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THREE-CLASS ASSOCIATION SCHEMES FROM CYCLOTOMY

TAO FENG AND KOJI MOMIHARA

Abstract. We give three constructions of three-class association schemes as fusion schemes of the
cyclotomic scheme, two of which are primitive.

1. Introduction

Association schemes form a central part of algebraic combinatorics, and plays important roles in
several branches of mathematics, such as coding theory and graph theory. Two-class symmetric
association schemes are equivalent to strongly regular graphs, and are extensively studied. The
natural graph theoretical extension of strongly regular graph is distance regular graph, whose distance
relations form an association scheme. Distance regular graphs have attracted considerable attention,
and important progress has been achieved on this topic. We refer the reader to the book [7] and
the undergoing survey [12]. There are not so many papers about three-class association schemes,
see the survey [11] by van Dam and the references therein. It is the purpose of this note to present
new constructions of primitive three-class association schemes using cyclotomy in finite fields. As
consequences, we obtain three new infinite families of three-class association schemes, two of which
are primitive.

Quite recently, there have been several constructions of strongly regular graphs with new param-
eters and skew Hadamard difference sets from cyclotomy, the latter giving rise to two-class nonsym-
metric association schemes, see [16, 18, 20, 23] for strongly regular graphs and [9, 17, 18, 24] for skew
Hadamard difference sets. In [27], the authors discussed the problem when a Cayley graph on a finite
field with a single cyclotomic class as its connection set can form a strongly regular graph. Such
a strongly regular graph is called cyclotomic. They raised the following conjecture: if the Cayley
graph on the finite field Fq of order q = pf with a multiplicative subgroup C of index M of Fq as its
connection set is cyclotomic strongly regular, then either of the following holds:

(1) (subfield case) C is the multiplicative group of a subfield of Fq,
(2) (semi-primitive case) −1 ∈ 〈p〉 ≤ Z∗

M ,
(3) (exceptional case) it is either of eleven sporadic examples of cyclotomic strongly regular graphs

(see [27, Table 1]).

This conjecture is still open but the authors gave a proof in a partial case assuming the generalized
Riemann hypothesis. On the other hand, in [16, 18, 20, 24], several of these sporadic examples
have been generalized into infinite families by taking a union of several cyclotomic classes and doing
detailed computations using Gauss sums. For other constructions of strongly regular graphs from
cyclotomy, we refer the reader to the references in [18].

Also, recently, skew Hadamard difference sets are currently under intensive study. There was a
major conjecture in this area: Up to equivalence the Paley (quadratic residue) difference sets are the
only skew Hadamard difference sets in abelian groups. This conjecture turned out to be false: Ding
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and Yuan [14] gave two counterexamples of this conjecture in finite fields with characteristic three.
Furthermore, Muzychuk [26] constructed infinitely many inequivalent skew Hadamard difference
sets in elementary abelian groups of order q3. Recently, in [9, 17, 18, 24], the authors constructed
further counterexamples of this conjecture by taking suitably a union of cyclotomic classes. See the
introduction of [17] (or [9]) for a short survey on skew Hadamard difference sets.

Thus, a lot of strongly regular graphs and skew Hadamard difference sets have been obtained from
cyclotomy. Therefore, we can say that the cyclotomy is a quite powerful tool to construct two-class
association schemes. In this note, we shall try to construct three-class association schemes from
cyclotomy involving computations of Gauss sums based on the Hasse-Davenport theorem.

This note is organized as follows: In Section 2, we review about association schemes and characters
of finite fields. In Section 3, we introduce a partition of ZM , and compute some group ring elements in
Z[ZM ] based on the results in [1]. In Section 4, we give three constructions of three-class association
schemes in finite fields with characteristic 2 as fusion schemes of the cyclotomic schemes. The
parameters of association schemes obtained in Section 4 are listed in the appendix. We shall use the
standard notations on group rings as can be found in the book [6].

2. Preliminaries

Let X be a nonempty finite set, and a set of symmetric relations R0, R1, · · · , Rd be a partition of
X ×X such that R0 = {(x, x)|x ∈ X}. Denote by Ai the adjacency matrix of Ri for each i, whose
(x, y)-th entry is 1 if (x, y) ∈ Ri and 0 otherwise. We call (X, {Ri}

d
i=0) a d-class association scheme

if there exist numbers pki,j such that

AiAj =
d
∑

k=0

pki,jAk.

These numbers are called the intersection numbers of the scheme. The C-linear span of A0, A1, · · · , Ad

forms a semisimple algebra of dimension d+ 1, called the Bose-Mesner algebra of the scheme. With
respect to the basis A0, A1, · · · , Ad, the matrix of the multiplication by Ai is denoted by Bi, namely

Ai(A0, A1, · · · , Ad) = (A0, A1, · · · , Ad)Bi, 0 ≤ i ≤ d.

Since each Ai is symmetric, this algebra is commutative. There exists a set of minimal idempotents
E0, E1, · · · , Ed which also forms a basis of the algebra. The (d+ 1)× (d+ 1) matrix P such that

(A0, A1, · · · , Ad) = (E0, E1, · · · , Ed)P

is called the first eigenmatrix of the scheme. Dually, the (d+ 1)× (d+ 1) matrix Q such that

(E0, E1, · · · , Ed) =
1

|X|
(A0, A1, · · · , Ad)Q

is called the second eigenmatrix of the scheme. We clearly have PQ = |X|I.

We call an association scheme (X, {Ri}
d
i=0) a translation association scheme or a Schur ring if X

is a (additively written) finite abelian group and there exists a partition S0 = {0}, S1, · · · , Sd of X
such that

Ri = {(x, x+ y)| x ∈ X, y ∈ Si}.

For brevity, we will just say that (X, {Si}
d
i=0) is an association scheme.

Assume that (X, {Si}
d
i=0) is a translation association scheme. There is an equivalence relation

defined on the character group X̂ of X as follows: χ ∼ χ′ if and only if χ(Si) = χ′(Si) for each

0 ≤ i ≤ d. Here χ(S) =
∑

g∈S χ(g), for any χ ∈ X̂ , and S ⊆ X . Denote by D0, D1, · · · , Dd the

equivalence classes, with D0 consisting of only the principal character. Then (X̂, {Di}
d
i=0) forms a

translation association scheme, called the dual of (X, {Si}
d
i=0). The first eigenmatrix of the dual

scheme is equal to the second eigenmatrix of the original scheme. Please refer to [4] and [7] for more
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details.

A classical example of translation schemes is the cyclotomic scheme which we describe now. Let
p be a prime and q = pf (f ≥ 1) be a prime power, M |q − 1, and γ be a primitive element of the

finite field F = Fq. Define the multiplicative subgroup C
(M,F )
0 = 〈γM〉. Its cosets C

(M,F )
i = γiC

(M,F )
0 ,

0 ≤ i ≤ M − 1, are called the cyclotomic classes of order M of F . Together with {0}, they form an
M-class association scheme, which is called the cyclotomic scheme. To describe its first eigenmatrix,
we define the Gauss periods

ηa =
∑

x∈C
(M,F )
a

ψ(x), 0 ≤ a ≤M − 1,

where ψ is the canonical additive character of F defined by ψ(x) = e
2πi
p

Tr(x), x ∈ F . The first
eigenmatrix P of the scheme is

P =













1 q−1
M

q−1
M

q−1
M

· · · q−1
M

1 η0 η1 η2 · · · ηM−1

1 η1 η2 η3 · · · η0
...
1 ηM−1 η0 η1 · · · ηM−2













. (2.1)

For each multiplicative character χ of F ∗
q , the multiplicative group of F , we define the Gauss sum

GF (χ) =
∑

x∈F ∗

ψ(x)χ(x).

The following relation will be repeatedly used in this paper (cf. [22, P. 195]):

ψ(x) =
1

q − 1

∑

χ∈F̂ ∗

GF (χ)χ
−1(x), ∀ x ∈ F ∗.

Then, the Gauss period can be expressed as a linear combination of Gauss sums as follows:

ηi = ψ(γiC
(M,F )
0 )

=
1

q − 1

∑

χ∈F̂ ∗

GF (χ)χ
−1(γi)

∑

x∈C
(M,F )
0

χ−1(x)

=
1

M

M−1
∑

i=0

GF (φ
−i)φ(γi),

where φ is a multiplicative character of order M of F ∗.

In this note, we are interested in the fusion schemes of the cyclotomic scheme, namely schemes
whose relations are unions of the relations in the cyclotomic scheme. We shall need the following
well-known criterion due to Bannai [3] and Muzychuk [25], called the Bannai-Muzychuk criterion:
Let P be the first eigenmatrix of an association scheme (X, {Ri}0≤i≤d), and Λ0 := {0},Λ1, . . . ,Λd′ be
a partition of {0, 1, . . . , d}. Then (X, {RΛi

}0≤i≤d′) forms an association scheme if and only if there
exists a partition {∆i}0≤i≤d′ of {0, 1, 2, . . . , d} with ∆0 = {0} such that each (∆i,Λj)-block of P has
a constant row sum. Moreover, the constant row sum of the (∆i,Λj)-block is the (i, j)-th entry of the
first eigenmatrix of the fusion scheme.

We close this section by recording the well-known Hasse-Davenport theorem on Gauss sums.
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Theorem 1. ([2, Theorem 11.5.2]) Let χ be a nonprincipal multiplicative character of Fq = Fpf and
let χ′ be the lifted character of χ to the extension field Fq′ = Fpfs, i.e., χ

′(α) := χ(NormFq′/Fq
(α)) for

any α ∈ F
∗
q′. Then, it holds that

GFq′
(χ′) = (−1)s−1(GFq

(χ))s.

3. A partition of ZM , M = 23s−1
2s−1

Let s be a positive integer, and set M := 23s−1
2s−1

. Denote by F := F23s , E := F2s the finite field

with 23s and 2s elements respectively. Let

D := {u ∈ F ∗ : TrF/E(u
−1) = 0}. (3.1)

This set D is E∗-invariant, namely Dg = {dg : d ∈ D} = D for any g ∈ E∗. Therefore ψ(ωaD)
depends only on a (mod M). First, we show that ψ(ωaD), 0 ≤ a ≤M−1, take exactly three values.
Since D is a union of E∗ cosets, we have

ψ(ωaD) =
1

2s − 1

∑

u∈D

∑

x∈E∗

ψ(xωau)

= #{u : u ∈ D, TrF/E(ω
au) = 0} −

1

2s − 1
#{u : u ∈ D, TrF/E(ω

au) 6= 0}

= −(2s + 1) +
2s

2s − 1
#{u : u ∈ D, TrF/E(ω

au) = 0}.

It is clear that u
23s−1
2s−1 TrF/E(u

−1) = TrF/E(u
1+2s), so

D = {u ∈ F ∗ : TrF/E(u
1+2s) = 0}.

Since Q(x) = TrL/F (x
1+2s) is a nondegenerate quadratic form, the corresponding quadric Q in

PG(2, 2s) intersects 2s + 1 lines in 1 point, and 22s−1 + 2s−1 lines in 2 points [19]. According to [1,
p. 328], the tangent lines are given by

La = {[x] : x ∈ F ∗, TrF/E(ax) = 0}

with TrF/E(a) = 0, a 6= 0. Here we use [x] for the projective point corresponding to the 1-dimensional
subspace spanned by x for each x ∈ F ∗.

Therefore, the set
Sa := {u : TrF/E(u

1+2s) = 0, TrF/E(ω
au) = 0}

has size 0, 2s − 1 or 2(2s− 1), depending on whether Lwa is a passant line, a tangent line or a secant
line. Denote by T1 (resp. T2) those a in ZM such that Sa has size 2s − 1 (resp. 2(2s − 1)). Then
|T1| = 2s +1, |T2| = 22s−1 +2s−1. Denote by T3 the remaining elements of ZM other than T1 and T2.
We have |T3| = 22s−1 − 2s−1. To sum up, we have the following result.

Lemma 2. The sums ψ(ωaD), 0 ≤ a ≤ M − 1, take exactly three values, which are

ψ(ωaD) =











−1 if a ∈ T1,

2s − 1 if a ∈ T2,

−2s − 1 if a ∈ T3.

The sets T1, T2 and T3 form a partition of ZM . We now prove the following lemma, which is
essential for our construction.

Lemma 3. With the above notations, we have

(T2 − T3)T
(−1)
1 = 2sT1, (3.2)

(T2 − T3)T
(−1)
2 = 22s−1 + 2s−1(ZM − T1), (3.3)

(T2 − T3)T
(−1)
3 = −22s−1 + 2s−1(ZM − T1). (3.4)
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Proof: First we recall from [1, p. 327] that

T1 = {i ∈ ZM : TrF/E(w
i) = 0}

by examining the tangent lines of the quadric Q. It is clear that T1 is the classical Singer difference
set in ZM , so it holds in the group ring Z[ZM ] that (see [6])

T1T
(−1)
1 = 2s + ZM . (3.5)

Moreover, we observe that {2i : i ∈ T1} is equal to T1 by the definition of T1.
We first show that

T 2
1 = T1 + 2T2.

For any i, j ∈ T1, the line

Lωi+j := {[x] : x ∈ F ∗, TrF/E(ω
i+jx) = 0}

intersects the quadric Q at the points [ω−i] and [ω−j], since the set of equations

TrF/E(X
−1) = 0, TrF/E(ω

i+jX) = 0

has the solutions X = ω−i, X = ω−j. It follows that if i, j are two distinct elements in ZM , then
these two points are distinct and Lwi+j is a secant line. Together with {2i : i ∈ T1} = T1, we
conclude that in T 2

1 , each element of T1 has coefficient 1, each element of T3 has coefficient 0, and
each element of T2 has even coefficient. Now write di for the coefficients of i in T 2

1 for each i ∈ ZM .

By direct computation, we have (T1T
(−1)
1 )2 = 22s + (22s +3 · 2s +1)ZM . Examining the coefficient of

the identity on both sides of the equation, we get

|T1| · 1
2 +

∑

i∈T2

d2i = 22s+1 + 3 · 2s + 1,

which yields
∑

i∈T2
d2i = 4|T2|. Also, we have

∑

i∈T2
di = |T1|

2 − |T1| = 2|T2|. Since di/2 is a
nonnegative integer for each i ∈ T2, and

∑

i∈T2

(

di
2

)2

= |T2|,
∑

i∈T2

(

di
2

)

= |T2|,

we immediately get di = 2 for any i ∈ T2.

We have T1+2T2 = ZM+(T2−T3), T
(−1)
1 ZM = (2s+1)ZM . Multiplying both sides of T 2

1 = T1+2T2
with T

(−1)
1 , we get

T1 · (2
s + ZM) = (2s + 1)ZM + (T2 − T3)T

(−1)
1 .

The Eqn. (3.2) then follows.
Since T1 + T2 + T3 = ZM , Eqn. (3.2) yields that (T2 − T3)(ZM − T2 − T3)

(−1) = 2sT1. On the other
hand, (T2 − T3)(T2 − T3)

(−1) = 22s by [1, p. 328]. Combining these equations, we get Eqn. (3.3) and
Eqn. (3.4). �

Remark 4. We deduce from Eqn. (3.2), Eqn. (3.5) and T1 + T2 + T3 = ZM that

T1T
(−1)
2 = 2s−1T

(−1)
1 + 2s−1

ZM − 2s−1, (3.6)

T1T
(−1)
3 = −2s−1T

(−1)
1 + 2s−1

ZM − 2s−1. (3.7)

The following equations then follow from direct computations:

T 2
1 T

(−1)
1 = 2sT1 + (2s + 1)ZM , (3.8)

T 2
1 T

(−1)
2 = 22s−1 + (2s−1 + 22s−1)ZM − 2s−1T1, (3.9)

T 2
1 T

(−1)
3 = −22s−1 + 22s−1

ZM − 2s−1T1. (3.10)
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Table 1. The values of ψ(ωaRk)’s

R0 R1 R2 R3

ωa = 0 1 22s − 1 2s−1(22s − 1) 2s−1(2s − 1)2

a = 0 1 22s − 1 −2s−1(2s + 1) −2s−1(2s − 1)
a ∈ −T1 1 −1 2s−1(2s − 1) −2s−1(2s − 1)

a 6∈ −T1 ∪ {0} 1 −1 −2s−1 2s−1

4. Three-Class Association Schemes in F23s and Their Extensions to F26s and F29s

We fix the following notations throughout this section: Let s be a positive integer, M = 23s−1
2s−1

,
and let T1, T2, T3 be as introduced in the previous section. We define

H := F29s , G := F26s , F := F23s , E := F2s .

Let C
(M,F )
i , C

(M,G)
i , C

(M,H)
i , 0 ≤ i ≤ M − 1, be the cyclotomic classes of order M in F , G, H

respectively. Clearly C
(M,F )
0 is equal to E∗, the multiplicative group of E. Let ψ, ψ′ ψ′′ be the

canonical additive character of H , G and F respectively. Also, write ηa, η
′
a, η

′′
a , 0 ≤ a ≤ M − 1 for

their Gauss periods respectively. Fix a primitive element β of H and a primitive element γ of G such
that NormH/F (β) = NormG/F (γ), where NormH/F and NormG/F is the norm from H to F and from
G to F respectively. Write

ω := NormH/F (β) = NormG/F (γ),

which is a primitive element of F .

4.1. Imprimitive Association Schemes in F23s. In this section, we construct an imprimitive
three-class association scheme in F23s . Now we prove the following theorem.

Theorem 5. Take the following partition of F :

R0 = {0}, R1 =
⋃

i∈T1

C
(M,F )
i , R2 =

⋃

i∈T2

C
(M,F )
i , R3 =

⋃

i∈T3

C
(M,F )
i .

Then, (F, {Ri}
3
i=0) is a three-class association scheme, whose parameters are listed in the appendix.

Proof of Theorem 5: As before, it is easily verified that ψ(ωaC
(M,F )
0 ) = 2s − 1 or −1 according to

TrF/E(ω
a) = 0 or not, i.e., a ∈ T1 or a 6∈ T1. Now, we compute that

ψ(ωaRk) =
∑

i∈Tk

ψ(ωa+iC
(M,F )
0 )

= (2s − 1)|T1 ∩ (a+ Tk)| − |(ZM \ T1) ∩ (a+ Tk)|

= 2s|T1 ∩ (a+ Tk)| − |Tk|.

The term |T1 ∩ (a+ Tk)| is the coefficient of a in the group ring element T1T
(−1)
k . We have computed

T1T
(−1)
k , 1 ≤ k ≤ 3, in Eqn. (3.5)-(3.7). For each k = 1, 2, 3, the sum ψ(ωaRk) is now computed

directly and listed in Table 1. By the Bannai-Muzychuk criterion, (F, {Ri}
3
i=0) is a three-class

association scheme. �

Remark 6. By the proof of Theorem 5, the dual scheme of the association scheme in Theorem 5 is
given by

D0 = {0}, D1 = C
(M,F )
0 , D2 = ∪i∈−T1C

(M,F )
i , D3 = ∪i∈ZM\(−T1∪{0})C

(M,F )
i .

This scheme is imprimitive since D0 ∪D1 = E. Their character values are listed in Table 2, which
we shall need later. Observe that D2 = D.
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Table 2. The values of ψ(ωaDk)’s

D0 D1 D2 D3

ωa = 0 1 2s − 1 22s − 1 23s − 22s − 2s + 1
a ∈ T1 1 2s − 1 −1 −2s + 1
a ∈ T2 1 −1 2s − 1 −2s + 1
a ∈ T3 1 −1 −2s − 1 2s + 1

4.2. Primitive Association Schemes in F26s and F29s. In this subsection, we construct primitive
association schemes in G = F26s and H = F29s .

Theorem 7. (i) Take the following partition of G:

R′
0 = {0}, R′

1 =
⋃

i∈T1

C
(M,G)
i , R′

2 =
⋃

i∈T2

C
(M,G)
i , R′

3 =
⋃

i∈T3

C
(M,G)
i .

Then, (G, {R′
i}

3
i=0) is a three-class association scheme, whose parameters are listed in the appendix.

(ii) Take the following partition of H:

R′′
0 = {0}, R′′

1 =
⋃

i∈T1

C
(M,H)
i , R′′

2 =
⋃

i∈T2

C
(M,H)
i , R′′

3 =
⋃

i∈T3

C
(M,H)
i .

Then, (H, {R′′
i }

3
i=0) is a three-class association scheme, whose parameters are listed in the appendix.

Proof of Theorem 7 (i): For any χ′ of G such that χ′M = 1, there exists a character χ of F ∗ such
that

χ|E∗ = 1, χ′ = χ ◦ NormG/F .

We first compute the Gauss periods η′a = ψ′(γaC
(M,G)
0 ), 0 ≤ a ≤ M − 1. By the Hasse-Davenport

theorem and GF (χ) = 2s
∑

x∈T1
χ(γx) (see [15, Theorem 2.1] or [2, Lemma 12.0.2] for a proof), we

have

η′a =
1

M

M−1
∑

ℓ=0

GG(χ
′−ℓ)χ′ℓ(γa)

= −
1

M
+

−1

M

M−1
∑

ℓ=1

GF (χ
−ℓ)2χℓ(ωa)

= −
1

M
+

−2s

M

M−1
∑

ℓ=1

GF (χ
−ℓ)
∑

i∈T1

χℓ(ωa−i)

= −
1

M
+

−2s

M

(

M−1
∑

ℓ=0

GF (χ
−ℓ)
∑

i∈T1

χℓ(ωa−i) + 2s + 1

)

= −2sψ(ωaD)− 1,

where D is defined in (3.1). By Lemma 2, we obtain

η′a =











2s − 1 if a ∈ T1,

−22s + 2s − 1 if a ∈ T2,

22s + 2s − 1 if a ∈ T3.
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Table 3. The values of ψ(γaR′
k)’s

R′
0 R′

1 R′
2 R′

3

γa = 0 1 (22s − 1)(23s + 1) 2s−1(22s − 1)(23s + 1) 2s−1(2s − 1)2(23s + 1)
a = 0 1 22s − 1 2s−1(2s + 1)(−22s + 2s − 1) 2s−1(2s − 1)(22s + 2s − 1)
a ∈ T1 1 −23s + 22s − 1 2s−1(22s − 1) 2s−1(2s − 1)2

a 6∈ T1 ∪ {0} 1 22s − 1 −2s−1 2s−1(−2s+1 + 1)

Table 4. The values of ψ(γaD′
k)’s

D′
0 D′

1 D′
2 D′

3

γa = 0 1 (2s − 1)(23s + 1) (22s − 1)(23s + 1) (22s − 1)2(22s − 2s + 1)
a ∈ T1 1 2s − 1 −23s + 22s − 1 (2s − 1)2(2s + 1)
a ∈ T2 1 −22s + 2s − 1 22s − 1 −2s + 1
a ∈ T3 1 22s + 2s − 1 22s − 1 −(2s + 1)(2s+1 − 1)

Now, we compute that

ψ′(γaR′
k) =

∑

i∈Tk

ηa+i

= (2s − 1)|T1 ∩ a + Tk|+ (−22s + 2s − 1)|T2 ∩ a+ Tk|+ (22s + 2s − 1)|T3 ∩ a+ Tk|

= (2s − 1)|Tk| − 22s|T2 ∩ a+ Tk|+ 22s|T3 ∩ a+ Tk|.

Clearly, −22s|T2∩a+Tk|+22s|T3∩a+Tk| is the coefficient of a in the element −22s(T2−T3)T
(−1)
k . The

elements (T2 − T3)T
(−1)
k , k = 1, 2, 3, have been computed in Lemma 3. For each k = 1, 2, 3, the sum

ψ(ωaR′
k) follows directly and is listed in Table 3. By the Bannai-Muzychuk criterion, (G, {R′

i}
3
i=0) is

a three-class association scheme. �

Remark 8. By the proof of Theorem 7, the dual scheme of the association scheme in Theorem 5 is
given by

D′
0 = {0}, D′

1 = C
(M,G)
0 , D′

2 = ∪i∈T1C
(M,G)
i , D′

3 = ∪i∈(T2∪T3)\{0}C
(M,G)
i .

Their character values are listed in Table 4.

Next, we give a proof of the second statement of Theorem 7 (ii).
Proof of Theorem 7 (ii): For any multiplicative character χ′′ of H such that χ′′M = 1, there exists
a character χ of F ∗ such that

χ|E∗ = 1, χ′′ = χ ◦ NormH/F .

We first compute the Gauss periods η′′a = ψ′′(γaC
(M,H)
0 ), 0 ≤ a ≤ M − 1. By the Hasse-Davenport

theorem and GF (χ) = 2s
∑

i∈T1
χ(ωi), we have

η′′a = ψ′′(βaC
(M,H)
0 )

=
1

M

M−1
∑

ℓ=0

GH(χ
′′−ℓ)χ′′ℓ(βa)

= −
1

M
+

1

M

M−1
∑

ℓ=1

GF (χ
−ℓ)3χℓ(ωa)

=
−1 + 22s|T1|

2

M
+

22s

M

M−1
∑

ℓ=0

GF (χ
−ℓ)

∑

i,j∈T1

χℓ(ωa−i−j).



THREE-CLASS ASSOCIATION SCHEMES FROM CYCLOTOMY 9

Table 5. The values of ψ(βaR′′
k)’s

R′′
0 R′′

1 R′′
2 R′′

3

βa = 0 1 (22s − 1)(26s + 23s + 1) 2s−1(22s − 1)(26s + 23s + 1) 2s−1(2s − 1)2(26s + 23s + 1)
a ∈ T1 1 −23s + 22s − 1 2s−1(23s + 2s + 1)(2s − 1) −2s−1(2s − 1)(23s − 2s + 1)
a ∈ T2 1 (2s − 1)(23s + 2s + 1) −2s−1(23s+1 − 22s + 1) 2s−1(2s − 1)2

a ∈ T3 1 −(2s + 1)(23s − 2s + 1) 2s−1(22s − 1) 2s−1(23s+1 + 22s − 2s+1 + 1)

We have −1+22s|T1|2

M
= 22s + 2s − 1. In this case, η′′a , 0 ≤ a ≤ M − 1, take more than three values.

Therefore, using Eqn (3.8), we compute directly

ψ′′(βaR′′
1)− (22s + 2s − 1)|T1| =

22s

M

M−1
∑

ℓ=0

GF (χ
−ℓ)χℓ(ωa)

∑

i,j,k∈T1

χ−ℓ(ωi+j−k)

=
23s

M

M−1
∑

ℓ=0

GF (χ
−ℓ)
∑

i∈T1

χℓ(ω−i+a) +
22s(2s + 1)

M

M−1
∑

ℓ=0

GF (χ
−ℓ)

∑

i∈ZM

χℓ(ωi+a)

= 23sψ(ωaD)− 22s(2s + 1).

Recall that D = ∪i∈−T1C
(M,F )
i . It follows that

ψ′′(βaR′′
1) = 22s − 1 + 23sψ(ωaD).

By the character values of Lemma 2, we obtain

ψ′′(βaR′′
1) =











−23s + 22s − 1 if a ∈ T1,

23s(2s − 1) + 22s − 1 if a ∈ T2,

−(2s + 1)(23s − 2s + 1) if a ∈ T3.

In exactly the same way, using Eqn. (3.9) and (3.10) we can compute ψ′′(βaR′′
k) for k = 2, 3 directly.

We record the result in Table 5. By the Bannai-Muzychuk criterion, (H, {R′′
i }

3
i=0) is a three-class

association scheme, and the above is the first eigenmatrix of the association scheme; also, the scheme
is self-dual. �

5. Concluding Remarks

In this note, we gave three constructions of three-class association schemes from cyclotomy. In
general, one can obtain a three-class association scheme from a two-class association scheme (a
strongly regular Cayley graph) under a certain condition as follows: Let X be a (additively written)
finite abelian group and S be a subset of X \ {0} such that S = −S. Define R0 = {0}, R1 = S,
R2 = X∗ \ S. Assume that (X, {Ri}

2
i=0) forms a two-class association scheme, i.e., Cay(X,S) is

strongly regular. Let (X, {Di}
2
i=0) be the dual of (X, {Ri}

2
i=0), where we assume that R1 is contained

in D1. Define
R′

0 = {0}, R′
1 = R1, R

′
2 = D1 \R1, R

′
3 = D2.

Then, (X, {R′
i}

3
i=0) is a three-class association scheme. This construction is essentially given in [21,

Corollary 3.2].
Our three constructions of three-class association schemes given in this note are not included in

this construction. In fact, the association schemes of Theorems 5 and 7 (i) are not self-dual but
the association scheme obtained from the above construction is self-dual. Furthermore, neither of
the relations of the association scheme in Theorem 7 (ii) is strongly regular but two relations of the
association scheme from the above construction are strongly regular.

An interesting question that is worth looking into is: what is the relations between the principal
part of the first eigenmatrices of these three schemes we constructed? According to [5], the principal
parts of the first eigenmatrices of the underlying cyclotomic schemes of the same orderM satisfy the
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Hasse-Davenport property, namely, that of F26s (resp. F29s) is square (resp. cube) of that of F23s up
to a sign. This property seems to be lost after taking fusion using the index sets T1, T2 and T3. Our
schemes are interesting in that they can serve as examples to test such properties should there be
any.

Finally, we comment that the Gauss periods in consideration takes three values in F26s and more
in F29s . It seems pretty hard to consider the fusions of the cyclotomic scheme in comparison with
the case where the Gauss periods take only two values. Hopefully this will yield us more examples
of primitive association schemes with new parameters. We will look into this problem in the future
research.

Appendix: Parameters of the schemes

Throughout this appendix, we write q = 2s. In this appendix, we give computational results (by
Maple) for parameters of the three-class association schemes we constructed in the previous section.
The first and second eigenmatrices of the schemes have been obtained during the proofs.

(1) We have the following computational result for the scheme (F, {Ri}
3
i=0) of Theorem 5: Let

Ai and A′
i denote the adjacency matrices of Ri and Di respectively. With Ai(A0, A1, A2, A3) =

(A0, A1, A2, A3)Bi, we have

B1 =




0 q2 − 1 0 0
1 q2 − 2 0 0

0 0 1
2
q2 + 1

2
q − 1 1

2
q(q − 1)

0 0 1
2
q(q + 1) 1

2
(q − 2)(q + 1)


 ,

B2 =




0 0 1
2
q3 − 1

2
q 0

0 0 1
4
q(q2 + q − 2) 1

4
q2(q − 1)

1 1
2
q2 + 1

2
q − 1 1

4
(q2 + q − 6)q 1

4
(q2 − 3q + 2)q

0 1
2
q(q + 1) 1

4
(q − 2)q(q + 1) 1

4
(q − 2)q(q + 1)


 ,

B3 =




0 0 0 1
2
q3 − q2 + 1

2
q

0 0 1
4
q2(q − 1) 1

4
(q2 − 3q + 2)q

0 1
2
q(q − 1) 1

4
(q2 − 3q + 2)q 1

4
(q2 − 3q + 2)q

1 1
2
(q − 2)(q + 1) 1

4
(q − 2)q(q + 1) 1

4
q(q2 − 5q + 6)


 .

With A′
i(A

′
0, A

′
1, A

′
2, A

′
3) = (A′

0, A
′
1, A

′
2, A

′
3)Li, we have

L1 =




0 q − 1 0 0
1 q − 2 0 0
0 0 0 q − 1
0 0 1 q − 2


 ,

L2 =




0 0 q2 − 1 0
0 0 0 q2 − 1
1 0 q − 2 q(q − 1)
0 1 q −2 + q2 − q


 ,

L3 =




0 0 0 q3 − q2 − q + 1

0 0 q2 − 1 q3 − 2q2 − q + 2
0 q − 1 q(q − 1) q3 − 2q2 − q + 2
1 q − 2 −2 + q2 − q 4 + q3 − 2q2 − q


 .

(2) We have the following computational result for the scheme (G, {R′
i}

3
i=0) of Theorem 7 (i):

Let Ai and A
′
i denote the adjacency matrices of R′

i and D
′
i respectively. With Ai(A0, A1, A2, A3) =

(A0, A1, A2, A3)Bi, we have

B1 =




0 q5 + q2 − q3 − 1 0 0
1 −q3 + q2 + q4 − 2 q3(q2 − 1)/2 (q2 − 2q + 1)q3/2
0 (q − 1)q2(q + 1) (q − 1)(q4 + q3 − q2 + q + 2)/2 (q − 1)q(q3 − q2 − q + 1)/2
0 (q − 1)q2(q + 1) q(q3 − q2 − q + 1)(q + 1)/2 (q4 − 2− 3q3 + 3q2 + q)(q + 1)/2


 ,

B2 =




0 0 1
2
q6 − 1

2
q4 + 1

2
q3 − 1

2
q 0

0 1
2
q3(q2 − 1) 1

4
(q5 − 2q3 + 2q2 + q − 2)q 1

4
(−1 + q4 + 2q − 2q3)q2

1 1
2
(q − 1)(q4 + q3 − q2 + q + 2) 1

4
(q5 − 3q3 + 3q2 + q − 6)q 1

4
q(q4 − 2− q3 + 3q)(q − 1)

0 1
2
q(q3 − q2 − q + 1)(q + 1) 1

4
q(q4 − 2− q3 + 3q)(q + 1) 1

4
q(q4 − 2− 3q3 + 2q2 + q)(q + 1)


 ,

B3 =




0 0 0 −q2 + 1
2
q3 − q5 + 1

2
q + 1

2
q4 + 1

2
q6

0 1
2
(q2 − 2q + 1)q3 1

4
(−1 + q4 + 2q − 2q3)q2 1

4
(q5 − 4q4 + 6q3 − 2q2 − 3q + 2)q

0 1
2
(q − 1)q(q3 − q2 − q + 1) 1

4
q(q4 − 2− q3 + 3q)(q − 1) 1

4
q(q4 − 2− 3q3 + 2q2 + q)(q − 1)

1 1
2
(q4 − 2− 3q3 + 3q2 + q)(q + 1) 1

4
q(q4 − 2− 3q3 + 2q2 + q)(q + 1) 1

4
q(q5 + 6 + 7q3 − q2 − 4q4 − 11q)


 .
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With A′
i(A

′
0, A

′
1, A

′
2, A

′
3) = (A′

0, A
′
1, A

′
2, A

′
3)Li, we have

L1 =




0 q4 − q3 + q − 1 0 0
1 q2 − 2 q(q2 − 1) (q3 − 2q2 − q + 2)q
0 q(q − 1) q2(q − 1) (q3 − q2 − q + 1)(q − 1)
0 (q − 2)q q3 − q2 − q + 1 q4 − 2q3 + 4q − 2


 ,

L2 =




0 0 q5 + q2 − q3 − 1 0
0 q(q2 − 1) q2(q2 − 1) q5 − q4 − 2q3 + 2q2 + q − 1
1 q2(q − 1) −q3 + q2 + q4 − 2 q2(q − 1)(q2 − 1)
0 q3 − q2 − q + 1 q2(q2 − 1) q5 − q4 − 2q3 + 3q2 + q − 2


 ,

L3 =




0 0 0 q6 − q5 + 2q3 − q2 − q4 − q + 1
0 (q3 − 2q2 − q + 2)q q5 − q4 − 2q3 + 2q2 + q − 1 q6 − 2q5 − q4 + 6q3 − 2q2 − 4q + 2
0 (q3 − q2 − q + 1)(q − 1) q2(q − 1)(q2 − 1) (q − 1)(q5 − q4 − 2q3 + 3q2 + q − 2)
1 q4 − 2q3 + 4q − 2 q5 − q4 − 2q3 + 3q2 + q − 2 q6 − 2q5 − q4 + 6q3 − 4q2 − 6q + 4


 .

(3) We have the following computational result for the scheme (H, {R′′
i }

3
i=0) of Theorem 7 (ii): Let

Ai and A
′
i denote the adjacency matrices of R′′

i and D
′′
i respectively. Since this scheme is self dual, we

have Q = P (One can check directly that P 2 = q9I). With Ai(A0, A1, A2, A3) = (A0, A1, A2, A3)Bi,
we have

B1 =




0 q8 + q5 + q2 − q6 − q3 − 1 0 0

1 q7 − 2q5 + 2q4 − q3 + q2 − 2 1
2
(q5 − 2q3 + 2q2 − 1)q3 1

2
(q5 − 2q4 + 4q2 − 4q + 1)q3

0 (q5 − 2q3 + 2q2 − 1)q2 1
2
q8 − q6 + q5 + 1

2
q4 − 3

2
q3 + q2 + 1

2
q − 1 1

2
(q7 − 2q6 + 4q4 − 5q3 + q2 + 2q − 1)q

0 (q5 − 2q3 + 2q2 + 2q − 1)q2 1
2
(q7 − 2q5 + 2q4 + q3 − 3q2 + 1)q 1

2
q8 − q7 + 2q5 − 5

2
q4 − 3

2
q3 + 2q2 − 1

2
q − 1


 ,

B2 =




0 0 − 1
2
q − 1

2
q4 + 1

2
q3 + 1

2
q6 − 1

2
q7 + 1

2
q9 0

0 1
2
(q5 − 2q3 + 2q2 − 1)q3 1

4
(q8 − 2q6 + 2q5 + q4 − 3q3 + 2q2 + q − 2)q 1

4
(q7 − 2q6 + 4q4 − 5q3 + q2 + 2q − 1)q2

1 1
2
q8 − q6 + q5 + 1

2
q4 − 3

2
q3 + q2 + 1

2
q − 1 1

4
(q8 − 2q6 + 2q5 + 2q4 − 7q3 + 5q2 + q − 6)q 1

4
(q8 − 2q7 + 4q5 − 6q4 + 3q3 + 3q2 − 5q + 2)q

0 1
2
(q7 − 2q5 + 2q4 + q3 − 3q2 + 1)q 1

4
(q8 − 2q6 + 2q5 − 3q3 + 3q2 + q − 2)q 1

4
(q8 − 2q7 + 4q5 − 4q4 − q3 + 5q2 − q − 2)q


 ,

B3 =



0 0 0 1
2
q − q2 + 1

2
q4 + 1

2
q3 − q5 + 1

2
q6 − q8 + 1

2
q7 + 1

2
q9

0 1
2
(q5 − 2q4 + 4q2 − 4q + 1)q3 1

4
(q7 − 2q6 + 4q4 − 5q3 + q2 + 2q − 1)q2 1

4
(q8 − 4q7 + 6q6 − 2q5 − 7q4 + 9q3 − 2q2 − 3q + 2)q

0 1
2
(q7 − 2q6 + 4q4 − 5q3 + q2 + 2q − 1)q 1

4
(q8 − 2q7 + 4q5 − 6q4 + 3q3 + 3q2 − 5q + 2)q 1

4
(q8 − 4q7 + 6q6 − 2q5 − 6q4 + 9q3 − 3q2 − 3q + 2)q

1 1
2
q8 − q7 + 2q5 − 5

2
q4 − 3

2
q3 + 2q2 − 1

2
q − 1 1

4
(q8 − 2q7 + 4q5 − 4q4 − q3 + 5q2 − q − 2)q 1

4
(q8 − 4q7 + 6q6 − 2q5 − 8q4 + 13q3 + 3q2 − 11q + 6)q


 .

In this case, we have Ai = A′
i and Bi = Li for 0 ≤ i ≤ 3.

References

[1] K.T. Arasu, J.F. Dillon, D. Jungnickel, A. Pott, The solutions of the Waterloo problem, J. Combin. Theory,

Ser. A, 71 (1995), 316–331.
[2] B. Berndt, R. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, 1997.
[3] E. Bannai, Subschemes of some association schemes, J. Algebra, 144 (1991), 167–188.
[4] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
[5] E. Bannai, A. Munemasa, Davenport-Hasse Theorem and cyclotomic association schemes, report of the confer-

ence “Algebraic Combinatorics” (held at Hirosaki Univ.), (1990), available at
http://www.math.is.tohoku.ac.jp/~ munemasa/documents/hirosaki.pdf

[6] T. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge: Cambridge University Press, 1999.
[7] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Heidelberg, 1989.
[8] R. Calderbank, W.M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97–122.
[9] Y.Q. Chen, T. Feng, Paley type group schemes from cyclotomic classes and Arasu-Dillon-Player difference sets,

arXiv:1210.2801.
[10] E.R. van Dam, Regular graphs with four eigenvalues, Linear Alg. Appl., 226 (1995), 139–162.
[11] E.R. van Dam, Three-class association schemes, J. Alg. Combin., 10 (1999), 69–107.
[12] E.R. van Dam, J.H. Koolen, H. Tanaka, Distance-regular graphs, manuscript, (2012), available online at

https://sites.google.com/site/edwinrvandam/home/papers/drg.pdf

[13] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts Suppl., No. 10,
1973.

[14] C. Ding, J. Yuan, A family of skew Hadamard difference sets, J. Combin. Theory, Ser. A, 113 (2006), 1526–1535.
[15] R. Evans, H. Hollmann, C. Krattenthaler, Q. Xiang, Gauss sums, Jacobi sums, and p-rank of cyclic difference

sets, J. Combin. Theory, Ser. A, 87 (1999), 74–119.
[16] T. Feng, Q. Xiang, Strongly regular graphs from union of cyclotomic classes, J. Combin. Theory (B), 102 (2012),

982–995.

http://www.math.is.tohoku.ac.jp/~
http://arxiv.org/abs/1210.2801


12 TAO FENG AND KOJI MOMIHARA

[17] T. Feng, Q. Xiang, Cyclotomic constructions of skew Hadamard difference sets, J. Combin. Theory (A), 119
(2012), 245–256.

[18] T. Feng, K. Momihara, Q. Xiang, Constructions of strongly regular Cayley graphs and skew Hadamard difference
sets from cyclotomic classes, arXiv:1201.0701.

[19] R.A. Games, The geometry of quadrics and correlations of sequences, IEEE Trans. Inform. Theory, 32 (1986),
423–426.

[20] G. Ge, Q. Xiang, T. Yuan, Construction of strongly regular Cayley graphs using index four Gauss sums, J. Alg.
Combin., to appear.

[21] T. Ikuta, A. Munemasa, Pseudocyclic association schemes and strongly regular graphs, Europ. J. Combin., 31

(2010), 1513–1519.
[22] R. Lidl, H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
[23] K. Momihara, Cyclotomic strongly regular graphs, skew Hadamard difference sets, and rationality of relative

Gauss sums, Europ. J. Combin., to appear.
[24] K. Momihara, Skew Hadamard difference sets from cyclotomic strongly regular graphs, arXiv:1207.2197v3.
[25] M.E. Muzychuk, V -rings of permutation groups with invariant metric, Ph.D. thesis, Kiev State University, 1987.
[26] M.E. Muzychuk, On skew Hadamard difference sets, arXiv:1012.2089.
[27] B. Schmidt, C. White, All two-weight irreducible cyclic codes?, Finite Fields Appl., 8 (2002), 1–17.

http://arxiv.org/abs/1201.0701
http://arxiv.org/abs/1207.2197
http://arxiv.org/abs/1012.2089

	1. Introduction
	2. Preliminaries
	3. A partition of ZM, M=23s-12s-1
	4. Three-Class Association Schemes in F23s and Their Extensions to F26s and F29s
	4.1. Imprimitive Association Schemes in F23s
	4.2. Primitive Association Schemes in F26s and F29s

	5. Concluding Remarks
	Appendix: Parameters of the schemes
	References

