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Abstract

We view the RSK correspondence as associating to each permutation
m € S, a Young diagram A = A(7), i.e. a partition of n. Suppose now
that 7 is left-multiplied by ¢ transpositions, what is the largest number of
cells in A\ that can change as a result? It is natural refer to this question
as the search for the Lipschitz constant of the RSK correspondence.

‘We show upper bounds on this Lipschitz constant as a function of
t. For t = 1, we give a construction of permutations that achieve this
bound exactly. For larger ¢ we construct permutations which come close
to matching the upper bound that we prove.

1 Introduction

The Robinson-Schensted-Knuth (RSK) correspondence [10, [IT] [7] maps an ar-
bitrary permutation m € S, bijectively to an ordered pair of Young tableaux
of the same shape A = A(w). How much can A\(7) change as we mildly vary
w7 For example, if we left-multiply 7 by t transpositions, to what extent can A
Changdﬂ? We begin with the case when ¢t = 1 and show that the resulting Young
diagram can differ from A on at most \/n/2 cells. We show that this bound is
tight by giving explicit constructions of permutations 7 for which this bound is
attained where the diagrams differ in at least (1 — o(1))/n/2 cells. We then
turn to consider the same question for larger ¢ and show that the corresponding
diagram changes in at most O(v/ntlnt) cells. The best constructions we know
nearly match this bound and yield, e.g., (1 — o(1))+/nt/2 changes for t = o(n).
The outline of this paper is as follows. In the remainder of this section we recall
some definitions and properties of Young tableaux and the RSK correspondence.
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In Section [2| we prove upper bounds on the Lipschitz constant when ¢ = 1 and
show a matching construction. In Section [3| we give upper bounds and extend
our constructions for the case of general t. We conclude with some directions
for further research in Section [l

1.1 Notation and Preliminaries

We recall some definitions and background on Young Tableaux and the RSK
algorithm here. For more detailed expositions refer to [4, @] or [12].

Let n € N be a positive integer. A vector A = (A1, Ag,...) of positive integers
is a partition of n (denoted by A n) if

A =X > >0and Y N =n.
The Young diagram (or diagram) of a partition A is a left-justified array of cells

with A; cells in the i-th row for each ¢ > 1. For example, the diagram of the
partition (5,5, 3,2) is

The cell in the i-th row and j-th column is referenced by its coordinate (i, 7).
Thus (1, 1) is the top leftmost cell of the diagram.

The conjugate of a partition A, denoted by )’ is the partition whose diagram is
the transpose of the diagram of .

A standard Young tableau (SYT or tableau) of size n with entries from [n] is a
diagram whose cells are filled with the elements of [n] in such a way that the
entries are strictly increasing from left to right along a row as well as from top
to bottom down a column. The shape of a tableau T, denoted sh(T') is the
partition corresponding to the diagram of T'. For example,

2]4]|7]
6

|U!C,0>—~

is a tableau of size 7 of shape (4,2, 1). Note that the elements in the cells of a
SYT are distinct integers. Let 7, denote the set of SYT of size n.

1.2 The Robinson-Schensted-Knuth (RSK) Correspondence

The RSK correspondence discovered by Robinson [I0], Schensted [I1] and fur-
ther extended by Knuth [7] is a bijection between the set of permutations S,
and pairs of tableau of size n of the same shape. This bijection is intimately



related to the representation theory of the symmetric group [6] B], the theory
of symmetric functions [I2, Chapter 7], and the theory of partitions [I].

The bijection can be defined through a row-insertion algorithm first defined
by Schensted [I1I] in order to study the longest increasing subsequence of a
permutation. Suppose that we have a tableau T'. The row-insertion procedure
below inserts a positive integer x that is distinct from all entries of T', into T'
and results in a tableau denoted by T" + z.

1. Let y smallest number larger than x in the first row of 7. Replace the cell
containing y with z. If there is no such y, add a cell containing x to the
end of the row.

2. If y was removed from the first row, attempt to insert it into the next row
by the same procedure as above. If there is no row to add y to, create a
new row with a cell containing y.

3. Repeat this procedure on successive rows until either a number is added
to the end of a row or added in a new row at the bottom.

The RSK correspondence from S, to {(P,Q) € T, X Tn, : sh(P) = sh(Q)}
can now be defined as follows. Let 7w € S,, and let 7; denote the element of [n]
in position 7 in 7. Let P; be the tableau with a single cell containing 7. Let
P; = Pj_; < mjforalll<j<mnandset P= P, Thetableau () is defined
recursively in terms of tableaux ; of size ¢ as follows. Let ()1 be the tableau
with one cell containing the integer 1. The equality of shapes sh(Q;) = sh(F;) is
maintained throughout the process. The cell of Q; containing ¢ is the (unique)
cell of P; that does not belong to P;_1. The remaining cells of (); are identical
to those of Q;_1. Finally, set Q@ = @,,. We refer to P as the insertion tableau
and @ is the recording tableau.

Let m € S, and let (P, Q) be the corresponding tableaux under the RSK corre-
spondence. The shape of 7 is sh(P) = sh(Q) and will be denoted by A = A(7).
The RSK correspondence has numerous interesting properties (see [4, 9 [§] or
[12]). Some that will be useful in particular are as follows.

Proposition 1.1. Let A = \(w). Then the diagram corresponding to ©%, the
reversal of w, is X, the conjugate of \.

Proposition 1.2. Let (P, Q) be the tableauz corresponding to a permutation ®
under the RSK correspondence. Then the tableaux corresponding to the inverse
permutation =1 are (Q, P). Thus the shape remains invariant upon inversion,

ie., N(m™1) = \().
1.3 Motivation and Related Work

In view of the important role of the RSK correspondence, it is natural to in-
vestigate various aspects of it. Thus Fomin’s appendix in [12, Chapter 7] starts
with the following two motivating questions:

(1) Given a partition A, characterize those permutations 7 for which A(7) = A.



(2) Given a tableau P, characterize the permutations 7w which have P as their
insertion tableau.

We consider an approximate version of such questions and ask to what extent A
changes as 7 changes slightly. Question (1) is answered by the following theorem
of Greene.

Theorem 1.3 (Greene [3]). Let 7 be a permutation, and suppose that the largest
cardinality of the union of j increasing subsequences in m is p;, then \(m) =
AL, Ak, where Ay = g and A\j = pj — pi—1 for all j > 2.

In his study of the RSK correspondence, Knuth discovered certain equivalence
relations that are key to the solution of Question (2) above. Two permutations
are Knuth equivalent if one can be obtained from the other by certain restricted
sequences of adjacent transpositions. Knuth equivalent permutations are the
equivalency classes of permutations that have the same insertion tableau. For
more on the subject, see [12].

In order to make our question concrete, we need to specify two measures of
distance: One between permutations and the other between diagrams. A natural
metric on permutations is left-multiplication by adjacent transpositions. An
adjacent transposition is a permutation of the form (7,7 4+ 1). Left-multiplying
7 by an adjacent transposition is denoted by (i,7 + 1) o m and means that first,
the permutation 7 is applied and then the transposition. We denote the least
number of adjacent transpositions that transform the permutation 7 to 7 by
d(m, 7). Recall that d(-,-) is the graph metric in the Cayley graph of S,, w.r.t.
the generating set of adjacent transpositions (1,2),(2,3),...,(n,n—1). We will
say that two permutations 7 and 7 are at distance t if d(w,7) =t. If A and p
are two diagrams, define their distance to be

1 n
A=A p) =3 D I =l
=1

Let m# and 7 be any two permutations. We are interested in the Lipschitz
constant of this mapping, i.e.,

L(n,t) := max AA(m), Ar))

d(m, )
where the maximum is over all 7,7 € S,, with d(m, 1) = t.
The choice of left-multiplication above is in fact without loss of generality. By
Proposition the shape of a permutation and its inverse under the RSK
correspondence are the same. Our results thus all follow immediately for right-
multiplication since 7 = (4,4 + 1) o 7 is equivalent to 7=+ = 771 o (4,7 + 1).
In general, although d and A are natural metrics to study for permutations
and diagrams respectively, the same question can be asked for other metrics.
We discuss the extension of our results to other metrics on permutations in
Section [l



2 Exact Bounds on the Lipschitz Constant for a
Single Transposition.

In this section we will show upper bounds on the Lipschitz constant when the
number of transpositions ¢ = 1. We also give a construction of a family of
permutations which achieve this bound asymptotically.

2.1 Upper Bounds

The first step of the proof is to show that left-multiplying a permutation by
a transposition can result in only a bounded number of cells being different in
each row of the diagram.

Proposition 2.1. Let w,7 € S, and let \, u be the respective diagrams. Suppose
that 7 = (i,i+ 1) o, and m; < mix1. Then,

J J J
Vi<j<nm, Y <Y N<Y witl (1)

Proof. Suppose that the largest cardinality of the union of j increasing subse-
quences in 7 is £. Suppose there is a subsequence which includes the pair that is
being transposed in 7. By deleting one of the elements of the pair we obtain a
set of j increasing subsequences of 7 whose cardinality is at least £ — 1. If there
is no such subsequence, then the same j subsequences are also increasing in 7.
By Greene’s Theorem |1.3] this implies >7_; Ay < >°7_ p; + 1.

For the lower bound, consider the largest cardinality of the union of j increasing
sequences in 7. No subsequence in this union can contain both of the elements
involved in the transposition. Since the pair involved in the transposition have
no other elements between them in both 7 and 7 the subsequences are also
increasing in 7. We conclude in the same way that > 7_; pu; <> 7_; A O

Figure [1] will be useful in the following discussion. It depicts the union of two
diagrams A and p, which is also a Young diagram. The symmetric difference
consists of the cells marked by a dot. The remaining set of cells of the diagram
labeled W is the intersection of A and p and this is a Young diagram as well.

Corollary 2.2. Letn,7 € S,, whered(n,7) = 1 and let \, u be the corresponding
diagrams. Then at most one cell in each row and each column of the union of
A and p can be in the symmetric difference.

Proof. To see this for a row r, consider inequality for j = r and for j =
r — 1 and take their difference. A similar argument applied to the reversed
permutations implies the claim for columns. (see Proposition [1.1)). O



(i’ 5)

Figure 1: The union of A and g with cells of the symmetric difference marked.

Theorem 2.3. Let m and 7 be permutations in S, with respective Young dia-
grams X and p, and suppose that d(w,7) = 1. Then

A=A\ p) < \/Z

Proof. As shown in Figure (1] let (i,7) and (¢, ;") be the coordinates of two
distinct cells in the symmetric difference. By Corollary i # 14 and j # j',
and (min(z,'), min(j.j')) € W. This gives a 1:1 map from unordered pairs of
cells in the symmetric difference into W. Therefore,

2A
()=

implying the required bound

2.2 Construction

In this section we construct pairs of permutations in S,, which differ by a
single transposition whose corresponding Young diagrams differ by at least
(1 = o(1))4/n/2 cells, matching the upper bound in Theorem asymptoti-
cally. The following lemma characterizes the shape of a permutation by the
cardinalities of increasing and decreasing subsequences.

Lemma 2.4. Let 1 € S, be a permutation whose elements can be decom-
posed in the following two ways: (i) into increasing subsequences of cardinali-
ties A1, Aa, ..., and (ii) into decreasing subsequences of cardinalities N, Ny, .. .,
where the partitions A and X are conjugate. Then A = ().

Proof. By Greene’s Theorem [I.3] it suffices to show that for each r, the largest
cardinality of the union of r increasing sequences in 7w is ) 5, A;. By assumption



we know it is at least this number and we need to show the opposite inequality.
Namely, that if sq,...,s; is a collection of disjoint increasing sequences in T,
it lsil < D i<y Ais

By assumption, there is a decomposition di,ds ... of 7 into disjoint decreasing
subsequences of cardinalities A}, \5,.... But each s; and d; can have at most
one element in common, so that

Sisil= Y Isindyl < min{ldg],r} =Y min{X),r} =Y\
i=1 J J =1

rzizl, j

where the last equality follows because the partitions A1, Ag,... and N, Ab, ...
are conjugate. O

Theorem 2.5. For every n there are permutations w,7 € S, with d(mw,7) =1
and respective shapes X\, such that A(A, u) > (1 —o(1))/n/2.

Proof. Our proof says, in fact, a little more than what is stated. Namely for
n = (k+1)?/2 with k an odd integer, we will construct two permutations 7 and
T of shapes A= (k+1,k—1,k—1,...,2,2) and p = (k, k,k—2,k—2,...,1,1)
which differ by exactly one cell in each row and column, giving A = /n/2.
Thus it can be verified that together with Theorem [2.3] this gives a complete
answer to our question for n of this form. For other values of n we get the result
by padding this basic construction. In the discussion that follows we decompose
these permutations into monotone subsequences. The decompositions we exhibit
are not necessarily unique, but for our purpose any decomposition suffices.
The construction can, perhaps, be best understood by observing alongside with
the general discussion a concrete special case. So we intersperse our general
constructions with an illustration that shows how things work for n = 18 (k =
5). We start by dividing the elements of [n] into three categories according to
their magnitude. The “small” elements are those in the interval [1,n/2 — ££2].
The next k+ 1 elements, i.e., interval [n/2— %52 n/24 2] are “intermediate”
and members of the interval [n/2 + 552 n] are “big”.

We further subdivide the big elements (in order) into blocks by, ..., bg—1)/2-
The small elements are split (in order) into blocks s(,_1)/2, .., 1. Both s; and
b; have cardinality 2i.

S92 S1 b1 b2
(1234)(56) 789101112 (1314) (1516 17 18)
—_— T

small intermediate big

The permutation 7 is constructed by spreading out the intermediate elements
with n/2 and n/2 4+ 1 remaining fixed points (see below). The blocks of big
elements are then inserted in the order b_1)/2, . .., b1 in the spaces between the
smaller intermediate elements while the blocks of small elements are inserted in
the order sy, ..., s(y—1)/2 in the spaces between the larger intermediate elements.



To obtain 7 we apply the transposition (n/2,1n/2 4 1) to m. The permutations
are defined in this manner with a view to decomposing them into increasing and
decreasing sequences of desired cardinalities.

7=7(1516 17 18) 8 (13 14) 910 (5 6) 11 (123 4) 12
T=7(1516 17 18) 8 (13 14) 109 (5 6) 11 (1 2 3 4) 12

From the construction we claim that = and 7 can be decomposed into a disjoint
union of increasing subsequences of cardinalities (k+1,k—1,k—1,...,2,2) and
(k,k,k — 2,k —2,...,1,1) respectively. For = the increasing sequences consist
of (i) The intermediate elements, which in our example is 7,8,9,10,11, 12, (ii)
The blocks of small elements, i.e., 1,2,3,4 and 5,6 and (iii) The blocks of big
elements, i.e., 15,16,17,18 and 13, 14.

The permutation 7 can be decomposed into the increasing subsequences of the
following three types: (i) An intermediate element and the block of big ele-
ments following it, which in the example are 7,15,16,17,18 and 8,13, 14, (ii)
A block of small elements and the following intermediate element, i.e., 5,6,11
and 1,2,3,4,12 and (iii) The two subsequences of length one consisting of one
of the two middle intermediate elements, i.e. 10 and 9.

The proof that 7 and 7 have the shapes A = (k+ 1,k — 1,k —1,...,2,2) and
w= (k,kk—2k—2,...,1,1) respectively uses Lemma It is enough to
decompose m and 7 into a union of decreasing sequences whose cardinalities
are given by the respective conjugate sequences. Note that as it happens, the
shapes A and p are conjugates.

We assign the elements of 7 to decreasing subsequences dy, . . ., dk41 of cardinal-
ities k, k,...,1,1. as follows. Since the d; are subsequences, elements in them
appear in the same order as in the permutation. Secondly, the assignment is
made so that each subsequence has exactly one of the intermediate elements,
and it appears after any of the big elements and before any of the small ele-
ments. (There is more than one way to do this.) We first see how this is done
in the example.

We first construct d; and dy which are both decreasing sequences of length 5.
The largest elements in the blocks b;, the largest elements in the blocks s; and
one of the middle intermediate elements are assigned to d;. Then we choose ds
similarly from among the remaining elements.

di : 7(15 16 17[18]) 8 (13[14])[9] 10 (5[6]) 11 (1 2 3[4]) 12
dy : 7(15 16 [17] 18) 8 (13]24) g[10] (5]8) 11 (1 2[3]4) 12

The remaining elements can be seen to have the same structure recursively (the
remaining elements appear in the same relative order as would the elements of
the permutation for n = 8), where the brackets indicate blocks of big and small



elements as before.
7(15 16) 8 11 (1 2) 12

To assign elements to dz and d4, we want to continue with the strategy of
choosing the largest elements that remain in the blocks. Note that since the big
elements 13 and 14 have been assigned, there are no big elements that follow
the element 8, and it now becomes “available”. Thus d3 and d4 are constructed
by assigning the largest elements that remain in the small and big blocks and
one of the remaining intermediate elements in the middle of the blocks.

ds : 7(15 [16] 2718 ) [8] (18.34) g0 (3 6) 11 (1 [2]F4) 12
dy = 7(15] 16 1T A8) 8 (18) $ 10 (3 6) [11] (1] 2 FA) 12

Proceeding the same way, we obtain the subsequences: d; = 18,14,9,6,4, ds =
17,13,10,5,3, d3 = 16,8,2, dy = 15,11,1, d5 = 7, d¢ = 12. In general, the
assignment is done as follows.

e The i-th largest element in each block of big elements, is assigned to the
subsequence d;.

e The i-th largest element in each block of small elements, is assigned to the
subsequence d;.

e For the intermediate elements, assign the lower (k + 1)/2 elements to
the subsequences dj,dj—_2,...,d; (in that order) and the top (k + 1)/2
elements to do, . ..,dk_1,dk+1 (in that order).

Clearly, this is a decomposition of [n] with exactly k — 2| (i — 1)/2] elements
in d;. It remains to show that each d; is a decreasing subsequence. By the
construction of the permutation, the big and small elements in d; form a de-
creasing subsequence since each of them is from a different block. Secondly, the
intermediate element in d; appears after all the big elements and before any of
the the small ones.

Similarly, for the permutation 7, we define the decreasing subsequences f1, ..., f
of cardinalities k+1,k—1,k—1,...,2,2, where |f;| = k+1—2[i/2]. As before,
the assignment is made so that each sequence but for one (which has the two
middle intermediate elements) has at most one intermediate element, and at
most one element from each of the small and the big blocks. In our example,
we construct f1, a subsequence of length 6, by taking the largest element from
each block and the two middle intermediate elements.

fi o 701516 17[18)) 8 (13 [14])) [10][9] (5 [6]) 11 (1 2 3[4]) 12

Next, we choose fy and f3 which are both subsequences of length 4. At this
point, we cannot continue to follow the strategy of assigning the largest elements
from each block to fy (by choosing 17,13, 5, 3) as in the next step we would fail



to construct f3 of length 4. Instead, note that when only one element remains in
a block of small elements, the intermediate element which follows that block has
not yet been assigned and it does not follow any other small elements. Thus the
strategy for fy is to assign to it the largest elements from all blocks except from
s1 in which only one element remains, and to assign the intermediate element
following s; to fo. To construct f3, we take the largest remaining elements in all
the blocks, and the intermediate element that precedes the block of big elements
whose smallest element was assigned to fo. Diagrammatically, we have:

fo: 7(15 16 [17]18) 8 (13]3) g (5 B)[11] (1 2 [3]4) 12
fs : 7(15[16] 17 48) [8] (18 1) W0 g (5]6) 1 (1[2] B 4) 12

Repeating the same arguments for the remaining elements, we obtain the fol-
lowing subsequences for the example: f; = 18,14,10,9,6,4, fo = 17,13,11, 3,
f3 = 16,8,5,2, f4 = 15,12, f5 = 7,1. In general, the subsequences can be
defined as follows.

e The i-th largest element in each block of big elements is assigned to f;.

e The smallest element in a block of small elements s; is assigned to faj41.
Among the remaining elements, the i-th largest element goes to f;.

e The lower (k —1)/2 of the intermediate elements go to f, fx—2,. .., f3 (in
that order). The top (k — 1)/2 elements to fa,..., fr—1 (in that order).
The two middle intermediate elements are in f;.

As before, the f; constitute a decomposition and they have the appropriate
sizes. By construction, the big and small elements in any subsequence f; form
a decreasing subsequence. Lastly, for ¢ # 1 there is at most one intermediate
element in f; and if one exists, it appears after all the big elements and before all
the small ones. For ¢+ = 1, the two intermediate elements appear consecutively
in decreasing order, after all big elements and before all small ones. Thus, m
and 7 have the claimed shapes and it follows that

k+1 n
NS

For n not of the form (k+ 1)2/2, we construct two permutations as follows. Let
no < n be the largest integer such that ng = (k + 1)2/2 for odd k. The first ng
elements of 7 and 7 are set according to the construction above on ng elements.
The last n — ng elements of both m and 7 are ng +1,...,n. Then, we have that

A:\/?Z(l—o(l)) g 0

We have carried out computer simulations and found other pairs of permutations
for which the bound holds with equality. Several mysteries remain here, a few
of which we mention in Section [l
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3 Bounds on the Lipschitz Constant for ¢ > 1

In this section we show bounds on the Lipschitz constant for ¢t > 1. Extending
the arguments from the previous section for both the upper and lower bound
gives bounds that are tight up to constant factors for ¢t = O(1). In the latter half
of this section we give a more complicated argument that yields an improved
upper bound for general t.

3.1 A construction for permutations at linear distance t.

The construction for the case of one transposition can be extended to the case
of more than one transposition as follows.

Theorem 3.1. Lett < n/2. For every n there are permutations w,7 € S,, with
d(m,7) =t and respective shapes X\, p such that A(A, pu) > (1 — +/t/2n)\/nt/2.

Proof. Let k = [\/2n/t — 1], and m = (k + 1)?/2 so that mt < n. Divide
the first mt elements of [n] into ¢ blocks of length m each. To construct the
permutations, in each block we permute the elements as in the construction for
one transposition, and then concatenate the blocks with the remaining n — mt
elements following. Then, it is not difficult to see that the RSK algorithm on
this pair of permutations will result in a shape with ¢ of the smaller Young
diagrams corresponding to each block being pasted one after the other, with an
additional n — mt boxes in the top row of each diagram. Then, A = ty/m/2 >

\/nt/2(1 — y/t/2n). Thus when t = o(n), A > (1 — o(1))+/nt/2. O

3.2 Upper Bounds

We start with an easy observation:

Theorem 3.2. Let m and 7 be permutations in S, such that d(mw,7) =t. Let A
and p be the respective Young diagrams. Then

A=A\p) < t\/Z'

Proof. Since d(m, T) = t, there is a sequence of permutations 7 = ¢, 01,...,0; =
7 such that for each 0 < i < t, 0; and ;41 differ by an adjacent transposition.
The distance A(+, ) is a metric on diagrams and hence the bound follows by the
triangle inequality from Theorem [2.3] O

We do not see how to appropriately adapt the bijective argument of Theorem
[2:3] However, the following argument yields a near-optimal bound.

Theorem 3.3. Let m,7 € S, be such that d(w,7) =t. Let A\, pu be the corre-
sponding diagrams. Then

A\ p) < O(Vntlnt).

11



B[

B, D] A-block
f p-block

Figure 2: The union of A and p and the symmetric difference split into blocks.

We start by showing some preliminary results that will be useful in the proof.
Suppose 7 and 7 are two permutations such that d(m, 7) = t. Let 7 = 0, 01, - . .,
o¢ = 7 be a sequence of permutations such that for each 0 <17 < t, 0; and 0,41
differ by an adjacent transposition. Say that s (resp. r) of the transpositions
put the relevant pair in decreasing (resp. increasing) order, where t = r + s.
Let A and p be the diagrams corresponding to m and 7 respectively.

Lemma 3.4. Let w,7 be as above. Then,

i=1 i=1 i=1
Proof. For each pair o;, 0;41 in the sequence of permutations 7 = 0¢,01,...,0, =
T, by Proposition the inequality holds for the diagrams corresponding to
o; and o;41. The result is obtained by adding up all these inequalities. O

In Figure[2] we depict the union of two diagrams. Their intersection is labeled W
as before. We split the symmetric difference of the two diagrams into blocks. We
say that j indexes a A-row if A; > p;. A maximal interval of A-rows determines
a A-pre-block. A maximal collection of consecutive A-pre-blocks constitutes a
A-block. We likewise define p-blocks. Blocks are labeled B; as in the figure. The
number of cells in a set S will be denoted by A(S). We use the following fact
about the sizes of the blocks.

Proposition 3.5. Let d(w,7) =t with corresponding diagrams X\, p and let B
be a block in the union of the diagrams, then A(B) <t.

12



Proof. This bound is obtained from Lemma as follows. Let B reside in the
set of rows I of the diagram. Assuming it exists, let iy be the row just preceding
I, and iy = max . Then the bound is obtained by subtracting the inequality
corresponding to j = ip from the inequality corresponding to j = i1, and
using the fact that r +s = t. If there is no row iy, then the bound is immediate
from the inequality for j = 4. O

The main step in the proof of Theorem is the following lemma about two
sequences of integers.

Lemma 3.6. Letk >2,T >3 and letaq,...,a; and by, ..., b; be two sequences
of positive integers. Denote A = Zle aib; and N =37, ;i< aibj. If

a1 =br=1and Vi, a;b; <T,

then

A <V32NTInT.

This bound is tight up to constants.

We first show how to derive the theorem from Lemma [3.6

Let A and p be two diagrams of size n (not necessarily corresponding to per-
mutations at distance t). For the union of these diagrams, define the blocks of
the symmetric difference {B;} and W as before. Suppose that for each block B,
A(B) < t. To prove Theorem it is sufficient to show that for these diagrams,

%ZA(BZ-) <o |tme (3)

AOV) + 3 ST AB)

With this formulation in mind, we can make the following assumptions about
the pair of diagrams. The aim is to make a number of transformations and show
that the pair of diagrams can be assumed to be of the form shown in Figure [6}

Reduction 1. For any row i, A\; # u; and similarly, for any column j, )\; =+ ,u;.
If this is not the case (as in the shaded part of Figure @, we delete such rows or
columns from both A and pu. Consequently, A(W) decreases, whereas ), A(B;)
remains unchanged. Thus, if the bound holds for the new pair of diagrams, it
holds as well for the old pair.

Reduction 2. In general, each block is a skew-diagram (the set theoretic differ-
ence of a diagram and another contained in it). However, as we show, we may
assume it is a Young diagram. The dotted lines in Figure [J] mark the “shade”
of a block in W determined by its top row and leftmost column. If a block is not
a (left-aligned) tableau, we can change it to one by removing the cells of W in
its shade and replacing it with a Young diagram of area A(B) contained in the
union of the block and its shade.

13



B4

LI

Figure 3: Rows and columns of W that may be removed.

This transformation decreases A(W') and keeps the size of the block fixed. Sec-
ondly, we may assume that the transformation is done so that all rows of a
block, with the possible exception of the last one have the same length. The
result of such a transformation on the blocks By and Bs is shown in Figure

Reduction 3. We may assume that the topmost block By has a single row.
Otherwise, we can shift all the cells of By to the first row without changing any
A(B;) or A(W). We can then delete any rows of W which are of the same
length in A and p. By similar reasoning, we may assume that the bottommost
block has a single column.

Thus, we may assume that the diagrams are as shown in Figure [6] and that the
sizes of the blocks are bounded by ¢. As in the figure, let a; and b; denote the
lengths of the vertical and horizontal sides of the rectangle which bounds the
block B;. Thus the area A(W) can be written as a sum of areas of rectangles
a;b; whose sides are determined by the side lengths of pairs of blocks. Also note
that by our construction of the blocks, a;b; < 2t.

To obtain the formulation of the lemma, suppose that we add cells to the last row
of each block to complete it to a rectangle. Denote the modified blocks by B’.
Then for each block, A(B’) < 2A(B). If we show the bound for these modified
diagrams with a bound of 2¢ for each block, then the bound is implied for the
original diagrams since the constants can be absorbed by the O(-). Formally,
this follows from the following inequalities.

L 325 AB) < 535, A(B))
2. AW) + 5 35, A(B)) <2 (AW) + 5 35, A(BJ))

14



Figure 4: The top left corner of the block.

Figure 5: All blocks are Young diagrams.
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a,] | B
i
a, W Bz
B
a, 3
—
a,| B,

Figure 6: A box of side lengths a; and b; bounds B;.

Thus Lemma implies the bound for a pair of diagrams as above and we
have verified that to prove Theorem it is sufficient to prove the lemma.

Proof of Lemma We will minimize N/AZ2. For k = 2, the lemma can be
easily verified by calculation once we use the fact that a; = bs = 1. Thus we
will assume that k > 3. Consider the following relaxation of the minimization
problem where the a;, b; are not necessarily integral.

Z aibj

. N i<i<i<k
AT T T 2
=1
s.t. ap =b,=1

aibi§T7 1§Z§k

a; >1,2<i<k

b;>1,1<i<k-1
We will use the method of Lagrange multipliers (see Appendix |§| for a brief
introduction) to obtain a lower bound on the value of the objective above at any

local optimum. Since the problem is a relaxation of the discrete minimization
problem, this also lower bounds the objective of the discrete problem. We obtain

16



the following Lagrangian for the relaxation above.

k

k
min £ :% — Z)\i(aibi — T) - Z,ui(ai — 1) - ZVz(bz — 1)
=1

=1 i=1

The Karush-Kuhn-Tucker conditions yield the following necessary conditions
for minimality.

0 0 N

ﬁaiﬁ 8aiA2 . 0 ‘ ()
0 0 N )
abl[.::aiblﬁ—klaz—lﬁ:o, ISZSIC (5)
)\iZO, )\i(T—aibi):O, 1§Z§k

i >0, pi(a; —1) =0, 2<i<k

From these conditions, we can show that at optimality either a;b; = T or 1.
Suppose that for some ¢, a;b; < T. Note that by the conditions above, this
implies A; = 0. Now, if a;b; # 1, at least one of a; or b; is > 1. Assume without
loss of generality that b; > 1 (the argument in the other case is exactly the
same). In this case v; = 0 by @ . Hence from above, we have

9 N 0
ob; A2
and therefore, since A > 0

ON 0A
2 —

A b 2AN o,

2

Jj=1 _ v

= Qai N A (7)

Now we show that it is possible to increase b; by a factor (1+¢) for € > 0 so that
N/A? decreases and we can conclude that the solution is not optimal. This is
allowed, at least for € > 0 small enough, since, by assumption a;b; < T. Let N’
and A’ be the summations as defined before for the sequences where we replace

b; by bi(l + E).

N + bie a;
v e
(A’)Q n (A + aibis)Q
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To prove the claim N’/(A’)? < N/AZ using the right hand side above, it is
enough to show that

AZbiEZaj <N (2Aaibia + (aibie)z)
j=1
Or equivalently, dividing throughout by 2a;b;e A2, that
>4

j=1 < E Naibia
20,1‘ A 2A2

This inequality follows by . The left-hand term equals the first term on the
right and € > 0.
The next step is to argue that it is enough to show the claimed bound assuming
that the blocks are arranged in a specific manner (i.e., the sequences are of a
certain form). In particular, the blocks of area T are arranged such that a; is
increasing and b; is decreasing. Secondly, the blocks of area 1 occur after all
blocks such that a; < b; and before all blocks such that a; > b;. This can be
argued by noticing that such an arrangement can be achieved by exchanging
blocks which are out of order since A remains unchanged and N does not in-
crease. Thus a lower bound on N/A? for the modified sequence is a lower bound
on the corresponding quantity for the original sequence.
We next argue that, in fact, w.l.o.g. no block has area 1. Recall that we wish
to show

32T InTN — A? > 0.

We will show that if we add a single block of area 1 then

32 InTN' — A" > 32T InTN — A? (8)

where N’ and A’ are the modified values of N and A. This inequality above
allows us to reduce the argument to the case when there are no blocks of area
1. Let the shorter sequence have k terms. Note that A’ = A+1 and the change
in the number of cells N’ — N is at least Ele min(a;, b;).

Recall that k, T > 3 and for 1 <1 <k, a;,b; > 1. Thus,

(A2 —A?= 2A+1
< 2kT+1
< 32kTInT
k
< 32T'lnT Z min(a;, b;)

i=1
32T InT(N' — N)
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which implies the required inequality .

In the next step, we will make a further simplification to the picture. To summa-
rize, we now know that we may optimize over sequences such that each block has
size T, a1 = by, = 1, the sequence a; is non-decreasing and b; is non-increasing.
The claim is that the optimal solution is of the form where there is some 4 such
that a; > 1 and b; > 1. If not, then it can be checked that A = vV8NT and the
claimed bound holds.

We relabel the sequences a_g,,...,a-1,a1,..., 0k, CGkt1,---,0k+e, DA b_p ...,
b_q1,b1,.. .,bk,bk+1, .. .,bk+g2 where ¢1,¢5 > 1 and k > 0 so that a;,b; > 1 for
1 <i<k. Let N and A be the corresponding summations as defined before.
We can reformulate the minimization problem as follows.

. N
min =5
s.t. a;=1=bprj,ar; =T =0b;, -0 <i<-1, 1<j<b
a;b; =T, Vi
aj,b;>1 1<i<k (9)

Solving this optimization problem gives the following conditions for the solutions
(see Proposition in the Appendix [B] for the detailed calculations). The
sequences bi<i<y and (hence a1<i<x) are a geometric series with

o by b
bo b
and
as ag
C= — = ++- =
ay Gk—1

and the ratio between successive terms ¢ > 1. Also,
bk = (C — 1)62

and
a1 = (¢ — 1)4;.

Substituting, we also have that

by = cF 1y, = ck_l(c — 1)ty

T = albl = Ck_l(c — 1)26152 (10)
Since b, a; > 1 we have
1
14 ——.
ez it max{fl,ég}

Furthermore, ¢*~! < T and therefore

InT InT (11)
Inc ~ In(1+ 1/ max{¢1,42})

k—1<
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In the next step we will show the w.l.o.g. we may assume ¢; = 5 = 1. Let
Ng = Zl<i<j<k aibj + Zz b; + Zl a;+1+2T and Ag = E?:l a;b; +2T. These
are the values of the summations with the first /1 — 1 and last /5 — 1 members
of the sequences removed. Then

00 —1)  la(ly — 1)
2 +T 2

N=Ny+T

k k
F (=1 b+ (b= 1)) ai+ (6 — 1) (L — 1),
=1 1=1
A =A0+T(€1 +£2—2)

We have above that £, ¢, > 1. We will show that the optimal of 32T In TN — A2
when Ny and Ay are fixed is at /1 = ¢, = 1 by showing

32TInTN — A? > 32T In TNy — AZ.

Wlog, suppose that £; > {5 so that 1 > 2. Therefore by and using the fact
that for < 1/2, In(1 4+ z) > x/2, we have
InT

-1 <2InT . 12
F < In(1 + 1/ max{f,02}) — nTmax{f, &2} (12)

Now, we have

T£1(£1 -1)

32T InT(N — Ny) > 32T InT( 5

).
On the other hand, by the bound from on k,

A? — A2 =2A0T () + by — 2) + T?(4y + £y — 2)?
= 2kT? (41 + by — 2) + T2 (41 + £y — 2)?
< AKT? (0 — 1) +4T%(4; — 1)2
<1272 In Ty (6 — 1) +4T2(4; — 1)?
< 16T*InTey(¢; — 1)

< 32T'In T(TM%

< 32T InT(N — Ny)

)

as required. Finally, if /1 = ¢5 = 1, then using the fact that b; < T, from ,
we obtain that ¢ > 2. Hence by k < 2InT 4 1. Note that if /1 = l5 = 1,
A = (k+2)T. We can then use the following straightforward bound.

N 1 1 1

—_— > — > .
A2 A (k+2)T = 4TnT

Theorem [3.3] now follows. O
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As we show next, the upper bound of Lemma [3.6]is tight. To construct a pair
of diagrams where the a; and b; are integers and A = Q(vVNT InT) we argue as
follows. Let T'= 2% ¢ =2,b; = 1 and by = T. Then A is at least Q(v NTInT).
However, the tightness of Theorem [3.3] does not follow from this since it is not
clear that there exist corresponding permutations.

4 Conclusions

A number of interesting directions remain for further research.

Characterize extremal permutations. The permutations constructed in
Section [2] achieve the maximum difference in the shapes for one transposition.
There it was possible to construct the examples by carefully arranging the in-
creasing and decreasing sequences. On the other hand, with the help of a com-
puter, we observed several other examples whose structure we do not completely
understand. We know that for A to achieve the upper bound, by Greene’s Theo-
rem, the permutations must be decomposable into unions of increasing sequences
whose sizes are given by the required shape of the diagram. An example of such
a pair of permutations from simulation for n = 18 is:

131410156118216911123 717845
131410156118216119123 717845

Notice that in this example the permutations cannot be decomposed into con-
jugate increasing and decreasing sequences as done in our construction. In our
view the class of such permutations is an intriguing mathematical object. We
would like to know how many such permutations exist, what their structural
properties are etc. This seems like a good subject for further work in this area.

Constructions for ¢t > 1 transpositions. As mentioned, we do not know
whether there exists a pair of permutations corresponding to the diagrams which
are tight for Lemma We do not see how to extend our construction for one
transposition to this case.

Secondly, our constructions achieve Q(y/nt/2) differences when ¢ < n/2. The
behavior for larger ¢ is still unclear. For example, the maximum possible value
of A'is n—1, and this is uniquely achieved with ¢ = (}) transpositions. We also
know from Theorem that we can make A > Q(n) with ¢ < O(n). We still
do not know how large ¢ should be to make A > an with « close to 1.

Dependence on transpositions. It would be interesting to obtain more de-
tailed information about the change in A as a result of left-multiplication with a
transposition. Knuth and Knuth-dual equivalence classes characterize transpo-
sitions which keep A fixed. What is the expected change in A for a transposition
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in a random permutation? How do the position of the transposition or proper-
ties of the permutation affect the change?

Other metrics. In this work we studied the adjacent transposition metric
on permutations but there are a number of natural measures for the distance
between two permutations which may be worth studying in this setting.

For example it can be verified that up to constants, the same bounds on the Lip-
schitz constant hold for the distance d’ on permutations with respect to general
(not necessarily adjacent) transpositions. The lower bounds from Theorems
and [3:1] hold since the constructions give permutations 7 and 7 which differ by
1 and ¢ transpositions respectively. On the other hand, the upper bounds on
the Lipschitz constant follow (and are within a constant factor of the bounds for
adjacent transpositions) since by Greene’s Theorem the bounds in Proposition
change only by a small additive constant and in Lemma this translates
to the absolute value of the difference between the sums being bounded by 2t if
the permutations differ by the multiplication of ¢ transpositions.

References

[1] G.E. Andrews. The Theory of Partitions, Encyclopedia of Mathematics
and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, MA-
London-Amsterdam, 1976.

[2] D.P. Bertsekas. Nonlinear programming, Athena Scientific, Belmont, Mass,
1999.

[3] P. Diaconis. Group representations in probability and statistics, Lecture
Notes-Monograph Series, Volume 11 Hayward, CA: Institute of Mathemat-
ical Statistics, 1988.

[4] W. Fulton. Young Tableauz, London Mathematical Society Student Texts
vol 35, Cambridge University Press, 1997.

[5] C. Greene. An extension of Schensted’s theorem. Advances in Math. 14
(1974), 254-265.

[6] G.D. James. The Representation Theory of the Symmetric Groups, Lecture
Notes in Mathematics 682, Springer-Verlag, Berlin, 1978.

[7] D.E. Knuth. Permutations, Matrices and Generalized Young Tableaux, Pa-
cific J. Math. 34:3 (1970), 709-727.

[8] D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and
Searching, London: Addison-Wesley, 54-58, 1973.

[9] 1. G. Macdonald. Symmetric Functions and Hall Polynomials 2nd edn, Ox-
ford University Press, 1995.

22



[10] G. de B. Robinson. On representations of the symmetric group, Amer. J.
Math. 60 (1938), 745-760.

[11] C. Schensted. Longest increasing and decreasing subsequences, Canad. J.
Math. 13 (1961), 179-191.

[12] R.P. Stanley. Enumerative Combinatorics vol 2, Cambridge University
Press, 1999.

A The Method of Lagrange Multipliers

The method of Lagrange multipliers is used to solve for the maxima or minima of
a real-valued multivariate function subject to equality constraints. In particular,
the method gives necessary conditions for optimality which are the analog of
the conditions on the gradient for unconstrained problems. The Karush-Kuhn-
Tucker (KKT) conditions for optimality generalize these to the case when some
of the constraints may be inequalities. Consider the following optimization
problem, where x = (z1,...,2,) and «a;, By € R:

min f(x)
st. gi(x)<aj, j=1,....¢
hk(X):Bk kzl,...,m

The Lagrangian for this problem is defined to be the function:

k=1

4
L= L(x,Aj, ) = Z)‘] g9;(x) —a;) — Z tk (P (x) — Br).

The KKT conditions say that if a local optimizer x* satisfies certain technical
“constraint qualifications” (explained below) then there are constants A} (j =
1,...,0) and p} (k=1,...,m) satisfying

VL =V/f(x Z)\ Vg, (x ZMthk —

A number of constraint qualifications are known to be sufficient for the result
and in our case, the so-called Mangasarian-Fromouvitz constraint qualification
holds. This condition requires that at x*, the gradients of any active inequality
constraints and the gradients of the equality constraints are positively-linearly
independent. A collection of vectors (vy,...,vq) is positively-linearly dependent
if there are a; > 0,...,a4 > 0, not all 0 such that ) a;v; = 0. for the
optimization problems we consider, the constraint qualification can be verified
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without much difficulty for any possible set of active constraints, so we leave
this to the reader and assume that the KKT conditions are satisfied. For more
details regarding the method of Lagrange multipliers and extensions, the reader
may refer to [2].

B Solution to the Minimization Problem

We show below the calculations that solve the minimization problem in @D
which is reproduced below.

. N
mlnﬁ
s.t. ai=1=brij,ar4; =T =0b;, -0 <i<=1, 1<j<4
aby =T, Vi

ai,bj>1 1<i<k

Proposition B.1. At a minimum of the optimization, the sequences bi<i<y
and (hence a1<i<k) are a geometric series with

o by be
by br
and
a2 ag
C= — = +++- =
ai k-1

and the ratio between successive terms ¢ > 1. Also,
bk = (C - 1>£2

and
ayp = (C — 1)61

Proof. We obtain the following Lagrangian.

k k
) N
min L :E - Z)\i(aibi - T) - Z,ui(ai - 1) - Zyz(bz - 1)
i i=1 i=1
From the KKT conditions for optimality, we obtain:
0 d N
A S W S <i<
9a, Da, A2 Aibi — p; =0, 1<:<k (13)
0 0 N
_ — —\a; —v; =0, 1<:<k 14
(%iﬁ ab; A2 a; —v; =0 i (14)
i >0, pi(a; —1) =0, 1<i<k
vizO, Z/i(bi—l)zo, 1§ZS]€

24



As outlined before, we may assume that the optimal solution is such that a;, b; >
1 for 1 < i < k. Hence by the conditions above, u; = v; = 0. Performing the
differentiations in (w.r.t. a;) and (w.r.t. b;) and multiplying them by
a; and b; respectively we obtain the following relations.

BN it byt 4D ,
aT_Aiaibi_a( ++ k+AZ+1+ + bte,) —0, 1<i<k (15)
b N b;(a_ et a_ oty .
QT_/\iaibi_ (ae, + +aAi+a1+ +a):O, L<i<k (16)

Equating and and cancelling terms, we conclude that since A # 0,

We can solve the above set of relations as follows. Dividing by a; and
using the equations corresponding to ¢ and 7 + 1 there, and that a;b; = T, after
rearranging terms we obtain the following relations:

b; 1 1
% 1 i
bi+1 2 1

bi+1+"'+bk+£2:a (brtar+-+aip1) =b g (L+—+ -+
i+1

Subtracting we obtain

1 1 1 1
b=+ —+...— )=, (+—+ +—
z<1+b1+ bz) l+1<1+b1+ +bi+1>
1 1

= (b} = biy1) (€1+b+...b>—bz’+1, 1<i<k
1 i

Rearranging,

1 1 1 1
bi<£1++-..)=bi+1<f1++-~-+ >, 1<e<k (18)

by b; b1 bit1
Let 1 1
Hi:€1+a+...b—i
so that ]
5= H;,— H;_;.

K3
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Rearranging and manipulating both sides, we have

H;  Hip

bivi b
= Hi{Hip —H;)=H1(H, — Hi—1)

H;,  Hin
- H,_1  H;

bi—1 b; )

= 1 k.

= bl bi+1 s <1 <

In other words, we can conclude that b;<;<j (and hence a1<i<x) is a geometric
series. Let

o by be
by br
and
a2 Qg
C= — = - = .
a1 ak—1

It can be checked that ¢ > 1 since for ¢ = 1 (|18)) is not satisfied.
Next, suppose we multiply the equation by ¢ — 1, we obtain

(c—l)az(b1++bk +€2):(c—1)b1(61+a1++a1)
= ai(cbi — by + (C — 1)52) = bi(cai —ay + (C — l)gl)

%cwk+@—1wg=-ﬂ1+@—1wl

I

Since the right hand side of the last equality is the same for all 1 <14 < k, from
1 =1 and i = k, we obtain

M BE) (b (c— 1)) =0
b by
Now since ¢ > 1, §+ # ‘Z—: and therefore
bk = (C — 1)£2
By similar arguments,
ayp = (C — 1)€1. O
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