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A REGULARITY LEMMA AND TWINS IN WORDS

MARIA AXENOVICH, YURY PERSON, AND SVETLANA PUZYNINA

Abstract. For a word S, let f(S) be the largest integer m such that there
are two disjoints identical (scattered) subwords of length m. Let f(n,Σ) =
min{f(S) : S is of length n, over alphabet Σ}. Here, it is shown that

2f(n, {0, 1}) = n− o(n)

using the regularity lemma for words. I.e., any binary word of length n can
be split into two identical subwords (referred to as twins) and, perhaps, a
remaining subword of length o(n). A similar result is proven for k identical
subwords of a word over an alphabet with at most k letters.

Keywords : sequence, subword, identical subwords, twins in sequences.

1. Introduction

Let S = s1 . . . sn be a word of length n, i.e., a sequence s1, s2, . . . , sn. A (scat-
tered) subword of S is a word S′ = si1si2 . . . sis , where i1 < i2 < · · · < is. This
notion was largely investigated in combinatorics on words and formal languages
theory with special attention given to counting subword occurrences, different com-
plexity questions, the problem of reconstructing a word from its subwords (see, e.g.,
[5, 10, 11]). For a word S, let f(S) be the largest integer m such that there are two
disjoints identical subwords of S, each of length m. We call such subwords twins.
For example, if S = s1s2s3s4s5s6 = 001011, then S′ = s1s5 and S2 = s4s6 are two
identical subwords equal to 01. The question we are concerned with is ”How large
could the twins be in any word over a given alphabet?” One of the classical prob-
lems related to this question is the problem of finding longest subsequence common
to two given sequences, see for example [4, 7, 13]. Indeed, if we split a given word
S into two subwords with the same number of elements and find a common to
these two subwords word, it would correspond to disjoint identical subwords in S.
Optimizing over all partitions gives largest twins.

Denoting Σn the set of words of length n over the alphabet Σ, let

f(n,Σ) = min{f(S) : S ∈ Σn}.

Observe first, that f(n, {0, 1}) ≥ ⌊(1/3)n⌋. Indeed, consider any S ∈ Σn and split
it into consecutive triples. Each triple has either two zeros or two ones, so we can
build a subword S1 by choosing a repeated element from each triple, and similarly
build a subword S2 by choosing the second repeated element from each triple. For
example, if S = 001 101 111 010 then there are twins S1, S2, each equal to 0 1 1 0:
S = 001 101 111 010, here one word is marked bold, and the other marked red.
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In fact, we can find much larger identical subwords in any binary word. Our
main result is

Theorem 1. There exists an absolute constant C such that
(

1− C

(

logn

log logn

)−1/4
)

n ≤ 2f(n, {0, 1}) ≤ n− logn.

In the proof we shall employ a classical density increment argument successfully
applied in combinatorics and number theory, see e.g. the survey of Komlós and
Simonovits [8] and some important applications [6] and [12]. We first show that
we can partition any word S into consecutive factors that look as if they were
random in a certain weak sense (we call them ε-regular). These ε-regular words
can be partitioned (with the exception of ε proportion of letters) into two identical
subwords. By appending these together for every ε-regular word, we eventually
obtain identical subwords of roughly half the length of S.

We generalize the notion of two identical subwords in words to a notion of k
identical subwords. For a given word S, let f(S, k) be the largest m so that S
contains k pairwise disjoint identical subwords of length m each. Finally, let

f(n, k,Σ) = min{f(S, k) : S ∈ Σn}.

Theorem 2. For any integer k ≥ 2, and alphabet Σ, |Σ| ≤ k,
(

1− C|Σ|

(

logn

log logn

)−1/4
)

n ≤ kf(n, k,Σ).

In case when k is smaller than the size of the alphabet, we have the following
bounds.

Theorem 3. For any integer k ≥ 2, and alphabet Σ, |Σ| > k,
(

k

|Σ|
− C|Σ|

(

logn

log logn

)−1/4
)

n ≤ kf(n, k,Σ) ≤ n−max{αn, logn},

where α ∈ [0, 1/k] is the solution of the equation ℓ−(k−1)αα−kα(1 − kα)kα−1 = 1,
whenever such solution exists and 0 otherwise.

We shall sometimes refer to two disjoint identical subwords as twins, three dis-
joint identical subwords as triplets, k disjoint identical subwords as k-tuplets. We
shall prove the regularity lemma for binary words in Section 2 and will prove the
Theorem 1 in Section 3. We shall prove Theorems 2, 3 in Section 4. We shall ignore
any divisibility issues as these will not affect our arguments.

2. Definitions and Regularity Lemma for Words

First, we shall introduce some notations (for more detail, see for instance [2, 9]).
An alphabet Σ is a finite non-empty set of symbols called letters. For a (scattered)
subword S′ = si1si2 . . . sis , of a word S, we call the set {i1, i2, . . . , is} a support

of S′ in S, and write supp(S′), so the length of S′, |S′| = |supp(S′)|. Denoting
I = {i1, . . . , is}, we write S′ = S[I]. A factor of S is a subword with consecutive
elements of S, i.e., sisi+1 . . . si+m, for some 1 ≤ i ≤ n and 0 ≤ m ≤ n−i, we denote
it S[i, i+m]. If S is a word over alphabet Σ and q ∈ Σ, we denote |S|q the number
of elements of S equal to q. The density dq(S) is defined to be |S|q/|S|.
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For two subwords S′ and S′′ of S, we say that S′ is contained in S′′ if supp(S′) ⊆
supp(S′′), we also denote by S′ ∩ S′′ a subword of S, S[supp(S′) ∩ supp(S′′)]. If
S = s1 . . . sn and S[1, i] = A, S[i + 1, n] = B, then we write S = AB and call S a
concatenation of A and B.

Definition 4 (ε-regular word). Call a word S of length n over an alphabet Σ
ε-regular if for every i, εn+ 1 ≤ i ≤ n− 2εn+ 1 and every q ∈ Σ it holds that

|dq(S)− dq(S[i, i+ εn− 1])| < ε. (1)

Notice that in the case |Σ| = |{0, 1}| = 2, d0(S) = 1 − d1(S) and thus |d0(S) −
d0(S[i, i+ εn− 1])| < ε ⇐⇒ |d1(S)− d1(S[i, i+ εn− 1])| < ε. When Σ = {0, 1}, we
shall denote d(S) = d1(S).

The notion of ε-regular words resembles the notion of pseudorandom (quasiran-
dom) word, see [3]. However, these two notions are quite different. A word that
consists of alternating 0s and 1s is ε-regular but not pseudorandom. Also, unlike
in the case of stronger notions of pseudorandomness, one can check in a linear time
whether a word is ε-regular, cf. [1] in the graph case.

Definition 5. We call S := (S1, . . . , St) a partition of S if S = S1S2 . . . St, (S is
concatenation of consecutive Sis). A partition S is an ε-regular partition of a word
S ∈ Σn if

∑

i∈[t]
Si is not ε−regular

|Si| ≤ εn,

i.e., the total length of ε-irregular subwords is at most εn.

The decomposition lemma we are going to show states the following:

Theorem 6 (Regularity Lemma for Words). For every ε > 0 and t0 there is an

n0 and T0 such that any word S ∈ Σn, for n ≥ n0 admits an ε-regular partition of

S into S1, . . . , St with t0 ≤ t ≤ T0. In fact, T0 ≤ t03
1/ε4 and n0 = t0ε

−ε−4

.

To prove the regularity lemma, we introduce the notion of an index and a re-
finement and prove a few basic facts.

Definition 7 (Index of a partition). Let S := (S1, . . . , St) be a partition of S ∈ Σn

into consecutive factors. We define

ind(S) =
∑

q∈Σ

∑

i∈[t]

dq(Si)
2 |Si|

n .

Further, for convenience we set indq(S) =
∑

i∈[t] dq(Si)
2 |Si|

n .

Observe that ind(S) is bounded by 1 from above.

Definition 8 (Refinement of S). Let S = (S1, . . . , St) and

S ′ = (S′
1,1, S

′
1,2, . . . , S

′
1,s1 , S′

2,1, S
′
2,2, . . . , S

′
2,s2 , . . . , S′

t,1, S
′
t,2, . . . , S

′
t,st)

be partitions of S ∈ Σn. We say that S ′ refines S and write S ′ 4 S, if for every
i = 1, . . . , t, Si = S′

i,1S
′
i,2 · · ·S

′
i,si

.

Lemma 9. Let S and S ′ be partitions of S ∈ Σn If S ′ 4 S then

ind(S ′) ≥ ind(S).
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Proof. Let S = (S1, . . . , St) and

S ′ = (S′
1,1, S

′
1,2, . . . , S

′
1,s1 , S′

2,1, S
′
2,2, . . . , S

′
2,s2 , . . . , S′

t,1, S
′
t,2, . . . , S

′
t,st).

We proceed for each q ∈ Σ as follows:

indq(S
′) =

∑

S′∈S′

dq(S
′)2

|S′|

n

=

t
∑

i=1

si
∑

j=1

dq(S
′
i,j)

2
|S′

i,j |

n

=

t
∑

i=1

|Si|

n

si
∑

j=1

dq(Si,j)
2
|S′

i,j |

|Si|

Jensen’s inequality

≥

t
∑

i=1

|Si|

n





si
∑

j=1

dq(S
′
i,j)

|S′
i,j |

|Si|





2

=

t
∑

i=1

|Si|

n





si
∑

j=1

|S′
i,j |q

|S′
i,j |

|Si,j |

|Si|





2

=

t
∑

i=1

|Si|

n
dq(Si)

2

= indq(S).

Now, building the sum over all q ∈ Σ yields:

ind(S ′) ≥ ind(S).

�

The next lemma shows that if a word S is not ε-regular, then there is a refinement
of (S) whose index exceeds the index of (S) by at least ε3.

Lemma 10. Let S ∈ Σm be an ε-irregular word. Then there is a partition (A,B,C)
of S such that |A|, |B|, |C| ≥ εm and

ind((A,B,C)) ≥ ind((S)) + ε3 =





∑

q∈Σ

dq(S)
2



+ ε3. (2)

Proof. Since S is not ε-regular, there exists an element q ∈ Σ and an i with εm+1 ≤
i ≤ m − 2εm + 1 such that |d − d(S[i, i + εm − 1])| ≥ ε, where d := dq(S) and
d(T ) := dq(T ) for any factor T of S. Assume w.l.o.g. that d−d(S[i, i+εm−1]) ≥ ε
and set γ := d − d(S[i, i + εm − 1]), A := S[1, i − 1], B := S[i, i + εm − 1] and
C := S[i+ εm,m], a := |A|, b := |B| = εm and c := |C|.

Observe further that

|S|q = d(A)a + d(B)b + d(C)c = dm, d((A,C)) = dm−(d−γ)b
a+c , d(B) = d− γ.
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Since a+ c = m− b and indq((A,B,C)) = indq((A,C,B)),

indq((A,B,C))≥d((A,C))2
a+ c

m
+ d(B)2

b

m

=

(

dm− (d− γ)b

a+ c

)2
a+ c

m
+ (d− γ)2

b

m

=
(dm− (d− γ)b)2

(m− b)m
+ (d− γ)2

b

m

=
1

(m− b)m

[

d2(m2 −mb) + γ2(mb)
]

= d2 +
γ2b

m− b
≥ d2 +

ε3m

(1− ε)m
≥ d2 + ε3.

The case when d − d(S[i, i + εn − 1]) ≤ −ε works out similarly. Indeed, set γ :=
d − d(S[i, i + εm − 1]) as before and notice that |γ| ≥ ε and all the computations
above are exactly the same.

So, indq((A,B,C)) ≥ d2q + ε3. For all other q′ ∈ Σ, Lemma 9 gives that

indq′((A,B,C)) ≥ indq′((S)) = d2q′ (S). Thus

ind((A,B,C)) = indq((A,B,C)) +
∑

q′∈Σ−{q}

indq′((A,B,C)) ≥
∑

q′∈Σ

dq′(S)
2 + ε3.

�

Finally we are in position to finish the argument.

Proof of the Regularity Lemma for Words. Take ε > 0 and t0 as given. We will
give a bound on n0 later. Suppose that we have a word S ∈ Σn. Split it into t0
consecutive factors S1, . . . , St0 of the same length n

t0
. If S := (S1, . . . , St0) is not an

ε-regular partition, then let I ⊆ [t0] be the set of all indices such that, for every i ∈ I,
Si is not ε-regular (thus,

∑

i∈I |Si| ≥ εn). Then, by Lemma 10, we can refine each

Si, i ∈ I, into factors Ai, Bi and Ci such that ind((Ai, Bi, Ci)) ≥
∑

q∈Σ dq(Si)
2+ε3

(in the case that (1) is violated for several q ∈ Σ, choose an arbitrary such q). We
perform such refinement for each Si, i ∈ I, obtaining a partition S ′ 4 S, noticing
that

ind(S ′) =
∑

q∈Σ

∑

j∈[t0]\I

dq(Sj)
2 |Sj |

n
+

∑

q∈Σ

∑

i∈I

(

dq(Ai)
2 |Ai|

n
+ dq(Bi)

2 |Bi|

n
+ dq(Ci)

2 |Ci|

n

)

=
∑

q∈Σ

∑

j∈[t0]\I

dq(Sj)
2 |Sj |

n
+
∑

i∈I

ind((Ai, Bi, Ci))
|Si|

n

(2)

≥
∑

q∈Σ

∑

j∈[t0]\I

dq(Sj)
2 |Sj |

n
+
∑

i∈I

(ind((S)) + ε3)
|Si|

n

= ind(S) + ε3
∑

i∈I |Si|

n

≥ ind(S) + ε4.
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Thus, S ′ refines S and has higher index. If S ′ is not an ε-regular partition of S,
then we can repeat the procedure above by refining S ′ etc. Recall that an index of
any partition S is bounded from above by 1. Thus, since the increment of the index
that we get at each step is at least ε4 and each word in the partition decreases in
length by a factor of at most ε at each step, it follows that we can perform at most
ε−4 many steps so that the resulting factors are non-trivial, and therefore we will
eventually find an ε-regular partition of S. Notice that such a partition consists of

at most 31/ε
4

t0 words, since at each iteration each of the words is partitioned into

at most 3 new ones. Therefore, T0 ≤ 31/ε
4

t0 and each factor in the partition has

length at least t−1
0 ε1/ε

4

n. �

3. Proof of Theorem 1.

Before we prove our main theorem about binary words, we show a useful claim
about twins in ε-regular words.

Claim 11. If S is an ε-regular word, then 2f(S) ≥ |S| − 5ε|S|.

Proof. Let |S| = m. We partition S into t = 1/ε consecutive factors S1,. . . , S1/ε,
each of length εm. Since S is ε-regular, |d(Si)−d(S)| < ε, for every i ∈ {2, . . . , 1/ε−
1}. Thus each Si has at least (d(S) − ε)εm occurrences of 1s and at least (1 −
d(S) − ε)εm occurrences of 0s. Let Si(1) be a subword of Si consisting of exactly
(d(S) − ε)εm letters 1 and Si(0) be a subword of Si consisting of exactly (1 −
d(S) − ε)εm letters 0. Consider the following two disjoint subwords of S: A =
S2(1)S3(0)S4(1) · · ·St−2(1) and B = S3(1)S4(0)S5(1) · · ·St−2(0)St−1(1). When t
is odd, A and B are constructed similarly.

We see that A and B together have at least m− 2ε2m(1/ε− 3)− 3εm elements,
where 2ε2m(1/ε− 3) is an upper bound on the number of 0s and 1s which we had
to “throw away” to obtain exactly (d(S) − ε)εm letters 1 and (1 − d(S) − ε)εm
letters 0 in each Si, 2εm is the number of elements in S1 and St, and εm is the
upper bound on |S2(0)| + |St−1(1)|. Thus, 2f(S) ≥ m− 5εm. This concludes the
proof of the claim. �

Notice that we could slightly improve on 5εm above by finding in an already
mentioned way twins of size εm/3 each in S1 and St, but this does not give great
improvement.

Proof of Theorem 1. Let n be at least n0, which is as asserted by the Regularity
Lemma for words for given ε > 0 and t0 := ⌈ 1

ε⌉. Furthermore, let S be a binary
word of length n. Again, Theorem 6 asserts an ε-regular partition of S into S1, . . . ,
St with 1/ε ≤ t ≤ T0. We apply Claim 11 to every ε-regular factor Si. Furthermore,
since Sis appear consecutively in S, we can put the twins from each of Sis together
obtaining twins for the whole word S. This way we see:

2f(S) ≥
∑

i∈[t]
Si is ε−regular

(|Si| − 5ε|Si|) ≥ n− 5εn− εn = n− 6εn,

here εn corresponds to the total lengths of not ε-regular factors. Choosing ε =

C( logn
log log n )

−1/4, and an appropriate C, we see that n ≥ ε−ε−4

. Therefore, by

Theorem 6 2f(n, {0, 1}) ≥ (1− C(logn)−1/4))n.
Next we shall prove the upper bound on f(n, {0, 1}) by constructing a binary

word S such that 2f(S) ≤ |S| − log |S|. Let S = SkSk−1 . . . S0, where |Si| = 3i, Si
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consists only of 1s for even i, and it consists only of 0s for odd is. I.e., S is built of
iterated 1- or 0-blocks exponentially decreasing in size. Let A and B be twins in S.
Assume first that A and B have the same number of elements in Sk. Since Sk has
odd number of elements, and A, B restricted to S′ = Sk−1Sk−2 · · ·S0 are twins, by
induction we have that |A|+|B| ≤ (|Sk|−1)+(|S′|−log(|S′|)) = |S|−1−log(|S′|) ≤
|S| − log |S|. That is true since |Sk| = 3k, |S| = (3k+1 − 1)/2.
Now assume, w.l.o.g. that A has more elements in Sk than B in Sk. Then B has
no element in Sk−1. We have that |A ∩ Sk−1| ≥ |Sk−1|/2, otherwise |A| + |B| ≤
|S| − |Sk−1|/2 ≤ |S| − log |S|. So, s = |A ∩ Sk−1| ≥ |Sk−1|/2 ≥ 3k−1/2, and s
elements of B must be in Sk−3 ∪ Sk−5 · · · . But |Sk−3| + |Sk−5| + · · · ≤ 3k−2/2, a
contradiction proving Theorem 1. �

Remark 12. One can find words of length n/2 − o(n) as described above by an
algorithm with O(ε−4|Q|n) steps.

4. k-tuplets over alphabet of at most k letters

Proof of Theorem 2. As before, we concentrate first on ε-regular words. Let S be
an ε-regular word of length m over alphabet Σ = {0, . . . , ℓ − 1} and recall the
assumption ℓ ≤ k. We partition S in t = 1/ε consecutive factors S1,. . . , S1/ε, each
of length εm. Since S is ε-regular, |dq(Si)−dq(S)| < ε, for every i ∈ {2, . . . , 1/ε−1},
and every q ∈ Σ. Thus Si has at least (dq(S)− ε)εm letters q, for each q ∈ Σ.

We construct k-tuplets A1, . . . , Ak as follows. Each of Ajs consists of consecutive
blocks, with first block consisting of (d0(S)− ε)εm letters 0, followed by a block of
(d1(S) − ε)εm letters 1, . . . , followed by a block of (dℓ−1(S) − ε)εm letters ℓ − 1,
followed by a block of (d0(S)− ε)εm letters 0, and so on.

Since k ≥ |Σ|, we will use all but at most 1
ε ε

2m|Σ|+(2|Σ|)εm = 3|Σ|εm elements,
where the first summand accounts for the number of elements that we did not use
when choosing exactly (dq(S)− ε)εm elements q from each Si and each q ∈ Σ and
the second summand for the number of elements in S1, . . . , Sℓ, and from S1/ε−ℓ+1,
. . . , S1/ε.

Below are the examples in the special cases when |Σ| = ℓ = k and when |Σ| = 2
and k = 4.
Example 1.

A1 = S2(0)S3(1)S4(2) · · ·Sℓ+1(ℓ− 1)Sℓ+2(0)Sℓ+3(1) · · ·S2ℓ+1(ℓ − 1) · · · ,

A2 = S3(0)S4(1)S5(2) · · ·Sℓ+2(ℓ− 1)Sℓ+3(0)Sℓ+4(1) · · ·S2ℓ+2(ℓ− 1) · · · ,

...

Ai = Si+1(0)Si+2(1)Si+3(2) · · ·Si+ℓ(ℓ − 1)Si+ℓ+1(0)Si+ℓ+2(1) · · ·Si+2ℓ(ℓ − 1) · · ·

...

Ak = Sℓ+1(0)Sℓ+2(1)Sℓ+3(2) · · ·S2ℓ(ℓ− 1)S2ℓ+1(0) · · ·S3ℓ(ℓ− 1) · · ·

Example 2.

A1 = S2(0)S3(1) S6(0)S7(1) · · ·

A2 = S3(0)S4(1) S7(0)S8(1) · · ·

A3 = S4(0)S5(1) S8(0)S9(1) · · ·

A4 = S5(0)S6(1) S9(0)S10(1) · · ·
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Here Si(j) is the block of (dj(S)− ε)εm letters j taken from Si. So, in general,
the total number of elements in A1,. . . , Ak is at least m− 3|Σ|εm. Thus, kf(S) ≥
m− 3|Σ|εm.

To provide the lower bound on f(n, k,Σ) we proceed as in the proof of Theorem
1 by first finding a regular partition of a given word and then applying the above
construction to regular factors with an appropriate choice of ε. �

5. Large alphabets and small k-tuplets

Proof of Theorem 3. The proof of the lower bound proceeds by considering a scat-
tered word W consisting of the k most frequent letters. Clearly, |W | ≥ k

|Σ|n, which

together with Theorem 2 yields the lower bound.
The upper bound we obtain is either immediate from Theorem 1 or from com-

puting the expected number of k-tuplets of length m each in a random word of
length n over an alphabet Σ of size ℓ. If the expectation if less than 1, this means
that there is a word S with f(S, k) < m. Indeed, there are

1

k!

k−1
∏

i=0

(

n− im

m

)

distinct sets of k disjoint subwords each of length m in a word of length n. The
probability that such a set corresponds to a k-tuplet, when each letter is chosen
with probability 1/ℓ independently, is ℓ(1−k)m. Thus, the expected number of k-
tuplets is at most

ℓ(1−k)m
k−1
∏

i=0

(

n− im

m

)

= ℓ−(k−1)m n!

(m!)k(n− km)!
≤ ℓ−(k−1)m nn

mkm(n− km)n−km
,

that is, for m = αn, is at most

ℓ−(k−1)αn nn

(αn)kαn(n− kαn)n−kαn
=
(

ℓ−(k−1)αα−kα(1− kα)kα−1
)n

.

Thus, if ℓ−(k−1)αα−kα(1− kα)kα−1 is less than 1 then f(S, k) ≤ αn. In particular,
for k = 2 and ℓ = 5 one can compute that α < 0.49. �

6. Concluding Remarks

Σ\n 6 7 8 9 10 11 12 13 14 15 16 17
{0, 1} 2 2 2 3 3 4 4 5 5 5 6 6
{0, 1, 2} 1 1 2 2 2 3 3 3 4 4 4 4

Σ\n 18 19 20 21 22 23 24
{0, 1} 7 7 8
{0, 1, 2} ≤ 5 ≤ 6 ≤ 6 ≤ 7 ≤ 7 ≤ 8 ≤ 8

Table 1. Values for small t of f(t, 2, 2) and f(t, 2, 3).

6.1. Small values of f(n, k,Σ). We will slightly abuse notation and denote by
f(n, k, ℓ) the value of f(n, k,Σ) with |Σ| = ℓ. In the introductory section it was
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observed that f(3, 2, 2) = 1 yielding immediately a weak lower bound on f(n, 2, 2)
to be ⌊n/3⌋. In general, it holds clearly

f(n, k, ℓ) ≥
⌊

n
m

⌋

f(m, k, ℓ).

For example, we determined (Theorem 3) a lower bound on f(n, 2, 3) to be 1
3n−o(n).

We do not know whether it is tight and, more sadly, whether one can achieve it,
without o(n) term, by finding a (reasonable) number t such that f(t, 2, 3) ≥ t

3 . If

one could find such t this would immediately give another proof of f(n, 2, 3) ≥ 1
3n−

t. However, the smallest value for such possible t could be 21, which already presents
a computationally challenging task. In the tables above we summarize estimates on
the values on f(n, k, ℓ), which were determined with the help of a computer. Thus,
the first “open” case which might improve lower bound on f(n, 2, 3) is f(22, 2, 3).

6.2. Improving the O

(

|Σ|
(

log logn
log n

)1/4
)

n term. Further we remark, that a

more careful analysis below of the increment argument in the proof of Theorem 6

leads to the bound T0 ≤ t03
(−2 log ε)/ε3 , which in turn improves the bounds in

Theorems 1 and 2 to
(

1− C|Σ|

(

(log logn)2

logn

)1/3
)

n ≤ kf(n, k,Σ).

Recall that in the proof of Theorem 6 we set up an index and refining a cor-
responding partition each time we increase it by at least ε4. Let’s reconsider jth
refinement step at which the partition S = (S1, . . . , St0) is to be refined. Further
recall that I consists of the indices i such that Si is not ε-regular. Let αj be such
that

∑

i∈I

|Si| = αjn. (3)

In the original proof we iterate as long as αj ≥ ε holds. And by peforming an
iteration step we merely use the fact that αj ≥ ε which leads to ε4 increase of the
index during one iteration step. Recall that ind(S) was defined as follows:

ind(S) =
∑

q∈Σ

∑

j∈[|S|]

dq(Sj)
2 |Sj |

n
,

and for each further refinement S ′ 4 S it holds:

ind(S) ≤ ind(S ′) =
(1− αj)n

n
ind(S1)+

αjn

n
ind(S2) ≤

∑

q∈Σ

∑

j∈[|S|]\I

dq(Sj)
2 |Sj |

n
+αj ,

(4)
where S1 consists of ε-regular words from S(these words are not partitioned/refined
anymore) and S2 consists of not ε-regular words from S (and their lengths sum up
to αjn).

Let ℓ be the total number of iteration steps until we arrive at an ε-regular
partition. Let α1, . . . , αℓ be the numbers, where αjn is the sum over the lengths
of not ε-regular words in the partition at step j, j ∈ [ℓ] (cf.(3)).

By the discussion above

1 ≥ α1 ≥ α2 ≥ . . . ≥ αℓ ≥ ε.
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Next, we partition (ε, 1] into log2
1
ε consecutive intervals (yi+1, yi] where y1 = 1

and yi+1 = yi/2. We claim that each interval (yi+1, yi] contains at most 2
ε3 αjs.

Indeed, the increase of the index during step j where αj ∈ (yi+1, yi] is at least

αjε
3 > yi+1ε

3.

Further, let j′ be the smallest index such that αj′ ≤ yi and j′′ be the largest index
such that αj′′ > yi+1. Let indj be the index before the jth refinement step. Then
by (4) the following holds for j′ + 1 ≤ j ≤ j′′:

indj′+1 ≤ indj ≤ indj′′ ≤ indj′+1 + yi.

This implies that the number of αjs in the interval (yi+1, yi] cannot be bigger than

yi
yi+1ε3

=
2

ε3
.

Thus, we obtain the following upper bound on ℓ

ℓ ≤
2 log2

1
ε

ε3
,

which leads to T0 ≤ t03
(−2 log ε)/ε3 , n0 = t0ε

−(2 log 1/ε)/ε3 and thus we can regularize

with ε =
(

(log logn)2

log n

)1/3

.
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[6] W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3,
465–588. 1

[7] D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Communications of the ACM 18 (6) (1975), 341–343. 1
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[12] E. Szemerédi, Regular partitions of graphs. (Colloq. Internat. CNRS, Univ. Orsay, Orsay,
1976), pp. 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978. 1

[13] X. Xia, Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Pro-
teomics and Transcriptomics. New York: Springer, 2007. 1



A REGULARITY LEMMA AND TWINS IN WORDS 11

Iowa State University, Ames, U.S.A. and Karlsruher Institut für Technologie, Karl-

sruhe, Germany

E-mail address: maria.aksenovich@kit.edu

Freie Universität Berlin, Institut für Mathematik, Berlin, Germany

E-mail address: person@math.fu-berlin.de

University of Turku, Turku, Finland, and Sobolev Institute of Mathematics, Novosi-

birsk, Russia

E-mail address: svepuz@utu.fi


	1. Introduction
	2. Definitions and Regularity Lemma for Words
	3. Proof of Theorem twins.
	4. k-tuplets over alphabet of at most k letters
	5. Large alphabets and small k-tuplets
	6. Concluding Remarks
	6.1. Small values of f(n,k,Sigma)
	6.2. Improving the o(n) term

	Acknowledgements
	References

