
ar
X

iv
:1

10
6.

05
35

v2
  [

m
at

h.
C

O
] 

 2
0 

Ja
n 

20
12

A COMBINATORIAL DESCRIPTION OF THE

GINDIKIN-KARPELEVICH FORMULA IN TYPE A

KYU-HWAN LEE AND BEN SALISBURY

Abstract. A combinatorial description of the crystal B(∞) for finite-dimen-
sional simple Lie algebras in terms of Young tableaux was developed by J.
Hong and H. Lee. Using this description, we obtain a combinatorial rule for
expressing the Gindikin-Karpelevich formula as a sum over B(∞) when the
underlying Lie algebra is of type A. We also interpret our description in terms
of MV polytopes and irreducible components of quiver varieties.

0. Introduction

Let F be a p-adic field and let N− be the maximal unipotent subgroup of
GLr+1(F ) with maximal torus T . Let f◦ denote the standard spherical vector
corresponding to an unramified character χ of T . Let T (C) be the maximal torus
in the L-group GLr+1(C) of GLr+1(F ), and let z ∈ T (C) be the element corre-
sponding to χ via the Satake isomorphism.

The Gindikin-Karpelevich formula for the longest element of the Weyl group
calculates the integral of the function f◦ over N−(F ) as a product over the set Φ+

of positive roots: ∫

N−(F )

f◦(n) dn =
∏

α∈Φ+

1− t−1
z
α

1− z
α

, (0.1)

where t is the cardinality of the residue field of F . Recently, in the works [3, 4]
of Brubaker-Bump-Friedberg and Bump-Nakasuji, the product is written as a sum
over the crystal B(∞). (See also [21].) More precisely, they prove

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B(∞)

G
(e)
i

(b)t〈wt(b),ρ〉
z
−wt(b),

where ρ is the half-sum of the positive roots, wt(b) is the weight of b, and the

coefficientsG
(e)
i

(b) are defined using so-called BZL paths. An important observation

here is that the coefficient of z−wt(b) is some power of 1− t−1.
This definition of the coefficients makes it necessary to compute the whole crystal

graph. However, one can also define the coefficients without the need for BZL paths.
In the paper [14], Kim and K.-H. Lee adopt Lusztig’s parametrization of elements
of canonical basis B and prove that

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B

(1− t−1)nz(φi(b))
z
−wt(b).
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2 KYU-HWAN LEE AND BEN SALISBURY

(See Proposition 1.4 for the definition of nz(φi(b)).)
In this paper, we are interested in replacing the set B(∞) or B with different

realizations of crystals to obtain more concrete descriptions of the coefficients in the
sum. Much work has been done on realizations of crystals (e.g., [9, 10, 12, 13, 16]).
In the case of B(∞) for finite-dimensional simple Lie algebras, Hong and H. Lee
used semistandard Young tableaux to obtain a realization of crystals [7]. In the
first part of this paper, we will use the semistandard Young tableaux realization
of type A to rewrite the sum as a sum over a set T (∞) of tableaux. We observe
that the appropriate data to define the coefficient comes from a consecutive string
of letters k in the tableaux, which we call a k-segment. Our result is

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈T (∞)

(1− t−1)seg(b)z−wt(b), (0.2)

where seg(b) is the total number of k-segments in the tableau b as k varies. The
main point is that the exponent seg(b) can be read off immediately from the tableau
b.

In the second part of the paper, we use Kamnitzer’s MV polytopes ([8, 9]) and
Kashiwara and Saito’s geometric construction ([13]) of crystals to express the sum
as sums over these objects, respectively. The exponent seg(b) will have a concrete
meaning in each of these realizations. Relationships among these realizations of
crystals are more or less known. Therefore, new descriptions will follow from (0.2)
once we make necessary interpretations.

We hope to extend our results to other finite types in future work [15].
The outline of this paper is as follows. In Section 1, we briefly review the notions

of Kashiwara’s crystals and Lusztig’s canonical bases to fix notations, and we also
review BZL paths (or string parametrizations) and Lusztig’s parametrizations of el-
ements of the canonical basis. In Section 2 we recall the Young tableaux realization
of B(∞). Our main result is presented in Section 3. In the last section, we inves-
tigate connections of the main result to MV polytopes and geometric construction
of crystals.

Acknowledgements. K.-H. L. and B. S. thank the anonymous referees for their
helpful comments and suggestions. At the beginning of this work, K.-H. L. ben-
efited greatly from the Banff workshop on “Whittaker Functions, Crystal Bases,
and Quantum Groups” in June 2010 and would like to thank the organizers—B.
Brubaker, D. Bump, G. Chinta and P. Gunnells. B. S. would like to thank Daniel
Bump for sending Sage [22, 23] code for the B(∞) crystal.

1. Canonical bases and crystals

Let r ≥ 1 and suppose g = slr+1 with simple roots {α1, . . . , αr}, and let I =
{1, . . . , r}. Let P and P+ denote the wight lattice and the set of dominant integral
weights, respectively. Denote by Φ and Φ+, respectively, the set of roots and the
set of positive roots. Let {α∨

1 , . . . , α
∨
r } be the set of coroots and define a pairing

〈 , 〉 : P∨ × P −→ Z by 〈h, λ〉 = λ(h), where P∨ is the dual weight lattice. Let
h = C⊗Z P

∨ be the Cartan subalgebra, and let hR = R⊗Z P
∨ be its real form.

Let W be the Weyl group of Φ with simple reflections {σ1, . . . , σr}. To each
reduced expression w = σi1 . . . σik for w ∈ W , we associate a reduced word, which
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is defined to be the k-tuple of positive integers i = (i1, . . . , ik), and denote the set
of all reduced words i of w ∈ W by R(w). In particular, we let w◦ be the longest
element of the Weyl group and call i = (i1, . . . , iN) ∈ R(w◦) a long word, where N
is the number of positive roots.

Suppose that q is an indeterminate, and let Uq(g) be the quantized universal
enveloping algebra of g, which is a Q(q)-algebra generated by ei, fi, and qh, for
i ∈ I and h ∈ P∨, subject to certain relations. We denote by U−

q (g) the subalgebra
generated by the fi’s.

We write

f
(c)
i :=

f ci
[c]!

, [c]! :=

c∏

j=1

qj − q−j

q − q−1
, c ∈ Z>0.

Given i = (i1, . . . , iN) ∈ R(w◦) and c = (c1, . . . , cN) ∈ ZN≥0, define

fc

i
= f

(c1)
i1

Ti1(f
(c2)
i2

)Ti1Ti2(f
(c3)
i3

) · · ·Ti1Ti2 · · ·TiN−1
(f

(cN )
iN

), (1.1)

where Ti is the Lusztig automorphism of Uq(g) defined in Section 37.1.3 of [20]
(there, it is denoted T ′′

i,−1). Then the set Bi = {fc

i
: c ∈ ZN≥0} forms a Q(q)-

basis of U−
q (g), called the PBW basis. Let : Uq(g) −→ Uq(g) be the Q-algebra

automorphism such that

ei 7→ ei, fi 7→ fi, q 7→ q−1, qh 7→ q−h,

for i ∈ I and h ∈ P∨.

Proposition 1.1 ([18]). Assume that i ∈ R(w◦).

(1) Assume that Li is the Z[q]-span of the basis Bi. Then Li is independent

of i ∈ R(w◦), so we denote it simply by L .

(2) Suppose that π : L −→ L /qL is the canonical projection. Then π(Bi)
is a Z-basis of L /qL , independent of i. Moreover, the restriction of π

to L ∩ L is an isomorphism of Z-modules π : L ∩ L −→ L /qL , and

B = π−1(π(Bi)) is a Q(q)-basis of U−
q (g).

The basis B is called the canonical basis of U−
q (g). Note that each b ∈ B satisfies

b ≡ fc

i
mod qL for some i ∈ R(w◦) and c ∈ ZN≥0.

Let ẽi, f̃i be the Kashiwara operators on U−
q (g) defined in [11]. Let A ⊂ Q(q)

be the subring of functions regular at q = 0 and define L(∞) to be the A-lattice
spanned by

S = {f̃i1 f̃i2 · · · f̃it · 1 ∈ U
−
q (g) : t ≥ 0, ik ∈ I}.

Proposition 1.2 ([11]).

(1) Let π′ : L(∞) −→ L(∞)/qL(∞) be the natural projection and set B(∞) =
π′(S). Then B(∞) is a Q-basis of L(∞)/qL(∞).

(2) The operators ẽi and f̃i act on L(∞)/qL(∞) for each i ∈ I. Moreover,

ẽi : B(∞) −→ B(∞) ⊔ {0} and f̃i : B(∞) −→ B(∞) for each i ∈ I. For

b, b′ ∈ B(∞), we have f̃ib = b′ if and only if ẽib
′ = b.

(3) For each b ∈ B(∞), there is a unique element G(b) ∈ L(∞) ∩ L(∞) such

that π′(G(b)) = b. The set G(∞) = {G(b) : b ∈ B(∞)} forms a basis of

U−
q (g).
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The basis B(∞) is called the crystal basis of U−
q (g), and the basis G(∞) is

called the global crystal basis of U−
q (g). In [5], Grojnowski and Lusztig showed that

G(∞) = B. However, there are two different, but standard, ways to parametrize
elements of a canonical basis or a global crystal basis. For a choice of i ∈ R(w◦),
there is a unique path, called BZL path, from a crystal element b to the unique
weight zero crystal element b∞. The parametrization coming from BZL paths is
called the string parametrization of b, which we will denote by ψi(b). See the
definition below. On the other hand, each canonical basis element comes from some
fc

i
∈ Bi as in Proposition 1.1. From this we obtain a parametrization c ∈ ZN≥0 of

the element in the canonical basis. This latter parametrization is called the Lusztig
parametrization of b ∈ B, and we denote it by φi(b). Berenstein and Zelevinsky
calculated a way to link these parametrizations [1]. The connection between these
two parametrizations is crucial to our arguments below.

One may define the notion of a crystal abstractly. A Uq(g)-crystal is a set B
together with maps

wt : B −→ P, ẽi, f̃i : B −→ B ⊔ {0}, εi, ϕi : B −→ Z ⊔ {−∞},

that satisfy a certain set of axioms (see, e.g. [6]), and a crystal morphism is defined
in a natural way. We recall the tensor product of crystals and the signature rule,
which are necessary to understand the combinatorics of B(∞).

Definition 1.3. Let B1 and B2 be Uq(g)-crystals. Then the tensor product of
crystals B1 ⊗ B2 is B1 × B2 as a set, endowed with the following crystal structure.
The Kashiwara operators are given by

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 otherwise,

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 otherwise.

We also have

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
(
εi(b1), εi(b2)− 〈α

∨
i ,wt(b1)〉

)
,

ϕi(b1 ⊗ b2) = max
(
ϕi(b2), ϕi(b1) + 〈α

∨
i ,wt(b2)〉

)
.

Using the tensor product rule above, one obtains a way to determine the compo-
nent of a tensor product on which a Kashiwara operator acts, called the signature

rule. Let i ∈ I and set B = B1⊗ · · ·⊗Bm. Take b = b1⊗ · · ·⊗ bm ∈ B. To calculate
either ẽi or f̃i, create a sequence of + and − according to

( − · · ·−︸ ︷︷ ︸
εi(b1)

,+ · · ·+︸ ︷︷ ︸
ϕi(b1)

, · · · ,− · · ·−︸ ︷︷ ︸
εi(bm)

,+ · · ·+︸ ︷︷ ︸
ϕi(bm)

)

Cancel any +− pair to obtain a sequence of −’s followed by +’s. We call the
resulting sequence the i-signature of b, and denote it by i-sgn(b). Then ẽi acts

on the component of b corresponding to the rightmost − in i-sgn(b) and f̃i acts
on the component of b corresponding to the leftmost + in i-sgn(b). If there is no

remaining − (or +, respectively) in i-sgn(b) then we have ẽi(b) = 0 (or f̃i(b) = 0,
respectively).
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As an illustration, we apply this rule to the semistandard Young tableaux real-
ization of Uq(slr+1)-crystals B(λ) of highest weight representations for λ a dominant
integral weight. This description is according to Kashiwara and Nakashima. See
[12] or [6] for the details of this construction including precise definitions of εi, ϕi,wt
in this case. For the fundamental weight Λ1, the crystal graph of B(Λ1) is given by

B(Λ1) : 1 2 · · · r r + 1
1 2 r − 1 r

Using this fundamental crystal B(Λ1), we may understand any tableaux of shape λ
by embedding the corresponding crystal B(λ) into B(Λ1)

⊗m, wherem is the number
of boxes in the λ shape. For example, in type A4, we have

B(Λ1 + Λ2 + Λ3) ∋ b =
1 3 3
3 4
5

7→ 3 ⊗ 3 ⊗ 4 ⊗ 1 ⊗ 3 ⊗ 5 ∈ B(Λ1)
⊗6.

With this image of the embedding, we may apply the signature rule to deter-

mine on which box f̃i and ẽi act. In this case, with i = 3, we have 3-sgn(b) =
(+,+,−, ·,+, ·) = (+, ·, ·, ·,+, ·). Thus ẽ3b = 0 and

f̃3b =
1 3 4
3 4
5

.

For a given i = (i1, i2, . . . , iN) ∈ R(w◦), define the BZL path of b ∈ B(∞) as
follows. Define a1 to be the maximal integer such that ẽa1i1 b 6= 0. Then let a2 be the
maximal integer such that ẽa2i2 ẽ

a1
i1
b 6= 0. Inductively, let aj be the maximal integer

such that

ẽ
aj
ij
ẽ
aj−1

ij−1
· · · ẽa2i2 ẽ

a1
i1
b 6= 0,

for j = 1, . . . , N . Then we define ψi(b) = (a1, . . . , aN ). Let

Ci = {ψi(b) : b ∈ B(∞)}.

The BZL paths are also known as string parametrizations or Kashiwara data in the
literature (see, for example [2, 8]). The associated cones were studied by Littelmann
in [17]. In particular, for i = (i1, i2, . . . , iN) ∈ R(w◦) and b ∈ B(∞), it is known
that ẽaNiN · · · ẽ

a2
i2
ẽa1i1 b = b∞, where b∞ is the unique element of weight zero in B(∞).

In order to prove that one can obtain the coefficients in the expansion of the
product in the Gindikin-Karpelevich formula using crystals of Young tableaux, we
will need to first write the Gindikin-Karpelevich formula as a sum over elements of
Lusztig’s canonical basis, as shown in [14].

Proposition 1.4 ([14]). Let B be Lusztig’s canonical basis and let i ∈ R(w◦).
Then

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B

(1− t−1)nz(φi(b))
z
−wt(b),

where φi : B −→ ZN≥0 is the map which takes elements in the canonical basis to

their Lusztig parametrization and nz(φi(b)) is the number of nonzero elements in

the sequence φi(b).

Remark 1.5. Proposition 1.4 holds for any finite-dimensional simple Lie algebra.
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Now we need a way to change BZL paths of elements in B(∞) to Lusztig
parametrizations of elements in B. The word we consider is

iAr
:= (1, 2, 1, 3, 2, 1, . . . , r, r − 1, . . . , 2, 1) ∈ R(w◦).

From here to the end of Section 3, any dependence on i will assume that i = iAr
.

Associated to each entry in a given BZL path of a highest weight crystal B(λ) is
a decoration: a circle, a box, both a circle and a box, or neither. However, boxing
does not occur in B(∞) (see [4]), so we only describe the circling rule. In type A,
we write the BZL paths in triangles of the following form:

a1
a2 a3

a4 a5 a6

. .
. ...

...
. . .

(1.2)

It will be beneficial to write the triangular arrays using matrix indices, so reindex
the above in the following way:

a1,1
a2,1 a2,2

a3,1 a3,2 a3,3

. .
. ...

...
. . .

(1.3)

This triangular array look more natural if we recall [17] that

a1,1 ≥ 0; a2,1 ≥ a2,2 ≥ 0; a3,1 ≥ a3,2 ≥ a3,3 ≥ 0; . . . .

If the entry aj,ℓ−1 = aj,ℓ, then we circle aj,ℓ−1. We understand that the entries
outside the triangle are zero, so the rightmost entry of a row is circled if it is zero.
Moreover, we call the jth row of ψi(b) the row which starts with aj,1. Finally, to
express this triangle in an inline form, we write (a1,1; a2,1, a2,2; . . . ; ar,1, . . . , ar,r).

Example 1.6. Let b∞ = ẽ1ẽ
2
2ẽ

2
3ẽ

4
4ẽ

2
2ẽ

3
3ẽ1ẽ2 b. Then

ψi(b) =

0

1 1
3 2 0

4 2 2 1

= ( 0 ; 1 , 1; 3, 2, 0 ; 4, 2 , 2, 1).

The following proposition is crucial and immediately implies Corollary 1.8 given
below.

Proposition 1.7 ([1]). The map σi : Ci −→ ZN≥0, which takes the BZL path of an

element b ∈ B(∞) to its corresponding Lusztig parametrization, is given by

(a1,1, . . . , ar,r) 7→ (a1,1; a2,2, a2,1 − a2,2; . . . ; ar,r, ar,r−1 − ar,r, . . . , ar,1 − ar,2).

Corollary 1.8 ([4, 14]). Let i ∈ R(w◦).

(1) The number of circled entries in a BZL path is the same as the number of

zero entries in the corresponding Lusztig parametrization.

(2) We have

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B(∞)

(1− t−1)nc(ψi(b))
z
−wt(b),

where nc(ψi(b)) is the number of uncircled entries in ψi(b).
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2. A combinatorial realization of B(∞)

This section is a summary of the results for type A from [7]. Recall that a
tableaux b is semistandard if entries are weakly increasing in rows and strictly
increasing in columns. Hong and H. Lee define a tableau b to be marginally large

if, for all 1 ≤ i ≤ r, the number of i-boxes in the ith row of b is greater than the
number of all boxes in the (i + 1)st row by exactly one.

We define T (∞) to be the set of tableaux b satisfying the following conditions.

(1) Entries in b come from the alphabet {1 ≺ 2 ≺ · · · ≺ r + 1}.
(2) b is semistandard and consists of r rows.
(3) For 1 ≤ j ≤ r, the jth row of the leftmost column of b is a j-box.
(4) b is marginally large.

To obtain the crystal structure of T (∞), it remains to describe how the Kashi-
wara operators act on tableaux in T (∞). The main difference between this proce-
dure and the procedure to compute the Kashiwara operators in a finite crystal is
that we require each vertex to be a marginally large tableaux, so the shape of the

tableaux varies as one moves down the crystal. Indeed, to calculate f̃ib, i ∈ I, for
some b ∈ B(∞), we apply the following procedure.

(1) Apply f̃i to b using the i-signature of b as usual.
(2) If the result is marginally large, then we are done. If not, it is the case

that f̃i is applied to the rightmost i-box in the ith row. Insert one column

consisting of i rows to the left of the box f̃i acted on. This new column
should have a k-box in the kth row, for 1 ≤ k ≤ i.

Similarly, to calculate ẽib, one does the following.

(1) Apply ẽi to b using the i-signature of b as usual.
(2) If the result is marginally large or zero, then we are done. If not, it is the

case that ẽi is applied to the box to the right of the rightmost i-box in
the ith row. Remove the column containing the changed box, which is a
column of i rows having a k-box in the kth row, for 1 ≤ k ≤ i.

Proposition 2.1 ([7]). We have T (∞) ∼= B(∞) as crystals.

Example 2.2. For r = 3, the elements of T (∞) all have the form

b =
1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 4 · · · 4

2 2 · · · 2 2 3 · · · 3 4 · · · 4

3 4 · · · 4

,

where the shaded parts are the required parts and the unshaded parts are variable.
In particular, the unique element of weight zero in this crystal is

b∞ =
1 1 1

2 2

3

.

Following Bump and Nakasuji in [4], we wish to suppress the required columns
from the tableaux and only include the variable parts. This convention will save
space, making drawing the graphs easier and it will help make the k-segments, to
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be defined later, stand out. We will call this modification of b ∈ T (∞) the reduced

form of b, and denote it by b♯. For example, with r = 3, we have



1 1 1

2 2

3




♯

=
∗

∗

∗

,




1 1 1 1 1 2

2 2 2 2

3 4 4




♯

=
2

∗

4 4

,




1 1 1 1 1 1 3

2 2 2 3 3

3 4




♯

=
3

3 3

4

,

where ∗ should be considered as void. In particular, the resulting shape need not
be a Young diagram. Denote by T (∞)♯ the set of all reduced forms of b ∈ T (∞).

3. Main result

In this section, we state and prove our main result. Our description of the
coefficients in the sum will rely on certain patterns of boxes in a Young tableau.

Definition 3.1. Let b ∈ T (∞). Define a k-segment, 2 ≤ k ≤ r+1, to be part of a
row from b of the form

k · · · k

Moreover, we do not consider the required collection of k-boxes beginning the kth
row of b to be a k-segment; that is, we only consider k-boxes that appear in b♯.
Define segk(b) to be the number of k-segments in b, and let

seg(b) :=

r+1∑

k=2

segk(b). (3.1)

We also say a k-segment has length m if the k-segment consists of m boxes.

According to the definition, there are no 1-segments, and a k-segment can only
occur in rows 1 through k − 1. With this definition, we now state:

Theorem 3.2. Let Φ be the root system of slr+1 and let T (∞) be the set of

marginally large tableaux defined above. Then

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈T (∞)

(1− t−1)seg(b)z−wt(b). (3.2)

Before we present the proof of the theorem, we first give an example and two
lemmas.
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H
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A

IN
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Y
P
E
A

9

∗
∗

2
∗

∗
3

2 2
∗

3
∗

2
3

∗
3 3

2 2 2
∗

2 3
∗

2 2
3

3
3

2
3 3

∗
3 3 3

2 2 2 2
∗

2 2 3
∗

3 3
∗

2 2 2
3

2 3
3

2 2
3 3

3
3 3

2
3 3 3

∗
3 3 3 3

1 2

1 2 1 2

1 2 1

21

2 1 2

1 2 1

2
1

2 1

2 1 2
1 2

Figure 3.1. The top part of T (∞)♯ when r = 2.



1
0

K
Y
U
-H

W
A
N

L
E
E

A
N
D

B
E
N

S
A
L
IS

B
U
R
Y

1

1− t−1 1− t−1

1− t−1 1− t−1 (1− t−1)2 1− t−1

1− t−1 (1− t−1)2 (1− t−1)2 (1− t−1)2 (1− t−1)2 1− t−1

1− t−1 (1− t−1)2 1− t−1(1− t−1)2 (1− t−1)3 (1− t−1)2 (1− t−1)2 (1− t−1)2 1− t−1

1 2

1 2 1 2

1 2 1

21

2 1 2

1 2 1

21

2 1

2 1 2

1 2

Figure 3.2. The coefficients for the top part of T (∞) when r = 2.
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Example 3.3. Let r = 2. Then top part of T (∞) is shown in Figure 3.1 with
corresponding coefficients shown in Figure 3.2.

Let us consider the element

b = 1 1 1 2 3

2 3
with b♯ = 2 3

3
.

There is one 2-segment in the first row and one 3-segment in each of the first and
second rows, so seg2(b) = 1 and seg3(b) = 2. Thus seg(b) = 1 + 2 = 3 and the
coefficient corresponding to b is (1− t−1)3. Notice that the decorated BZL path of
b is ψi(b) = (1; 2, 1) with no circle, which results in (1− t−1)3.

Now consider

b = 1 1 3

2
with (b′)♯ = 3

∗
.

Since there is no 2-segment, we have seg2(b
′) = 0. There is, however, one 3-segment

in the first row, so seg3(b
′) = seg(b′) = 1, and coefficient associated to b′ is 1− t−1.

Using the BZL path, we have ψi(b
′) = ( 0 ; 1 , 1), so the contribution is 1− t−1.

Lemma 3.4. Let b ∈ T (∞) and 2 ≤ k ≤ r + 1. Suppose there are no (k − 1)-
segments in b. If m is the maximal integer such that ẽmk−1b 6= 0, then m is the

number of k-boxes comprising all k-segments of b.

Proof. By assumption, there are no (k−1)-segments in the tableau b. Thus, by the
marginal largeness of the tableau b ∈ T (∞), the k-signature (with all (+,−)-pairs
removed) of b has the form

(−,−, · · · ,−,+).

In particular, the sequence of −’s comes from k-segments in b, while + comes from
the k−1 in the mandatory (k−1)st row of b. Suppose there arem such minus signs.
By the definition of the signature rule, we have ẽmk−1b ∈ T (∞) but ẽm+1

k−1 b = 0. The
claim is proved.

Lemma 3.5. Let b ∈ T (∞) and ψi(b) = (a1,1; a2,1, a2,2; . . . ; ar,1, . . . , ar,r). Suppose
that 2 ≤ k ≤ r + 1. Then the sequence of operators

ẽ
ak−1,k−1

1 ẽ
ak−1,k−2

2 · · · ẽ
ak−1,1

k−1 · · · ẽ
a2,2
1 ẽ

a2,1
2 ẽ

a1,1
1

removes any and all j-segments from b, with 2 ≤ j ≤ k.

Proof. We proceed by induction on k. First we assume that k = 2. Notice that
there is at most one 2-segment in b, and it must occur in the first row. It is obvious
from the definition of ψi that ẽ

a1,1
1 removes this 2-segment.

Now suppose that for some k ≥ 2, we have applied the sequence of operators to
b:

ẽ
ak−2,k−2

1 · · · ẽ
ak−2,1

k−2 · · · ẽ
a2,2
1 ẽ

a2,1
2 ẽ

a1,1
1 .

Then, by the induction hypothesis, all j-segments for 2 ≤ j ≤ k − 1 are removed
and we denote by b′ the resulting tableau. We apply to the tableau b′ the product
of operators

ẽ
ak−1,k−1

1 ẽ
ak−1,k−2

2 · · · ẽ
ak−1,1

k−1 .

Since there are no (k − 1)-segments in the tableaux b′, applying ẽ
ak−1,1

k−1 will take
any k-segment in the (k− 1)st row completely out of the tableau and will take any
k-segment not in the (k−1)st row to a (k−1)-segment by Lemma 3.4. Applying this
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same argument to each of ẽ
ak−1,2

k−2 , . . . , ẽ
ak−1,k−1

1 consecutively, we prove the assertion
of the lemma.

Proof of Theorem 3.2. Let b ∈ T (∞). We will use the same notation b to denote
the corresponding element in B(∞). In order to prove the theorem, we have only
to show that seg(b) = nc(ψi(b)) by Corollary 1.8; that is, we need only to show that
the number of all segments in b is equal to the number of uncircled entries in ψi(b).
Recall that we may write ψi(b) in a triangular array (1.3). Let nck(ψi(b)) be the
number of uncircled entries in the kth row of the triangular array. We will prove
segk(b) = nck−1(ψi(b)) for each k. Then it will follow that seg(b) = nc(ψi(b)).

We first consider 2-segments. By definition, the ẽ1 operator changes a 2-box to
a 1-box. However, the only 2-boxes that this will affect are boxes in a 2-segment
in the first row of b. With this observation, we apply ẽ

a1,1
1 to the tableau b where

a1,1 is the length of the 2-segment. If a1,1 = 0 (i.e., there is no 2-segment), then
we obtain a circle, but if a1,1 > 0, then there is a 2-segment and we do not get a
circle. In both cases, seg2(b) = nc1(ψi(b)).

Now consider any k-segments in b, for 2 < k ≤ r + 1. By definition, any k-
segment must appear between the first and (k − 1)st row. Note that eliminating
a k-segment from the tableaux b occurs in the (k − 1)st row of ψi(b) according to
Lemma 3.5. If there are no k-segments anywhere in b, then the (k − 1)st row of
ψi(b) will consist of k− 1 zeros, each of which is circled. Thus segk(b) = 0 (because
there are no k-segments), which is exactly the number of uncircled entries in the
(k − 1)st row. On the other hand, if there is a k-segment in the jth row, where
1 ≤ j ≤ k − 1, then we have segk(b) ≥ 1. In particular, suppose that the length of
the k-segment in the jth row is m1. If there are no other k-segments anywhere in
b, then ẽm1

j · · · ẽ
m1

k−1 removes this k-segment entirely by Lemma 3.5, so the (k− 1)st

row of ψi(b) has the form

(m1, . . . ,m1︸ ︷︷ ︸
k−j times

, 0, . . . , 0).

The only entry which is not circled is the last m1, so segk(b) is again exactly the
number of uncircled entries in that row; i.e., segk(b) = 1 = nck−1(ψi(b)).

Assume that there exists another k-segment in some row between 2 and j, say
in row 2 ≤ ℓ < j. Suppose that the k-segment in the ℓth row has length m2. Then
the (k − 1)st row of ψi(b) has the form

(m1 +m2, . . . ,m1 +m2︸ ︷︷ ︸
k−j times

,m2, . . . ,m2︸ ︷︷ ︸
j−ℓ times

, 0, . . . , 0).

In this case, segk(b) = 2 and there are two uncircled entries in this row, so they
match.

Continuing this way shows that segk(b) = nck−1(ψi(b)), which concludes the
proof.

From the above proof, we have obtained an interpretation of the string parametriza-
tion into information about the corresponding tableau:

Corollary 3.6. Let b ∈ T (∞) and ψi(b) = (a1,1; a2,1, a2,2; . . . ; ar,1, . . . , ar,r). Then

ai,j is the sum of lengths of (i + 1)-segments in rows 1 through i − j + 1 of the

tableau b.

The following corollary will play an important role in the next section.
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Corollary 3.7. Let b ∈ T (∞), and we denote by the same notation b for the

corresponding elements in B(∞) and B. Then we obtain

seg(b) = nz(φi(b)) = nc(ψi(b)).

Proof. In the proof of Theorem 3.2, we showed seg(b) = nc(ψi(b)). By Corollary
1.8, we have nz(φi(b)) = nc(ψi(b)).

4. Connections to MV polytopes and quiver varieties

In this section, we investigate connections of our results to other realizations of
crystals. In particular, we will interpret the meaning of segments of a tableau into
the MV polytope model and Kashiwara-Saito’s geometric construction of crystals,
respectively. In the beginning of each of the following subsections, we briefly review
the theory of MV polytopes and geometric construction of crystals. We refer the
reader to the papers [8, 9] and [13] for more details.

4.1. MV polytopes. We require the Bruhat order ≥ on the Weyl group. We recall
that there is an order on P∨, which we will also denote by ≥, defined by µ ≥ ν if
and only if µ− ν is a sum of positive coroots. We will also need a twisted partial
order ≥w (w ∈ W ) on P∨ such that µ ≥w ν if and only if w−1 · µ ≥ w−1 · ν. We
let Γ = {w · Λi : w ∈ W, i ∈ I}.

Let M• = (Mγ)γ∈Γ be a collection of integers. We say that M• satisfies the edge

inequalities if

Mw·Λi
+Mwσi·Λi

−Mw·Λi−1
−Mw·Λi+1

≤ 0 (4.1)

for all i ∈ I and w ∈W , where we understandMw·Λ−1
= 0 andMw·Λr+1

= 0. From
such a collection, we define the pseudo-Weyl polytope

P(M•) = {α ∈ hR : 〈α, γ〉 ≥Mγ for all γ ∈ Γ}.

Associated to such a pseudo-Weyl polytope is a map w 7→ µw defined by the
equation

〈µw, w · Λi〉 =Mw·Λi
.

The coweights µw should be regarded as vertices of the pseudo-Weyl polytope, and
the collection (µw)w∈W is called the GGMS datum of the pseudo-Weyl polytope.

Let w ∈ W and i, j ∈ I be such that wσi > w, wσj > w, and i 6= j. Define a
sequenceM• = (Mγ)γ∈Γ to satisfy the tropical Plücker relation at (w, i, j) provided
|i− j| > 1, or if |i − j| = 1 and

Mwσi·Λi
+Mwσj ·Λj

= min(Mw·Λi
+Mwσiσj ·Λj

, Mwσjσi·Λi
+Mw·Λj

).

We say M• satisfies the tropical Plücker relations if it satisfies the tropical Plücker
relations at each (w, i, j) ∈ W × I2. Finally, a collection M• = (Mγ)γ∈Γ is called a
BZ datum of coweight (µ1, µ2) if the following hold:

(1) M• satisfies the tropical Plücker relations.
(2) M• satisfies the edge inequalities.
(3) If µ• = (µw)w∈W is the GGMS datum of P(M•), then µe = µ1 and µw◦

=
µ2, where e is the identity element of W .

Definition 4.1. If M• is a BZ datum of coweight (µ1, µ2), then the corresponding
pseudo-Weyl polytope P(M•) is called an MV polytope of coweight (µ1, µ2).
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For ν ∈ P∨ and a BZ datum M• of coweight (µ1, µ2), we define ν +P(M•) =
P(M ′

•), where M
′
γ =Mγ + 〈ν, γ〉 for each γ ∈ Γ and M ′

• is a BZ datum of coweight
(µ1 + ν, µ2 + ν). This yields an action of P∨ on the set of BZ datum, and hence
on the set of MV polytopes. The orbit of an MV polytope of coweight (µ1, µ2)
under this action is called a stable MV polytope of coweight µ1−µ2. Note that, for
each stable MV polytope of weight µ, we may choose the unique representative of
coweight (ν + µ, ν). Denote the set of all stable MV polytopes byMV .

Assume that i = (i1, . . . , iN) ∈ R(w◦) is an arbitrary long word. We set wi

k =
σi1 · · ·σik and βi

k = wi

k−1 · α
∨
ik

for each 1 ≤ k ≤ N . (Here, we understand wi
0 = e,

the identity element of the Weyl group.) The reduced word i determines a path in
P(M•) given by the consecutive vertices µe, µσi1

, . . . , µw◦
, and we obtain the vector

Li(P(M•)) = (c1, . . . , cN) consisting of the lengths of the edges along the i-path in
P(M•); that is,

µwi

k
− µwi

k−1
= ckβ

i

k.

Thus, each positive coroot βi

k determines a direction in the coweight lattice and
ck gives the length of the βi

kth leg in the polytope. The vector Li(P(M•)) =
(c1, . . . , cN) is called the i-Lusztig datum of the MV polytope P(M•).

Proposition 4.2 ([9]). For any i ∈ R(w◦), there is a bijection between MV and

ZN≥0 given by the i-Lusztig datum of an MV polytope.

We have already discussed that the Lusztig parametrization of an element b ∈ B

is a bijection φi : B −→ ZN≥0 for any i ∈ R(w◦). Thus, for any b ∈ B, there is an

associated MV polytope, which we denote by P(b), with i-Lusztig datum φi(b).
Since we are considering the root system of type A, we have an isomorphism

η : hR −→ h∨
R

given by η(α∨
i ) = αi for i ∈ I. If P is a stable MV polytope of

coweight µ, then we also say that A is of weight η(µ) and write wt(P) = η(µ).
Kamnitzer proved the following.

Theorem 4.3 ([9]). The map b 7→ P(b) is a weight preserving bijection B −→MV
such that φi(b) = Li(P(b)).

Assume that P ∈MV . We define nz(Li(P)) to be the number of nonzero entries
in the i-Lusztig datum Li(P). We see from the definitions that nz(Li(P)) is nothing
but the number of edges in the i-path of P. The next corollary is obtained from
Corollary 3.7 and Theorem 4.3.

Corollary 4.4. Let b ∈ T (∞) and denote by the same notation b the corresponding

element in B. Then we have

seg(b) = nz(Li(P(b))).

We are now ready to present the Gindikin-Karpelevich formula as a sum over
MV polytopes.

Corollary 4.5. Let Φ be the root system of slr+1. Then for any i ∈ R(w◦), we
have

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

P∈MV

(1− t−1)nz(Li(P))
z
−wt(P).

Proof. The corollary follows from Theorem 4.3, Corollary 4.4 and Theorem 3.2.
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4.2. Quiver varieties. Let I = {1, . . . , r} be the set of vertices and H be the set
of arrows such that i → j with i − j = ±1, i, j ∈ I. Then (I,H) is the double
quiver of type Ar:

1 2 · · · r.

If h ∈ H is the arrow i → j, then we set out(h) = i and in(h) = j. We choose an
orientation Ω ⊂ H of the quiver and its opposite Ω so that we have

(I,Ω) = 1←− 2←− · · · ←− r, (4.2)

(I,Ω) = 1 −→ 2 −→ · · · −→ r. (4.3)

Given an I-graded vector space V =
⊕r

i=1 Vi, we set

dimV =
∑

i∈I

dim(Vi)αi ∈ Q
+,

where Q+ =
⊕r

i=1 Z≥0 αi. Now define C-vector spaces

EV :=
⊕

h∈H

Hom(Vout(h),Vin(h)),

EV,Ω :=
⊕

h∈Ω

Hom(Vout(h),Vin(h)).

The group GV :=
∏
i∈I GL(Vi) acts on both EV and EV,Ω by

(g, x) =
(
(gi), (xh)

)
7→

(
gin(h) xh g

−1
out(h)

)
.

Let ω be the nondegenerate, GV-invariant, symplectic form on EV defined by

ω(x, y) :=
∑

h∈H

ǫ(h)Tr(xhyh),

where ǫ : H −→ {±1} is the function such that ǫ(h) = 1 if h ∈ Ω and ǫ(h) = −1 if
h ∈ Ω. Let glV =

⊕
i∈I End(Vi) be the Lie algebra of GV, which acts on EV via

A · x = [A, x], for A ∈ glV and x ∈ EV. Let µ : EV −→ glV be the moment map
associated with the GV-action on EV, whose i-th component µi : EV −→ End(Vi)
is given by

µi(x) =
∑

h∈H
i=in(h)

ǫ(h)xhxh.

Finally, we define

ΛV = {x ∈ EV : µ(x) = 0}.

The variety ΛV is called the Lusztig quiver variety. For α =
∑r
i=1 kiαi ∈ Q

+, let
V(α) =

⊕r
i=1 Vi(α) be an I-graded vector space with dimV(α) = α. Let Irr Λ(α)

denote the set of irreducible components of Λ(α) := ΛV(α) and define

X(∞) =
⊔

α∈Q+

IrrΛ(α).

Kashiwara and Saito defined a crystal structure on X(∞) and showed the following
theorem.

Theorem 4.6 ([13]). There is a crystal isomorphism X(∞) ∼= B(∞).
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For k, ℓ ∈ Z such that 1 ≤ k ≤ ℓ ≤ r, we define
(
V(k, ℓ), x(k, ℓ)

)
to be the

representation of (I,Ω) with V(k, ℓ)i = C for k ≤ i ≤ ℓ and V(k, ℓ)i = 0 oth-
erwise. The maps x(k, ℓ) between the nonzero vector spaces are the identity and
zero otherwise. The representation

(
V(k, ℓ), x(k, ℓ)

)
is indecomposable, and any

indecomposable finite-dimensional representation (V, x) of (I,Ω) is isomorphic to
some

(
V(k, ℓ), x(k, ℓ)

)
.

The following proposition is well-known.

Proposition 4.7 ([19]). Let (I,Ω) be the quiver of type Ar from (4.2). The irre-

ducible components of ΛV are the closures of conormal bundles of the GV-orbits in

EV,Ω.

Assume that X ∈ X(∞) is an irreducible component of ΛV for some V =
V(α). Then there exists the corresponding GV-orbit O, which consists of all the
representations of (I,Ω) that are isomorphic to a sum V(X) of indecomposable
representations

(
V(k, ℓ), x(k, ℓ)

)
. We define γ(X) to be the number of different

indecomposable representations (not counting multiplicity) in the sum V(X). We
also set wt(X) = dimV. We obtain the following interpretation of Thoerem 3.2 in
the framework of the quiver variety:

Corollary 4.8. Let Φ be the root system of slr+1. Then

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

X∈X(∞)

(1 − t−1)γ(X)
z
wt(X). (4.4)
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