
ar
X

iv
:1

00
7.

04
73

v2
  [

m
at

h.
C

O
] 

 1
1 

Ju
n 

20
11

A characterization of Q-polynomial association

schemes

Hirotake Kurihara, Hiroshi Nozaki

May 17, 2018

Abstract

We prove a necessary and sufficient condition for a symmetric associ-

ation scheme to be a Q-polynomial scheme.
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1 Introduction

A symmetric association scheme of class d is a pair X = (X, {Ri}
d
i=0), where

X is a finite set and each Ri is a nonempty subset of X × X satisfying the
following:

(1) R0 = {(x, x) | x ∈ X},

(2) X ×X =
⋃d

i=0 Ri and Ri ∩Rj is empty if i 6= j,

(3) tRi = Ri for any i ∈ {0, 1, . . . , d}, where tRi = {(y, x) | (x, y) ∈ Ri},

(4) for all i, j, k ∈ {0, 1, . . . , d}, there exist integers pkij such that for all x, y ∈
X with (x, y) ∈ Rk,

pkij = |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}|.

The integers pkij are called the intersection numbers.
Let X be a symmetric association scheme. The i-th adjacency matrix Ai of

X is the matrix with rows and columns indexed by X such that the (x, y)-entry
is 1 if (x, y) ∈ Ri or 0 otherwise. The Bose–Mesner algebra of X is the algebra
generated by the adjacency matrices {Ai}

d
i=0 over the complex field C. Then

{Ai}
d
i=0 is a natural basis of the Bose–Mesner algebra. By [2, page 59], the

Bose–Mesner algebra has a second basis {Ei}
d
i=0 such that

(1) E0 = |X |−1J , where J is the all-ones matrix,

(2) I =
∑d

i=0 Ei, where I is the identity matrix,

(3) EiEj = δijEi, where δij = 1 if i = j and δij = 0 if i 6= j.

2010 Mathematics Subject Classification: 05E30 (51D20).

1

http://arxiv.org/abs/1007.0473v2


The basis {Ei}
d
i=0 is called the primitive idempotents of X. We have the following

equations:

Ai =

d
∑

j=0

pi(j)Ej , (1.1)

Ei =
1

|X |

d
∑

j=0

qi(j)Aj , (1.2)

AiAj =

d
∑

k=0

pkijAk, (1.3)

Ei ◦ Ej =
1

|X |

d
∑

k=0

qkijEk, (1.4)

where ◦ denotes the Hadamard product, that is, the entry-wise matrix product.
The matrices P = (pj(i))

d
i,j=0 andQ = (qj(i))

d
i,j=0 are called the first and second

eigenmatrices, respectively. The numbers qkij are called the Krein parameters.
The Krein parameters are nonnegative real numbers (the Krein condition) [11]
[2, page 69].

A symmetric association scheme is called a P -polynomial scheme (or a met-

ric scheme) with respect to the ordering {Ai}
d
i=0 if for each i ∈ {0, 1, . . . , d},

there exists a polynomial vi of degree i such that pi(j) = vi(p1(j)) for any
j ∈ {0, 1, . . . , d}. We say a symmetric association scheme is a P -polynomial
scheme with respect to A1 if it has the P -polynomial property with respect to
some ordering A0, A1, Ai2 , Ai3 , . . . , Aid . Dually a symmetric association scheme
is called a Q-polynomial scheme (or a cometric scheme) with respect to the or-
dering {Ei}

d
i=0 if for each i ∈ {0, 1, . . . , d}, there exists a polynomial v∗i of degree

i such that qi(j) = v∗i (q1(j)) for any j ∈ {0, 1, . . . , d}. Moreover a symmetric as-
sociation scheme is called a Q-polynomial scheme with respect to E1 if it has the
Q-polynomial property with respect to some ordering E0, E1, Ei2 , Ei3 , . . . , Eid .
Note that both {vi}

d
i=0 and {v∗i }

d
i=0 form systems of orthogonal polynomials.

Throughout this paper, we use the notation mi = qi(0) and θ∗i = q1(i) for
0 ≤ i ≤ d. If an association scheme is Q-polynomial, then {θ∗i }

d
i=0 are mutually

distinct because the second eigenmatrix Q = (v∗i (θ
∗
j ))

d
j,i=0 is non-singular. For

a univariate polynomial f and a matrix M , we denote by f(M◦) the matrix
obtained by substituting M into f with multiplication the Hadamard prod-
uct. We introduce known equivalent conditions of the Q-polynomial property
of symmetric association schemes [2, page 193]. The following are equivalent:

(1) X is a Q-polynomial scheme with respect to the ordering {Ei}
d
i=0.

(2) (qj1,i)
d
i,j=0 is an irreducible tridiagonal matrix.

(3) For each i ∈ {0, 1, . . . , d}, there exists a polynomial fi of degree i such
that Ei = fi(E

◦
1 ).

In the present paper, we prove a new necessary and sufficient condition for
a symmetric association scheme to be Q-polynomial. Since the Q-polynomial
property of a symmetric association scheme of class 1 is trivial, we assume that
d is greater than 1.
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Theorem 1.1. Let X be a symmetric association scheme of class d ≥ 2. Sup-

pose that {θ∗j }
d
j=0 are mutually distinct. Then the following are equivalent:

(1) X is a Q-polynomial scheme with respect to E1.

(2) There exists l ∈ {2, 3, . . . , d} such that for any i ∈ {1, 2, . . . , d},

d
∏

j=1
j 6=i

θ∗0 − θ∗j
θ∗i − θ∗j

= −pi(l).

Moreover if (2) holds, then l = id.

Remark 1.2. We call a finite set X in Rm a d-distance set if the number of the
Euclidean distances between distinct two points in X is equal to d. Larman–
Rogers–Seidel [7] proved that if the size of a two-distance set with the distances
a, b (a < b) is greater than 2m + 3, then there exists a positive integer k such
that a2/b2 = (k − 1)/k, i.e. k = b2/(b2 − a2). Bannai–Bannai [1] proved that
the ratio k of the spherical embedding of a primitive association scheme of class
2 coincides with −pi(2). The research of the present paper is motivated by
[1]. For a symmetric association scheme satisfying that {θ∗j}

d
j=0 are mutually

distinct, the values Ki :=
∏d

j=1,j 6=i(θ
∗
0 − θ∗j )(θ

∗
i − θ∗j )

−1 (1 ≤ i ≤ d) are the
generalized Larman–Rogers–Seidel’s ratios [10] of the spherical embedding of
this association scheme with respect to E1. Theorem 1.1 is an extension of
Bannai–Bannai’s result to Q-polynomial schemes of any class. Furthermore
Theorem 1.1 is a new characterization of the Q-polynomial property on the
spherical embedding of a symmetric association scheme.

At the end of this paper, we give some sufficient conditions for the integrality
of Ki.

2 Proof of Theorem 1.1

First we give several lemmas that will be needed to prove Theorem 1.1.

Lemma 2.1. For any mutually distinct real numbers β1, β2, . . . , βs, the follow-

ing identity holds.
s

∑

i=1

βj
i

s
∏

k=1
k 6=i

x− βk

βi − βk

= xj

for any j ∈ {0, 1, . . . , s− 1}, where x is a variable.

Proof. For each j ∈ {0, 1, . . . , s− 1}, the polynomial

Lj(x) :=

s
∑

i=1

βj
i

s
∏

k=1
k 6=i

x− βk

βi − βk

of degree at most s−1 is known as the interpolation polynomial in the Lagrange
form (see [3]). Namely, the property Lj(βi) = βj

i holds for any i ∈ {1, 2, . . . , s}.
Therefore Lj(x) = xj , and the lemma follows.
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We say Ej is a component of an element M of the Bose–Mesner algebra if
EjM 6= 0. Let Nh denote the set of indices j such that Ej is a component of
E◦h

1 but not of E◦l
1 (0 ≤ l ≤ h− 1). Note that N0 = {0} and N1 = {1}.

Lemma 2.2. Suppose X is a symmetric association scheme of class d ≥ 2.
Then the following are equivalent.

(1) X is a Q-polynomial scheme with respect to E1.

(2) The cardinality of Nd is equal to 1.

(3) Nd is nonempty.

Proof. (2) ⇒ (3): Clear.
(1) ⇒ (2): Without loss of generality, we assume that X is a Q-polynomial
scheme with respect to {Ei}

d
i=0. By noting that {θ∗i }

d
i=0 are mutually distinct,

{E◦i
1 }di=0 are linearly independent, and a basis of the Bose–Mesner algebra. We

have

Ei = fi(E
◦
1 ) =

i
∑

j=0

αi,jE
◦j
1 ,

where αi,j ∈ R are the coefficients of a polynomial fi of degree i. The upper
triangular matrix (αi,j)

d
i,j=0 is non-singular because αi,i 6= 0 for each i. Since

the inverse matrix (α′
i,j)

d
i,j=0 of (αi,j)

d
i,j=0 is also an upper triangular matrix

with α′
i,i 6= 0 for each i, we can express

E◦i
1 =

i
∑

j=0

α′
i,jEj .

Therefore (2) follows.
(3) ⇒ (1): First we prove that if Ni is empty for some i ∈ {1, 2, . . . , d− 1}, then

Ni+1 is also empty. Let I = ∪i−1
j=0Nj . We consider the expression

∑i−1
j=0 E

◦j
1 =

∑

j∈I βjEj . Note that βj > 0 for any j ∈ I by the Krein condition. Then we
have

E1 ◦ (
i−1
∑

h=0

E◦h
1 ) =

∑

j∈I

βj

d
∑

k=0

qk1,jEk =
d

∑

k=0

∑

j∈I

βjq
k
1,jEk.

If Ni is empty, then

qk1,j = 0 for any j ∈ I and any k 6∈ I (2.1)

because βj > 0 holds for any j ∈ I. We can express E◦i
1 =

∑

j∈I β′
jEj , where

β′
j are non-negative integers for any j ∈ I. By (2.1) and the equalities

E
◦(i+1)
1 = E1 ◦ E

◦i
1 = E1 ◦

∑

j∈I

β′
jEj =

d
∑

k=0

∑

j∈I

β′
jq

k
1,jEk,

we obtain
∑

j∈I β
′
jq

k
1,j = 0 for k 6∈ I. Hence Ni+1 is also empty. This means

that if Nd is not empty, then the cardinalities of Nh is equal to 1 for any
h ∈ {0, 1, . . . , d}. Put Nh = {ih} and order E0, E1, Ei2 , Ei3 , . . . , Eid . Then
we can construct polynomials fh of degree h such that fh(E

◦
1 ) = Eih for any

h ∈ {0, 1, . . . , d}. Hence (1) follows.
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Now we prove Theorem 1.1.

Proof of Theorem 1.1. (1) ⇒ (2): Without loss of generality, we assume that X
is a Q-polynomial scheme with respect to {Ei}

d
i=0. For each i ∈ {1, 2, . . . , d},

we define the polynomial

Fi(t) :=

d
∏

j=1
j 6=i

|X |t− θ∗j
θ∗i − θ∗j

of degree d − 1. Set Mi = Fi(E
◦
1 ). Then |X |E1 =

∑d

j=0 θ
∗
jAj yields that the

(x, y)-entries of Mi are

Mi(x, y) =











Ki if (x, y) ∈ R0,

1 if (x, y) ∈ Ri,

0 otherwise,

where Ki :=
∏d

j=1,j 6=i(θ
∗
0 − θ∗j )(θ

∗
i − θ∗j )

−1. Since Fi is a polynomial of degree

d − 1, the matrix Mi is a linear combination of {Ei}
d−1
i=0 . This means that

MiEd = 0. By (1.1),

0 = MiEd = (KiI +Ai)Ed = (Ki + pi(d))Ed

for any i ∈ {1, 2, . . . , d}. Therefore the desired result follows.

(2) ⇒ (1): From the equation Ai =
∑d

j=0 pi(j)Ej and our assumptions, we
have

AiEl = pi(l)El = −KiEl.

By Lemma 2.1,

(|X |E1)
◦jEl =

(

(θ∗0)
jI +

d
∑

i=1

(θ∗i )
jAi

)

El =
(

(θ∗0)
j −

d
∑

i=1

(θ∗i )
jKi

)

El = 0

for any j ≤ d− 1. This means that l is not an element of Nj for any j ≤ d− 1.
Note that the following equality holds:

d
∏

j=1

|X |E1 − θ∗jJ

θ∗0 − θ∗j
= I,

where the multiplication is the Hadamard product. Obviously, I has El as a
component. Since l /∈ Ni for any i ∈ {0, 1, . . . , d − 1}, we have l ∈ Nd. By
Lemma 2.2, the desired result follows.

3 Integrality of Ki

In this section, we consider when Ki = −pi(d) is an integer for each i ∈
{1, 2, . . . , d} for a Q-polynomial scheme. The following theorem is important
in this section.
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Theorem 3.1 (Suzuki [12]). Let X with m1 > 2 be a Q-polynomial scheme

with respect to the ordering {Ei}
d
i=0. Suppose X is Q-polynomial with respect to

another ordering. Then the new ordering is one of the following:

(1) E0, E2, E4, E6, . . . , E5, E3, E1,

(2) E0, Ed, E1, Ed−1, E2, Ed−2, E3, Ed−3, . . .,

(3) E0, Ed, E2, Ed−2, E4, Ed−4, . . . , Ed−5, E5, Ed−3, E3, Ed−1, E1,

(4) E0, Ed−1, E2, Ed−3, E4, Ed−5, . . . , E5, Ed−4, E3, Ed−2, E1, Ed, or

(5) d = 5 and E0, E5, E3, E2, E4, E1.

Note that Q-polynomial schemes with m1 = 2 are the ordinary n-gons as
distance-regular graphs.

Proposition 3.2. Let X with m1 > 2 be a Q-polynomial association scheme

with respect to the ordering {Ei}
d
i=0. If there exists t such that t ≤ d/2, t ≡ 1

(mod 2) and mt 6= md−t+1, then Kj is an integer for any j.

Proof. Let F be the splitting field of the scheme, generated by the entries of the
first eigenmatrix P . Then F is a Galois extension of the rational field. Let G
be the Galois group Gal(F/Q). We consider the action of G on the primitive
idempotents Ei, where elements of G are applied entry-wise. Then the action
of G on {Ei}

d
i=0 is faithful and |G| ≤ 2 [9].

Suppose Kj is not an integer for some j. Since −Kj = pj(d) is an eigenvalue
of Aj , Kj is an algebraic integer. By the basic number theory, Kj is irrational.
Therefore |G| 6= 1 and hence |G| = 2. Let σ be the non-identity element of
G. From the definition of Kj , E1 must have an irrational entry, and Eσ

1 6= E1.
Therefore {Eσ

i }
d
i=0 is another Q-polynomial ordering with the same polynomials

fi. Hence {Eσ
i }

d
i=0 coincides with one of (1)–(5) in Theorem 3.1.

For d = 2, it is known that Ki is an integer for each i = 1, 2 if m1 6= m2

[1]. For (1) and (2) with d > 2, (Eσ
1 )

σ 6= E1, this contradicts that σ2 is the
identity. Since pj(d) is irrational and AjEd = pj(d)Ed, Ed has an irrational
entry. Therefore Eσ

d 6= Ed. For (4), σ fixes Ed, a contradiction. Therefore the
ordering {Eσ

i }
d
i=0 coincides with (3) or (5).

Suppose that there exists t such that t ≤ d/2, t ≡ 1 (mod 2) and mt 6=
md−t+1. Since Et ◦ I = (mt/|X |)I, we have Eσ

t ◦ Iσ = (mt/|X |)Iσ and hence
Eσ

t ◦ I = (mt/|X |)I 6= (md−t+1/|X |)I. Therefore Eσ
t 6= Ed−t+1. Thus, the

ordering {Eσ
i }

d
i=0 does not coincide with (3) for d ≥ 2. If d = 5, then m1 6= m5

and hence Eσ
1 6= E5. Therefore {Eσ

i }
5
i=0 does not coincide with (5). Thus the

proposition follows.

Remark that the known Q-polynomial schemes with some irrational Ki

and d > 2 are the ordinary n-gons and the association scheme obtained from
the icosahedron [5, 8]. We can give a similar equivalent condition of the P -
polynomial property of symmetric association schemes [6]. Let θi = p1(i) for
0 ≤ i ≤ d.

Theorem 3.3. Let X be a symmetric association scheme of class d ≥ 2. Sup-

pose {θj}
d
j=0 are mutually distinct. Then the following are equivalent:

(1) X is a P -polynomial association scheme with respect to A1.
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(2) There exists l ∈ {2, 3, . . . , d} such that for any i ∈ {1, 2, . . . d},

d
∏

j=1
j 6=i

θ0 − θj
θi − θj

= −qi(l).

Moreover if (2) holds, then l = id.

Acknowledgments. Both of authors are supported by the fellowship of the
Japan Society for the Promotion of Science. The authors would like to thank
Eiichi Bannai, Edwin van Dam, Tatsuro Ito, William J. Martin, Akihiro Mune-
masa, Hiroshi Suzuki, Makoto Tagami, Hajime Tanaka, Paul Terwilliger and
Paul-Hermann Zieschang for useful discussions and comments.

References

[1] E. Bannai and E. Bannai, A note on the spherical embeddings of strongly
regular graphs, European J. Combin. 26 (2005), no. 8, 1177–1179.

[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Ben-
jamin/Cummings, Menro Park, CA, 1984.

[3] J.-P. Berrut and L.N. Trefethen, Barycentric Lagrange Interpolation, SIAM
Review 46 (3) (2004), 501–517.

[4] P. Delsarte, J.M. Goethals, and J.J. Seidel, Spherical codes and designs,
Geom. Dedicata 6 (1977), no. 3, 363–388.

[5] M. Kiyota and H. Suzuki, Character products and Q-polynomial group as-
sociation schemes, J. Algebra 226 (2000), no. 1, 533–546.

[6] H. Kurihara and H. Nozaki, A spectral equivalent condition of the P -
polynomial property for association schemes, in preparation.

[7] D.G. Larman, C.A. Rogers, and J.J. Seidel, On two-distance sets in Eu-
clidean space, Bull. London Math. Soc. 9 (1977), 261–267.

[8] W.J. Martin, M. Muzychuk and J. Williford, Imprimitive cometric associ-
ation schemes: constructions and analysis, J. Algebraic Combin. 25 (2007),
no. 4, 399–415.

[9] W.J. Martin and J.S. Williford, There are finitely many Q-polynomial as-
sociation schemes with given first multiplicity at least three, European J.

Combin. 30 (3) (2009) 698–704,

[10] H. Nozaki, A generalization of Larman–Rogers–Seidel’s theorem, Discrete

Math. 311 (2011), 792–799.

[11] L.L. Scott, A conditions on Higman’s parameters,Amer. Math. Soc. Notices

701 (1973), 20–45.

[12] H. Suzuki, Association schemes with multiple Q-polynomial structures, J.
Algebraic Combin. 7 (2) (1998), 181–196

7



Hirotake Kurihara

Mathematical Institute,
Tohoku University
Aramaki-Aza-Aoba 6-3,
Aoba-ku,
Sendai 980-8578,
Japan
sa9d05@math.tohoku.ac.jp

Hiroshi Nozaki

Graduate School of Information Sciences,
Tohoku University
Aramaki-Aza-Aoba 6-3-09,
Aoba-ku,
Sendai 980-8579,
Japan
nozaki@ims.is.tohoku.ac.jp

8


	1 Introduction
	2 Proof of Theorem ??
	3 Integrality of Ki

