The Complexity of Node Blocking for Dags

Dariusz Dereniowski
Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland
deren@eti.pg.gda.pl

November 10, 2018

Abstract

We consider the following modification of annihilation game called node blocking. Given a directed graph, each vertex can be occupied by at most one token. There are two types of tokens, each player can move his type of tokens. The players alternate their moves and the current player i selects one token of type i and moves the token along a directed edge to an unoccupied vertex. If a player cannot make a move then he loses. We consider the problem of determining the complexity of the game: given an arbitrary configuration of tokens in a directed acyclic graph, does the current player has a winning strategy? We prove that the problem is PSPACE-complete.

Keywords: annihilation game, node blocking, PSPACE-completeness

1 Introduction

The study of annihilation games has been suggested by John Conway and the first papers were published by Fraenkel and Yesha [7, 9]. They considered a 2-player game played on an underlying directed graph G (possibly with cycles). The current player selects a token and moves it along an arc outgoing from a vertex containing the token. If a vertex contains two tokens then they are removed from G (annihilation). Authors in [9] gave a polynomial-time algorithm for computing a winning strategy. In this paper, including all the mentioned here results, we assume the normal play, where the first player unable to make a move loses (misère annihilation games have been considered in [2]).

Fraenkel considered in [4] a generalization of cellular-automata games to twoplayer games and provided a strategy for such cases. In particular, if for each vertex there is at most one outgoing arc then it is possible to derive a polynomial-time strategy [4]. Since the formulation of the game is equivalent to the one mentioned above, this result can be directly applied for the annihilation game.

Fraenkel in [3] studied the connections between annihilation games and errorcorrecting codes. The authors in [6] gave an algorithm for computing error-correcting
codes. The algorithm is polynomial in the size of the code and uses the theory of two-player cellular-automata games.

In the following we are interested in generalizations of the annihilation game, where there is more than one type of token and/or there is a different interaction between the tokens. Assume that $r \geq 2$ types of tokens are given and each type of token can be moved along a subset of the edges. Given a configuration of tokens in a graph, deciding whether the current player has a winning strategy is PSPACE-complete for acyclic graphs [5].

A modification called hit, where $r \geq 2$ types of tokens and edges are distinguished was considered in [5]. A move consists of selecting a token of type i and moving along an arc of type $i \in\{1, \ldots, r\}$. The target vertex v cannot be occupied by a token of type i, but if v contains token of other type then it is removed (so, when the move ends v is occupied by the token of type i). The complexity of determining the outcome of this game is PSPACE-complete for acyclic graphs and $r=2$ [5]. A modification of hit called capture has the same rules except that each token can travel along any edge. Capture is PSPACE-complete for acyclic and EXPTIME-complete for general graphs [10].

In a node blocking each token is of one of the two types. Each vertex can contain at most one token. Player i can move the tokens of type $i, i=1,2$. All tokens can move along all arcs. A player i makes a move, by selecting one token of type i (occupying a vertex $v \in V$) and an unoccupied vertex $u \in V$ such that $(v, u) \in E$ and moving the token from v to u. The first player unable to make a move loses and his opponent wins the game. There is a tie if there is no last move. First, the game was proved to be NP-hard [8], then PSPACE-hard for general graphs [5]. The complexity for general graphs has been finally proved in [10] to be EXPTIME-complete.

In an edge blocking all tokens are identical, i.e. each player can move any token, while each arc is of type 1 or 2 and a player i makes his move by moving a token along an arc of type $i, i=1,2$. Similarly as before, the first player who cannot make a move loses. A tie occurs if there is no last move. This game is PSPACE-complete for dags.

The following table summarizes the complexity of all the mentioned two-player annihilation games. We list only the strongest known results.

Game:	dag	general
Annihilation	PSPACE-complete [5]	$?^{*}$
Hit	PSPACE-complete [5]	$?^{*}$
Capture	PSPACE-complete [10]	EXPTIME-complete [10]
Node blocking	$?$	EXPTIME-complete [10]
Edge blocking	PSPACE-complete [5]	$?^{*}$

Note that for the entries labeled as "?*" can be replaced by "PSPACE-hard" (which can be concluded from the corresponding results for acyclic graphs), but the question remains whether the games are in PSPACE. In this paper we are interested in the problem marked by "?", listed also in [1] as one of the open problems. In Section 3 we prove PSPACE-completeness of this game.

2 Definitions

In the following a token of type 1 (respectively 2) will be called a white token (black token, resp.) and denoted by symbol W_{t} (B_{t}, resp.). The player moving the white (black) tokens will be denoted by W (B, respectively).

Let $G=(V(G), E(G))$ be a directed graph. For $v \in V(G)$ define $\operatorname{deg}_{G}^{+}(v)=\mid\{u \in$ $V(G):(u, v) \in E(G)\}\left|, \operatorname{deg}_{G}^{-}(v)=|\{u \in V(G):(v, u) \in E(G)\}|\right.$. A notation $u \rightarrow_{p} v$ is used to denote a move made by player, $p \in\{W, B\}$, in which the token has been removed from u and placed at the vertex v. Given the positions of tokens, define $f(v)$ for $v \in V(G)$ to be one of three possible values W_{t}, B_{t}, \emptyset indicating that a white or black token is at the vertex v or there is no token at v, respectively. In the latter case we say that v is empty. Note that if $f(u)=\emptyset$ or $f(v) \neq \emptyset$ then the move $u \rightarrow_{p} v$ is incorrect.

Let us recall a PSPACE-complete Quantified Boolean Formula ($Q B F$) problem [11]. The input for the problem is a formula Q in the form

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} F\left(x_{1}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\exists, \forall\}$ for $i=1, \ldots, n$. Decide whether Q is true. In our case we us a restricted case of this problem where $Q_{1}=\exists, Q_{i+1} \neq Q_{i}$ for $i=1, \ldots, n-1, n$ is even, and F is a 3CNF formula, i.e. $F=F_{1} \wedge F_{2} \wedge \cdots \wedge F_{m}$, where $F_{i}=\left(l_{i, 1} \vee l_{i, 2} \vee l_{i, 3}\right)$ and each literal $l_{i, j}$ is a variable or the negation of a variable, $i=1, \ldots, m, j=1,2,3$.

3 PSPACE-hardness of node blocking

Define a variable component G_{i} corresponding to x_{i} as follows:

$$
\begin{gathered}
V\left(G_{i}\right)=\{s, t, x, y\} \cup\left\{v_{1}, \ldots, v_{4}\right\}, \\
E\left(G_{i}\right)=\left\{\left(s, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, t\right),\left(v_{4}, t\right),\left(v_{4}, v_{2}\right),\left(x, v_{4}\right),\left(y, v_{4}\right)\right\}
\end{gathered}
$$

for $i=2 j-1$, and

$$
\begin{gathered}
V\left(G_{i}\right)=\{s, t, x, y\} \cup\left\{v_{1}, \ldots, v_{8}\right\}, \\
E\left(G_{i}\right)=\begin{array}{l}
\left\{\left(s, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, t\right),\left(v_{4}, t\right),\left(v_{4}, v_{2}\right),\right. \\
\\
\left.\left(v_{5}, v_{4}\right),\left(v_{6}, v_{4}\right),\left(v_{7}, v_{5}\right),\left(v_{8}, v_{6}\right),\left(x, v_{7}\right),\left(y, v_{8}\right)\right\}
\end{array}
\end{gathered}
$$

for $i=2 j$, where $j=1, \ldots, n / 2$. Fig. 1 depicts these subgraphs. If i is odd then G_{i} is called a white component and in this case an initial placement of tokens in G_{i} is $f(s)=$ $f\left(v_{4}\right)=f(x)=f(y)=W_{t}, f\left(v_{3}\right)=\emptyset$ and $f\left(v_{1}\right)=f\left(v_{2}\right)=f(t)=B_{t}$ (see also Fig. $1(a)$). In a black component G_{i}, where i is even, we have $f(s)=f\left(v_{4}\right)=\ldots=f\left(v_{8}\right)=B_{t}$, $f\left(v_{3}\right)=\emptyset$ and $f\left(v_{1}\right)=f\left(v_{2}\right)=f(x)=f(y)=f(t)=W_{t}$ (see also Fig. $1(b)$). In both cases the above configuration of tokens will be called the initial state of G_{i}.

Removing a token from a graph without placing it on another vertex is an invalid operation. However, assume for now that, given an initial state of G_{i}, the first move is a deletion of a token occupying the vertex t (we will assume in Lemma 1 that the game starts in this way). Then, W (respectively B) becomes the current player in the white (black, resp.) component G_{i}. Furthermore, we assume that the game in G_{i} ends when $f(s)$ becomes \emptyset.

Figure 1: The graphs G_{i} for $(a) i=2 j-1$ and $(b) i=2 j, j=1, \ldots, n / 2$

Lemma 1 If G_{i} is a white (respectively black) component then W (B, resp.) has a winning strategy. At the end of the game we have that if G_{i} is a white component then exactly one of the vertices x, y is empty, and if G_{i} is a black component then exactly one of the vertices x, y, v_{5}, v_{6} is empty.

Proof: First assume that G_{i} is a white component. Let $f(t)=\emptyset$ and W is the current player. The first two moves are $v_{4} \rightarrow_{W} t, v_{2} \rightarrow_{B} v_{3}$. Then there are two possibilities:

$$
\begin{equation*}
x \rightarrow_{W} v_{4} \text { or } y \rightarrow_{W} v_{4} . \tag{1}
\end{equation*}
$$

In both cases the game continues as follows: $v_{1} \rightarrow_{B} v_{2}, s \rightarrow_{W} v_{1}$. The thesis follows.
Let G_{i} be a black component with $f(t)=\emptyset$ and B is the current player. Similarly as before we have $v_{4} \rightarrow_{B} t, v_{2} \rightarrow_{W} v_{3}$. The third move is $v_{5} \rightarrow_{B} v_{4}$ or $v_{6} \rightarrow_{B} v_{4}$. Since they are symmetrical, assume in the following that the first case occurred. We have $v_{1} \rightarrow_{W} v_{2}$. Then B has a choice:

$$
\begin{equation*}
v_{7} \rightarrow_{B} v_{5} \text { or } s \rightarrow_{B} v_{2} . \tag{2}
\end{equation*}
$$

If the first move occurred then we have $x \rightarrow_{W} v_{7}$. Then, $s \rightarrow_{B} v_{2}$, which ends the game and the vertex x is empty among the vertices listed in the lemma. If B selected the second move in (2) then the game ends with $f\left(v_{5}\right)=\emptyset$.

Now we define a graph G_{F}, corresponding to the Boolean formula F. In order to distinguish a vertex $v \in V\left(G_{i}\right)$ from the vertices of the other variable components we will write $v\left(G_{i}\right)$. G_{F} contains disjoint white components $G_{2 i-1}$ for $i=1, \ldots, n / 2$ and disjoint black components $G_{2 i}, i=1, \ldots, n / 2$, connected in such a way that $s\left(G_{i}\right)=t\left(G_{i+1}\right)$ for $i=1, \ldots, n-1$. The graph G_{F} contains additionally the vertices $w, v\left(F_{1}\right), \ldots, v\left(F_{m}\right)$, an $\operatorname{arc}\left(w, t\left(G_{n}\right)\right)$, the $\operatorname{arcs}\left(v\left(F_{i}\right), w\right)$ for $i=1, \ldots, m$, and $\left(x\left(G_{i}\right), v\left(F_{j}\right)\right) \in E\left(G_{F}\right)$ iff F_{j} contains x_{i}, while $\left(y\left(G_{i}\right), v\left(F_{j}\right)\right) \in E\left(G_{F}\right)$ iff F_{j} contains $\overline{x_{i}}$, a negation of the variable x_{i}. Initially, all the subgraphs G_{i} are in the initial state, except that $f\left(t\left(G_{1}\right)\right)=\emptyset$. Let $f(w)=W_{t}, f\left(v\left(F_{j}\right)\right)=B_{t}$ for $j=1, \ldots, m$. Before we prove the main theorem, let us demonstrate the above reduction by giving an example

$$
\begin{equation*}
Q=\exists_{x_{1}} \forall_{x_{2}} \exists_{x_{3}} \forall_{x_{4}}\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) . \tag{3}
\end{equation*}
$$

Figure 2: A complete instance of the graph G_{F} corresponding to (3)

Fig. 2 shows the corresponding graph G_{F}.
For brevity we introduce a notation: we say that the game arrives at a component G_{i} (and leaves the component $G_{i-1}, i>1$) if $f\left(t\left(G_{i}\right)\right)=\emptyset$ (note that for $i>1$ this is equivalent to $f\left(s\left(G_{i-1}\right)\right)=\emptyset$ in the graph $\left.G_{F}\right)$. The game is in G_{i} if it arrived at G_{i} but did not leave G_{i}.

Theorem 1 Node blocking is PSPACE-complete for directed acyclic graphs.
Proof: First we prove by an induction on $i=1, \ldots, n$ that we may without loss of generality assume that if the game arrives at the component G_{i} then
(i) for each $j<i$ exactly one of the vertices $x\left(G_{j}\right), y\left(G_{j}\right)$ (if G_{j} is a white compo-
nent) or exactly one of the vertices $x\left(G_{j}\right), y\left(G_{j}\right), v_{5}\left(G_{j}\right), v_{6}\left(G_{j}\right)$ (if G_{j} is a black
component) is empty,
(ii) all tokens in components G_{j}, for $j=i, \ldots, n$ are in the initial state, except that $f\left(t\left(G_{i}\right)\right)=\emptyset$.

The cases for $i=1$ and $i>1$ are analogous. If the game is in G_{i} then (by the induction hypothesis) all possible moves are the ones along the arcs in $G_{i}, v_{2}\left(G_{j}\right) \rightarrow_{p} v_{3}\left(G_{j}\right)$ for $j>i$ and $v_{7}\left(G_{j}\right) \rightarrow_{B} v_{5}\left(G_{j}\right)$ or $v_{8}\left(G_{j}\right) \rightarrow_{B} v_{6}\left(G_{j}\right)$ for a black component $G_{j}, j<i$. In the latter case W responds $x\left(G_{j}\right) \rightarrow_{W} v_{7}\left(G_{j}\right)$ or $y\left(G_{j}\right) \rightarrow_{W} v_{8}\left(G_{j}\right)$, respectively, so we consider the first two cases. Let G_{j} be a white component (the other case is analogous) and B moves a token along an arc which does not belong to $E\left(G_{i}\right)$, i.e.

$$
\begin{equation*}
v_{2}\left(G_{j}\right) \rightarrow_{B} v_{3}\left(G_{j}\right), j>i . \tag{4}
\end{equation*}
$$

For each move (4) W responds

$$
\begin{equation*}
v_{4}\left(G_{j}\right) \rightarrow_{W} v_{2}\left(G_{j}\right) . \tag{5}
\end{equation*}
$$

For other moves of B, W responds as in the proof of Lemma 1 Consider the case when the game arrives at the component which is not in the initial state, because the moves (4)

Figure 3: (a) the game arrives at G_{j}, (b) the game leaves G_{j}, (c) W wins the game
and (5) have been performed. This situation is given in Fig. 3 (a). Since W is the current player, the first move in G_{j} is $x\left(G_{j}\right) \rightarrow_{W} v_{4}\left(G_{j}\right)$ or $y\left(G_{j}\right) \rightarrow_{W} v_{4}\left(G_{j}\right)$. In both cases the remaining sequence of moves is identical: $v_{3}\left(G_{j}\right) \rightarrow_{B} t\left(G_{j}\right), v_{2}\left(G_{j}\right) \rightarrow_{W} v_{3}\left(G_{j}\right)$, $v_{1}\left(G_{j}\right) \rightarrow_{B} v_{2}\left(G_{j}\right), s\left(G_{j}\right) \rightarrow_{W} v_{1}\left(G_{j}\right)$. The result is shown in Fig. 3(b). This proves that if B performs a move along an arc which is not in G_{i} when the game is in G_{i} then W decides among one of the moves $x\left(G_{j}\right) \rightarrow_{W} v_{4}\left(G_{j}\right)$ or $y\left(G_{j}\right) \rightarrow_{W} v_{4}\left(G_{j}\right)$ when the game is in G_{j}. This, however is only true under the assumption that after (4) and (5) W plays according to the schema given in the proof of Lemma If the white player managed to place a token at the vertex $v_{4}\left(G_{j}\right)$ before the game arrived at G_{j} then the move $v_{4}\left(G_{j}\right) \rightarrow_{W} t\left(G_{j}\right)$ gives a situation depicted in Fig. 3($\left.c\right)$ - the black player cannot make a move in G_{j}. So, if the game is in G_{i} and a move (4) occurred, then either the game creates the same configuration of tokens in variable components (restricted to the vertices $\left.x\left(G_{k}\right), y\left(G_{k}\right), k=1, \ldots, n\right)$, or B loses the game. Thus, w.l.o.g. we may assume that if the game is in G_{i} then the components $G_{j}, j>i$ are in the initial state, i.e. (ii) is true.

Assuming the players make only moves along the arcs of G_{i}, if the game arrives at G_{i+1} then Lemmanties that (i) is satisfied.

Now we can prove the theorem. Assume that Q is true and we show that W has a winning strategy. If x_{i} is true (respectively false), $i=2 k-1, k=1, \ldots, n / 2$, then W plays in G_{i} in such a way that if the game leaves G_{i} then $f\left(x\left(G_{i}\right)\right)=W_{t}\left(f\left(y\left(G_{i}\right)\right)=W_{t}\right.$, respectively). Assume that the game leaves G_{n}. Then we have $w \rightarrow_{W} s\left(G_{n}\right)$ and $v\left(F_{j}\right) \rightarrow_{B} w$, for some $j \in\{1, \ldots, m\}$. Since Q is true, there is a true literal $l_{j, k}$ in F_{j}, $k \in\{1,2,3\}$. If $l_{j, k}=x_{t}$ then $f\left(x\left(G_{t}\right)\right)=W_{t}$ and W can make the move $x\left(G_{t}\right) \rightarrow_{W} v\left(F_{j}\right)$. If $l_{j, k}=\overline{x_{t}}$ then $f\left(y\left(G_{t}\right)\right)=W_{t}$ and the move $y\left(G_{t}\right) \rightarrow_{W} v\left(F_{j}\right)$ is possible. Note that if $x\left(G_{t}\right)$ or $y\left(G_{t}\right)$ belongs to a black component, then (because Q is true) W always has a possibility to make the above move in such a way that it holds $f\left(v_{5}\left(G_{t}\right)\right)=B_{t}$ or $f\left(v_{6}\left(G_{t}\right)\right)=B_{t}$, respectively. If B can make a move then it must be $v_{7}\left(G_{j}\right) \rightarrow_{B} v_{5}\left(G_{j}\right)$ or $v_{8}\left(G_{j}\right) \rightarrow_{B} v_{6}\left(G_{j}\right)$, but then W responds $x\left(G_{j}\right) \rightarrow_{B} v_{7}\left(G_{j}\right)$ or $y\left(G_{j}\right) \rightarrow_{B} v_{8}\left(G_{j}\right)$. No other moves are possible, so W wins the game. The above holds for each index j.

Let now W have a winning strategy. If the values of $x_{1}, \ldots, x_{i}, i=2 k$ have been set then let $x_{i+1}=$ true if we have the move $y\left(G_{i+1}\right) \rightarrow_{W} v_{4}\left(G_{i+1}\right)$ during the game in G_{i+1}, and let $x_{i+1}=$ false if there is a move $x\left(G_{i+1}\right) \rightarrow_{W} v_{4}\left(G_{i+1}\right)$ during the game in G_{i+1}. The game leaves G_{n} and we have the moves $w \rightarrow_{W} s\left(G_{n}\right), v\left(F_{j}\right) \rightarrow_{W} w$ for some $j \in\{1, \ldots, m\}$. The black player chooses j arbitrarily and since W has a winning strategy there is possible a move $x\left(G_{k}\right) \rightarrow_{W} v\left(F_{j}\right)$ or $y\left(G_{k}\right) \rightarrow_{W} v\left(F_{j}\right)$. From the
construction of the strategy for W we have that there is the literal $x_{k}=$ true in F_{j} or the literal $\overline{x_{k}}=$ true in F_{j}, respectively.

Observe that $\left|V\left(G_{F}\right)\right|=7 n / 2+11 n / 2+m+2$, so this is a polynomial reduction. This proves PSPACE-hardness of node blocking. One can argument that G_{F} is acyclic which implies that the game is in PSPACE.

References

[1] E.D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. In MFCS '01: Proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Comp. Sci., volume 2136, pages 18-32, London, UK, 2001. Springer-Verlag.
[2] T.S. Ferguson. Misère annihilation games. J. Comb. Theory, Ser. A, 37(3):205230, 1984.
[3] A.S. Fraenkel. Error-correcting codes derived from combinatorial games. In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, Berkeley, CA (R. J. Nowakowski, Ed.), volume 29, pages 417-431. MSRI Publ., Cambridge University Press, 1994.
[4] A.S. Fraenkel. Two-player games on cellular automata. In More Games of No Chance, Proc. MSRI Workshop Combinatorial Games (R.J. Nowakowski,Ed.). Cambridge Univ. Press, 2002.
[5] A.S. Fraenkel and E. Goldschmidt. Pspace-hardness of some combinatorial games. J. Comb. Theory Ser. A, 46(1):21-38, 1987.
[6] A.S. Fraenkel and O. Rahat. Complexity of error-correcting codes derived from combinatorial games. In Lecture Notes in Comp. Sci., volume 2883, pages 201212, 2003.
[7] A.S. Fraenkel and Y. Yesha. Theory of annihilation games. Bulletin of the American Mathematical Society, 82(5):775-777, 1976.
[8] A.S. Fraenkel and Y. Yesha. Complexity of problems in games, graphs and algebraic equations. Discrete Appl. Math., 1(1-2):15-30, 1979.
[9] A.S. Fraenkel and Y. Yesha. Theory of annihilation games. J. Comb. Theory Ser. B, 33:60-86, 1982.
[10] A.S. Goldstein and E.M. Reingold. The complexity of pursuit on a graph. Theor. Comput. Sci., 143(1):93-112, 1995.
[11] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In STOC '73: Proceedings of the fifth annual ACM Symposium on Theory of Computing, pages 1-9, New York, NY, USA, 1973. ACM.

