Edge-distance-regular graphs

M. Cámara, C. Dalfó, J. Fàbrega, M.A. Fiol and E. Garriga ^{1,2}

Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya Barcelona, Spain

Abstract

Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix \boldsymbol{A} is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root. In this paper we study this concept, give some of its properties, such as the regularity of Γ , and derive some characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in \boldsymbol{A} multiplied by the (standard) incidence matrix. Also, the analogue of the spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.

Keywords: distance-regularity, local spectra, predistance polynomials.

¹ Supported by the Ministry of Science and Innovation of Spain under project MTM2008-06620-C03-01 and by the Catalan Research Council under project 2009SGR01387

² Email: mcamara@ma4.upc.edu cdalfo@ma4.upc.edu jfabrega@ma4.upc.edu fiol@ma4.upc.edu egarriga@ma4.upc.edu

1 Introduction

Given a set of vertices of a simple connected graph $\Gamma = (V, E)$, C, with eccentricity ε_C , consider the partition of V given by the distance to C: $V = C_0 \cup C_1 \cup \cdots \cup C_{\varepsilon_C}$, where $C_k = \{i \in V \mid \partial(i, C) = k\}$. We say that Γ is C-local pseudo-distance-regular whenever this partition of the vertex set is pseudo-regular, that is, when the numbers

$$c_k(i) = \frac{1}{\nu_i} \sum_{j \in \Gamma(i) \cap C_{k-1}} \nu_j, \quad a_k(i) = \frac{1}{\nu_i} \sum_{j \in \Gamma(i) \cap C_k} \nu_j, \quad b_k(i) = \frac{1}{\nu_i} \sum_{j \in \Gamma(i) \cap C_{k+1}} \nu_j,$$

being ν_i the *i*-th component of the unique positive eigenvector of the adjacency matrix of Γ with minimum component equal to one, ν , do not depend on the chosen vertex $i \in C_k$, but only on the value of k. If it is the case, we denote them simply by c_k , a_k and b_k and call them the *pseudo-intersection numbers*. When the considered graph Γ is regular, these parameters coincide with the usual intersection numbers and in this case Γ is C-local pseudo-distance-regular if and only if C is a completely regular code. Notice that when a graph is $\{i\}$ -local pseudo-distance regular for every vertex i and with the same intersection numbers, it is distance-regular. By considering edges as sets of two vertices, we can also see the graph from a global point of view.

Definition 1.1 A graph Γ is edge-distance-regular when it is *e*-local pseudo-distance-regular with intersection numbers not depending on $e \in E$.

Several quasi-spectral characterizations are known for local pseudo-distance-regularity, most of them obtained through predistance polynomials [2,3]. In this paper we develop the study of edge-distance-regularity and prove similar results to those known for (vertex) distance-regularity.

2 Notation and preliminaires

Let Γ be a graph with adjacency matrix \boldsymbol{A} . Its spectrum is denoted by sp $\Gamma = \{\lambda_0^{m(\lambda_0)}, \lambda_1^{m(\lambda_1)}, \dots, \lambda_d^{m(\lambda_0)}\}$, where the eigenvalues are listed in decreasing order and $m(\lambda_l)$ is the multiplicity of λ_l as an eigenvalue of \boldsymbol{A} . Let ev Γ for the set of different eigenvalues of Γ . The principal idempotents of \boldsymbol{A} are denoted by $\boldsymbol{E}_l, \ l = 0, 1, \dots, d$. The Perron-Frobenius Theorem ensures that $m(\lambda_0) = 1$ and guaranties the existence of a positive eigenvector $\boldsymbol{\nu} \in \ker(\boldsymbol{A} - \lambda_0 \boldsymbol{I})$ with minimum component equal to one. Given a nonempty set C of vertices of Γ , we consider the map $\boldsymbol{\rho} : \mathcal{P}(V) \to \mathcal{V}$ defined by $\boldsymbol{\rho}\emptyset = \mathbf{0}$ and $\boldsymbol{\rho}C = \sum_{i \in C} \nu_i \boldsymbol{e}_i$

for $C \neq \emptyset$ and denote by \boldsymbol{e}_C the normalized of the vector $\boldsymbol{\rho}C$. If $\boldsymbol{e}_C = \boldsymbol{z}_C(\lambda_0) + \boldsymbol{z}_C(\lambda_1) + \cdots + \boldsymbol{z}_C(\lambda_d)$ is the spectral decomposition of \boldsymbol{e}_C , that is $z_C(\lambda_l) = \boldsymbol{E}_l \boldsymbol{e}_C$, the C-multiplicity of the eigenvalue λ_l is defined by $m_C(\lambda_l) = \|\boldsymbol{z}_C(\lambda_l)\|^2$. We denote by $\operatorname{ev}_C \Gamma = \{\mu_0, \mu_1, \dots, \mu_{d_C}\}$ the set of different eigenvalues with nonzero C-multiplicity and write $\operatorname{sp}_C \Gamma = \{\mu_0^{m_C(\mu_0)}, \mu_1^{m_C(\mu_1)}, \dots, \mu_{d_C}^{m_C(\mu_{d_C})}\}$ for the C-spectrum of Γ . Analogous to the relation between the diameter of a graph and its number of different eigenvalues, the eccentricity of C is bounded by $\varepsilon_C \leq d_C$, and when equality is attained we say that C is an extremal set. If C is a single vertex u, the u-local multiplicities coincide with the diagonal entries of the idempotents, $m_i(\lambda_l) = (\boldsymbol{E}_l)_{uu}$. By analogy, for every pair of vertices $u, v \in V$, the uv-crossed multiplicity of λ is $m_{uv}(\lambda_l) = (\boldsymbol{E}_l)_{uv}$.

Let $\mathcal{M} = \{\lambda_0 > \lambda_1 > \ldots > \lambda_d\}$ be a mesh of real numbers and $g: \mathcal{M} \to \mathbb{R}$ a weight function defined on it . In $\mathbb{R}[x]/\mathcal{I}$, where \mathcal{I} is the ideal generated by the polynomial $Z(x) = \prod_{l=0}^d (x-\lambda_l)$, we define the scalar product associate to (\mathcal{M}, g) by $\langle p, q \rangle := \sum_{l=0}^d g(\lambda_l) p(\mu_l) q(\mu_l)$. The canonical orthogonal system associated (\mathcal{M}, g) is the unique family of polynomials $\{p_k\}_{0 \le k \le d}$ with deg $p_k = k$ and $\|p_k\|^2 = p_k(\lambda_0)$. See [1] for a comprehensive study of this family. The C-local predistance polynomials $\{p_k^C\}_{0 \le k \le d_C}$ are the canonical orthogonal system associated to the mesh $\operatorname{ev}_C \Gamma$, with weight function $m_C : \operatorname{ev}_C \Gamma \to \mathbb{R}$ given by the C-multiplicities. Similarly, the predistance polynomials $\{p_k\}_{0 \le k \le d}$ are the canonical orthogonal system associated to $\operatorname{ev} \Gamma$ and weight function given by $g(\lambda_l) = m(\lambda_l)/n$.

3 Edge-spectrum regularity

Formally, we do not distinguish between an edge $e \in E$ with vertices u, v and the set $\{u, v\}$. Thus, we denote the (local) e-multiplicities of Γ as $m_e(\lambda_i) = \|\boldsymbol{E}_i\boldsymbol{e}_e\|^2$, $i = 0, 1, \ldots, d$, where $\boldsymbol{e}_e = \frac{\boldsymbol{\rho}_e}{\|\boldsymbol{\rho}_e\|} = \frac{\nu_u\boldsymbol{e}_u + \nu_v\boldsymbol{e}_v}{\sqrt{\nu_u^2 + \nu_v^2}}$. From this, note that the relationship between the e-multiplicity and the local and crossed multiplicities of u and v is $m_e(\lambda_i) = \frac{1}{\nu_u^2 + \nu_v^2}(\nu_u^2 m_u(\lambda_i) + 2\nu_u \nu_v m_{uv}(\lambda_i) + \nu_v^2 m_v(\lambda_i))$.

If $|\operatorname{ev}_e \Gamma| = d_e + 1$, the eccentricity of e, seen as a set of two vertices, satisfies $\varepsilon_e \leq d_e$. We define the *edge-diameter* of Γ by $\tilde{D} = \max_{e \in E} \varepsilon_e$. Notice that \tilde{D} coincides with the diameter of the line graph $L\Gamma$ of Γ . Consequently, if Γ have diameter D we have $D - 1 \leq \tilde{D} \leq D$ and, if Γ is bipartite, $\tilde{D} = D - 1$.

Lemma 3.1 The e-multiplicaties of a graph $\Gamma = (V, E)$ with spectrum sp Γ satisfy the following properties:

(a)
$$\sum_{i=0}^{d} m_e(\lambda_i) = 1$$
 for every $e \in E$.

(b) If
$$\Gamma$$
 is regular, then $\sum_{e \in E} m_e(\lambda_i) = \frac{\lambda_0 + \lambda_i}{2} m(\lambda_i)$ for every $\lambda_i \in \text{ev } \Gamma$.

For every eigenvalue $\lambda_i \in \text{ev }\Gamma$, the mean vertex-multiplicity and mean edge-multiplicity are, respectively,

$$g(\lambda_i) = \frac{1}{|V|} \sum_{u \in V} m_u(\lambda_i) = \frac{m(\lambda_i)}{|V|}, \qquad \tilde{g}(\lambda_i) = \frac{1}{|E|} \sum_{e \in E} m_e(\lambda_i).$$

Inspired by the concept of (vertex) spectrum-regularity, we say that Γ is edge-spectrum-regular if, for every $\lambda_i \in \text{ev }\Gamma$, the edge-multiplicity $m_e(\lambda_i)$ does not depend on $e \in E$. Whereas spectrum-regularity implies regularity, in the case of edge-spectrum-regularity we have the following result.

Proposition 3.2 Let Γ be a connected edge-spectrum-regular graph. Then, Γ is either regular or bipartite biregular.

We say that a graph Γ is bispectrum-regular when it is both spectrum-regular and edge-spectrum-regular. This is the case, for instance, when Γ is distance-regular. More generally, we have the following result.

Proposition 3.3 Γ is bispectrum-regular if and only if it is 1-walk-regular.

4 Edge-distance-regularity

Given a graph $\Gamma = (V, E)$ and an edge $e \in E$, consider the partition of V induced by the distance from e, that is $V = e_0 \cup e_1 \cup \cdots \cup e_{\varepsilon_e}$, where $e_k = \Gamma_k(e)$. We say that Γ is e-local pseudo-distance-regular if this partition is pseudo-regular. One of the advantages of considering edges is that we can see the graph from a global point of view, that is, from every edge, in the same way as we get distance-regularity by seeing the graph from every vertex.

Definition 4.1 A graph Γ is edge-distance-regular when it is e-local pseudo-distance-regular with intersection numbers not depending on $e \in E$.

Proposition 4.2 Let Γ be an edge-distance-regular graph with diameter D and d+1 distinct eigenvalues. Then, Γ is regular and

(a) Γ has spectrally maximum diameter (D=d) and its edge-diameter satisfies $\tilde{D}=D$ if Γ is nonbipartite and $\tilde{D}=D-1$ otherwise.

- (b) Γ is edge-spectrum regular and, for every $e \in E$, the e-spectrum satisfies:
- (b1) If Γ is nonbipartite, $\operatorname{ev}_e \Gamma = \operatorname{ev} \Gamma$ and $m_e(\lambda_i) = \left(1 + \frac{\lambda_i}{\lambda_0}\right) \frac{m(\lambda_i)}{|V|}$, $\lambda_i \in \operatorname{ev} \Gamma$. (b2) If Γ is bipartite, $\operatorname{ev}_e \Gamma = \operatorname{ev} \Gamma \setminus \{-\lambda_0\}$ and $m_e(\lambda_i) = \left(1 + \frac{\lambda_i}{\lambda_0}\right) \frac{m(\lambda_i)}{|V|}$, $\lambda_i \in \operatorname{ev} \Gamma \setminus \{-\lambda_0\}.$

Definition 4.3 The k-incidence matrix of $\Gamma = (V, E)$ is the $(|V| \times |E|)$ -matrix $\mathbf{B}_k = (b_{ue})$ with entries $b_{ue} = 1$ if $\partial(u, e) = k$, and $b_{ue} = 0$ otherwise.

Theorem 4.4 A regular graph Γ with edge-diameter \tilde{D} is edge-distance-regular if and only if, for every $k = 0, 1, \ldots, D$, there exists a polynomial \tilde{p}_k of degree $k \text{ such that } \tilde{p}_k(\mathbf{A})\mathbf{B}_0 = \mathbf{B}_k.$

Godsil and Shawe-Taylor [4] defined a distance-regularised graph as that being distance-regular around each of its vertices (these graphs are a common generalisation of distance-regular graphs and generalised polygons.) showed that distance-regularised graphs are either distance-regular or distancebiregular. Inspired by this, we introduce the following concept.

Definition 4.5 A regular graph Γ is said to be edge-distance-regularised when it is edge-distance-regular around each of its edges.

Let $\operatorname{ev}_E \Gamma = \bigcup_{e \in E} \operatorname{ev}_e \Gamma$ and denote by $\operatorname{ev}_E^{\star} \Gamma = \operatorname{ev}_E \Gamma \setminus \{\lambda_0\}$ and d = 1 $|\operatorname{ev}_E^{\star}\Gamma|$. If Γ is edge-distance-regular, Proposition 4.2 establishes that $\operatorname{ev}_E\Gamma=$ ev Γ if Γ is nonbipartite, and ev_E Γ = ev $\Gamma \setminus \{\lambda_0\}$ otherwise. Consider the canonical orthogonal system $\{\tilde{p}_k\}_{0 \le k \le \tilde{d}}$ associated to $(\text{ev}_E \Gamma, \tilde{g})$, and their sum polynomials $\{\tilde{q}_k\}_{0 \leq k \leq \tilde{d}}$ defined by $\bar{\tilde{q}}_k = \tilde{p}_0 + \tilde{p}_1 + \cdots + \tilde{p}_k$.

Theorem 4.6 Let $\Gamma = (V, E)$ be a regular graph with $d = |\operatorname{ev}_E \Gamma|$. Let $H_{\tilde{d}-1}$ be the harmonic mean of the numbers $|N_{\tilde{d}-1}(e)|$ for $e \in E$. Then, Γ is edgedistance-regularised if and only if $H_{\tilde{d}-1} = 2\tilde{q}_{\tilde{d}-1}(\lambda_0)$.

Corollary 4.7 Let $\Gamma = (V, E)$ be a regular graph with $\tilde{d} = |\operatorname{ev}_E \Gamma|$. Let $M_{\tilde{d}}$ be the (arithmetic) mean of the numbers $|e_{\tilde{d}}|$ for $e \in E$. Then, Γ is edge-distanceregularised if and only if $M_{\tilde{d}} = 2\tilde{p}_{\tilde{d}}(\lambda_0)$.

As a consequence we have the following theorem, which can be seen as an analogue for the Spectral Excess Theorem for (vertex) distance-regularity [3].

Theorem 4.8 A regular graph $\Gamma = (V, E)$ with $\tilde{d} = |\operatorname{ev}_E \Gamma|$ is edge-distanceregular if and only if, for every edge $e \in E$, $|e_{\tilde{d}}| = 2\tilde{p}_{\tilde{d}}(\lambda_0)$.

Remark that, as proved in [1], we can specify the value of $\tilde{p}_{\tilde{d}}$ in terms of the edge spectrum. In what follows, $\widehat{\pi}_0$, π_i and $\overline{\pi}_i$, $0 \le i \le d$, are moment-like

parameters computed from the spectrum.

Theorem 4.9 Let $\Gamma = (V, E)$ be a regular graph with d+1 distinct eigenvalues, and spectrally maximum edge-diameter $\tilde{D} = \tilde{d}$. Then, Γ is edge-distance-regular if and only if, for every edge $e \in E$, $|e_{\tilde{D}}| = \frac{4|E|}{\pi_0^2} \left(\sum_{i=0}^d \frac{\lambda_0 + \lambda_i}{m(\lambda_i) \overline{\pi}_i^2} \right)^{-1}$.

Proposition 4.10 Let Γ be a λ_0 -regular graph with edge-diameter $\tilde{D} = |\operatorname{ev}^* \Gamma| = d$. Assume that, for every vertex $u \in V$ and every edge $e \in E$,

$$\frac{|e_d|}{|u_d|} = \frac{\widehat{\pi}_0}{\pi_0} \frac{|V|}{(-1)^d p_d(-\lambda_0)},$$

where p_d is the d-th predistance polynomial of Γ . Then, Γ is edge-distance-regular if and only if it is distance-regular.

Van Damm and Haemers [5] showed that any connected regular graph with d+1 distinct eigenvalues and odd-girth 2d+1 is a generalized odd graph. We show that the same result holds when Γ is both distance-regular and edge-distance-regular.

Proposition 4.11 Let Γ be a distance-regular graph with intersection numbers $c_k, a_k, b_k, 0 \leq k \leq d$. Suppose that $a_d \neq 0$. Then, Γ is edge-distance-regular if and only if it is a generalized odd graph.

Remark that a nonbipartite graph that is both distance-regular and edgedistance-regular has intersection number $a_d > 0$.

References

- [1] M. Cámara, J. Fàbrega, M. A. Fiol, and E. Garriga. Some families of orthogonal polynomials of a discrete variable and their applications to graphs and codes. *Electron. J. Combin.*, 16(1):#R83, 30 pp., 2009.
- [2] M. A. Fiol and E. Garriga. On the algebraic theory of pseudo-distance-regularity around a set. *Linear Algebra Appl.*, 298(1-3):115–141, 1999.
- [3] M. A. Fiol, E. Garriga, and J. L. A. Yebra. Locally pseudo-distance-regular graphs. *J. Combin. Theory Ser. B*, 68(2):179–205, 1996.
- [4] C. D. Godsil and J. Shawe-Taylor. Distance-regularised graphs are distance-regular or distance-biregular. *J. Combin. Theory Ser. B*, 43(1):14–24, 1987.
- [5] E. R. Van Dam and W. H. Haemers. An odd characterization of the generalized odd graphs. *CentER discussion paper 2010-47*, Tilburg University, 2010.