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NEAR-CENTRAL PERMUTATION FACTORIZATION AND

STRAHOV’S GENERALIZED MURNAGHAN-NAKAYAMA RULE

D. M. JACKSON1 AND C. A. SLOSS2

Abstract. The (p, q, n)-dipole problem is a map enumeration problem, aris-
ing in perturbative Yang-Mills theory, in which the parameters p and q, at
each vertex, specify the number of edges separating of two distinguished edges.
Combinatorially, it is notable for being a permutation factorization problem
which does not lie in the centre of C[Sn], rendering the problem inaccessible
through the character theoretic methods often employed to study such prob-
lems. This paper gives a solution to this problem on all orientable surfaces
when q = n − 1, which is a combinatorially significant special case: it is a
near-central problem. We give an encoding of the (p, n− 1, n)-dipole problem
as a product of standard basis elements in the centralizer Z1(n) of the group
algebra C[Sn] with respect to the subgroup Sn−1. The generalized characters
arising in the solution to the (p, n − 1, n)-dipole problem are zonal spherical
functions of the Gel’fand pair (Sn ×Sn−1, diag(Sn−1)) and are evaluated ex-
plicitly. This solution is used to prove that, for a given surface, the numbers of
(p, n− 1, n)-dipoles and (n+1− p, n− 1, n)-dipoles are equal, a fact for which
we have no combinatorial explanation. These techniques also give a solution
to a near-central analogue of the problem of decomposing a full cycle into two
factors of specified cycle type.

1. Introduction

The character theory of the symmetric group has proven to be a powerful tool
for studying combinatorial problems which can be regarded as enumerating the
factorizations of a given permutation into factors of specified cycle type. Two major
classes of problems which can be studied using such techniques are the enumeration
of maps in surfaces (see, for example, [12], [13] and [9]) and the enumeration of
ramified covers of the sphere (see, for example, [5] and [6]). These problems are
referred to as central problems since they can be encoded as elements of the centre
Z(n) of the symmetric group algebra C[Sn].

Permutation factorization problems involving information other than the cycle
type of the factors are an important class of non-central problems. Examples of non-
central problems include the (p, q, n)-dipole problem [2], [18], the non-transitive
version of the star factorization problem [10], and a non-central analogue of the
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cycle decomposition problem which we introduce in the present paper as Problem
1.3.

The algebraic context we use to study non-central problems is the centralizer

ZH(n) := {g ∈ C[Sn] : hgh
−1 = g for all h ∈ H}

of the group algebra with respect to a subgroup H. When H = Sn−k, we write
ZH(n) = Zk(n). Centralizers provide a measure of non-centrality in the sense that,
for a combinatorial problem encoded in ZH(n), the smaller the subgroup H, the
further the problem departs from centrality. A non-central problem which can be
encoded as an element of Z1(n) is referred to as a near-central problem. Com-
binatorially, a near-central problem is one which depends on the cycle type of a
permutation and the length of the cycle containing n. In a previous paper [10], we
showed how the solution to a near-central problem can be expressed in terms of gen-
eralized characters of the symmetric group. (The results we use from this paper are
given in Section 2.) We use Strahov’s generalization of the Murnaghan-Nakayama
rule [16] to obtain explicit formula for generalized characters corresponding to parti-
tions of the form (n− k, 1) and (n− k− 1, 2, 1). These expressions are then applied
to a special case of the (p, q, n)-dipole problem and the problem of enumerating
factorizations of a full cycle.

1.1. The loopless dipole problem and a non-central refinement. A dipole
is a 2-cell embedding of a loopless graph, with precisely two vertices, in a locally
orientable surface. In the present paper, we consider the case of dipoles in orientable
surfaces, where here and throughout we use of the term “dipole” to refer to a dipole
in an orientable surface. Edge-labelled dipoles may be encoded as a pair of full-
cycle permutations (σ1, σ2), corresponding to the edge labels encountered on a
counterclockwise circulation of the root and non-root vertices, whose product σ1σ2

encodes the face structure of the dipole, in the manner of Kwak and Lee [14]. The
genus of the surface can then be determined using the Euler-Poincaré formula: a
dipole with n edges and m faces has genus 1

2 (n−m). The problem of enumerating

dipoles in a surface of genus g may be solved by computing K2
(n) in Z(n), where Kλ

denotes the sum of all permutations of cycle type λ, in the following sense: [π]K2
(n)

is the number of dipoles having face structure corresponding to the permutation π,
which is [Kλ]K

2
(n) whenever π has cycle type λ. In this encoding, λ is the partition

given by half face-degrees. Here and elsewhere, if B is an element of some basis
of an algebra A, the notation [B] denotes the coefficient extraction operator on A.
Thus, we say that the dipole problem has a central encoding. This encoding permits
the application of character-theoretic results, namely, those appearing in [9], to the
loopless dipole problem.

It is worth noting that the Kwak-Lee encoding is different than the usual encod-
ing given by the Tutte Embedding Theorem (see [17], or [13] for a contemporary
account), an encoding in which it is not clear how to forbid loops. From an enu-
merative point of view, it is important not only to know that a problem is central,
but also to have an explicit encoding in terms of standard basis elements of Z(n).

1.1.1. The (p, q, n)-dipole problem. A refinement of the dipole problem was intro-
duced by Constable et al. [2] in the study of duality between Yang-Mills theory
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and string theory. The refined problem deals with dipoles which are rooted by the
selection of an edge and a vertex.

Definition 1.1 (Root jump and Non-root jump). ] Let D be a rooted dipole with
an additional distinguished edge. The root jump (resp. non-root jump) of D,
denoted by θ(D) (resp. ϑ(D)), is one plus the number of edges encountered on a
counterclockwise circulation of the root (resp. non-root) vertex, starting at the root
edge and ending at the second distinguished edge. (Neither the root edge nor the
second distinguished edge are included in the quantities θ(D) and ϑ(D).)

The weight functions θ and ϑ are the subject of the following combinatorial question.

Definition 1.2 ((p, q, n)-dipole problem). A dipole D with n edges for which
θ(D) = p and ϑ(D) = q is referred to as a (p, q, n)-dipole. The (p, q, n)-dipole
problem is the problem of determining the number dp,q,n,g of (p, q, n)-dipoles in an
orientable surface of genus g.

This problem was solved asymptotically on the torus and double torus by Consta-
ble et al., and exact solutions for the torus and double torus were given by Visentin
and Wieler [18]. The problem is notable from a combinatorial point of view, be-
cause for a dipole D, the quantities θ(D) and ϑ(D) cannot be determined from the
cycle type of π alone, where π is the permutation encoding the face structure of D.
In other words, the problem is non-central.

Kwak and Lee’s central encoding for dipoles may be refined in a natural way to
give an encoding of a “labelled analogue” of the (p, q, n)-dipole problem, in which
the root edge is labelled n, the other distinguished edge is labelled n − 1, and the
other n− 2 edges are labelled arbitrarily from {1, . . . , n− 2}. Then the number of
labelled (p, q, n)-dipoles with face permutation π is given by

(1) [π]
∑

σ1∈C(n)

σq
1(n)=n−1

σ1

∑

σ2∈C(n)

σp
2 (n)=n−1

σ2.

Thus, the group algebra element encoding the (p, q, n)-dipole problem lies in Z2(n).
Unlike Z1(n), the algebra Z2(n) is non-commutative and thus does not have a basis
of orthogonal idempotents, which is the main barrier to finding a solution to the
(p, q, n)-dipole problem through algebraic methods.

In the present paper, we show that when q = n− 1, there is an encoding for this
problem which lies in Z1(n). (Lemma 3.1.) Thus, the (p, n− 1, n)-dipole problem
is a near-central problem. Near-central enumerative methods are then used to
give a solution to the problem on all orientable surfaces. (Theorem 5.4.) As a
consequence of this solution, we prove that the (p, n− 1, n)-dipole problem has an
entirely unexpected symmetry in the sense that at present there is no combinatorial
proof of it. (Theorem 5.5.)

1.2. Near-central decompositions of a full cycle. Let C be a cycle of length n
in Sn. The problem of determining the number of factorizations of C into factors
of specified cycle type has been well studied. The minimal case with two factors
was solved by Goulden and Jackson [4] using combinatorial methods. The two-
factor case in general was solved by Goupil and Schaeffer [7] and Biane [1]. The
case with r factors was done by Poulahon and Schaeffer [15] and Irving [8], also
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using character-theoretic means. The central cycle decomposition problem has the
following non-central refinement.

Problem 1.3 (Near-central Cycle Decomposition Problem). Given λ, µ ⊢ n and
parts i and j of λ and µ respectively, determine the number of factorizations π1π2

of C such that

(1) π1 has cycle type λ with n appearing on a cycle of length i, and
(2) π2 has cycle type µ with n appearing on a cycle of length j.

An expression for the solution to this problem, as the coefficient of a rational
function, is given in Theorem 5.6. It is natural to explore the near-central version of
the problem with the expectation of finding combinatorial structure which is anal-
ogous to the combinatorial structure of the central cycle decomposition problem.
Understanding such structure would provide an important first step in understand-
ing Z2(n), which is also a combinatorially interesting algebra. The techniques
developed in this paper provide a starting point for such an exploration.

1.3. Organization of the paper. This paper is organized as follows. Section 2
presents background definitions and results pertaining to near-central methods in
enumerative combinatorics. Section 3 proves that the (p, n − 1, n)-dipole problem
is near-central, and gives an explicit encoding for the problem in Z1(n). Section 4
gives explicit expressions for the generalized characters which arise in the study of
(p, n−1, n)-dipoles. Finally, Section 5 uses these expressions to give the generating
series for (p, n − 1, n)-dipoles with respect to number of faces, and an expression
for the solution to the near-central cycle decomposition problem.

2. Background Definitions and Results

2.1. Definitions and Results from Character Theory. A weakly decreasing
sequence of positive integers λ = (λ1, . . . , λm) is a partition of n if

∑

1≤i≤m λi = n.

This is denoted by λ ⊢ n. Each λi is called a part of λ, and mi(λ) is the number
of times i occurs as a part of λ. Let m(λ) denote the number of parts of λ. The
assertion i ∈ λ indicates that mi(λ) > 0. If i ∈ λ, let i−(λ) denote the partition
obtained by removing i from λ and replacing it with i − 1. Partitions are often
written in the form (1m1(λ)2m2(λ) · · · ). Given π ∈ Sn, let κ(π) denote the partition
given by the cycle type of π.

Given a partition λ ⊢ n, the Ferrers diagram Fλ is a diagram consisting of n
boxes arranged in m(λ) rows such that, if the parts of λ are ordered such that λ1 ≥
λ2 ≥ · · · ≥ λm(λ), then there are λi boxes in row i, justified to the left margin. A
standard Young tableau of shape λ is a bijective assignment of the integers {1, . . . , n}
to the boxes of Fλ such that the labels on the boxes increase to the right along
rows, and down columns. The set of all standard Young tableaux of shape λ is
denoted by SYTλ. Let T

∗ be the standard Young tableau obtained by deleting the
box with largest label from T . Given a standard Young tableau T in which the
element i appears in the box in row j and column k, let cT (i) = k−j be the content
of i in T . It is often convenient to refer to the vector cT = (cT (1), cT (2), . . . , cT (n))
as the content vector of T . In a slight abuse of notation, cλ denotes the multiset
of contents of any tableau of shape λ ⊢ n.
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Let dλ denote the degree of the irreducible representation indexed by λ, which
is equal to the number of standard Young tableaux of shape λ. Let χλ

µ denote the
ordinary irreducible character of Sn indexed by λ, evaluated at a permutation of
cycle type µ. The following character evaluations are classical, and can be found,
for example, in [9]. When µ = (n), then

(2) χλ
(n) =

{

(−1)k if λ = (n− k, 1k),

0 otherwise.

A hook is a partitions of the form (n − k, 1k). The evaluation of an irreducible
character corresponding to a hook at a permutation of cycle type µ is given by the
formula

(3) χ(n−k,1k)
µ = [yk](1 + y)−1Hµ(y), where Hµ(y) :=

∏

1≤i≤m

(1− (−y)µi).

2.2. The Algebra Z1(n) and Strahov’s generalized characters. The role
played by the centralizer Z1(n) in the study of the (p, n − 1, n)-dipole problem
is analogous to the role played by the centre of C[Sn] in the study of the loopless
dipole problem described in Section 1.1. For λ ⊢ n and i ∈ λ, let Kλ,i :=

∑

π∈Cλ,i
π,

where

Cλ,i := {π ∈ Sn : κ(π) = λ, n is on a cycle of length i}.

The set {Kλ,i}λ⊢n,i∈λ forms a linear basis for Z1(n). Let SYTλ,i denote the set of
standard Young tableaux of shape λ in which the symbol n appears at the end of
a row of length i. Let eT denote the Young semi-normal unit corresponding to the
tableau T . Define the elements

Γλ,i :=
∑

T∈SYTλ,i

eT ∈ C[Sn].

The following facts about Γλ,i are used in this paper and may be found in [10].

2.2.1. Generalized characters. The elements Γλ,i lie in Z1(n) and form a basis of
orthogonal idempotents. Thus, for λ, µ ⊢ n, i ∈ λ, j ∈ µ, the coefficients

(4) γλ,i
µ,j :=

n!

dλ
[Kµ,j ]Γ

λ,i

are well-defined. They are called the generalized characters of Sn. The definition
of generalized characters given by (4) is equivalent to the definition given by Stra-
hov [16] as zonal spherical functions of the Gel’fand pair (Sn×Sn−1, diag(Sn−1)).

2.2.2. Connection coefficients of Z1(n). Let λ, µ, ν ⊢ n, and let i ∈ λ, j ∈ µ, k ∈ ν.

The connection coefficients cν,kλ,i,µ,j of Z1(n) are defined by

Kλ,iKµ,j =
∑

ν⊢n,
k∈ν

cν,kλ,i,µ,jKν,k.

They may be expressed in terms of generalized characters as follows:

(5) cν,kλ,i,µ,j =
|Cλ,i||Cµ,j|

n!

∑

ρ⊢n,
ℓ∈ρ

γρ,ℓ
λ,iγ

ρ,ℓ
µ,jγ

ρ,ℓ
ν,k

dℓ−(ρ)

dρ
dℓ−(ρ)

.
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2.2.3. The generalized Diaconis-Greene method. A generalization of an approach
used by Diaconis and Greene [3] to evaluate ordinary irreducible characters may
be refined to give a method to evaluate generalized characters. A polynomial f ∈
C[x1, . . . , xn] is said to be almost symmetric if, for any π ∈ Sn−1, f(x1, . . . , xn) =
f(xπ(1), xπ(2), . . . , xπ(n−1), xn). The ring of almost symmetric polynomials is de-

noted by Λ(1)[x1, . . . , xn]. Let

Jk :=
∑

1≤i<k

(i, k)

be the kth Jucys-Murphy element. If f ∈ Λ(1)[x1, . . . , xn] is such that f(J1, . . . , Jn) =
Kλ,i, then for any µ ⊢ n and j ∈ µ,

(6) γµ,j
λ,i =

dj−(µ)

|Cλ,i|
f(cj−(µ), cµ,j),

where cµ,j is the content of n in any T ∈ SYTµ,j .

Furthermore, if ρ ⊢ n, ℓ is a part of ρ and T is any standard Young tableau of
shape ρ, then by the generalized Diaconis-Greene method,

(7)
∑

λ⊢n,
m(λ)=m,i∈λ

|Cλ,i|

dℓ−(ρ)
γρ,ℓ
λ,i = [tm]

∏

1≤i≤n

(t+ ci(T )),

relating a weighted generalized character sum to content polynomials.

3. A Z1(n)-encoding for the (p, n− 1, n)-dipole problem

Although the (p, q, n)-dipole problem lies, in general, in Z2(n), when q = n− 1
the problem can be encoded in Z1(n). Working in Z1(n) instead of Z2(n) is a
significant advantage since the algebra Z1(n) is well-understood, while the non-
commutative algebra Z2(n) lacks a basis of orthogonal idempotents. The strategy
is to encode a dipole not by its pair of vertex permutations as in the encoding given
by (1), but by the vertex permutation ν corresponding to the non-root vertex and
the face permutation ρ, isolating those pairs for which νρ−1 gives a root vertex
permutation corresponding to a specified value of θ(D). In this approach, it is
notationally more convenient to consider dipoles in which the ordinary edges are
not labelled, and which can therefore be given a canonical labelling. Namely, specify
a canonical cycle Cp for the vertex permutation at the root vertex with the property
that Cp

p (n) = n− 1, say

Cp = (n, 1, . . . , p− 1, n− 1, p, . . . , n− 2).

In the manner of encoding (1), the number of (p, n− 1, n)-dipoles with face permu-
tation π is given by

Dπ,p := [π]
∑

σ∈C(n),

σ−1(n)=n−1

σCp.

The observation that
∑

σ∈C(n),

σ−1(n)=n−1

σ =
∑

σ∈C(n−1,1),1

σ(n, n− 1) = K(n−1,1),1(n, n− 1)
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suggests that Dπ,p is “close” to being in Z1(n). The presence of Cp is still an
obstruction to carrying out this computation in Z1(n), but this can be surmounted
by noting that

Dπ,p = [C−1
p ]π−1

∑

σ∈C(n),

σ−1(n)=n−1

σ.

This is the algebraic statement corresponding to the combinatorial observation
that encoding dipoles as a (face, vertex) permutation pair is equivalent to encoding
them as a (vertex, vertex) permutation pair. Thus, if S ⊂ Sn, then the number of
(p, n− 1, n)-dipoles whose face permutation is an element of S is given by

Dπ,p =
∑

π∈S

[C−1
p ]π−1

∑

σ∈C(n),

σ−1(n)=n−1

σ

= [C−1
p ]

(

∑

π∈S

π−1

)

K(n−1,1),1(n, n− 1).

Thus, whenever the set S is invariant under conjugation by Sn−1, the product

(

∑

π∈S

π−1

)

K(n−1,1),1

may be computed within Z1(n), instead of Z2(n).

It remains to determine the effect on Z1(n) basis elements of multiplication by
the transposition (n, n − 1) and to extract the coefficient of C−1

p . If n and n − 1
are on the same cycle, multiplication by (n, n− 1) cuts this cycle in two. Thus, in
this case, a full cycle cannot be obtained. If n and n − 1 are on different cycles,
multiplication by (n, n− 1) will join them into one cycle. The cycle C−1

p can only
be obtained by joining a cycle of length p and a cycle of length n− p. Thus,

[C−1
p ]Kλ,i(n, n− 1) =

{

1 if λ = (p, n− p) and i = p,

0 otherwise

= [K(p,n−p),p]Kλ,i.

Combining these facts gives the following encoding for the (p, n−1, n)-dipole prob-
lem in Z1(n).

Lemma 3.1. Let λ ⊢ n, and let i be a part of λ. Then the number of (p, n− 1, n)-
dipoles having face degree sequence 2λ in which the root face has degree 2i is given
by

[K(p,n−p),p]Kλ,iK(n−1,1),1.

We remark that this encoding of the (p, n − 1, n)-dipole problem provides a
means for studying the problem using generalized characters, analogous to the way
in which the Kwak-Lee encoding described in Section 1.1 allows the application of
character theory to the loopless dipole problem.
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Cycle type (µ, j) dj−(µ)

∏

2≤i≤n−1 cT (i)

(n− k − 1, 2, 1k−1), 2
(

n−2
k

)

(n− k − 2)!(−1)kk!

(n− k, 1k), n− k
(

n−2
k

)

(n− k − 2)!(−1)kk!

(n− k, 1k), 1
(

n−2
k−1

)

(n− k − 1)!(−1)k−1(k − 1)!

Table 1. Calculations needed to evaluate γµ,j
(n−1,1),1.

4. Explicit formulae for generalized characters arising in the

(p, n− 1, n)-dipole problem

In light of Lemma 3.1 and Equation (5), to solve the (p, n− 1, n)-dipole problem
it suffices to determine an explicit expression for

(8) dp,n−1
λ,i :=

|Cλ,i|(n− 2)!

n!

∑

ρ⊢n,
ℓ∈ρ

γρ,ℓ
λ,iγ

ρ,ℓ
(n−1,1),1γ

ρ,ℓ
(p,n−p),p

dℓ−(ρ)

dρ
dℓ−(ρ)

.

This section gives formulae for the generalized characters appearing in this expres-
sion.

4.1. Generalized Characters Evaluated at ((n− 1, 1), 1).

Lemma 4.1. Let µ ⊢ n and let j ∈ µ. Then

γµ,j
(n−1,1),1 =



















(−1)k if µ = (n− k − 1, 2, 1k−1) and j = 2;

(−1)k if µ = (n− k, 1k) and j = n− k;

(−1)k−1 if µ = (n− k, 1k) and j = 1;

0 otherwise.

Proof. The standard basis element K(n−1,1),1 may be expressed in terms of Jucys-
Murphy elements by:

K(n−1,1),1 = J2J3 · · ·Jn−1.

Let T be any tableau of shape µ in which n appears at the end of a row of length
j. By Equation (6),

γµ,j
(n−1,1),1 =

dj−(µ)

(n− 2)!

∏

1≤k≤n−1

cT (k).

This result will be zero when any label other than n occupies a box in the second
row and second column. Thus, the only tableaux giving a nonzero result are either
hook tableaux or tableaux of shape (n− k− 1, 2, 1k) in which n appears at the end
of the row of length 2. The number of tableaux in each case, as well as the product
of their contents, are given in Table 1, and they yield the results in the statement
of the theorem.

�
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4.2. Generalized Characters indexed by “near hook” partitions. In light

of Lemma 4.1, it suffices to determine the values of the generalized characters γλ,i
µ,j

when (λ, i) is one of ((n− k, 1k), n− k), ((n− k, 1k), 1) or ((n− k − 1, 2, 1k−1), 2).
This may be done using a generalization of the Murnaghan-Nakayama rule due to
Strahov [16], who uses the following terminology. A skew partition λ/ν is called a
broken border strip if it contains no 2×2 boxes. (Thus, a broken border strip which
is also connected is a rim hook. Two boxes in a Ferrers diagram whose corners
touch are not considered to be connected.) A sharp corner in a skew diagram is a
box which has a box both below it and to the right. A dull box has boxes neither to
the right nor below it. Let SC(λ/ν) and DB(λ/ν) denote the set of sharp corners
and dull boxes of λ/ν, respectively. Recall that the height of a rim hook λ/ν,
denoted by 〈λ/ν〉, is equal to the greatest row occupied by λ/ν minus the least row
occupied by λ/ν. If λ/ν is a broken border strip, 〈λ/ν〉 is defined to be the sum of
heights of its connected components. Given a skew diagram λ/ν and a part i of λ,
the number ϕλ/ν,i is defined by

ϕλ/ν,i = (−1)〈λ/ν〉
∏

s∈SC(λ/ν)

[cλ,i − c(s)]
∏

d∈DB(λ/ν)
d 6=λ/i−(λ)

[cλ,i − c(d)]−1

when λ/ν is a broken border strip, and zero otherwise. Strahov’s result is as follows.

Theorem 4.2 (Murnaghan-Nakayama Rule for Generalized Characters — Strahov
[16]). Let λ, ρ ⊢ n. Let i be a part of λ, and let j be a part of ρ. Then

γλ,i
µ,j :=

∑

ν⊆i−(λ)
ν⊢n−j

ϕλ/ν,iχ
ν
µ\j .

The reason this theorem is particularly useful for evaluating γ
(n−k,1k),n−k
µ,j , γ

(n−k,1k),1
µ,j

and γ
(n−k−1,2,1k−1),2
µ,j is that in all three cases, i−(λ) is a hook partition. Thus, ev-

ery ν ⊆ i−(λ) is also a hook partition, and χν
µ\j may be evaluated using Equation

(3). The first such result is as follows.

Lemma 4.3. Let µ ⊢ n and let j be a part of µ. Define Rn,j by

Rn,j(x) :=
(n− 1) + nx+ (−x)j

1 + x
.

Then, for 0 ≤ k ≤ n− 2,

(9) γ
(n−k,1k),n−k
µ,j =

1

n− 1
[xk]Rn,j(x)Hµ\j(x).

Define Sn,j by

Sn,j(x) := (−1)j−1 (−1)jx+ nxj + (n− 1)xj+1

1 + x
.

Then, for 1 ≤ k ≤ n− 1,

(10) γ
(n−k,1k),1
µ,j =

1

n− 1
[xk]Sn,j(x)Hµ\j(x).
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Proof. Equation (9) is proven here. Equation (10) may be proven in a similar
manner. Thus, in the following, λ = (n − k, 1k) and i = n − k. Furthermore,
assume that k ≤ n− k − 1. (The case k ≥ n− k − 1 is similar.)The series Rn,j(x)
may be expanded as

(n− 1) +
∑

0<ℓ<j

(−1)ℓ+1xℓ.

There are three cases:

Case 1: Suppose k ≥ j. Then

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑

0<ℓ<j

(−1)ℓ+1

n− 1
[xk−ℓ]Hµ\j(x)

= χ
(n−j−k,1k)
µ\j +

∑

0<ℓ<j

(−1)ℓ+1

n− 1
χ
(n−j−k+ℓ,1k−ℓ)
µ\j

= χ
(n−j−k,1k)
µ\j +

∑

k−j<ℓ<k

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ\j .

In order for ν ⊆ i−(λ), ν must be of the form (n − j − ℓ, 1ℓ) where k − j + 1 ≤
ℓ ≤ n− k − 1. The valid range for ℓ is illustrated in the following, where the grey
boxes are ν, the black box is the distinguished box, and the box labelled “D” is a
dull box.

ℓ = k − j + 1 k − j − 1 < ℓ < k ℓ = k

D D

ϕλ/ν,i =
(−1)k−ℓ+1

n−1 ϕλ/ν,i =
(−1)k−ℓ+1

n−1 ϕλ/ν,i = 1

Applying Theorem 4.2,

γ
(n−k,1k),n−k
µ,j = χ

(n−j−k,1k)
µ\j +

∑

k−j<ℓ<k

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ\j

=
1

n− 1
[xk]Rn,j(x)Hµ\j(x).

Case 2: Suppose k < (n− j) < n− k. In this case, as well as in Case 3, the range
0 < ℓ < j of the index of summation is truncated since the summand is zero for
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certain values of ℓ. Since j > k,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑

0<ℓ<j

(−1)ℓ+1

n− 1
[xk]xℓHµ\j(x)

= [xk]Hµ\j(x) +
∑

0<ℓ≤k

(−1)ℓ+1

n− 1
[xk−ℓ]Hµ\j(x)

= χ
(n−j−k,1k)
µ\j +

∑

0<ℓ≤k

(−1)ℓ+1

n− 1
χ
(n−j−k+ℓ,1k−ℓ)
µ\j

= χ
(n−j−k,1k)
µ\j +

∑

0≤ℓ<k

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ\j .

In this case, ν = (n − j − ℓ, 1ℓ) where 0 ≤ ℓ ≤ k. The range of validity for ℓ is
illustrated as follows.

0 ≤ ℓ < k ℓ = k

D

ϕλ/ν,i =
(−1)k−ℓ+1

n−1 ϕλ/ν,i = 1

By Theorem 4.2,

γ
(n−k,1k),n−k
µ,j = χ

(n−j−k,1k)
µ\j +

∑

0≤ℓ<k

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ\j

=
1

n− 1
[xk]Rn,j(x)Hµ\j(x).

Case 3: Suppose n ≤ k+j. This case relies on the fact thatHµ\j(x) is a polynomial

of degree n−j−1, so [xi]Hµ\j(x) = 0 when i ≥ n−j. In particular, [xk]Hµ\j(x) = 0.
Furthermore, j ≥ n− k > k. Thus, in this case,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = [xk]Hµ\j(x) +

∑

0<ℓ<j

(−1)ℓ+1

n− 1
[xk]xℓHµ\j(x)

=
∑

k−n+j+1≤ℓ≤k

(−1)ℓ+1

n− 1
[xk−ℓ]Hµ\j(x)

=
∑

k−n+j+1≤ℓ≤k

(−1)ℓ+1

n− 1
χ
(n−j−k+ℓ,1k−ℓ)
µ,j

=
∑

0≤ℓ≤n−j−1

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ,j .
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Since n− j ≤ k ≤ n− k− 1, then all ν = (n− j − ℓ, 1ℓ) such that 0 ≤ ℓ ≤ n− j − 1

satisfy ν ⊆ i−(λ). In all such cases, ϕλ/ν,i =
(−1)k−ℓ+1

n−1 . Thus, by Theorem 4.2,

γ
(n−k,1),n−k
µ,j =

∑

0≤ℓ≤n−j−1

(−1)k−ℓ+1

n− 1
χ
(n−j−ℓ,1ℓ)
µ,j

=
1

n− 1
[xk]Rn,j(x)Hµ\j(x).

Thus, when k ≤ n− k − 1, for all values of j,

1

n− 1
[xk]Rn,j(x)Hµ\j(x) = γ

(n−k,1k),n−k
µ,j .

If k ≥ n− k − 1, the result may be proven in a similar manner. �

4.2.1. Specializations. Specializing this to the generalized characters arising in the
(p, n− 1, n)-dipole problem gives the following explicit evaluations.

Corollary 4.4. Let 0 ≤ k ≤ n− 2 and 1 ≤ p ≤ n− 1. If k ≤ n− k − 1, then

γ
(n−k,1k),n−k
(n−p,p),p =











(−1)k−1 n−p
n−1 if (n− p) ≤ k,

(−1)k n−k−1
n−1 if k < (n− p) < n− k,

(−1)k n−p
n−1 if n− k ≤ (n− p).

If k ≥ n− k − 1, then

γ
(n−k,1k),n−k
(n−p,p),p =











(−1)k−1 n−p
n−1 if (n− p) < n− k,

(−1)k−1 n−k−1
n−1 if n− k ≤ (n− p) ≤ k,

(−1)k n−p
n−1 if k < (n− p).

Corollary 4.5. Let 1 ≤ k ≤ n− 1, and let 1 ≤ p ≤ n− 1. If k ≤ n− k − 1, then

γ
(n−k,1k),1
(n−p,p),p =











(−1)k n−p
n−1 if (n− p) ≤ k,

(−1)k k
n−1 if k < (n− p) < n− k,

(−1)k−1 n−p
n−1 if n− k ≤ (n− p).

If k ≥ n− k − 1, then

γ
(n−k,1k),1
(n−p,p),p =











(−1)k n−p
n−1 if (n− p) < n− k,

(−1)k−1 k
n−1 if n− k ≤ (n− p) ≤ k,

(−1)k−1 n−p
n−1 if k < (n− p).

In the case of γ
(n−k−1,2,1k−1),2
(n−p,p),p , although polynomials analogous to Rn,j and Sn,j

are not known, it is nevertheless possible to evaluate generalized characters of this
form, as follows.

Lemma 4.6. Let 1 ≤ k ≤ n− 3, and let 2 ≤ p ≤ n− 1. If k ≤ n− k − 2, then

γ
(n−k−1,2,1k−1),2
(n−p,p),p =











(−1)k n−p
k(n−k−2) if (n− p) ≤ k,

0 if k < (n− p) < n− k − 1,

(−1)k+1 n−p
k(n−k−2) if (n− p) ≥ n− k − 1.
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If k ≥ n− k − 2, then

γ
(n−k−1,2,1k−1),2
(n−p,p),p =











(−1)k n−p
k(n−k−2) if (n− p) ≤ n− k − 2,

0 if n− k − 2 < (n− p) ≤ k,

(−1)k+1 n−p
k(n−k−2) if (n− p) > k.

Proof. The proof is by a case analysis similar to the proofs of Lemma 4.3. Through-
out the following, λ = (n− k − 1, 2, 1k−1). Each case is illustrated with a diagram
in which grey boxes indicate ν, the black box indicates the distinguished box, and
white boxes indicate 2−(λ)/ν. Sharp corners and dull boxes of λ/ν are indicated
on diagrams by S and D, respectively, with the exception of the distinguished box,
which is always a dull box. Throughout the following, the fact that

χn−p−ℓ,1ℓ

(n−p) = (−1)ℓ

is used.

Boundary cases: the cases k = 1 and k = n − 3 are treated differently than
2 ≤ k ≤ n−4, but give the same result. Suppose k = 1. (The k = n−3 case is very
similar.) If p = n − 1, then (n − p) ≤ k, and a typical diagram has the following
form.

S D

In this case, the formula in the statement of the Lemma gives

γ
(n−2,2),2
(n−1,1),n−1 =

(−1)k

k(n− k − 2)
= −

1

n− 3
.

This agrees with the value given by Theorem 4.2, namely

γ
(n−2,2),2
(n−1,1),n−1 = −

1

n− 3
χ
(1)
(1) = −

1

n− 3
.

When 3 ≤ p ≤ n−2, then k < (n−p) < (n−k−1). In this case, the only partitions
ν ⊢ n− j which are contained in (n− 2, 1) are (n− p) and (n− p− 1, 1):

D

and

D

.

In both cases, λ/ν has height 0, no sharp corners, and one dull box (of content
n− 3) aside from the dull box corresponding to the distinguished part 2, so

ϕλ/ν,2 =
1

0− (n− k − 2)
= −

1

n− 3
.

Thus, Theorem 4.2 gives

γ
(n−2,2),2
(n−p,p),p = −

1

n− 3
(χ

(n−p)
(n−p) + χ

(n−p−1,1)
(n−p) ) = 0.

When p = 2, (n − p) ≥ (n − k − 1), and the diagrams corresponding to the two
possibilities for ν are
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and

D

.

The argument proceeds as in the case when 3 ≤ p ≤ n− 2, with the exception that
when ν = (n− p), λ/ν has no dull boxes, so ϕλ/ν,2 = 1. Thus,

γ
(n−2,2),2
(n−2,2),2 = χ

(n−2)
(n−2) −

1

n− 3
χ
(n−3,1)
(n−2) =

n− 2

n− 3
.

General case: for k ≤ 2 ≤ n− 4, there are six subcases to consider. As they are
similar to each other, one is singled out here for a detailed presentation. This case
has been selected because it illustrates all the peculiarities which must be taken

into account when computing γ
(n−k−1,2,1k−1),2
(n−p,p),p , but did not arise when computing

γ
(n−k,1k),n−k
µ,j and γ

(n−k,1k),1
µ,j . Suppose k ≥ n−k−2 and (n−k−2) < (n−p) ≤ k. Let

ν = (n−p−ℓ, 1ℓ). The range of ℓ for which ν ⊆ 2−(λ) is k−p+1 ≤ ℓ ≤ n−p−1. The
values of ϕλ/ν,2 for values of ℓ in this range are determined based on the following
three cases:

D D

D

D

DS

(1) ℓ = k − p+ 1 (2) k − p+ 1 < ℓ < n− p− 1 (3) ℓ = n− p− 1

(1) When ℓ = k− p+1, ν = (n− k− 1, 1k−j+1), so λ/ν has height j, no sharp
corners, and one dull box (of content −k) aside from the distinguished dull
box. Thus, in this case,

ϕλ/ν,2 =
(−1)p

k
.

(2) When k−p+1 < ℓ < n−p−1, λ/ν has height k−ℓ−1, no sharp corners, and
two dull boxes aside from the distinguished box, having contents (n−k−2)
and −k. Thus,

ϕλ/ν,2 =
(−1)k−ℓ−1

(0− (−k))(0 − (n− k − 2)
=

(−1)k−ℓ

k(n− k − 2)
.

(3) Finally, when ℓ = n− p− 1, ν = (1n−p), so λ/ν has height k− ℓ, one sharp
corner of content 1, and two dull boxes aside from the distinguished box,
having contents (n− k − 2) and −k. Thus,

ϕλ/ν,2 =
(−1)k−ℓ(0 − 1)

0− (−k))(0 − (n− k − 2)
=

(−1)k−ℓ

k(n− k − 2)
.
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Thus, by Theorem 4.2,

γ
(n−k−1,2,1k−1),2
(n−p,p),p =

(−1)p

k
χ
(n−k−1,1k−p+1)
(n−p) +

∑

k−p−1<ℓ<n−p−1

(−1)k−ℓ

k(n− k − 2)
χ
(n−p−ℓ,1ℓ)
(n−p)

+
(−1)k−n+p+1

k(n− k − 2)
χ(n−p)(1

n−p)

=
(−1)k+1

k
+

(−1)k(n− k − 1)

k(n− k − 2)
+

(−1)k+1

k(n− k − 2)
= 0,

completing the proof. �

Having determined explicit formulae for the generalized characters arising in
the study of the (p, n − 1, n)-dipole problem, we may now turn our attention to
combinatorial applications of these results.

5. Combinatorial Applications

5.1. Generating series for (p, n− 1, n)-dipoles. The generalized character for-
mulae given in Section 4 may be used to express the solution to the (p, n − 1, n)-
dipole problem in terms of generalized characters, as follows.

Theorem 5.1. Let λ ⊢ n and let i ∈ λ. Let 1 ≤ p ≤ n − 1. Then the number of
(p, n− 1, n)-dipoles (with unlabelled ordinary edges) having face degree sequence 2λ
and a root face of degree 2i is given by

dp,n−1
λ,i =

|Cλ,i|(n− 2)!

n!

(

Aλ,i
n,p +Bλ,i

n,p + Cλ,i
n,p

)

,

where

Aλ,i
n,p =

∑

0≤k≤n−2

(−1)kγ
(n−k,1k),n−k
λ,i γ

(n−k,1k),n−k
(p,n−p),p

d(n−k−1,1k)

n− 1

n− k − 1
,

Bλ,i
n,p =

∑

1≤k≤n−1

(−1)k−1γ
(n−k,1k),1
λ,i γ

(n−k,1k),1
(p,n−p),p

d(n−k,1k−1)

n− 1

k
,

and

Cλ,i
n,p =

∑

1≤k≤n−3

(−1)kγ
(n−k−1,2,1k−1),2
λ,i γ

(n−k−1,2,1k−1),2
(p,n−p),p

d(n−k−1,1k)

nk(n− k − 2)

(n− k − 1)(k + 1)
.

Proof. This result follows from Equation (8) and Lemma 4.1. �

This result becomes more explicit when summing over all partitions correspond-
ing to a given surface by using the two following lemmas.

Lemma 5.2. Let ρ = (n− k, 1k), and let ℓ ∈ {1, n− k}. Then

∑

λ⊢n,
m(λ)=m,i∈λ

|Cλ,i|

dℓ−(ρ)
γρ,ℓ
λ,i = [tm]n!

(

t+ n− k − 1

n

)

.
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Proof. This follows from Equation (7). The contents along the first row of a tableau
of shape (n− k, 1k) are 0, 1, 2, . . . , n − k − 1, and the contents in the first column
(excluding the box in the first row) are −1,−2, . . . ,−k. Thus,

∏

1≤i≤n

(t+ ci(T )) =
∏

−k≤i≤n−k−1

(t+ i),

from which the result follows. �

Lemma 5.3. Let ρ = (n− k − 1, 2, 1k−1) and let ℓ ∈ {n− k − 1, 2, 1}. Then

∑

λ⊢n,
m(λ)=m,i∈λ

|Cλ,i|

dℓ−(ρ)
γρ,ℓ
λ,i = [tm](n− 1)!t

(

t+ n− k − 2

n− 1

)

.

Proof. This is obtained in a similar manner to the preceding Lemma, except there
is an additional box of content 0 (the one at the end of the row of length 2), and
one box of content n− k − 1 has been removed. �

Theorem 5.4. Let n ≥ 4. When 2 ≤ p ≤ n
2 , number of (p, n− 1, n)-dipoles in an

orientable surface of genus g is

(n− 2)![tn−2g]Dn,p(t),

where

Dn,p(t) =

(

t+ n− 1

n

)

+
∑

p≤k≤n−p−1

(n− 1)(n− p)

k(n− k − 1)

(

t+ n− k − 1

n

)

+

(

t

n

)

−
∑

p−1≤k≤n−p−1

(n− p)

(n− k − 1)(k + 1)
t

(

t+ n− k − 2

n− 1

)

.

When n
2 ≤ p ≤ n− 1, the generating series for (p, n− 1, n) dipoles is

Dn,p(t) =

(

t+ n− 1

n

)

−
∑

n−p≤k≤p−1

(n− 1)(n− p)

k(n− k − 1)

(

t+ n− k − 1

n

)

+

(

t

n

)

+
∑

n−p≤k≤p−2

(n− p)

(n− k − 1)(k + 1)
t

(

t+ n− k − 2

n− 1

)

.

Proof. By the Euler-Poincaré formula, the number of (p, n − 1, n)-dipoles on a
surface of genus g may be obtained by summing the expression given in Theorem
5.1 over all partitions having n − 2g parts. Applying Lemmas 5.2 and 5.3 to this
sum yields

Dn,p(t) =

(

t+ n− 1

n

)

+
∑

1≤k≤n−2

(−1)k(n− 1)





γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k





(

t+ n− k − 1

n

)

+

(

t

n

)

+
∑

1≤k≤n−3

(−1)k
k(n− k − 2)γ

(n−k−1,2,1k−1),2
(p,n−p),p

(n− k − 1)(k + 1)
t

(

t+ n− k − 2

n− 1

)

.

This expression may be further simplified by using Lemmas 4.4, 4.5 and 4.6. We
consider two cases as follows.
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Case 1: 2 ≤ p ≤ n
2 . In this case, when 1 ≤ k < p,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k

n− 1
−

(−1)k

n− 1
= 0.

When p ≤ k ≤ n− p− 1,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k(n− p)

(n− 1)(n− k − 1)
−

(−1)k−1(n− p)

(n− 1)k

=
(−1)k(n− p)

k(n− k − 1)
.

When n− p ≤ k ≤ n− 2,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1

n− 1
−

(−1)k−1

n− 1
= 0.

When k < p− 1 or k ≥ n− p, then γ
(n−k−1,2,1k−1),2
(p,n−p),p = 0. For p− 1 ≤ k ≤ n− p− 1,

γ
(n−k−1,2,1k−1),2
(n−p,p),p =

(−1)k−1(n− p)

k(n− k − 2)
.

Combining these facts gives the result in the statement of the Theorem.

Case 2: n
2 ≤ p ≤ n− 1. In this case, when 1 ≤ k < n− p,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k

n− 1
−

(−1)k

n− 1
= 0.

When n− p ≤ k ≤ p− 1,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1(n− p)

(n− 1)(n− k − 1)
−

(−1)k(n− p)

(n− 1)k

=
(−1)k−1(n− p)

k(n− k − 1)
.

When p ≤ k ≤ n− 2,

γ
(n−k,1k),n−k
(p,n−p),p

n− k − 1
−

γ
(n−k,1k),1
(p,n−p),p

k
=

(−1)k−1

n− 1
−

(−1)k−1

n− 1
= 0.

When k < n− p or k > p− 2, then γ
(n−k−1,2,1k−1),2
(p,n−p),p = 0. For n− p ≤ k ≤ p− 2,

γ
(n−k−1,2,1k−1),2
(n−p,p),p =

(−1)k(n− p)

k(n− k − 2)
.

Combining these facts gives the result in the statement of the Theorem. �

This theorem may be used to prove the following result.

Theorem 5.5. Let p ≥ 2, and let p, p′ be such that p + p′ = n + 1. Then the
number of (p, n − 1, n)-dipoles on a surface of genus g is equal to the number of
(p′, n− 1, n)-dipoles on the same surface.
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Proof. We may assume that p ≤ n
2 , since the case p = p′ = n+1

2 is trivial. By
Theorem 5.4, it suffices to prove that Dn,p −Dn,p′ = 0. By routine simplification,

Dn,p −Dn,p′ =
n− 1

n− p

(

t+ n− p

n

)

+
n− 1

n− p

(

t+ p− 1

n

)

+
∑

p≤k≤n−p−1

(n− 1)2

k(n− k − 1)

(

t+ n− k − 1

n

)

−
∑

p−1≤k≤n−p−1

(n− 1)

(n− k − 1)(k + 1)
t

(

t+ n− k − 2

n− 1

)

.

Applying the identity

t

(

t+ n− k − 2

n− 1

)

= n

(

t+ n− k − 1

n

)

− (n− k − 1)

(

t+ n− k − 2

n− 1

)

and simplifying gives

Dn,p −Dn,p′

n− 1
= −

1

p

(

t+ n− p

n

)

+
1

n− p

(

t+ p

n

)

+
∑

p≤k≤n−p−1

1

k(k + 1)

(

t+ n− k − 1

n

)

+
∑

p≤k≤n−p−1

1

k

(

t+ n− k − 1

n− 1

)

.

Since
(

t+n−k−1
n−1

)

=
(

t+n−k
n

)

−
(

t+n−k−1
n

)

, then

Dn,p −Dn,p′

n− 1
= −

1

p

(

t+ n− p

n

)

+
1

n− p

(

t+ p

n

)

+
∑

p≤k≤n−p−1

(

1

k

(

t+ n− k

n

)

−
1

k + 1

(

t+ n− k − 1

n

))

= 0.

�

The question of finding a combinatorial proof of this result is an open problem.
The algebraic methods employed in this paper provide some hints as to what such
a proof would look like. Because of Theorem 5.1 and the fact that generalized
characters are linearly independent, the symmetry described in Theorem 5.1 is not
present when information about face structure is retained. Thus, any bijection
between (p, n − 1, n)-dipoles and (p′, n − 1, n)-dipoles cannot preserve face degree
sequences.

5.2. Generating series for Z1-decompositions of a full cycle. We recall the
problem of near-central decompositions of a full cycle, defined in Section 1.2, which
we are now in a position to address.

Theorem 5.6. Let λ, µ ⊢ n. Let i be a part of λ and let j be a part of µ. Let
C ∈ C(n). The number of factorizations C = σ1σ2 such that σ1 ∈ Cλ,i and σ2 ∈ Cµ,j
is given by

|Cλ,i||Cµ,j|

(n− 1)2n!

∑

1≤k≤n−1

(−1)k−1

(

n−2
k−1

) [xkyk]Tn,i,j(x, y)Hλ\i(x)Hµ\j(y),
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where

Tn,i,j = xyRn,i(x)Rn,j(y)− Sn,i(x)Sn,j(y),

and Rn,i and Sn,i are defined in Lemma 4.3.

Proof. The number of such factorizations is given by

[K(n),n]Kλ,iKµ,j = c
(n),n
λ,i,µ,j

=
|Cλ,i||Cµ,j |

n!

∑

ρ⊢n,ℓ∈ρ

γρ,ℓ
λ,iγ

ρ,ℓ
µ,jγ

ρ,ℓ
(n),n

dℓ−(ρ)

dρ
dℓ−(ρ)

.

It can be shown, in a manner similar to the proof of Lemma 4.1, that

γµ,j
(n),n =











(−1)k n−k−1
n−1 if µ = (n− k, 1k), j = n− k;

(−1)k k
n−1 if µ = (n− k, 1k), j = 1;

0 otherwise.

Thus,

[K(n),n]Kλ,iKµ,j =
|Cλ,i||Cµ,j |

n!





∑

0≤k≤n−2

γ
(n−k,1k),n−k
λ,i γ

(n−k,1k),n−k
µ,j (−1)k
(

n−2
k

)

+
∑

1≤k≤n−1

γ
(n−k,1k),1
λ,i γ

(n−k,1k),1
µ,j (−1)k
(

n−2
k−1

)



 .

Using Lemma 4.3,

[K(n),n]Kλ,iKµ,j =
|Cλ,i||Cµ,j |

(n− 1)2n!





∑

0≤k≤n−2

(−1)k
(

n−2
k

) [xkyk]Rn,i(x)Hλ\i(x)Rn,j(y)Hµ\j(y)

+
∑

1≤k≤n−1

(−1)k
(

n−2
k−1

) [xkyk]Sn,i(x)Hλ\i(x)Sn,j(y)Hµ\j(y)



 ,

from which the result follows. �

6. Concluding Comments

We anticipate that the study of Z1(n) will lead to insight about Z2(n), the
algebra needed to give a full solution to the general (p, q, n)-dipole problem on
all orientable surfaces. A recursive solution to the (p, q, n)-dipole problem may be
obtained by a differential approach using a Join-Cut analysis. The interested reader
is directed to [11].
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