

5
p5

1 + 3p1p
2
2 +

2

5
p5

)
+

(
96

5
p6

1 + 11p2
1p

2
2 +

4

5
p1p5 +

11

3
p3

2 + p2
3 +

1

3
p6

)
+ · · · .

Since the automorphism groups of bi-point-determining graphs contain no 2-, 3-, or 4-cycles, the
cycle index ZB contains no terms of the form pn1p2, pn1p3, or pn1p4.

The molecular decomposition of B (see Figure 6) begins with

B = X + E2 ◦X2 + (5X · (E2 ◦X2) + D5) + · · · .

The numbers of labeled and unlabeled connected bi-point-determining graphs are give in [18,
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A129585, A129586]. We obtain the cycle index ZBc from Corollary 4.7.

ZBc = p1 +

(
1

2
p4

1 +
1

2
p2

2

)
+

(
21

10
p5

1 +
5

2
p1p

2
2 +

2

5
p5

)
+

(
17

10
p6

1 +
17

2
p2

1p
2
2 +

2

5
p1p5 +

11

3
p3

2 + p2
3

1

3
p6

)
+ · · · .

B.5 The Species G (X, Y ) of bicolored Graphs
Theorem 5.1 enables us to calculate the associated series of G [X, Y ].

G (x, y) = 1 +
x

1!
+
x2

2!
+
x3

3!
+

y

1!
+
y2

2!
+
y3

3!
+ 2

x

1!

y

1!
+ 4

x2

2!

y

1!
+ 4

x

1!

y2

2!
+ · · · , (B.1)

G̃ (x, y) = 1 + x+ y + 2xy + x2 + y2 + 3x2y + 3xy2 + x3 + y3 + · · · , (B.2)

ZG (X,Y ) = 1 + (p1[x] + p1[y]) +

(
1

2
p2

1[x] +
1

2
p2[x] + 2p1[x]p1[y] +

1

2
p2[y] +

1

2
p2

1[y]

)
+

(
1

6
p3

1[x] +
1

2
p1[x]p2[x] +

1

3
p3[x] + p2[x]p1[y] + 2p2

1[x]p1[y]

+2p1[x]p2
1[y] + p1[x]p2[y] +

1

3
p3[y] +

1

2
p1[y]p2[y] +

1

6
p3

1[y]

)
+ · · · .

Equation (5.1) enables us to compute the associated series of G c[X, Y ]:

G c(x, y) =
x

1!
+

y

1!
+

x

1!

y

1!
+
x2

2!

y

1!
+

x

1!

y2

2!
+
x3

3!

y

1!
+ 5

x2

2!

y2

2!
+

x

1!

y3

3!
+ · · · ,

G̃ c(x, y) = x+ y + xy + xy2 + x2y + x3y + xy3 + 2x2y2 + x4y + 4x3y2 + 4x2y3

+ xy4 + · · · , (B.3)

ZG c(X,Y ) = (p1[x] + p1[y]) + p1[x]p1[y] +

(
1

2
p2

1[x]p1[y] +
1

2
p1[x]p2

1[y] +
1

2
p2[x]p1[y]

+
1

2
p1[x]p2[y]

)
+ · · · .

The molecular decomposition of the 2-sort species G (X, Y ) begins with

G (X, Y ) = 1 + (X + Y ) +
[
E2(X) + E2(Y ) + 2X · Y

]
+
[
E3(X) + E3(Y ) +X · Y 2

+X2 · Y + 2X · E2(Y ) + 2E2(X) · Y
]

+ · · · .

The molecular decomposition of the 2-sort species G c(X, Y ) begins with (see Figure 8):

G c(X, Y ) = (X + Y ) +X · Y + [X · E2(Y ) + Y · E2(X)]

+ [X · E3(Y ) + Y · E3(X) +X2 · Y 2 + E2(X) · E2(Y )] + · · · .
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B.6 The Species P(X, Y ) of bicolored point-determining graphs
We obtain from Theorems 5.4 and 5.3 the associated series for Ps(X, Y ),Pc(X, Y ) and P(X, Y ):

ZPs(X,Y ) = 1 + (p1[x] + p1[y]) + (2p1[x]p1[y]) + (p2
1[x]p1[y] + p1[x]p2

1[y])

+

(
1

2
p2[x]p2[y] +

5

2
p2

1[x]p2
1[y]

)
+ (p1p2[x]p2[y] + p2[x]p1p2[y] + 2p3

1[x]p2
1[y] + 2p2

1[x]p3
1[y]) + · · · .

ZPc(X,Y ) = (p1[x] + p1[y]) + (p1[x]p1[y]) + (p2
1[x]p2

1[y])

+

(
1

2
p1p2[x]p2[y] +

1

2
p2[x]p1p2[y] +

1

2
p3

1[x]p2
1[y] +

1

2
p2

1[x]p3
1[y]

)
+ · · · .

P(x, y) = 1 +
x

1!
+

y

1!
+

x

1!

y

1!
+ 2

x

1!

y2

2!
+ 2

x2

2!

y

1!
+ 6

x2

2!

y2

2!
+ 24

x2

2!

y3

3!
+ 24

x3

3!

y2

2!
+ · · · ,

P̃(x, y) = 1 + x+ y + xy + x2y + xy2 + 2x2y2 + 3x3y2 + 3x2y3 + · · · ,
ZP(X,Y ) = 1 + (p1[x] + p1[y]) + (p1[x]p1[y]) + (p2

1[x]p1[y] + p1[x]p2
1[y])

+

(
1

2
p2[x]p2[y] +

3

2
p2

1[x]p2
1[y]

)
+ (p1p2[x]p2[y] + p2[x]p1p2[y] + 2p3

1[x]p2
1[y] + 2p2

1[x]p3
1[y]) + · · · .

The beginning terms of the molecular decomposition of P(X, Y ) are (see Figure 11):

P(X, Y ) = 1 + (X + Y ) +X · Y + (X2 · Y +X · Y 2) +
[
E2(X) · E2(Y ) +X2 · Y 2

]
+
[
(X + Y ) · E2(X) · E2(Y ) + (X + Y ) ·X2 · Y 2 +X3 · Y 2

+X2 · Y 3
]

+ · · · .
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[11] A. Joyal. Une théorie combinatoire des séries formelles. Adv. in Math. 42 (1981), 1–82.
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