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Cubic Harmonics and Bernoulli Numbers∗
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Abstract

The functions satisfying the mean value property for an n-dimensional cube are deter-
mined explicitly. This problem is related to invariant theory for a finite reflection group,
especially to a system of invariant differential equations. Solving this problem is reduced
to showing that a certain set of invariant polynomials forms an invariant basis. After
establishing a certain summation formula over Young diagrams, the latter problem is set-
tled by considering a recursion formula involving Bernoulli numbers.
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1 Introduction

Let P be an n-dimensional polytope in R
n. For k = 0, . . . , n, let P (k) be the k-dimensional

skeleton of P . A continuous function f : Rn → R is said to be P (k)-harmonic if it satisfies

f(x) =
1

|P (k)|

∫

P (k)

f(x+ ry) dµk(y) (1)

for any x ∈ R
n and r > 0, where µk is the k-dimensional Euclidean measure on P (k) and

|P (k)| := µk(P (k)) is the k-dimensional Euclidean volume of P (k). This is an extension
to a polytope of the classical notion of harmonic functions characterized by the mean value
property for the (n−1)-dimensional sphere Sn−1. Let HP (k) denote the set of all P (k)-harmonic
functions on R

n. A general result in Iwasaki [9] states that for any polytope P and any
k = 0, . . . , n, the set HP (k) is a finite-dimensional linear space of polynomials. Note that
HP (k) carries the structure of an R[∂]-module, because equation (1) is stable under partial
differentiations ∂ = (∂1, . . . , ∂n), where ∂i := ∂/∂xi is the i-th partial differential operator.

It is an interesting problem to determine the space HP (k) explicitly when P is a regular
convex polytope with center at the origin in R

n. This problem is already settled unless P is an
n-dimensional cube. As for the cube case, however, although the vertex problem (k = 0) was
solved by Flatto [3] and Haeuslein [6] as early as 1970, the higher skeleton problem (k = 1, . . . , n)
has been open up to now. The aim of this article is to give a complete solution to this problem.
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A characteristic feature of our work is that it provides a simultaneous resolution for all skeletons,
which reveals a natural structure of this problem from the viewpoint of combinatorial analysis.
Here we refer to Iwasaki [11] for a general review of the topic discussed in this article.

Let C be an n-dimensional cube with center at the origin in the Euclidean space Rn endowed
with the standard orthonormal coordinates x = (x1, . . . , xn). After a scale change and a rotation
one may assume that the vertices of C are at (±1, . . . ,±1). The symmetry group of C is a
finite reflection group of type Bn, which is the semi-direct product Wn := Sn ⋉ {±1}n of the
group {±1}n = {ε = (ε1, . . . , εn) : εi = ±1} of n-tuple signs acting on R

n by sign changes of
x1, . . . , xn, with the symmetric group Sn acting on R

n by permuting x1, . . . , xn. The order of
Wn is 2n · n! and the fundamental alternating polynomial of Wn is given by

∆(x) = x1 · · ·xn
∏

i<j

(x2i − x
2
j ).

The first main result of this article is then stated as follows.

Theorem 1.1 Let C be an n-dimensional cube centered at the origin in R
n. For any k =

0, . . . , n, the linear space HC(k) is of 2
n ·n!-dimensions and as an R[∂]-module HP (k) is generated

by the fundamental alternating polynomial ∆(x) of the reflection group Wn.

For an arbitrary polytope P Iwasaki [9] introduced an infinite sequence of homogeneous

polynomials τ
(k)
m (x) of degrees m = 1, 2, 3, . . . in terms of some combinatorial data about P (k)

and characterized HP (k) as the solution space to the system of partial differential equations

τ (k)m (∂)f = 0 (m = 1, 2, 3, . . . ).

From the way in which they are defined, the polynomials τ
(k)
m (x) are invariant under the sym-

metry group G of P . This observation connects our problem to the theory of G-harmonic
functions due to Steinberg [14]. A C∞-function f : Rn → R is said to be G-harmonic if it satis-
fies ϕ(∂)f = 0 for any G-invariant polynomial ϕ(x) without constant term. Let HG denote the

set of all G-harmonic functions. There is always the inclusion HG ⊂ HP (k), and if {τ
(k)
m (x)}∞m=1

happens to generate the ring of G-invariant polynomials, then there occurs the coincidence
HG = HP (k). Steinberg [14] made an explicit determination of HG when G is a finite reflection
group: dimHG = |G| and as an R[∂]-module HG is generated by the fundamental alternating
polynomial of G. If P is a regular polytope, then G is a finite reflection group and we are done
if we are able to show that the sequence {τ

(k)
m (x)}∞m=1 actually generates the G-invariant ring.

For the k-skeleton C(k) of the n-cube C the polynomials τ
(k)
m (x) are constructed as follows.

First recall that the m-th complete symmetric polynomial of j variables is defined by

H(j)
m (t1, . . . , tj) :=

∑

(m1,...,mj)∈Pj (m)

tm1
1 · · · t

mj

j , (2)

where Pj(m) is the set of all ordered partitions (m1, . . . , mj) of m by j nonnegative integers.

Note that H
(j+1)
m (t1, . . . , tj, 0) = H

(j)
m (t1, . . . , tj). For each k = 0, . . . , n, we next define

h(k)m (x) := H(k+1)
m (x1 + · · ·+ xn, x2 + · · ·+ xn, . . . , xk+1 + · · ·+ xn). (3)

Note that when k = n the term xk+1 + · · ·+ xn is null and thus h
(n)
m (x) = h

(n−1)
m (x).
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Figure 1: The cube in three dimensions with a flag V ≺ E ≺ F ≺ O

For example, when n = 3 these polynomials are given by

h(k)m (x) =







H
(1)
m (V · x) (k = 0),

H
(2)
m (V · x,E · x) (k = 1),

H
(3)
m (V · x, E · x, F · x) (k = 2, 3),

where V = (1, 1, 1) is a vertex, E = (0, 1, 1) is the midpoint of an edge and F = (0, 0, 1) is the
center of a face of the 3-cube C (see Figure 1) and V · x stands for the inner product of V and
x regarded as space vectors. Identify E and F with the edge and the face on which they lie.
Similarly the origin O, i.e., the center of the cube C is identified with the unique 3-cell, i.e., the
cube itself. Then we have a flag V ≺ E ≺ F ≺ O, where ∗ ≺ ∗∗ indicates that ∗ is a face of ∗∗.
The simplex VEFO is a fundamental domain of the symmetry group W3. There is a bijection
between the elements of W3 and the flags of C. These pictures carry over in n dimensions.

Finally τ
(k)
m (x) is defined to be the Wn-symmetrization of h

(k)
m (x), that is, the average:

τ (k)m (x) :=
1

2n · n!

∑

σ∈Wn

h(k)m (σx) (k = 0, . . . , n). (4)

In other words τ
(k)
m (x) is the average of h

(k)
m (x) over all flags of C. Note that τ

(n)
m (x) = τ

(n−1)
m (x)

since h
(n)
m (x) = h

(n−1)
m (x) as mentioned earlier. It is immediate from definition (4) that τ

(k)
m (x) is

a homogeneous Wn-invariant of degree m. Recall that the degrees of Wn are 2, 4, . . . , 2n, which
are all even (see e.g. Humphreys [7]). So the invariant polynomial τ

(k)
m (x) vanishes identically

for every m odd. The second main result of this article is then stated as follows.
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Theorem 1.2 For any k = 0, . . . , n, the polynomials τ
(k)
2 (x), τ

(k)
4 (x), . . . , τ

(k)
2n (x) form an in-

variant basis of the reflection group Wn.

For the proof of this we recall that e2(x), . . . , e2n(x) form an invariant basis of Wn, where

e2m(x) :=
∑

1≤i1<···<im≤n

x2i1 · · ·x
2
im

(m = 1, . . . , n)

is the m-th elementary symmetric polynomial of x21, . . . , x
2
n. Since τ

(k)
2m (x) is a homogeneousWn-

invariant of degree 2m, there exist a unique constant c
(k)
n,m and a unique weighted homogeneous

polynomial P
(k)
n,m(t1, . . . , tm−1) of degree 2m with ti being of weight 2i such that

τ
(k)
2m (x) = c(k)n,m e2m(x) + P (k)

n,m(e2(x), . . . , e2m−2(x)) (m = 1, . . . , n). (5)

Here we employ the notation c
(k)
n,m and P

(k)
n,m to emphasize the dependence upon n. Note that

c
(n)
n,m = c

(n−1)
n,m since τ

(n)
2m (x) = τ

(n−1)
2m (x). If we are able to show that the coefficient c

(k)
n,m does

not vanish for any m = 1, . . . , n, then we can invert equations (5) to express e2(x), . . . , e2m(x)

as polynomials of τ
(k)
2 (x), . . . , τ

(k)
2m (x). From this Theorem 1.2 follows immediately. So it is

important to develop a method to calculate c
(k)
n,m or at least to show that it does not vanish.

It turns out that the coefficients c
(k)
n,m exhibit a beautiful combinatorial structure upon

introducing the generating polynomials

Gn,m(t) :=

n∑

k=0

n! c
(k)
n,m

(n− k)! (2m+ k)!
tn−k. (6)

The third main result of this article is concerned with the structure of these polynomials.

Theorem 1.3 The polynomials Gn,m(t) are tied to Gm(t) := Gm,m(t) by a simple relation

Gn,m(t) = (t + 1)n−mGm(t) (n ≥ m ≥ 1). (7)

On the other hand the polynomials Gm(t) admit a generating series representation

∞∑

m=1

(−1)m−1Gm(t)

(
z2

t+ 1

)m

=
z coth z + tz2 − 1

2(tz coth z + 1)
. (8)

Equation (8) readily leads to a recursion formula for Gm(t) involving the Bernoulli numbers
Bm. There are several conventions for defining Bernoulli numbers, but the most useful one in
our context is through the Maclaurin series expansion

z

ez − 1
= 1−

z

2
+

∞∑

m=1

(−1)m−1 Bm

(2m)!
z2m,

or equivalently through the formula

z coth z = 1 + 2
∞∑

m=1

(−1)m−1bmz
2m, bm :=

22m−1

(2m)!
Bm. (9)

Multiplying formula (8) by 2(tz coth z+1), expanding the resulting equation into a power series
of z2, and comparing the m-th coefficients of both sides, we obtain the following.
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Figure 2: An upper quadrilateral matrix

Corollary 1.4 The polynomials Gm(t) satisfy a recursion formula

Gm(t) = bm(t+ 1)m−1 + 2t

m−1∑

i=1

bm−i(t+ 1)m−i−1Gi(t), G1(t) =
t

2
+

1

6
. (10)

A polynomial of degree m is said to be positive if its coefficients up to degree m are all
positive. Note that the product of a positive polynomial of degree i and a positive polynomial
of degree j is a positive polynomial of degree i+ j. With definition (9) we have

bm =
ζ(2m)

π2m
=

1

π2m

∞∑

j=1

1

j2m
> 0 (m = 1, 2, 3, . . . ).

Therefore recursion formula (10) inductively implies that Gm(t) is a positive polynomial of
degree m. Formula (7) then tells us that Gn,m(t) is a positive polynomial of degree n. Finally

formula (6) concludes that the coefficient c
(k)
m,n is positive for any n ≥ m ≥ 1 and k = 0, . . . , n.

This establishes Theorem 1.2. The logical structure of our main results is this:

Theorem 1.3 −−−→ Corollary 1.4 −−−→ Theorem 1.2 −−−→ Theorem 1.1.

Thus the main body of this article is exclusively devoted to establishing Theorem 1.3.
The plan of this article is as follows. In Section 2 we represent the coefficient c

(k)
n,m in terms

of a sum over some matrices (see Proposition 2.5). In Section 3 this representation is recast to a
summation formula over some Young diagrams (see Proposition 3.4). After these preliminaries,
Theorem 1.3 and Corollary 1.4 are established in Section 4, where some amplifications of these
results and a summary on polyhedral harmonics for regular convex polytopes are also included.

2 Matrix Representation

We derive a representation of the coefficient c
(k)
n,m as the sum of some quantities depending on

a certain class of matrices. The main result of this section is given in Proposition 2.5. Various
representations in this section involve those matrices as in Figure 2, namely, A = (aij) with
aij = 0 for any i > j. Such a matrix is referred to as an upper quadrilateral matrix. Note
that it becomes an upper triangular matrix if its vertical size is larger than or equal to its
horizontal size. Throughout this article we use the following notation. For a matrix M = (mij)
of nonnegative integers, whether upper quadrilateral or not, or even for a row or column vector,

M ! :=
∏

i,j

mij !.
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For a row vector ~v = (v1, . . . , vn) of nonnegative integers we put x~v := xv11 · · ·x
vn
n . Moreover,

~e := (

k+1
︷ ︸︸ ︷

1, . . . , 1), 1 :=






1
...
1












n.

Lemma 2.1 The polynomial in (3) is expressed as

h(k)m (x) =
∑

A

(A1)!

A!
x~eA, (11)

where the sum is taken over all (k + 1) × n quadrilateral matrices A of nonnegative integers

whose entries sum up to m.

Proof. In view of definitions (2) and (3), the multi-nomial theorem yields

h
(k)
m (x) =

∑

m1+···+mk+1=m

k+1∏

i=1

(xi + · · ·+ xn)
mi

=
∑

m1+···+mk+1=m

k+1∏

i=1

(
∑

aii+···+ain=mi

mi!
∏n

j=i aij !

n∏

j=i

x
aij
j

)

=
∑

∑
aij=m

∏k+1
i=1 (aii + · · ·+ ain)!

∏

i≤j aij !

∏

i≤j

x
aij
j

=
∑

∑
aij=m

∏k+1
i=1 (aii + · · ·+ ain)!

∏

i≤j aij !

n∏

j=1

x
∑min{j,k+1}

i=1 aij
j ,

where aij is defined for 1 ≤ i ≤ j ≤ n, i ≤ k + 1. Putting aij = 0 for k + 1 ≥ i > j ≥ 1 makes
A = (aij) an upper quadrilateral matrix. It is obvious that the entries of A sum up to m. ✷

Consider the {±1}n-symmetrization of h
(k)
m (x), that is, the average:

g(k)m (x) :=
1

2n

∑

ε∈{±1}n

h(k)m (ε1x1, . . . , εnxn), ε = (ε1, . . . , εn) ∈ {±1}
n. (12)

Lemma 2.2 The polynomial in (12) is expressed as

g(k)m (x) =
∑

A

(A1)!

A!
x~eA, (13)

where the sum is taken over all (k + 1) × n quadrilateral matrices A of nonnegative integers

whose entries sum up to m and moreover whose column-sums are all even.
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Proof. Substituting formula (11) into definition (12) yields

g(k)m (x) =
1

2n

∑

ε∈{±1}n

∑

A

(A1)!

A!
ε~eAx~eA =

1

2n

∑

A

(A1)!

A!




∑

ε∈{±1}n

ε~eA



 x~eA, (14)

where the matrix A ranges in the same manner as in formula (11). Put ~eA = (ν1, . . . , νn),
where νj is the j-th column-sum of A. Observe that

∑

ε∈{±1}n

ε~eA =
∑

ε∈{±1}n

εν11 · · · ε
νn
n =

{

2n (νj is even for any j = 1, . . . , n),

0 (νj is odd for some j = 1, . . . , n).

So the sum
∑

A in (14) can be restricted to those A’s whose column-sums are all even. ✷

For any matrix with even column-sums, its entries must sum up to an even number, so
that formula (13) implies that g

(k)
m (x) vanishes identically for every m odd. Thus from now

on m is replaced by 2m with m being a positive integer. This allows us to put ~eA = 2ν(A)
with ν(A) = (ν1(A), . . . , νn(A)) ∈ Pn(m), that is, ν(A) is an ordered n-partition of m. The

polynomial τ
(k)
2m (x) in formula (4) is the Sn-symmetrization of g

(k)
2m(x), that is,

τ
(k)
2m (x) =

1

n!

∑

σ∈Sn

g
(k)
2m(xσ(1), . . . , xσ(n)). (15)

Putting formula (13) with m replaced by 2m into formula (15) yields

τ
(k)
2m (x) =

1

n!

∑

A∈M
(k)
n,m

(A1)!

A!

∑

σ∈Sn

x
2ν1(M)
σ(1) · · ·x

2νn(A)
σ(n) , (16)

where M
(k)
n,m is the set of all (k + 1)× n upper quadrilateral matrices of nonnegative integers

whose entries sum up to 2m and moreover whose column-sums are all even.
Let ζj denote a primitive j-th root of unity. Since

e2j(ζ2m, ζ
2
2m, . . . , ζ

m
2m,

n−m
︷ ︸︸ ︷

0, . . . , 0) =

{

0 (j = 1, . . . , m− 1),

(−1)m−1 (j = m),

substituting x = (ζ2m, ζ
2
2m, . . . , ζ

m
2m, 0, . . . , 0) into equation (5) yields

c(k)n,m = (−1)m−1τ
(k)
2m (ζ2m, ζ

2
2m, . . . , ζ

m
2m, 0, . . . , 0). (17)

For each partition ν = (ν1, . . . , νn) ∈ Pn(m), we define

un,m(ν) = um(ν1, . . . , νn) :=
∑

σ∈Sn,m(ν)

ζσ(1)ν1+···+σ(n)νn
m , (18)

where Sn,m(ν) := {σ ∈ Sn : for i = 1, . . . , n, if νi ≥ 1 then σ(i) ∈ {1, . . . , m} }. Since

x2ν1
σ(1) · · ·x

2νn
σ(n) =

{

ζ
σ(1)ν1+···+σ(n)νn
m (σ ∈ Sn,m(ν)),

0 (σ 6∈ Sn,m(ν)),

7



at x = (ζ2m, ζ
2
2m, . . . , ζ

m
2m, 0, . . . , 0), formulas (16) and (17) yield

c(k)n,m =
(−1)m−1

n!

∑

A∈M
(k)
n,m

un,m(ν(A))
(A1)!

A!
. (19)

Let ℓ(ν) denote the number of positive entries in an ordered partition ν = (ν1, . . . , νn) ∈
Pn(m). Note that ℓ(ν) ∈ {1, . . . , m}, because ℓ(ν) ≤ ν1 + · · ·+ νn = m.

Lemma 2.3 The function un,m(ν) is symmetric, that is, invariant under any permutation of

ν1, . . . , νn. For any ν = (ν1, . . . , νn) ∈ Pn(m) such that νm+1 = · · · = νn = 0, we have

un,m(ν) =
(n− ℓ(ν))!

(m− ℓ(ν))!
um,m(ν1, . . . , νm). (20)

Proof. For an element τ ∈ Sn put ντ := (ντ(1), . . . , ντ(n)). Then it is easy to see that Sn,m(ν
τ ) =

Sn,m(ν) · τ . Using this we show that un,m(ν
τ ) = un,m(ν). Indeed,

un,m(ν
τ ) =

∑

σ∈Sn,m(ντ )

ζ
σ(1)ντ(1)+···+σ(n)ντ(n)
m =

∑

σ∈Sn,m(ντ )

ζ (σ·τ
−1)(1)·ν1+···+(σ·τ−1)(n)·νn

m

=
∑

σ′∈Sn,m(ντ )·τ−1

ζσ
′(1)ν1+···+σ′(n)νn

m =
∑

σ′∈Sn,m(ν)

ζσ
′(1)ν1+···+σ′(n)νn

m = un,m(ν),

as desired. This proves that un,m(ν) is a symmetric function of ν = (ν1, . . . , νn).
We proceed to the second assertion. Suppose that ν is of the form ν = (ν1, . . . , νr, 0, . . . , 0)

with r := ℓ(ν) ≤ m. Then Sn,m(ν) = {σ ∈ Sn : σ({1, . . . , r}) ⊂ {1, . . . , m}}. We think of Sm

as a subgroup of Sn by setting Sm := {σ ∈ Sn : σ(i) = i for i = m+ 1, . . . , n}. Define a map

Sn,m(ν)→ Sm, σ 7→ τ by τ(i) :=







σ(i) (i = 1, . . . , r),

p(i) (i = r + 1, . . . , m),

i (i = m+ 1, . . . , n),

(21)

where p is the unique bijection p : {r+1, . . . , m} → {1, . . . , m} \σ({1, . . . , r}) which is “order-
equivalent” to the injection σ|{r+1,...,m} in the sense that p(i) < p(j) if and only if σ(i) < σ(j)

for every i, j ∈ {r+ 1, . . . , m}. We claim that the map (21) is (n−r)!
(m−r)!

-to-one. Indeed, given any

element τ ∈ Sm, the fiber over τ has a one-to-one correspondence with the set of data (S, q):

• a subset S of cardinality m− r of T := {1, . . . , n} \ τ({1, . . . , r}),

• a bijection q : {m+ 1, . . . , n} → T \ S.

It is clear from definition (21) that given a data (S, q) there exists a unique element σ ∈ Sn,m(ν)
such that σ({r + 1, . . . , m}) = S and σ|{m+1,...,n} = q. Since #T = n − r, there are

(
n−r

m−r

)

choices of S, for each of which there are (n − m)! choices of q. Thus the fiber has a total of
(
n−r

m−r

)
· (n−m)! = (n−r)!

(m−r)!
elements. Since ζ

σ(1)ν1+···+σ(n)νn
m = ζ

τ(1)ν1+···+τ(m)νm
m , we have

un,m(ν) =
(n− r)!

(m− r)!

∑

τ∈Sm

ζτ(1)ν1+···+τ(m)νm
m =

(n− r)!

(m− r)!
um,m(ν1, . . . , νm),

where Sm = Sm,m(ν1, . . . , νm) is used in the second equality. ✷

Formula (20) reduces the calculation of un,m to that of um,m, which we now carry out.
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Lemma 2.4 For any partition ν = (ν1, . . . , νm) ∈ Pm(m),

um(ν) := um,m(ν) = m (−1)ℓ(ν)−1 (ℓ(ν)− 1)! (m− ℓ(ν))!. (22)

Proof. When n = m the function un,m(ν) in definition (18) becomes simpler because Sm,m(ν) =
Sm for every ν ∈ Pm(m). The proof is by induction on ℓ(ν). When ℓ(ν) = 1, we may assume
that ν is of the form ν = (m, 0, . . . , 0) by the symmetry of um(ν). Then definition (18) reads

um(ν) =
∑

σ∈Sm

ζσ(1)mm =
∑

σ∈Sm

1 = m!,

which verifies formula (22) for ℓ(ν) = 1. Let 1 ≤ r < m and assume that formula (22) is true
for every partition ν ∈ Pm(m) with ℓ(ν) = r. Consider the case ℓ(ν) = r+1. By the symmetry
of um(ν) we may assume that ν is of the form ν = (ν1, . . . , νr+1, 0, . . . , 0) with ν1, . . . , νr+1 ≥ 1
and ν1 + · · ·+ νr+1 = m. Note that 1 ≤ νr+1 < m. Formula (18) now reads

um(ν) =
∑

σ∈Sm

ζσ(1)ν1+···+σ(r)νr+1
m = (m− r − 1)!

∑

(p1,...,pr+1)

ζp1ν1+···+pr+1νr+1
m ,

where (p1, . . . , pr+1) ranges over all permutations of distinct r+1 numbers in {1, . . . , m}. Thus,

um(ν) = (m− r − 1)!
∑

(p1,...,pr)

ζp1ν1+···+prνr
m

∑

pr+1∈{1,...,m}\{p1,...,pr}

ζpr+1νr+1
m

= (m− r − 1)!
∑

(p1,...,pr)

ζp1ν1+···+prνr
m

(
m∑

l=1

ζ lνr+1
m −

r∑

j=1

ζpjνr+1
m

)

.

Since 1 ≤ νr+1 < m, we have
∑m

l=1 ζ
lνr+1
m = 0 and hence

um(ν) = −(m− r − 1)!
r∑

j=1

∑

(p1,...,pr)

ζp1ν
(j)
1 +···+prν

(j)
r

m = −
1

m− r

r∑

j=1

v(ν(j)),

where ν(j) = (ν
(j)
1 , . . . , ν

(j)
m ) := (ν1 + δ1jνr+1, . . . , ν1 + δrjνr+1, 0, . . . , 0) with δij Kronecker’s

symbol. Note that for each j = 1, . . . , r, we have ν(j) ∈ Pm(m) with r(ν(j)) = r, so that the
induction hypothesis yields um(ν

(j)) = m (−1)r−1 (r − 1)! (m− r)! for j = 1, . . . , r. Therefore,

um(ν) = −
1

m− r
r m (−1)r−1 (r − 1)! (m− r)! = m (−1)r r! (m− r − 1)!,

which means that formula (22) is true for ℓ(ν) = r + 1. The induction is complete. ✷

A column of a matrix is said to be nontrivial if it has at least one nonzero entry.

Proposition 2.5 Let ℓ(A) denote the number of nontrivial columns in A. Then,

c(k)n,m =
(−1)m−1m

n!

∑

A∈M
(k)
n,m

(−1)ℓ(A)−1 (ℓ(A)− 1)! (n− ℓ(A))!
(A1)!

A!
. (23)

Proof. First, Lemmas 2.3 and 2.4 are put together to yield the formula

un,m(ν) = m (−1)ℓ(ν)−1 (ℓ(ν)− 1)! (n− ℓ(ν))!, (24)

for any partition ν = (ν1, . . . , νn) ∈ Pn(m). Indeed, by the symmetry of un,m(ν) we may assume
νm+1 = · · · = νn = 0. Thus using formula (22) in formula (20) gives formula (24). Next, putting
formula (24) with ν = ν(A) into (19) yields formula (23), since ℓ(A) = ℓ(ν(A)). ✷
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3 Young Diagram Representation

We rewrite formula (23) in Proposition 2.5 as a sum over some Young diagrams. After several
preliminary discussions, the main result of this section is stated in Proposition 3.4. For each
ν = (ν1, . . . , νn) ∈ Z

n
≥0, let M

(k)
n (ν) be the set of all (k + 1)× n upper quadrilateral matrices

the i-th column of which sums up to νi for i = 1, . . . , n. Motivated by expression (23), put

v(k)n (ν) :=
∑

A∈M
(k)
n (ν)

(A1)!

A!
. (25)

Lemma 3.1 For any ν = (ν1, . . . , νn) ∈ Z
n
≥0, we have

v(k)n (ν) =
(ν1 + · · ·+ νn + k)!

∏k

j=1(ν1 + · · ·+ νj + j) ·
∏n

j=1 νj !
. (26)

Proof. The proof is by induction on k. For k = 0 there is nothing to prove. Suppose that
formula (26) is true for k − 1. We write ν = ~ν to emphasize that ν is a row vector. Put

ψ(k)
n (~a1, . . . ,~ak+1) :=

(A1)!

A!
for A =






~a1
...

~ak+1




 with ~ai = (

i−1
︷ ︸︸ ︷

0, . . . , 0, aii, . . . , ain).

Here we also write ~ak+1 = ~a = (0, . . . , 0, ak+1, . . . , an) to simplify the notation. Observe that

ψ
(k)
n (~a1, . . . ,~ak,~a) = ψ

(0)
n (~a) · ψ

(k−1)
n (~a1, . . . ,~ak). Using this we have

v
(k)
n (~ν) =

∑

~a1+···+~ak+~a=~ν

ψ(k)
n (~a1, . . . ,~ak,~a)

=
∑

~a≤~ν

ψ(0)
n (~a)

∑

~a1+···+~ak=~ν−~a

ψ(k−1)
n (~a1, . . . ,~ak) =

∑

~a≤~ν

ψ(0)
n (~a) · v(k−1)

n (~ν − ~a),

where ~a ≤ ~ν means that ~ν − ~a ∈ Z
n
≥0. Put µj := ν1 + · · · + νj , µ̄j := νj+1 + · · · + νn and

b := ak+1 + · · ·+ an. Since aj = 0 for j = 1, . . . , k, the induction hypothesis yields

v(k−1)
n (~ν − ~a) =

1
∏k−1

j=1(µj + j) ·
∏k

j=1 νj !
·
(µn + k − 1− b)!
∏n

j=k+1(νj − aj)!
.

Substituting this into the previous formula and after some manipulations we have

v
(k)
n (~ν) =

1
∏k−1

j=1(µj + j) ·
∏n

j=1 νj !

µ̄k∑

b=0

b! (µn + k − 1− b)!
∑

~a ≤ ~ν
ak+1 + · · ·+ an = b

n∏

j=k+1

(
νj
aj

)

=
1

∏k−1
j=1(µj + j) ·

∏n

j=1 νj !

µ̄k∑

b=0

b! (µn + k − 1− b)!

(
µ̄k

b

)

=
µ̄k! (µk + k − 1)!

∏k−1
j=1(µj + j) ·

∏n
j=1 νj !

µ̄k∑

b=0

(
µn + k − 1− b

µk + k − 1

)

=
µ̄k! (µk + k − 1)!

∏k−1
j=1(µj + j) ·

∏n
j=1 νj !

(
µn + k

µk + k

)

=
(µn + k)!

∏k
j=1(µj + j) ·

∏n
j=1 νj !

,
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where the following general formulas are used to obtain the second and fourth equalities.

∑

0 ≤ bi ≤ ai
b1 + · · ·+ bk = b

k∏

i=1

(
ai
bi

)

=

(
a1 + · · ·+ ak

b

)

,
a∑

i=b

(
i

b

)

=

(
a+ 1

b+ 1

)

.

Therefore formula (26) remains true for k and the induction is complete. ✷

Lemma 3.2 Formula (23) in Proposition 2.5 is rewritten as

c(k)n,m =
(−1)m−1m · (2m+ k)!

n!

∑

ν∈Pn(m)

(−1)ℓ(ν)−1 (ℓ(ν)− 1)! (n− ℓ(ν))! v̄(k)n (ν), (27)

where

v̄(k)n (ν) :=
1

∏k
j=1(2ν1 + · · ·+ 2νj + j) ·

∏n
j=1(2νj)!

. (28)

Proof. Since there exists a direct sum decomposition

M(k)
n,m =

∐

ν∈Pn(m)

M(k)
n (2ν),

and ℓ(A) = ℓ(ν) for A ∈ M
(k)
n (2ν) with ν ∈ Pn(m), formulas (23) and definition (25) lead to

c
(k)
n,m =

(−1)m−1m

n!

∑

ν∈Pn(m)

(−1)ℓ(ν)−1 (ℓ(ν)− 1)! (n− ℓ(ν))!
∑

A∈M
(k)
n (2ν)

(A1)!

A!

=
(−1)m−1m

n!

∑

ν∈Pn(m)

(−1)ℓ(ν)−1 (ℓ(ν)− 1)! (n− ℓ(ν))! v(k)n (2ν).

Use formula (26) with ν replaced by 2ν and factor the term (2ν1 + · · ·+2νn + k)! = (2m+ k)!,
which is constant for ν ∈ Pn(m), out of the summation. Then we obtain formula (27). ✷

Formula (27) comes up as a sum over ordered partitions. The next task is to recast it to a
sum over unordered partitions, that is, over Young diagrams. Let Yj be the set of all weakly
decreasing sequences λ = (λ1 ≥ · · · ≥ λj) of nonnegative integers. The sum |λ| := λ1+ · · ·+λj
is called the weight of λ. Note that λ represents an unordered partition of |λ| by j nonnegative
integers. The number of positive entries in λ, denoted ℓ(λ), is called the length of λ. An element
λ ∈ Yj defines a Young diagram of weight |λ| and of length ℓ(λ) ≤ j in the usual manner (see
e.g. Macdonald [13]). An element λ ∈ Yj is also written λ = 〈0r0 1r1 2r2 · · · 〉 when the number
i occurs exactly ri times in λ for each i = 0, 1, 2, . . . , where the term iri may be omitted if
ri = 0. Note that |λ| = r1 +2r2 +3r3 + · · · , ℓ(λ) = r1 + r2 + r3 + · · · , and j = r0 + ℓ(λ). Given
an element λ ∈ Yj let Pj(λ) denote the fiber over λ of the order-forgetful mapping

Z
j
≥0 → Yj, ν = (ν1, . . . , νj) 7→ λ = 〈0s0 1s1 2s2 · · · 〉,

where i occurs si times in ν for each i = 0, 1, 2, . . . . Motivated by expression (28), consider

wk(µ) :=
∑

ν∈Pk(µ)

1
∏k

j=1(2ν1 + · · ·+ 2νj + j) ·
∏k

j=1(2νj)!
(29)

for µ ∈ Yk, where the denominator of the summand differs from that of formula (28) by the
factor

∏k
j=1(2νj)! in place of

∏n
j=1(2νj)!. This function is evaluated in the following manner.
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Lemma 3.3 For each µ = 〈0s0 1s1 2s2 · · · 〉 ∈ Yk, we have

wk(µ) =
1

∏

j≥0 sj!
∏

j≥0((2j + 1)!)sj
. (30)

Proof. The proof is by induction on k. For k = 1 formula (30) holds trivially. Suppose that
k ≥ 2 and formula (30) is true for k−1. Let µ = 〈jsj | j ∈ J〉 ∈ Yk with J := {j ∈ Z≥0 : sj 6= 0},
where

∑

j∈J jsj = |µ| and
∑

j∈J sj = k. For each i ∈ J , put µ(i) := 〈jsj−δij | j ∈ J〉, where δij
is Kronecker’s symbol. Since µ(i) ∈ Yk−1, the induction hypothesis implies that for each i ∈ J ,

wk−1(µ
(i)) =

1
∏

j∈J(sj − δij)!
∏

j∈J((2j + 1)!)sj−δij
=

si(2i+ 1)!
∏

j∈J sj!
∏

j∈J((2j + 1)!)sj
. (31)

Observing that there exists a direct sum decomposition

Pk(µ) =
∐

i∈J

{ν = (ν1, . . . , νk) ∈ Pk(µ) : νk = i} =
∐

i∈J

{ν = (ν(i), i) : ν(i) ∈ Pk−1(µ
(i))},

and noticing that 2ν1 + · · ·+ 2νk + k = 2|µ|+ k, we have

wk(µ) =
∑

i∈J

1

(2|µ|+ k) · (2i)!

∑

ν(i)∈Pk−1(µ(i))

1
∏k−1

j=1(2ν
(i)
1 + · · ·+ 2ν

(i)
j + j)

∏k−1
j=1(2ν

(i)
j )!

=
∑

i∈J

1

(2|µ|+ k) · (2i)!
wk−1(µ

(i))

=
∑

i∈J

1

(2|µ|+ k) · (2i)!
·

si(2i+ 1)!
∏

j∈J sj !
∏

j∈J((2j + 1)!)sj
(by formula (31))

=
1

(2|µ|+ k)
·

∑

i∈J si(2i+ 1)
∏

j∈J sj!
∏

j∈J((2j + 1)!)sj

=
1

∏

j∈J sj !
∏

j∈J((2j + 1)!)sj
(by

∑

i∈J si(2i+ 1) = 2|µ|+ k).

This shows that formula (30) remains true for k and the induction is complete. ✷

Let Yn(m) be the set of all unordered n-partitions of m and put Y(m) := Ym(m).

Proposition 3.4 The generating polynomial Gn,m(t) in definition (6) is expressed as

(−1)m−1Gn,m(t)

(t + 1)n
= m

∑

λ∈Y(m)

(−1)r1+···+rm−1 (r1 + · · ·+ rm − 1)!

r1! · · · rm!
T r1
1 · · ·T

rm
m (32)

for any n ≥ m ≥ 1, where λ = 〈0r0 1r1 · · · mrm〉 and Tj is defined by

Tj :=
1

(2j + 1)!
·
(2j + 1)t+ 1

t+ 1
(j = 1, . . . , m). (33)

In particular the rational function (t+ 1)−nGn,m(t) is independent of n.
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Proof. For each λ ∈ Yn(m) let Yk(λ) be the set of all Young subdiagrams µ ∈ Yk of λ. For

each µ ∈ Yk(λ) let P
(k)
n (λ, µ) be the set of all ν = (ν1, . . . , νn) ∈ Pn(λ) such that the cut-off to

the first k components ν ′ := (ν1, . . . , νk) belongs to Pk(µ). Let λ = 〈0r0 1r1 2r2 · · · 〉 ∈ Yn(m)
and µ = 〈0s0 1s1 2s2 · · · 〉 ∈ Yk(λ). Note that rj = sj = 0 for j > m. Taking µ away from
λ induces a skew-diagram λ/µ = 〈0r0−s0 1r1−s1 2r2−s2 · · · 〉 with rj − sj ≥ 0 for j = 0, 1, 2, . . . .
Since #Pn−k(λ/µ) = (n− k)!/

∏

j≥0(rj − sj)! and
∏n

i=k+1(2νi)! =
∏

j≥0((2j)!)
rj−sj , we have

∑

ν∈P
(k)
n (λ,µ)

v̄(k)n (ν) =
∑

ν∈Pk(µ)

1
∏

1≤j≤k

(2ν1 + · · ·+ 2νj + j)
∏

1≤j≤k

(2νj)!
·

(n− k)!
∏

j≥0

(rj − sj)!
∏

j≥0

((2j)!)rj−sj

= wk(µ)
(n− k)!

∏

j≥0(rj − sj)!
∏

j≥0((2j)!)
rj−sj

(by (29))

=
1

∏

j≥0 sj!
∏

j≥0((2j + 1)!)sj
·

(n− k)!
∏

j≥0(rj − sj)!
∏

j≥0((2j)!)
rj−sj

(by (30))

=
(n− k)!
∏

j≥0 rj!

∏

j≥0

(
rj
sj

)(
1

(2j + 1)!

)sj
(

1

(2j)!

)rj−sj

Since there is a direct sum decomposition Pn(λ) =
∐

µ∈Yk(λ)
P

(k)
n (λ, µ), we have

n∑

k=0

tn−k

(n− k)!

∑

ν∈Pn(λ)

v̄(k)n (ν) =
n∑

k=0

tn−k

(n− k)!

∑

µ∈Yk(λ)

∑

ν∈P
(k)
n (λ,µ)

v̄(k)n (ν)

=

n∑

k=0

tn−k

(n− k)!

∑

0 ≤ sj ≤ rj
s0 + s1 + · · · = k

(n− k)!
∏

j≥0 rj !

∏

j≥0

(
rj
sj

)(
1

(2j + 1)!

)sj
(

1

(2j)!

)rj−sj

=
1

∏m

j=0 rj !

r0∑

s0=0

· · ·
rm∑

sm=0

m∏

j=0

(
rj
sj

)(
1

(2j + 1)!

)sj
(

t

(2j)!

)rj−sj

=
1

∏m
j=0 rj !

m∏

j=0

(
1

(2j + 1)!
+

t

(2j)!

)rj

=
(1 + t)r0

r0!
∏m

j=1 rj !

m∏

j=1

(t+ 1)rjT
rj
j

=
(1 + t)n

r0!
∏m

j=1 rj !

m∏

j=1

T
rj
j (34)

where n− k =
∑m

j=0(rj − sj) and n =
∑m

j=0 rj are used in the third and final equalities.
On the other hand, in view of Pn(m) =

∐

λ∈Yn(m) Pn(λ), formula (27) yields

(−1)m−1 n! c
(k)
n,m

(2m+ k)!
= m

∑

λ∈Yn(m)

(−1)ℓ(λ)−1 (ℓ(λ)− 1)! (n− ℓ(λ))!
∑

ν∈Pn(λ)

v̄(k)n (ν).
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Thus, taking ℓ(λ) = r1 + · · ·+ rm and n− ℓ(λ) = r0 into account, we have

(−1)m−1Gn,m(t)

(t+ 1)n
=

(−1)m−1

(t + 1)n

n∑

k=0

n! c
(k)
n,m

(n− k)! (2m+ k)!
tn−k (by (6))

=
m

(t + 1)n

∑

λ∈Yn(m)

(−1)ℓ(λ)−1 (ℓ(λ)− 1)! r0!

n∑

k=0

tn−k

(n− k)!

∑

ν∈Pn(λ)

v̄(k)n (λ)

= m
∑

λ∈Yn(m)

(−1)r1+···+rm−1 (r1 + · · ·+ rm − 1)!

r1! · · · rm!
T r1
1 · · ·T

rm
m (by (34)),

where the sum may be taken over Y(m), because when n ≥ m any λ = (λ1 ≥ · · · ≥ λn) ∈ Yn(m)
is of length at most m, that is, λj = 0 for any j > m, and hence λ can be identified with
λ′ := (λ1 ≥ · · · ≥ λm) ∈ Y(m). This proves formula (32). As the right-hand side of formula
(32) depends only on m, the rational function (t+ 1)−nGn,m(t) is independent of n. ✷

4 Generating Functions and Bernoulli Numbers

We are now in a position to establish Theorem 1.3 and Corollary 1.4.

Proofs of Theorem 1.3 and Corollary 1.4. Formula (7) is an immediate consequence of the last
assertion in Proposition 3.4 that (t + 1)−nGn,m(t) is independent of n. The proof of formula
(8) is based on the following general fact on generating series: if we put

βm := m
∑

λ∈Y(m)

(−1)r1+···+rm−1 (r1 + · · ·+ rm − 1)!

r1! · · · rm!
αr1
1 · · ·α

rm
m (m = 1, 2, 3, . . . ),

where λ = 〈0r0 1r1 · · ·mrm〉, then there exists a formal power series expansion

log

(

1 +
∞∑

m=1

αmz
2m

)

=
∞∑

m=1

βm
m

z2m. (35)

We apply this formula to the situation of Proposition 3.4, where αj = Tj in formula (33) and

βm = (−1)m−1(t+ 1)−mGm(t) (36)

in formula (32) with n = m. We now find

1 +
∞∑

m=1

Tmz
2m = 1 +

t

t+ 1

∞∑

m=1

z2m

(2m)!
+

1

t+ 1

∞∑

m=1

z2m

(2m+ 1)!

=
t

t+ 1

∞∑

m=0

z2m

(2m)!
+

1

t+ 1

∞∑

m=0

z2m

(2m+ 1)!

=
1

t+ 1

(

t cosh z +
sinh z

z

)

. (37)

Substitute this into formula (35) and apply the differential operator z
2

∂
∂z

to the resulting equa-
tion. Then after some calculations we get formula (8) and thus establish Theorem 1.3. Corollary
1.4 then follows easily from this theorem in the manner mentioned in the Introduction. ✷
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We present some amplifications of Theorem 1.3 and Corollary 1.4. For the extremal cases
of k = 0, n− 1, n, the coefficients c

(k)
n,m can be written explicitly in terms of Bernoulli numbers.

Lemma 4.1 For k = 0, n− 1, n, the coefficients c
(k)
n,m are directly tied to bm by

c(0)n,m = (2m)! (22m − 1) bm c(n−1)
n,m = c(n)n,m =

(n+ 2m)!

n!
bm, (n ≥ m ≥ 1). (38)

Proof. Substitute t = 0 into definition (6) to get Gn,m(0) =
n!

(n+2m)!
c
(n)
n,m. Similarly put t = 0

in formulas (7) and (10) to have Gn,m(0) = Gm(0) = bm. These together lead to the assertion

for c
(n)
n,m in formula (38). The assertion for c

(n−1)
n,m then follows from the identity c

(n−1)
n,m = c

(n)
n,m

mentioned in the Introduction. To prove the assertion for c
(0)
n,m in formula (38) we consider the

generating polynomial Ĝn,m(t) := tnGn,m(1/t) instead of Gn,m(t). After the change t 7→ 1/t

and multiplication by tn, formula (6) gives Ĝn,m(0) = c
(0)
n,m/(2m)!. On the other hand, formula

(7) yields Ĝn,m(t) = (t+ 1)n−mĜm(t), where Ĝm(t) := Ĝm,m(t), while formula (8) gives

∞∑

m=1

(−1)m−1Ĝm(t)

(
z2

t+ 1

)m

=
t(z coth z − 1) + z2

2(z coth z + t)
,

which upon putting t = 0 reduces to the equality

∞∑

m=1

(−1)m−1Ĝm(0)z
2m =

z

2 coth z
=
z

2
tanh z.

Comparing it with the Maclaurin expansion tanh z = 2
∑∞

m=1(−1)
m−1(22m − 1) bm z

2m−1, we

find Ĝm(0) = (22m − 1) bm. Thus c
(0)
n,m = (2m)! Ĝn,m(0) = (2m)! Ĝm(0) = (2m)! (22m − 1) bm. ✷

The first formula in (38) is already found in [6]. To deal with the intermediate coefficients

c
(k)
n,m for k = 1, . . . , n−2, another modification of the generating polynomials Gn,m(t) is helpful.

Fn,m(t) := tnGn,m

(
1− t

t

)

=

n∑

k=0

n! c
(k)
n,m

(n− k)! (2m+ k)!
tk(1− t)n−k. (39)

Lemma 4.2 For n ≥ m ≥ 1, the polynomials Fn,m(t) depend only on m, being independent of

n. They satisfy the differential-difference equation

2Fn,m(t) +
t

m
F ′
n,m(t) +

(1− t)2

m− 1
F ′
n−1,m−1(t) = 0 (n ≥ m ≥ 2). (40)

All the Fn,m(t) can be determined inductively by solving equation (40) with initial conditions

Fn,m(0) = (22m − 1)bm, Fn,1(t) =
1

2
−
t

3
(n ≥ m ≥ 1). (41)
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Proof. Put Fm(t) := Fm,m(t). It readily follows from relation (7) and definition (39) that
Fn,m(t) = Fm(t) for every n ≥ m. The substitution t 7→ 1−t

t
induces the changes

βm 7→ (−1)m−1Fm(t), 1 +

∞∑

m=1

Tmz
2m 7→ (1− t) cosh z + t

sinh z

z

in formulas (36) and (37) respectively. With these changes formula (35) reads

log

{

(1− t) cosh z + t
sinh z

z

}

=
∞∑

m=1

(−1)m−1

m
Fm(t)z

2m. (42)

Denote the both sides of this equation by Φ = Φ(z, t). A direct check using the left-hand side
of equation (42) tells us that Φ satisfies the partial differential equation

z
∂Φ

∂z
+
{
t− (1− t)2z2

} ∂Φ

∂t
= (1− t)z2. (43)

Next we look at this equation by means of the right-hand side of formula (42). For each m ≥ 2
the coefficient of z2m in equation (43) being zero gives the differential-difference equation

2Fm(t) +
t

m
F ′
m(t) +

(1− t)2

m− 1
F ′
m−1(t) = 0 (m ≥ 2),

which can be expressed as equation (40), because Fm(t) = Fn,m(t) and Fm−1(t) = Fn−1,m−1(t)
by the first assertion of the lemma. The first condition in (41) is derived from formulas (39)

and (38) as Fn,m(0) = c
(0)
n,m/(2m)! = (22m − 1)bm, while the second condition follows from

Fn,1(t) = F1,1(t) and the direct calculation of F1,1(t), which is easy. ✷

Differential-difference equation (40) can be used to derive a recursion formula for c
(k)
n,m as

well as to explicitly determine c
(k)
n,m for k near 0 or n in terms of Bernoulli numbers.

Proposition 4.3 For k = 0, 1, the coefficients c
(k)
n,m are given by the first formula in (38) and

c(1)n,m = (2m+ 1)!

{

(22m − 1) bm −
2m

n
(22(m+1) − 1) bm+1

}

(n ≥ m ≥ 1). (44)

For k = n− 2, n− 1, n, the coefficients c
(k)
n,m take a common value which is given by

c(n−2)
n,m = c(n−1)

n,m = c(n)n,m =
(n+ 2m)!

n!
bm (n ≥ m ≥ 2). (45)

Moreover for 1 ≤ k ≤ n− 2 and 2 ≤ m ≤ n there exists a recursion formula

c(k)n,m − c
(k−1)
n,m =

(n− k)(n− k − 1)m

n(m− 1)

{

(2m+ k − 1) c
(k)
n−1,m−1 − (k + 1) c

(k+1)
n−1,m−1

}

. (46)

Proof. Write the left-hand side of equation (40) as
∑n

k=0 γ
(k)
n,m tk(1−t)n−k. Since the polynomials

tk(1− t)n−k, k = 0, . . . , n, form a basis of the linear space of polynomials in t of degree at most

n, it follows from equation (40) that γ
(k)
n,m = 0 for every 0 ≤ k ≤ n. For k = 0 we find

γ(0)n,m = 2
c
(0)
n,m

(2m)!
+
n− 1

m− 1

{

c
(1)
n−1,m−1

(2m− 1)!
−

c
(0)
n−1,m−1

(2m− 2)!

}

= 0 (n ≥ m ≥ 2),
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Figure 3: Approximations of the sphere by geodesic domes

where c
(0)
n,m and c

(0)
n−1,m−1 are already known as in the first formula of (38). Thus c

(1)
n−1,m−1 is

also known from this equation. Replacing (n − 1, m − 1) with (n,m) we get formula (44).

On the other hand, for k = n − 1, n, some calculations show that γ
(n−1)
n,m = 0 and γ

(n)
n,m = 0

lead to c
(n−2)
n,m = c

(n−1)
n,m and c

(n−1)
n,m = c

(n)
n,m respectively, where the latter is already pointed out

in the Introduction and Lemma 4.1. Thus formula (45) follows from the second formula of

(38). Finally some more calculations of γ
(k)
m,n for general k imply that equation γ

(k)
n,m = 0 with

1 ≤ k ≤ n− 2 and 2 ≤ m ≤ n is equivalent to recursion formula (46). ✷

Since c
(k)
n,m is already known for the k’s at both ends of the interval 0 ≤ k ≤ n as in

formulas (38), (44) and (45), the recursion formula (46) can be used to inductively determine

all coefficients c
(k)
n,m, where there are three directions in which induction works productively.

(a) c
(k)
n,m ← c

(k−1)
n,m , c

(k)
n−1,m−1, c

(k+1)
n−1,m−1, (b) c

(k−1)
n,m ← c

(k)
n,m, c

(k)
n−1,m−1, c

(k+1)
n−1,m−1,

(c) c
(k+1)
n−1,m−1 ← c

(k)
n,m, c

(k−1)
n,m , c

(k)
n−1,m−1 (with (m− 1, n− 1) replaced by (m,n)).

For example formula (46) with k = n− 2 is used in direction (b) to derive

c(n−3)
n,m =

1

n!
{(n+ 2m)! bm − 4m · (n+ 2m− 3)! bm−1} (n ≥ 3, n ≥ m ≥ 2)

from formula (45). Similarly formula (46) with k = 1 can be applied in direction (c) to deduce

a closed expression for c
(2)
m,n from formulas (38) and (44), and so on.

At the end we return to the starting point of this article, that is, to polyhedral harmonics.
With Theorem 1.1 for the cube case, the determination of polyhedral harmonic functions for
all skeletons of all regular convex polytopes has been completed. As a summary we have:

Theorem 4.4 Let P be any n-dimensional regular convex polytope with center at the origin in

R
n and G the symmetry group of P . Then for any k = 0, . . . , n, the linear space HP (k) is of

|G|-dimensions, where |G| denotes the order of G, and as an R[∂]-module HP (k) is generated

by the fundamental alternating polynomial ∆G of the reflection group G.

For the classification of regular convex polytopes we refer to Coxeter [1]. Theorem 4.4 is
proved in article [10] for the n-dimensional regular simplex and in article [12] for the exceptional
regular polytopes, that is, for the dodecahedron and icosahedron in 3-dimensions and for the
24-cell, 120-cell and 600-cell in 4-dimensions. For the n-dimensional cross polytope, namely, the
analogue in n-dimensions of the octahedron, there is no detailed written proof in the literature,
but a proof quite similar to the regular n-simplex case is feasible. This is because each face
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of an n-dimensional cross polytope is an (n − 1)-dimensional regular simplex. Finally the n-
dimensional cube case has been treated in this article (Theorem 1.1), in which case the proof
is quite different from those in the other cases. Here we should also mention the important
studies [2, 3, 4, 5, 6, 8] etc. of earlier times, which contain partial answers to our questions,
referring to the survey [11] for a more extensive literature.

Apart from the regular figures for which symmetry plays a dominant role, polyhedral har-
monics is largely open, for example, for such figures as geodesic domes in Figure 3.
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