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Abstract

Edge-distance-regularity is a concept recently introduced by the authors which is
similar to that of distance-regularity, but now the graph is seen from each of its edges
instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is
edge-distance-regular when it is distance-regular around each of its edges and with
the same intersection numbers for any edge taken as a root. In this paper we study
this concept, give some of its properties, such as the regularity of Γ, and derive some
characterizations. In particular, it is shown that a graph is edge-distance-regular if
and only if its k-incidence matrix is a polynomial of degree k in A multiplied by
the (standard) incidence matrix. Also, the analogue of the spectral excess theorem
for distance-regular graphs is proved, so giving a quasi-spectral characterization of
edge-distance-regularity. Finally, it is shown that every nonbipartite graph which
is both distance-regular and edge-distance-regular is a generalized odd graph.
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1 Introduction

Given a set of vertices of a simple connected graph Γ = (V,E), C, with
eccentricity εC, consider the partition of V given by the distance to C: V =
C0 ∪ C1 ∪ · · · ∪ CεC

, where Ck = {i ∈ V | ∂(i, C) = k}. We say that Γ
is C-local pseudo-distance-regular whenever this partition of the vertex set is
pseudo-regular, that is, when the numbers

ck(i) =
1

νi

∑
j∈Γ(i)∩Ck−1

νj, ak(i) =
1

νi

∑
j∈Γ(i)∩Ck

νj, bk(i) =
1

νi

∑
j∈Γ(i)∩Ck+1

νj,

being νi the i-th component of the unique positive eigenvector of the adjacency
matrix of Γ with mininum component equal to one, ν, do not depend on
the chosen vertex i ∈ Ck, but only on the value of k. If it is the case, we
denote them simply by ck, ak and bk and call them the pseudo-intersection
numbers. When the considered graph Γ is regular, these parameters coincide
with the usual intersection numbers and in this case Γ is C-local pseudo-
distance-regular if and only if C is a completely regular code. Notice that
when a graph is {i}-local pseudo-distance regular for every vertex i and with
the same intersection numbers, it is distance-regular. By considering edges as
sets of two vertices, we can also see the graph from a global point of view.

Definition 1.1 A graph Γ is edge-distance-regular when it is e-local pseudo-
distance-regular with intersection numbers not depending on e ∈ E.

Several quasi-spectral characterizations are known for local pseudo-distance-
regularity, most of them obtained through predistance polynomials [2,3]. In
this paper we develop the study of edge-distance-regularity and prove similar
results to those known for (vertex) distance-regularity.

2 Notation and preliminaires

Let Γ be a graph with adjacency matrix A. Its spectrum is denoted by sp Γ =
{λm(λ0)

0 , λ
m(λ1)
1 , . . . , λ

m(λ0)
d }, where the eigenvalues are listed in decreasing order

and m(λl) is the multiplicity of λl as an eigenvalue of A. Let ev Γ for the set
of different eigenvalues of Γ. The principal idempotents of A are denoted by
El, l = 0, 1, . . . , d. The Perron-Frobenius Theorem ensures that m(λ0) = 1
and guaranties the existence of a positive eigenvector ν ∈ ker(A− λ0I) with
minimum component equal to one. Given a nonempty set C of vertices of Γ,
we consider the map ρ : P(V ) → V defined by ρ∅ = 0 and ρC =

∑
i∈C νiei



for C 6= ∅ and denote by eC the normalized of the vector ρC. If eC = zC(λ0)+
zC(λ1)+· · ·+zC(λd) is the spectral decomposition of eC, that is zC(λl) = EleC,
the C-multiplicity of the eigenvalue λl is defined by mC(λl) = ‖zC(λl)‖2. We
denote by evC Γ = {µ0, µ1, . . . , µdC

} the set of different eigenvalues with non-

zero C-multiplicity and write spC Γ = {µmC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
} for the

C-spectrum of Γ. Analogous to the relation between the diameter of a graph
and its number of different eigenvalues, the eccentricity of C is bounded by
εC ≤ dC, and when equality is attained we say that C is an extremal set. If C
is a single vertex u, the u-local multiplicities coincide with the diagonal entries
of the idempotents, mi(λl) = (El)uu. By analogy, for every pair of vertices
u, v ∈ V , the uv-crossed multiplicity of λ is muv(λl) = (El)uv.

LetM = {λ0 > λ1 > . . . > λd} be a mesh of real numbers and g :M→ R
a weight function defined on it . In R[x]/I, where I is the ideal generated by
the polynomial Z(x) =

∏d
l=0(x − λl), we define the scalar product associate

to (M, g) by 〈p, q〉 :=
∑d

l=0 g(λl)p(µl)q(µl). The canonical orthogonal system
associated (M, g) is the unique family of polynomials {pk}0≤k≤d with deg pk =
k and ‖pk‖2 = pk(λ0). See [1] for a comprehensive study of this family. The
C-local predistance polynomials {pC

k}0≤k≤dC
are the canonincal orthogonal

system associated to the mesh evC Γ, with weight function mC : evC Γ → R
given by the C-multiplicities. Similarly, the predistance polynomials {pk}0≤k≤d
are the canonical orthogonal system associated to ev Γ and weight function
given by g(λl) = m(λl)/n.

3 Edge-spectrum regularity

Formally, we do not distinguish between an edge e ∈ E with vertices u, v and
the set {u, v}. Thus, we denote the (local) e-multiplicities of Γ as me(λi) =

‖Eiee‖2, i = 0, 1, . . . , d, where ee =
ρe

‖ρe‖
= νueu+νvev√

ν2
u+ν2

v

. From this, note that the

relationship between the e-multiplicity and the local and crossed multiplicities
of u and v is me(λi) = 1

ν2
u+ν2

v
(ν2
umu(λi) + 2νuνvmuv(λi) + ν2

vmv(λi)).

If |eve Γ| = de+1, the eccentricity of e, seen as a set of two vertices, satisfies
εe ≤ de. We define the edge-diameter of Γ by D̃ = maxe∈E εe. Notice that D̃
coincides with the diameter of the line graph LΓ of Γ. Consequently, if Γ have
diameter D we have D − 1 ≤ D̃ ≤ D and, if Γ is bipartite, D̃ = D − 1.

Lemma 3.1 The e-multiplicities of a graph Γ = (V,E) with spectrum sp Γ
satisfy the following properties:



(a)
d∑
i=0

me(λi) = 1 for every e ∈ E.

(b) If Γ is regular, then
∑
e∈E

me(λi) =
λ0 + λi

2
m(λi) for every λi ∈ ev Γ.

For every eigenvalue λi ∈ ev Γ, the mean vertex-multiplicity and mean
edge-multiplicity are, respectively,

g(λi) =
1

|V |
∑
u∈V

mu(λi) =
m(λi)

|V |
, g̃(λi) =

1

|E|
∑
e∈E

me(λi).

Inspired by the concept of (vertex) spectrum-regularity, we say that Γ is
edge-spectrum-regular if, for every λi ∈ ev Γ, the edge-multiplicity me(λi) does
not depend on e ∈ E. Whereas spectrum-regularity implies regularity, in the
case of edge-spectrum-regularity we have the following result.

Proposition 3.2 Let Γ be a connected edge-spectrum-regular graph. Then, Γ
is either regular or bipartite biregular.

We say that a graph Γ is bispectrum-regular when it is both spectrum-
regular and edge-spectrum-regular. This is the case, for instance, when Γ is
distance-regular. More generally, we have the following result.

Proposition 3.3 Γ is bispectrum-regular if and only if it is 1-walk-regular.

4 Edge-distance-regularity

Given a graph Γ = (V,E) and an edge e ∈ E, consider the partition of
V induced by the distance from e, that is V = e0 ∪ e1 ∪ · · · ∪ eεe , where
ek = Γk(e). We say that Γ is e-local pseudo-distance-regular if this partition is
pseudo-regular. One of the advantages of considering edges is that we can see
the graph from a global point of view, that is, from every edge, in the same
way as we get distance-regularity by seeing the graph from every vertex.

Definition 4.1 A graph Γ is edge-distance-regular when it is e-local pseudo-
distance-regular with intersection numbers not depending on e ∈ E.

Proposition 4.2 Let Γ be an edge-distance-regular graph with diameter D
and d+ 1 distinct eigenvalues. Then, Γ is regular and

(a) Γ has spectrally maximum diameter (D = d) and its edge-diameter satisfies
D̃ = D if Γ is nonbipartite and D̃ = D − 1 otherwise.



(b) Γ is edge-spectrum regular and, for every e ∈ E, the e-spectrum satisfies:

(b1) If Γ is nonbipartite, eve Γ = ev Γ and me(λi) =
(

1 + λi

λ0

)
m(λi)
|V | , λi ∈ ev Γ.

(b2) If Γ is bipartite, eve Γ = ev Γ \ {−λ0} and me(λi) =
(

1 + λi

λ0

)
m(λi)
|V | ,

λi ∈ ev Γ \ {−λ0}.

Definition 4.3 The k-incidence matrix of Γ = (V,E) is the (|V |×|E|)-matrix
Bk = (bue) with entries bue = 1 if ∂(u, e) = k, and bue = 0 otherwise.

Theorem 4.4 A regular graph Γ with edge-diameter D̃ is edge-distance-regular
if and only if, for every k = 0, 1, . . . , D̃, there exists a polynomial p̃k of degree
k such that p̃k(A)B0 = Bk.

Godsil and Shawe-Taylor [4] defined a distance-regularised graph as that
being distance-regular around each of its vertices (these graphs are a common
generalisation of distance-regular graphs and generalised polygons.) They
showed that distance-regularised graphs are either distance-regular or distance-
biregular. Inspired by this, we introduce the following concept.

Definition 4.5 A regular graph Γ is said to be edge-distance-regularised
when it is edge-distance-regular around each of its edges.

Let evE Γ =
⋃
e∈E eve Γ and denote by ev?E Γ = evE Γ \ {λ0} and d̃ =

|ev?E Γ|. If Γ is edge-distance-regular, Proposition 4.2 establishes that evE Γ =
ev Γ if Γ is nonbipartite, and evE Γ = ev Γ \ {λ0} otherwise. Consider the
canonical orthogonal system {p̃k}0≤k≤d̃ associated to (evE Γ, g̃), and their sum
polynomials {q̃k}0≤k≤d̃ defined by q̃k = p̃0 + p̃1 + · · ·+ p̃k.

Theorem 4.6 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Hd̃−1

be the harmonic mean of the numbers |Nd̃−1(e)| for e ∈ E. Then, Γ is edge-
distance-regularised if and only if Hd̃−1 = 2q̃d̃−1(λ0).

Corollary 4.7 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Md̃ be
the (arithmetic) mean of the numbers |ed̃| for e ∈ E. Then, Γ is edge-distance-
regularised if and only if Md̃ = 2p̃d̃(λ0).

As a consequence we have the following theorem, which can be seen as an
analogue for the Spectral Excess Theorem for (vertex) distance-reguarity [3].

Theorem 4.8 A regular graph Γ = (V,E) with d̃ = |evE Γ| is edge-distance-
regular if and only if, for every edge e ∈ E, |ed̃| = 2p̃d̃(λ0).

Remark that, as proved in [1], we can specify the value of p̃d̃ in terms of
the edge spectrum. In what follows, π̂0, πi and πi, 0 ≤ i ≤ d, are moment-like



parameters computed from the spectrum.

Theorem 4.9 Let Γ = (V,E) be a regular graph with d+ 1 distinct eigenval-
ues, and spectrally maximum edge-diameter D̃ = d̃. Then, Γ is edge-distance-

regular if and only if, for every edge e ∈ E, |eD̃| =
4|E|
π2

0

(∑d
i=0

λ0+λi

m(λi)π2
i

)−1

.

Proposition 4.10 Let Γ be a λ0-regular graph with edge-diameter D̃ = | ev? Γ| =
d. Assume that, for every vertex u ∈ V and every edge e ∈ E,

|ed|
|ud|

=
π̂0

π0

|V |
(−1)d pd(−λ0)

,

where pd is the d-th predistance polynomial of Γ. Then, Γ is edge-distance-
regular if and only if it is distance-regular.

Van Damm and Haemers [5] showed that any connected regular graph with
d+ 1 distinct eigenvalues and odd-girth 2d+ 1 is a generalized odd graph. We
show that the same result holds when Γ is both distance-regular and edge-
distance-regular.

Proposition 4.11 Let Γ be a distance-regular graph with intersection num-
bers ck, ak, bk, 0 ≤ k ≤ d. Suppose that ad 6= 0. Then, Γ is edge-distance-
regular if and only if it is a generalized odd graph.

Remark that a nonbipartite graph that is both distance-regular and edge-
distance-regular has intersection number ad > 0.
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