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Abstract

We prove a formal power series identity, relating the arithmetic sum-of-divisors function to

commuting triples of permutations. This establishes a conjecture of Franklin T. Adams-Watters.
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A formal identity involving

commuting triples of permutations

John R. Britnell

The object of this note is to establish the following formal identity:

∞
∏

j=1

(

1− uj
)−σ(j)

=

∞
∑

n=0

T (n)

n!
un, (1)

where σ is the arithmetic sum-of-divisors function, and T (n) is the number of triples of pairwise-

commuting elements of the symmetric group Sn. (Here S0 is the trivial group.) This is a

surprising fact, as there seems no obvious reason for any connection between the function σ

and commuting permutations.

The power series expansion of the left-hand side of this identity has coefficients which are

listed on the Online Encyclopedia of Integer Sequences (OEIS) [3] as sequence A061256. The

coefficients on the right-hand side are listed as sequence A079860. The identity of the two

sequences has been stated conjecturally on OEIS. This conjecture (from 2006) is due to Franklin

T. Adams-Watters; he informs me that it was based empirically on the numerical evidence.

For a finite group G, we shall write k(G) for the number of conjugacy classes of G. The

following simple fact seems first to have been stated by Erdős and Turán [1].

Lemma 1. The number of pairs of commuting elements of G is |G| k(G).

Let g ∈ G. It follows from Lemma 1 that the number of commuting triples of G whose first

element is g, is given by |CentG(g)| k(CentG(g)). So if T (G) is the total number of commuting

triples, then

T (G)

|G|
=

∑

g∈G

|CentG(g))|

|G|
k(CentG(g)) =

r
∑

i=1

k(CentG(gi)), (2)

where {g1, . . . , gr} is a set of conjugacy class representatives for G.

In the case that G is the symmetric group Sn, the conjugacy classes are parameterized by

partitions of n, whose parts correspond to cycle lengths. Let g ∈ Sn have mt cycles of length t
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for all t. Then the centralizer of g in Sn is given (up to isomorphism) by

CentSn
(g) ∼=

n
∏

t=1

W (t,mt),

where W (t,m) is the wreath product Zt ≀ Sm. (Here Zt is used as a shorthand for Z/tZ, the

integers modulo t.) It follows that

k(CentSn
(g)) =

n
∏

t=1

k(W (t,mt)). (3)

We may regard an element of W (t,m) as a pair (A, e), where A ∈ Zt
m and e ∈ Sm. There

is a natural action of Sm on the coordinates of Zt
m given by (Be)i = Bie−1 . The group

multiplication ∗ in W (t,m) is defined by

(A, e) ∗ (B, f) = (A+Be, ef).

Conjugacy in groups of the form H ≀ Sm is described in [2, Section 4.2]; the case that H = Zt

is relatively straightforward. Let (A, e) be an element of W (t,m), where A = (a1, . . . , am).

Let c be a cycle of the permutation e, and let supp(c) be the support of c (i.e. the elements

of {1, . . . ,m} moved by c). We shall write |c| for |supp(c)|, the length of the cycle. Define the

cycle sum A[c] ∈ Zt by

A[c] =
∑

i∈supp(c)

ai.

The cycle sum invariant of (A, e) corresponding to the cycle c is defined to be the pair (A[c], |c|).

The element (A, e) has one such invariant for each cycle of e.

Lemma 2. Two elements (A, e) and (B, f) of W (t,m) are conjugate in W (t,m) if and only

if they have the same cycle sum invariants—that is, if and only if there is a bijection τ between

the cycles of e and the cycles of f , such that for any cycle c of e we have (A[c], |c|) = (B[cτ ], |cτ |).

Proof. See [2, Theorem 4.2.8], of which this is a particular case.

Let (A, e) be an element ofW (t,m). For each z ∈ Zt we define λz to be the partition such that

the multiplicity of ℓ as a part of λz is equal to the multiplicity of (z, ℓ) as a cycle sum invariant

of (A, e). Lemma 2 tells us that the partitions λz for z ∈ Zt determine the conjugacy class of

(A, e) in W (t,m). Conversely, a collection of t arbitrary partitions {λz | z ∈ Zt} determines a

conjugacy class of W (t,m) if and only if the total sum of the sizes of the partitions λz is equal

to m.

Let p(d) denote the number of partitions of d, and let P (u) be the power series

P (u) =

∞
∑

d=0

p(d)ud.
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Consider the formal series

Q(u) =
∞
∏

t=1

P (ut)t.

From the discussion above, it is easily seen that each monomial term of degree tm in the

expansion of P (ut)t corresponds to a conjugacy class of W (t,m), and that we therefore have

P (ut)t =
∞
∑

m=0

k(W (t,m))utm.

Now any single term in the expansion of Q(u) corresponds to a choice, firstly of parameters mt

such that
∑

t tmt is finite, and secondly of a conjugacy class of W (t,mt) for each t. It follows

from (3) that each term of degree n in this expansion corresponds to a conjugacy class of

CentSn
(g), where g is an element of Sn with mt cycles of length t. Now by (2) we have the

formal identity

Q(u) =

∞
∑

n=0

T (n)

n!
un.

Thus Q(u) is equal to the right-hand side of (1), and it remains only to show that Q(u) is also

equal to the left-hand side.

We use the Eulerian expansion of P (u),

P (u) =

∞
∏

s=1

(1− us)−1.

From this it follows that

Q(u) =
∞
∏

t=1

∞
∏

s=1

(1− ust)−t =
∞
∏

j=1

∏

t|j

(1 − uj)−t =
∞
∏

j=1

(1− uj)−σ(j),

as required.

Finally, I am indebted to Mark Wildon for the observation that both sides of (1) are

convergent in the open unit disc |u| < 1, and that they therefore represent a complex function

which is analytic in this disc. This can be seen by expressing the formal logarithm of the

left-hand side of (1) as

∞
∑

j=1

∞
∑

k=1

σ(j)

k
ujk =

∞
∑

d=1





∑

a|d

aσ(a)

d



 ud,

which has radius of convergence 1, since clearly

∑

a|d

aσ(a) < d4.

Thus the left-hand side of (1) represents an analytic function on the disc |u| < 1, and it follows

that the right-hand side is the Taylor series of that function. An immediate consequence of

this observation is that the growth of T (n)/n! is subexponential; I do not know of an easy

combinatorial proof of this fact.
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