A characterization of Q-polynomial association schemes

Hirotake Kurihara, Hiroshi Nozaki

May 17, 2018

Abstract

We prove a necessary and sufficient condition for a symmetric association scheme to be a Q-polynomial scheme.

Key words: Q-polynomial association scheme, s-distance set.

1 Introduction

A symmetric association scheme of class d is a pair $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{i=0}^{d}\right)$, where X is a finite set and each R_{i} is a nonempty subset of $X \times X$ satisfying the following:
(1) $R_{0}=\{(x, x) \mid x \in X\}$,
(2) $X \times X=\bigcup_{i=0}^{d} R_{i}$ and $R_{i} \cap R_{j}$ is empty if $i \neq j$,
(3) ${ }^{t} R_{i}=R_{i}$ for any $i \in\{0,1, \ldots, d\}$, where ${ }^{t} R_{i}=\left\{(y, x) \mid(x, y) \in R_{i}\right\}$,
(4) for all $i, j, k \in\{0,1, \ldots, d\}$, there exist integers $p_{i j}^{k}$ such that for all $x, y \in$ X with $(x, y) \in R_{k}$,

$$
p_{i j}^{k}=\left|\left\{z \in X \mid(x, z) \in R_{i},(z, y) \in R_{j}\right\}\right| .
$$

The integers $p_{i j}^{k}$ are called the intersection numbers.
Let \mathfrak{X} be a symmetric association scheme. The i-th adjacency matrix A_{i} of \mathfrak{X} is the matrix with rows and columns indexed by X such that the (x, y)-entry is 1 if $(x, y) \in R_{i}$ or 0 otherwise. The Bose-Mesner algebra of \mathfrak{X} is the algebra generated by the adjacency matrices $\left\{A_{i}\right\}_{i=0}^{d}$ over the complex field \mathbb{C}. Then $\left\{A_{i}\right\}_{i=0}^{d}$ is a natural basis of the Bose-Mesner algebra. By [2, page 59], the Bose-Mesner algebra has a second basis $\left\{E_{i}\right\}_{i=0}^{d}$ such that
(1) $E_{0}=|X|^{-1} J$, where J is the all-ones matrix,
(2) $I=\sum_{i=0}^{d} E_{i}$, where I is the identity matrix,
(3) $E_{i} E_{j}=\delta_{i j} E_{i}$, where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$.

[^0]The basis $\left\{E_{i}\right\}_{i=0}^{d}$ is called the primitive idempotents of \mathfrak{X}. We have the following equations:

$$
\begin{align*}
A_{i} & =\sum_{j=0}^{d} p_{i}(j) E_{j}, \tag{1.1}\\
E_{i} & =\frac{1}{|X|} \sum_{j=0}^{d} q_{i}(j) A_{j}, \tag{1.2}\\
A_{i} A_{j} & =\sum_{k=0}^{d} p_{i j}^{k} A_{k}, \tag{1.3}\\
E_{i} \circ E_{j} & =\frac{1}{|X|} \sum_{k=0}^{d} q_{i j}^{k} E_{k}, \tag{1.4}
\end{align*}
$$

where o denotes the Hadamard product, that is, the entry-wise matrix product. The matrices $P=\left(p_{j}(i)\right)_{i, j=0}^{d}$ and $Q=\left(q_{j}(i)\right)_{i, j=0}^{d}$ are called the first and second eigenmatrices, respectively. The numbers $q_{i j}^{k}$ are called the Krein parameters. The Krein parameters are nonnegative real numbers (the Krein condition) [11] [2, page 69].

A symmetric association scheme is called a P-polynomial scheme (or a metric scheme) with respect to the ordering $\left\{A_{i}\right\}_{i=0}^{d}$ if for each $i \in\{0,1, \ldots, d\}$, there exists a polynomial v_{i} of degree i such that $p_{i}(j)=v_{i}\left(p_{1}(j)\right)$ for any $j \in\{0,1, \ldots, d\}$. We say a symmetric association scheme is a P-polynomial scheme with respect to A_{1} if it has the P-polynomial property with respect to some ordering $A_{0}, A_{1}, A_{i_{2}}, A_{i_{3}}, \ldots, A_{i_{d}}$. Dually a symmetric association scheme is called a Q-polynomial scheme (or a cometric scheme) with respect to the ordering $\left\{E_{i}\right\}_{i=0}^{d}$ if for each $i \in\{0,1, \ldots, d\}$, there exists a polynomial v_{i}^{*} of degree i such that $q_{i}(j)=v_{i}^{*}\left(q_{1}(j)\right)$ for any $j \in\{0,1, \ldots, d\}$. Moreover a symmetric association scheme is called a Q-polynomial scheme with respect to E_{1} if it has the Q-polynomial property with respect to some ordering $E_{0}, E_{1}, E_{i_{2}}, E_{i_{3}}, \ldots, E_{i_{d}}$. Note that both $\left\{v_{i}\right\}_{i=0}^{d}$ and $\left\{v_{i}^{*}\right\}_{i=0}^{d}$ form systems of orthogonal polynomials.

Throughout this paper, we use the notation $m_{i}=q_{i}(0)$ and $\theta_{i}^{*}=q_{1}(i)$ for $0 \leq i \leq d$. If an association scheme is Q-polynomial, then $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$ are mutually distinct because the second eigenmatrix $Q=\left(v_{i}^{*}\left(\theta_{j}^{*}\right)\right)_{j, i=0}^{d}$ is non-singular. For a univariate polynomial f and a matrix M, we denote by $f\left(M^{\circ}\right)$ the matrix obtained by substituting M into f with multiplication the Hadamard product. We introduce known equivalent conditions of the Q-polynomial property of symmetric association schemes [2, page 193]. The following are equivalent:
(1) \mathfrak{X} is a Q-polynomial scheme with respect to the ordering $\left\{E_{i}\right\}_{i=0}^{d}$.
(2) $\left(q_{1, i}^{j}\right)_{i, j=0}^{d}$ is an irreducible tridiagonal matrix.
(3) For each $i \in\{0,1, \ldots, d\}$, there exists a polynomial f_{i} of degree i such that $E_{i}=f_{i}\left(E_{1}^{\circ}\right)$.

In the present paper, we prove a new necessary and sufficient condition for a symmetric association scheme to be Q-polynomial. Since the Q-polynomial property of a symmetric association scheme of class 1 is trivial, we assume that d is greater than 1 .

Theorem 1.1. Let \mathfrak{X} be a symmetric association scheme of class $d \geq 2$. Suppose that $\left\{\theta_{j}^{*}\right\}_{j=0}^{d}$ are mutually distinct. Then the following are equivalent:
(1) \mathfrak{X} is a Q-polynomial scheme with respect to E_{1}.
(2) There exists $l \in\{2,3, \ldots, d\}$ such that for any $i \in\{1,2, \ldots, d\}$,

$$
\prod_{\substack{j=1 \\ j \neq i}}^{d} \frac{\theta_{0}^{*}-\theta_{j}^{*}}{\theta_{i}^{*}-\theta_{j}^{*}}=-p_{i}(l)
$$

Moreover if (2) holds, then $l=i_{d}$.
Remark 1.2. We call a finite set X in \mathbb{R}^{m} a d-distance set if the number of the Euclidean distances between distinct two points in X is equal to d. Larman-Rogers-Seidel [7] proved that if the size of a two-distance set with the distances $a, b(a<b)$ is greater than $2 m+3$, then there exists a positive integer k such that $a^{2} / b^{2}=(k-1) / k$, i.e. $k=b^{2} /\left(b^{2}-a^{2}\right)$. Bannai-Bannai [1] proved that the ratio k of the spherical embedding of a primitive association scheme of class 2 coincides with $-p_{i}(2)$. The research of the present paper is motivated by [1]. For a symmetric association scheme satisfying that $\left\{\theta_{j}^{*}\right\}_{j=0}^{d}$ are mutually distinct, the values $K_{i}:=\prod_{j=1, j \neq i}^{d}\left(\theta_{0}^{*}-\theta_{j}^{*}\right)\left(\theta_{i}^{*}-\theta_{j}^{*}\right)^{-1}(1 \leq i \leq d)$ are the generalized Larman-Rogers-Seidel's ratios [10] of the spherical embedding of this association scheme with respect to E_{1}. Theorem 1.1 is an extension of Bannai-Bannai's result to Q-polynomial schemes of any class. Furthermore Theorem 1.1 is a new characterization of the Q-polynomial property on the spherical embedding of a symmetric association scheme.

At the end of this paper, we give some sufficient conditions for the integrality of K_{i}.

2 Proof of Theorem 1.1

First we give several lemmas that will be needed to prove Theorem 1.1 ,
Lemma 2.1. For any mutually distinct real numbers $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$, the following identity holds.

$$
\sum_{i=1}^{s} \beta_{i}^{j} \prod_{\substack{k=1 \\ k \neq i}}^{s} \frac{x-\beta_{k}}{\beta_{i}-\beta_{k}}=x^{j}
$$

for any $j \in\{0,1, \ldots, s-1\}$, where x is a variable.
Proof. For each $j \in\{0,1, \ldots, s-1\}$, the polynomial

$$
L_{j}(x):=\sum_{i=1}^{s} \beta_{i}^{j} \prod_{\substack{k=1 \\ k \neq i}}^{s} \frac{x-\beta_{k}}{\beta_{i}-\beta_{k}}
$$

of degree at most $s-1$ is known as the interpolation polynomial in the Lagrange form (see [3). Namely, the property $L_{j}\left(\beta_{i}\right)=\beta_{i}^{j}$ holds for any $i \in\{1,2, \ldots, s\}$. Therefore $L_{j}(x)=x^{j}$, and the lemma follows.

We say E_{j} is a component of an element M of the Bose-Mesner algebra if $E_{j} M \neq 0$. Let N_{h} denote the set of indices j such that E_{j} is a component of $E_{1}^{\circ h}$ but not of $E_{1}^{o l}(0 \leq l \leq h-1)$. Note that $N_{0}=\{0\}$ and $N_{1}=\{1\}$.

Lemma 2.2. Suppose \mathfrak{X} is a symmetric association scheme of class $d \geq 2$. Then the following are equivalent.
(1) \mathfrak{X} is a Q-polynomial scheme with respect to E_{1}.
(2) The cardinality of N_{d} is equal to 1 .
(3) N_{d} is nonempty.

Proof. (2) \Rightarrow (3): Clear.
(1) $\Rightarrow(2)$: Without loss of generality, we assume that \mathfrak{X} is a Q-polynomial scheme with respect to $\left\{E_{i}\right\}_{i=0}^{d}$. By noting that $\left\{\theta_{i}^{*}\right\}_{i=0}^{d}$ are mutually distinct, $\left\{E_{1}^{\circ i}\right\}_{i=0}^{d}$ are linearly independent, and a basis of the Bose-Mesner algebra. We have

$$
E_{i}=f_{i}\left(E_{1}^{\circ}\right)=\sum_{j=0}^{i} \alpha_{i, j} E_{1}^{\circ j}
$$

where $\alpha_{i, j} \in \mathbb{R}$ are the coefficients of a polynomial f_{i} of degree i. The upper triangular matrix $\left(\alpha_{i, j}\right)_{i, j=0}^{d}$ is non-singular because $\alpha_{i, i} \neq 0$ for each i. Since the inverse matrix $\left(\alpha_{i, j}^{\prime}\right)_{i, j=0}^{d}$ of $\left(\alpha_{i, j}\right)_{i, j=0}^{d}$ is also an upper triangular matrix with $\alpha_{i, i}^{\prime} \neq 0$ for each i, we can express

$$
E_{1}^{\circ i}=\sum_{j=0}^{i} \alpha_{i, j}^{\prime} E_{j} .
$$

Therefore (2) follows.
$(3) \Rightarrow(1)$: First we prove that if N_{i} is empty for some $i \in\{1,2, \ldots, d-1\}$, then N_{i+1} is also empty. Let $\mathcal{I}=\cup_{j=0}^{i-1} N_{j}$. We consider the expression $\sum_{j=0}^{i-1} E_{1}^{\circ j}=$ $\sum_{j \in \mathcal{I}} \beta_{j} E_{j}$. Note that $\beta_{j}>0$ for any $j \in \mathcal{I}$ by the Krein condition. Then we have

$$
E_{1} \circ\left(\sum_{h=0}^{i-1} E_{1}^{\circ h}\right)=\sum_{j \in \mathcal{I}} \beta_{j} \sum_{k=0}^{d} q_{1, j}^{k} E_{k}=\sum_{k=0}^{d} \sum_{j \in \mathcal{I}} \beta_{j} q_{1, j}^{k} E_{k}
$$

If N_{i} is empty, then

$$
\begin{equation*}
q_{1, j}^{k}=0 \text { for any } j \in \mathcal{I} \text { and any } k \notin \mathcal{I} \tag{2.1}
\end{equation*}
$$

because $\beta_{j}>0$ holds for any $j \in \mathcal{I}$. We can express $E_{1}^{\circ i}=\sum_{j \in \mathcal{I}} \beta_{j}^{\prime} E_{j}$, where β_{j}^{\prime} are non-negative integers for any $j \in \mathcal{I}$. By (2.1) and the equalities

$$
E_{1}^{\circ(i+1)}=E_{1} \circ E_{1}^{\circ i}=E_{1} \circ \sum_{j \in \mathcal{I}} \beta_{j}^{\prime} E_{j}=\sum_{k=0}^{d} \sum_{j \in \mathcal{I}} \beta_{j}^{\prime} q_{1, j}^{k} E_{k}
$$

we obtain $\sum_{j \in \mathcal{I}} \beta_{j}^{\prime} q_{1, j}^{k}=0$ for $k \notin \mathcal{I}$. Hence N_{i+1} is also empty. This means that if N_{d} is not empty, then the cardinalities of N_{h} is equal to 1 for any $h \in\{0,1, \ldots, d\}$. Put $N_{h}=\left\{i_{h}\right\}$ and order $E_{0}, E_{1}, E_{i_{2}}, E_{i_{3}}, \ldots, E_{i_{d}}$. Then we can construct polynomials f_{h} of degree h such that $f_{h}\left(E_{1}^{\circ}\right)=E_{i_{h}}$ for any $h \in\{0,1, \ldots, d\}$. Hence (1) follows.

Now we prove Theorem 1.1
Proof of Theorem [1.1]. (1) \Rightarrow (2): Without loss of generality, we assume that \mathfrak{X} is a Q-polynomial scheme with respect to $\left\{E_{i}\right\}_{i=0}^{d}$. For each $i \in\{1,2, \ldots, d\}$, we define the polynomial

$$
F_{i}(t):=\prod_{\substack{j=1 \\ j \neq i}}^{d} \frac{|X| t-\theta_{j}^{*}}{\theta_{i}^{*}-\theta_{j}^{*}}
$$

of degree $d-1$. Set $M_{i}=F_{i}\left(E_{1}^{\circ}\right)$. Then $|X| E_{1}=\sum_{j=0}^{d} \theta_{j}^{*} A_{j}$ yields that the (x, y)-entries of M_{i} are

$$
M_{i}(x, y)= \begin{cases}K_{i} & \quad \text { if }(x, y) \in R_{0} \\ 1 & \text { if }(x, y) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where $K_{i}:=\prod_{j=1, j \neq i}^{d}\left(\theta_{0}^{*}-\theta_{j}^{*}\right)\left(\theta_{i}^{*}-\theta_{j}^{*}\right)^{-1}$. Since F_{i} is a polynomial of degree $d-1$, the matrix M_{i} is a linear combination of $\left\{E_{i}\right\}_{i=0}^{d-1}$. This means that $M_{i} E_{d}=0$. By (1.1),

$$
0=M_{i} E_{d}=\left(K_{i} I+A_{i}\right) E_{d}=\left(K_{i}+p_{i}(d)\right) E_{d}
$$

for any $i \in\{1,2, \ldots, d\}$. Therefore the desired result follows.
$(2) \Rightarrow(1)$: From the equation $A_{i}=\sum_{j=0}^{d} p_{i}(j) E_{j}$ and our assumptions, we have

$$
A_{i} E_{l}=p_{i}(l) E_{l}=-K_{i} E_{l}
$$

By Lemma 2.1,

$$
\left(|X| E_{1}\right)^{\circ j} E_{l}=\left(\left(\theta_{0}^{*}\right)^{j} I+\sum_{i=1}^{d}\left(\theta_{i}^{*}\right)^{j} A_{i}\right) E_{l}=\left(\left(\theta_{0}^{*}\right)^{j}-\sum_{i=1}^{d}\left(\theta_{i}^{*}\right)^{j} K_{i}\right) E_{l}=0
$$

for any $j \leq d-1$. This means that l is not an element of N_{j} for any $j \leq d-1$. Note that the following equality holds:

$$
\prod_{j=1}^{d} \frac{|X| E_{1}-\theta_{j}^{*} J}{\theta_{0}^{*}-\theta_{j}^{*}}=I
$$

where the multiplication is the Hadamard product. Obviously, I has E_{l} as a component. Since $l \notin N_{i}$ for any $i \in\{0,1, \ldots, d-1\}$, we have $l \in N_{d}$. By Lemma 2.2, the desired result follows.

3 Integrality of K_{i}

In this section, we consider when $K_{i}=-p_{i}(d)$ is an integer for each $i \in$ $\{1,2, \ldots, d\}$ for a Q-polynomial scheme. The following theorem is important in this section.

Theorem 3.1 (Suzuki [12]). Let \mathfrak{X} with $m_{1}>2$ be a Q-polynomial scheme with respect to the ordering $\left\{E_{i}\right\}_{i=0}^{d}$. Suppose \mathfrak{X} is Q-polynomial with respect to another ordering. Then the new ordering is one of the following:
(1) $E_{0}, E_{2}, E_{4}, E_{6}, \ldots, E_{5}, E_{3}, E_{1}$,
(2) $E_{0}, E_{d}, E_{1}, E_{d-1}, E_{2}, E_{d-2}, E_{3}, E_{d-3}, \ldots$,
(3) $E_{0}, E_{d}, E_{2}, E_{d-2}, E_{4}, E_{d-4}, \ldots, E_{d-5}, E_{5}, E_{d-3}, E_{3}, E_{d-1}, E_{1}$,
(4) $E_{0}, E_{d-1}, E_{2}, E_{d-3}, E_{4}, E_{d-5}, \ldots, E_{5}, E_{d-4}, E_{3}, E_{d-2}, E_{1}, E_{d}$, or
(5) $d=5$ and $E_{0}, E_{5}, E_{3}, E_{2}, E_{4}, E_{1}$.

Note that Q-polynomial schemes with $m_{1}=2$ are the ordinary n-gons as distance-regular graphs.
Proposition 3.2. Let \mathfrak{X} with $m_{1}>2$ be a Q-polynomial association scheme with respect to the ordering $\left\{E_{i}\right\}_{i=0}^{d}$. If there exists t such that $t \leq d / 2, t \equiv 1$ $(\bmod 2)$ and $m_{t} \neq m_{d-t+1}$, then K_{j} is an integer for any j.

Proof. Let \mathbb{F} be the splitting field of the scheme, generated by the entries of the first eigenmatrix P. Then \mathbb{F} is a Galois extension of the rational field. Let G be the Galois group $\operatorname{Gal}(\mathbb{F} / \mathbb{Q})$. We consider the action of G on the primitive idempotents E_{i}, where elements of G are applied entry-wise. Then the action of G on $\left\{E_{i}\right\}_{i=0}^{d}$ is faithful and $|G| \leq 2$ (9].

Suppose K_{j} is not an integer for some j. Since $-K_{j}=p_{j}(d)$ is an eigenvalue of A_{j}, K_{j} is an algebraic integer. By the basic number theory, K_{j} is irrational. Therefore $|G| \neq 1$ and hence $|G|=2$. Let σ be the non-identity element of G. From the definition of K_{j}, E_{1} must have an irrational entry, and $E_{1}^{\sigma} \neq E_{1}$. Therefore $\left\{E_{i}^{\sigma}\right\}_{i=0}^{d}$ is another Q-polynomial ordering with the same polynomials f_{i}. Hence $\left\{E_{i}^{\sigma}\right\}_{i=0}^{d}$ coincides with one of (1)-(5) in Theorem 3.1,

For $d=2$, it is known that K_{i} is an integer for each $i=1,2$ if $m_{1} \neq m_{2}$ 1]. For (1) and (2) with $d>2,\left(E_{1}^{\sigma}\right)^{\sigma} \neq E_{1}$, this contradicts that σ^{2} is the identity. Since $p_{j}(d)$ is irrational and $A_{j} E_{d}=p_{j}(d) E_{d}, E_{d}$ has an irrational entry. Therefore $E_{d}^{\sigma} \neq E_{d}$. For (4), σ fixes E_{d}, a contradiction. Therefore the ordering $\left\{E_{i}^{\sigma}\right\}_{i=0}^{d}$ coincides with (3) or (5).

Suppose that there exists t such that $t \leq d / 2, t \equiv 1(\bmod 2)$ and $m_{t} \neq$ m_{d-t+1}. Since $E_{t} \circ I=\left(m_{t} /|X|\right) I$, we have $E_{t}^{\sigma} \circ I^{\sigma}=\left(m_{t} /|X|\right) I^{\sigma}$ and hence $E_{t}^{\sigma} \circ I=\left(m_{t} /|X|\right) I \neq\left(m_{d-t+1} /|X|\right) I$. Therefore $E_{t}^{\sigma} \neq E_{d-t+1}$. Thus, the ordering $\left\{E_{i}^{\sigma}\right\}_{i=0}^{d}$ does not coincide with (3) for $d \geq 2$. If $d=5$, then $m_{1} \neq m_{5}$ and hence $E_{1}^{\sigma} \neq E_{5}$. Therefore $\left\{E_{i}^{\sigma}\right\}_{i=0}^{5}$ does not coincide with (5). Thus the proposition follows.

Remark that the known Q-polynomial schemes with some irrational K_{i} and $d>2$ are the ordinary n-gons and the association scheme obtained from the icosahedron [5, 8]. We can give a similar equivalent condition of the P polynomial property of symmetric association schemes [6]. Let $\theta_{i}=p_{1}(i)$ for $0 \leq i \leq d$.

Theorem 3.3. Let \mathfrak{X} be a symmetric association scheme of class $d \geq 2$. Suppose $\left\{\theta_{j}\right\}_{j=0}^{d}$ are mutually distinct. Then the following are equivalent:
(1) \mathfrak{X} is a P-polynomial association scheme with respect to A_{1}.
(2) There exists $l \in\{2,3, \ldots, d\}$ such that for any $i \in\{1,2, \ldots d\}$,

$$
\prod_{\substack{j=1 \\ j \neq i}}^{d} \frac{\theta_{0}-\theta_{j}}{\theta_{i}-\theta_{j}}=-q_{i}(l)
$$

Moreover if (2) holds, then $l=i_{d}$.
Acknowledgments. Both of authors are supported by the fellowship of the Japan Society for the Promotion of Science. The authors would like to thank Eiichi Bannai, Edwin van Dam, Tatsuro Ito, William J. Martin, Akihiro Munemasa, Hiroshi Suzuki, Makoto Tagami, Hajime Tanaka, Paul Terwilliger and Paul-Hermann Zieschang for useful discussions and comments.

References

[1] E. Bannai and E. Bannai, A note on the spherical embeddings of strongly regular graphs, European J. Combin. 26 (2005), no. 8, 1177-1179.
[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, Menro Park, CA, 1984.
[3] J.-P. Berrut and L.N. Trefethen, Barycentric Lagrange Interpolation, SIAM Review 46 (3) (2004), 501-517.
[4] P. Delsarte, J.M. Goethals, and J.J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), no. 3, 363-388.
[5] M. Kiyota and H. Suzuki, Character products and Q-polynomial group association schemes, J. Algebra 226 (2000), no. 1, 533-546.
[6] H. Kurihara and H. Nozaki, A spectral equivalent condition of the P polynomial property for association schemes, in preparation.
[7] D.G. Larman, C.A. Rogers, and J.J. Seidel, On two-distance sets in Euclidean space, Bull. London Math. Soc. 9 (1977), 261-267.
[8] W.J. Martin, M. Muzychuk and J. Williford, Imprimitive cometric association schemes: constructions and analysis, J. Algebraic Combin. 25 (2007), no. 4, 399-415.
[9] W.J. Martin and J.S. Williford, There are finitely many Q-polynomial association schemes with given first multiplicity at least three, European J. Combin. 30 (3) (2009) 698-704,
[10] H. Nozaki, A generalization of Larman-Rogers-Seidel's theorem, Discrete Math. 311 (2011), 792-799.
[11] L.L. Scott, A conditions on Higman's parameters, Amer. Math. Soc. Notices 701 (1973), 20-45.
[12] H. Suzuki, Association schemes with multiple Q-polynomial structures, J. Algebraic Combin. 7 (2) (1998), 181-196

Hirotake Kurihara

Mathematical Institute,
Tohoku University
Aramaki-Aza-Aoba 6-3,
Aoba-ku,
Sendai 980-8578,
Japan
sa9d05@math.tohoku.ac.jp
Hiroshi Nozaki
Graduate School of Information Sciences,
Tohoku University
Aramaki-Aza-Aoba 6-3-09,
Aoba-ku,
Sendai 980-8579,
Japan
nozaki@ims.is.tohoku.ac.jp

[^0]: 2010 Mathematics Subject Classification: 05E30 (51D20).

