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Abstract

The notion of (3 + 1)-avoidance has shown up in many places in enumerative com-
binatorics, but the natural goal of enumerating all (3 + 1)-avoiding posets remains
open. In this paper, we enumerate graded (3 + 1)-avoiding posets for both reasonable
definitions of the word “graded.” Our proof consists of a number of structural theorems
followed by some generating function computations. We also provide asymptotics for
the growth rate of the number of graded (3 + 1)-avoiding posets.
Keywords: posets, (3 + 1)-avoidance, generating functions, asymptotic enumeration

1 Introduction

The notion of (3 + 1)-avoiding posets appears in different different areas of combinatorics,
such as in the Stanley-Stembridge conjecture about the e-positivity of certain chromatic
symmetric functions [SS93] and the characterization of interval semiorders [Fis70]. Graph-
theoretically, (3 + 1)-avoiding posets are exactly those posets whose comparability graphs
are complements of claw-free graphs; as a result, they also are connected to a generalization
of the “birthday problem” [Fad].

Despite these connections, the enumeration of (3 + 1)-avoiding posets has remained elu-
sive. This is particularly bothersome because the enumeration of posets that are both
(2 + 2)- and (3 + 1)-avoiding, the interval semiorders, is well-understood: the number of
unlabeled n-element interval semiorders is exactly the Catalan number Cn [Fis70]. More-
over, (2 + 2)-avoiding posets have recently been enumerated, as well [BMCDK10]. Happily,
there has been some progress: Skandera [Ska01] has given a characterization of all (3 + 1)-
avoiding posets involving the square of the antiadjacency matrix and Atkinson, Sagan and
Vatter [ASV12] have recently characterized and enumerated (3 + 1)-avoiding permutations
(i.e., permutations whose associated posets are (3 + 1)-avoiding).

In this paper, we consider a related problem and enumerate graded (3 + 1)-avoiding
posets (for both common meanings of the word graded) via structural theorems and gener-
ating function computations. The property of gradedness is very natural and captures a lot
of the complexity of the general case while making the problem much more tractable. We
remark that a substantially easier problem is to enumerate (3 + 1)- and (2 + 2)-avoiding
graded posets, and that the solution may be found in work of the second-named author
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currently in preparation; labeled (3 + 1)- and (2 + 2)-avoiding strongly graded posets are

counted by the generating function 1 + ex(ex−1)(ex−2)
e2x−ex−1 .

In the rest of this introduction, we summarize our strategy and results. In Section 2, we
offer some definitions and notation that we will use throughout the paper. Then in Section 3,
we give a useful local condition that is equivalent to (3 + 1)-avoidance for graded posets.

The main ideas of the paper are in Section 4, where we introduce several operations that
allow us to decompose strongly graded (3 + 1)-avoiding posets into simpler objects. First, in
Section 4.1 we reduce our problem of obtaining the generating function for all graded (3 + 1)-
avoiding posets to studying certain posets we will call trimmed which are slightly simpler but
which capture most of the information of the original posets. Then, in Section 4.2, we show
that trimmed (3 + 1)-avoiding posets arise from taking ordinal sums of sum-indecomposable
(3 + 1)-avoiding posets. Finally, in Section 4.3 we introduce two more operations, gluing
and sticking. We show that sum-indecomposable (3 + 1)-avoiding posets arise from gluing
and sticking together basic units called quarks, which we enumerate in Section 5.

This line of argument culminates in Section 6, in which we backtrack and use the results
of the preceding sections and the transfer-matrix method to enumerate all strongly graded
(3 + 1)-avoiding posets. We end with some extensions of these techniques. In Section 7 we
use similar generating functional arguments to enumerate strongly graded (3 + 1)-avoiding
posets by height. We use this modified enumeration in Section 8 to enumerate (3 + 1)-
avoiding weakly graded posets. Finally, in Section 9, we use the generating functions com-
puted in Sections 6 and 8 to establish the asymptotic rate of growth of the number of graded
(3 + 1)-avoiding posets.

An extended abstract of this work appeared as [LZ12].
Note added in proof : In recent work [GPMR], Guay-Paquet, Morales and Rowland have

enumerated all (3 + 1)-avoiding posets using similar techniques.

2 Preliminaries

A partially ordered set, or poset for short, is a set with an irreflexive, antisymmetric
and transitive relation >. We say two elements a, b of a poset are comparable if a ≥ b
or b ≤ a. In this paper, we concern ourselves only with posets of finite cardinality. We say
that an element w covers an element v, denoted v <· w, if v < w and there is no z such
that v < z < w. Observe that the order relations of a finite poset follow by transitivity from
the cover relations; this allows us to graphically represent posets by showing only the cover
relations. The resulting graph is called the Hasse diagram of the poset.

A poset in which every pair of elements is comparable is called a chain, and a poset in
which every pair of elements is incomparable is called an antichain.

We say that four elements w, x, y, z in a poset P are a copy of 3 + 1 if we have that
x < y < z and w is incomparable to all of x, y, z. If P contains no copy of 3 + 1, we say
that P avoids 3 + 1.

Call a poset P weakly graded if there exists a rank function rk : P → N such that if
a <· b then rk(b) − rk(a) = 1 and such that the minimal occurring rank in each connected
component is 0. Call a weakly graded poset strongly graded if all minimal elements have
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Figure 1: Three posets: the first is strongly graded, the second is weakly graded but not
strongly graded, and the third is not weakly graded.

Figure 2: All weakly graded (3 + 1)-avoiding posets on four or fewer vertices. The doubled
line separates the strongly graded posets (on the left) from the others.

the same rank and all maximal elements have the same rank. (Equivalently, a poset is
strongly graded if all maximal chains in the poset have the same length; in this case the
rank function rk may be recovered by setting rk(v) to be the length of a longest chain whose
maximal element is v.) Figure 1 gives examples of posets with these properties. The height
of a weakly graded poset P is the number of vertices in a longest chain in P .

A weakly graded poset P of height k + 1 has rank sets P (0), P (1), . . . , P (k), where
P (i) = {v ∈ P | rk(v) = i}. If P is strongly graded, all the minimal elements are in P (0)
and all the maximal ones are in P (k).

Figure 2 shows all unlabeled weakly graded (3 + 1)-avoiding posets on four or fewer
vertices. Taking labelings into account, we see that for n = 1, 2, 3, and 4 the number of
weakly graded (3 + 1)-avoiding posets on n vertices is 1, 3, 19, and 195, respectively. Of
these, respectively 1, 3, 13 and 111 are strongly graded.

In this paper, we avoid the use of the unmodified word “graded” because of an ambiguity
in the literature: some sources (e.g., [Sta99]) use the word “graded” to mean “strongly
graded,” while many others (e.g., [Kla69]) use “graded” to mean “weakly graded.”

3 Local Conditions

In this section, we give a concise local condition which is equivalent to (3 + 1)-avoidance for
weakly graded posets.

Given a weakly graded poset P , call a vertex v ∈ P of rank i up-seeing if every vertex
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Figure 3: In the (weakly graded) poset pictured, the vertices labeled 1, 8, 4, 2 and 5 are
up-seeing and the vertices labeled 2, 3 and 5 are down-seeing. The vertices labeled 6 and 7
are neither up- nor down-seeing.

in P (i + 1) covers v. Similarly, call v down-seeing if v covers every vertex in P (i − 1).
Let V(i) be the set of up-seeing vertices of rank i and let Λ(i) be the set of all down-seeing
vertices of rank i. (As a mnemonic, think of v at the point of the V or Λ, with lots of edges
going respectively up or down in the Hasse diagram of the poset.) These definitions are
illustrated in Figure 3.

Call a vertex that is both up- and down-seeing an all-seeing vertex. Also, call a weakly
graded poset P vigilant if every vertex of P is up-seeing, down-seeing, or all-seeing. One key
consequence of our next result, Theorem 3.1, is that in our study of graded (3 + 1)-avoiding
posets it suffices to only consider vigilant posets.

Theorem 3.1. For a weakly graded poset P , the following are equivalent:

I. P is (3 + 1)-avoiding;

II. P is vigilant and every two vertices v, w such that rk(w)− rk(v) ≥ 2 are comparable;

III. P is vigilant and every two vertices v, w such that rk(w)− rk(v) = 2 are comparable.

Proof. It is clear that II implies III, so we will show that III implies II, that II implies I,
and that I implies II.

III ⇒ II: Let P be a poset satisfying the conditions in III. We show that every two
vertices whose ranks differ by 3 are comparable; the result follows by induction. Choose
vertices v of rank i and w of rank i+ 3. Since there is a vertex of rank i+ 3, there must be
at least one vertex z of rank i + 1, and by III we have w > z. Since P is graded, there is
some vertex y of rank i+ 2 such that w > y > z. But also y > v by III, so w > v, as desired.

II⇒ I: Let P be a poset satisfying the conditions in II ; we show P avoids 3 + 1. Consider
any 3-chain x < y < z in P and any other vertex w ∈ P . We claim that w is comparable to
at least one of x, y, z. By the defining properties of P , if rk(w) < rk(z)−1 then w < z while
if rk(w) > rk(x) + 1 then w > x, and in either case we have our result. The only remaining
case is rk(z)− 1 = rk(w) = rk(x) + 1. In this case, since w is either up- or down-seeing, we
conclude that w is comparable to at least one of x and z. Thus, P avoids 3 + 1, as desired.

I ⇒ II: Let P be a weakly graded (3 + 1)-avoiding poset. First, we show that two
vertices whose ranks differ by 2 or more are comparable. Choose vertices u and w at ranks i
and j respectively with j − i ≥ 2. Since there are vertices at ranks at least i+ 2, there must
be a chain x <· y <· z with x at rank i. Because P avoids 3 + 1, u must be comparable to at
least one of these vertices and so in particular u < z. Then there is a chain u <· v <· z in P ,
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Figure 4: The Hasse diagram for the vigilant poset at left will be displayed as the image at
right: all-seeing vertices are represented as squares, other vertices as triangles.

and by (3 + 1)-avoidance we have that w is comparable to some member of this chain and
so finally w > v as desired.

Second, we show that P is vigilant. Suppose for contradiction that we have a vertex v
of rank i that is neither up- nor down-seeing. This means v 6∈ Λ(i) ∪V(i). Then there exist
vertices u, w such that rk(u) = rk(v)−1, rk(w) = rk(v)+1, and v is incomparable to both u
and w. But by the preceding paragraph, u < w, and so there is some vertex v′ of rank i such
that u < v′ < w. This chain together with v is a copy of 3 + 1 in P . This is a contradiction,
so P is vigilant.

We introduce the following convention for representing vigilant posets: vertices that
are all-seeing are represented by squares, vertices that are up-seeing are represented by
downwards-pointing triangles, and vertices that are down-seeing are represented by upwards-
pointing triangles. (Thus, each vertex has horizontal edges on the sides on which it is
connected to all vertices.) This convention is illustrated in Figure 4.

4 Simplifications

In this section, we introduce four operations that allow us to count vigilant posets by working
instead with simpler objects. We show that (3 + 1)-avoidance will be mostly compatible with
these simplifications, reducing the problem of enumerating graded (3 + 1)-avoiding posets
basically to studying vigilant posets of height 2. In Section 4.1 we work with weakly graded
posets, while in Sections 4.2 and 4.3 we restrict ourselves to strongly graded posets. (We
will return to weakly graded posets in Section 8.)

4.1 Trimming

We call a vigilant poset P trimmed if it has the following properties:

• every rank has at most one all-seeing vertex,

• the all-seeing vertices are unlabeled, and

• the other m vertices are labeled with [m].

Given a weakly graded poset P , there is a naturally associated trimmed poset, denoted
trim(P ), that we get by removing the all-seeing vertices from P , adding a single unlabeled all-
seeing vertex to every rank set from which we removed all-seeing vertices, and relabeling the
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Figure 5: A strongly graded (3 + 1)-avoiding poset and the associated trimmed poset.

other vertices so as to preserve the relative order of labels. Figure 5 provides one illustration
of this operation.

Proposition 4.1. The weakly graded vigilant poset P avoids 3 + 1 if and only if trim(P )
does.

Proof. It is routine to check that neither of the conditions of Theorem 3.1(III ) is affected
by the trimming map.

Since we lose very little information when we replace the poset P by the trimmed poset
trim(P ), Proposition 4.1 suggests that we can reduce the enumeration of labeled graded
(3 + 1)-avoiding posets to the enumeration of trimmed (3 + 1)-avoiding posets. The fol-
lowing proposition makes this intuition precise. Let wn be the number of weakly graded
(3 + 1)-avoiding posets on n vertices and let

W (x) =
∑
n

wn
xn

n!

be the exponential generating function for labeled weakly graded (3 + 1)-avoiding posets.

Proposition 4.2. The exponential generating function for labeled weakly graded (3 + 1)-
avoiding posets is

W (x) =
∑
n,r

an,r
xn

n!
(ex − 1)r.

where an,r is the number of trimmed (3 + 1)-avoiding posets with r all-seeing vertices and n
other vertices.

An analogous result holds if we restrict attention to the strongly graded posets.

Proof. A weakly graded (3 + 1)-avoiding poset P is uniquely determined by the associated
trimmed poset T and the set of labels for the all-seeing vertices at each rank. Moreover,
any trimmed (3 + 1)-avoiding poset T with all-seeing vertices at r levels together with an
appropriate tuple of r nonempty sets of labels yields a weakly graded (3 + 1)-avoiding poset.
Thus, by standard rules for generating functions (or equivalently from species-type consider-
ations as in [JMM07, Section 4]), the generating function for weakly graded (3 + 1)-avoiding
posets with all-seeing vertices at exactly r ranks is (ex − 1)r ·

∑
n an,r

xn

n!
. Summing over r

gives the result.
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⊕ =

Figure 6: An ordinal sum of two sum-indecomposable posets. (Labels are suppressed for
readability.)

4.2 Ordinal sums

Suppose we have two trimmed strongly graded posets P1 and P2 of heights a and b, respec-
tively. We can take the ordinal sum of P1 and P2 by letting the lowest-ranked elements
in P2 cover all highest-ranked elements in P1 and relabeling in a way consistent with the
labelings of P1 and P2. (Thus, there are many ways to take ordinal sums of P1 and P2; all the
resulting posets are isomorphic under relabeling.) We denote one of the possible resulting
posets of height a + b by P1 ⊕ P2. See for example Figure 6. In the context of vigilant
posets, the ordinal sum is an especially nice operation because a vertex in P1 or P2 which is
up-seeing and/or down-seeing retains that property in P1 ⊕ P2.

Call a nonempty strongly graded poset P with height k sum-indecomposable if P is
trimmed and there is no i < k − 1 for which every vertex in P (i) is up-seeing (equivalently,
there is no i > 0 for which every vertex in P (i) is down-seeing). This word choice is motivated
by the existence of a decomposition of trimmed posets into sum-indecomposables.

Proposition 4.3. A trimmed strongly graded poset P can be written uniquely as

P = P1 ⊕ P2 ⊕ · · · ⊕ Pm,

for a sequence (P1, P2, . . . , Pm) of sum-indecomposable posets.

Proof. Let P be a trimmed strongly graded poset and let k be the height of P . Take
the smallest rank i for which P (i) has all up-seeing vertices. If i = k, then P is sum-
indecomposable. Otherwise, we can write P = P1 ⊕ P ′, where P1 has height i + 1 and is
sum-indecomposable by the minimality of i. Repeating this process gives us the desired
sequence, which is obviously unique.

Proposition 4.4. If a trimmed strongly graded poset P decomposes into sum-indecomposable
posets as P = P1 ⊕ · · · ⊕ Pm, then P avoids 3 + 1 if and only if all of the Pi avoid 3 + 1.

Proof. One direction is trivial: if any of the Pi contains a copy of 3 + 1 then certainly P
does as well. For the other direction, suppose that P contains a copy of 3 + 1 with vertices
u < v < w and x. If x ∈ Pi, then u, v, and w must also all be in Pi (since two vertices from
different Pj must be comparable), so Pi itself does not avoid 3 + 1.

Propositions 4.3 and 4.4 simplify the problem of counting strongly graded (3 + 1)-
avoiding posets: it now suffices to count sum-indecomposable posets and then count the ways
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Figure 7: Three quarks. All three quarks are middle quarks; the left quark is also a bottom
quark, while the center quark is also a top quark. The left and center quarks have isomorphic
underlying posets but are not isomorphic as quarks. The right quark has underlying poset of
height 1 (with two vertices and no relations), while as a quark it has vertices at two different
rank sets.

to combine them by ordinal sum. As we will see in Proposition 6.6, this is a simple task with
generating functions. Thus, we now turn our attention to enumerating sum-indecomposable
(3 + 1)-avoiding posets.

4.3 Sticking and Gluing

In order to enumerate sum-indecomposable posets, we break them down into more manage-
able pieces that we call quarks. We show that quarks can be combined to make posets using
two operations that we call sticking and gluing, that every sum-indecomposable poset can be
written uniquely as a sticking and gluing of quarks, and that (3 + 1)-avoidance is encoded
nicely in this decomposition.

Observe that every poset of height 1 or 2 is weakly graded and so naturally has a rank
function that assigns all minimal vertices to rank 0 and all other vertices to rank 1. A quark
Q is a pair (P, r) of a poset P and function r : P → {0, 1}, with the following restrictions:

• P has height 1 or 2 (and so consequently is weakly graded);

• P does not have both an up-seeing vertex at rank 0 and a down-seeing vertex at rank
1;

• if v ∈ P is not isolated then r(v) = rk(v);

• there exist vertices v1 and v2 in P such that r(v1) = 0 and r(v2) = 1.

Equivalently, thinking in terms of Hasse diagrams, one may view a quark as a bipartite graph
with a designated bipartition of the vertices into nonempty lower and upper halves with the
restriction that at most one part of the bipartition contains an all-seeing vertex.

Given a vertex v ∈ Q, we say that r(v) is the rank of v. Note that two different quarks
may have the same underlying poset, and that the underlying poset of a quark may have
height 1 even though the quark itself has two nonempty ranks.

Given the close relationship between quarks and posets, we extend our poset terminology
to this new context in the natural way. Notably, the adjectives “vigilant” and “trimmed”
have the same meaning for quarks as for posets, and since every quark is vigilant we use
the same convention for displaying their vertices as was introduced for vigilant posets in
Section 3.

8



⊕G⊕S = =

Figure 8: Sticking and gluing a bottom quark and a top quark to build sum-indecomposable
posets. (Labels are suppressed for readability.)

There are three classes of quarks that will be of interest two us; see Figure 7 for examples.
A bottom quark is a trimmed quark in which every isolated vertex (if any) is assigned to
rank 0 and there are no all-seeing vertices of rank 1. A middle quark is a quark with no
all-seeing vertices of either rank. A top quark is a trimmed quark in which every isolated
vertex (if any) is assigned to rank 1 and there are no all-seeing vertices of rank 0. Observe
that every trimmed quark belongs to at least one of these classes and that many quarks
belong to more than one of them.

We now introduce the two operations that can be used to build every sum-indecomposable
poset of height larger than 2 from quarks. We first describe the operations for height-3 posets,
and afterwards the general case.

Given a bottom quark Q0 and a top quark Q1, we say that a poset P arises from sticking
Q0 and Q1 if the following conditions hold:

• The vertex set of P is the disjoint union of the vertex sets of Q0 and Q1.

• For i = 0, 1, if v, w ∈ Qi, then v < w in P if and only if v < w in Qi.

• For j = 0, 1, if v ∈ Q0 and w ∈ Q1 have rank j in their respective quarks then v < w
in P .

• The only other order relations of P are those that follow by transitivity.

• The labeling of vertices of P is consistent with the labelings of Q0 and Q1.

In an abuse of notation, we denote this relationship by P = Q0⊕SQ1. Similarly, we say that
P arises from gluing Q0 and Q1, and we write P = Q0 ⊕G Q1, if the following conditions
hold:

• P has a (not necessarily induced) subposet P ′ = Q0 ⊕S Q1.

• The rank set P (1) has an additional (unlabeled) all-seeing vertex, the additional order
relations implied by the presence of this vertex and transitivity, and no other order
relations.

It is easy to check that posets of the form Q0⊕SQ1 and Q0⊕GQ1 are sum-indecomposable
posets of height 3. Also observe that, as in the case of ordinal sums, a vertex in Q0 or Q1

that is up-seeing or down-seeing keeps this status after either gluing or sticking. Figure 8
shows an example of the sticking and gluing of two quarks.

Now we describe how to apply these operations to many quarks in order to create posets
of larger height.

9



⊕S ⊕G =

Figure 9: An example of sticking and gluing quarks to build a sum-indecomposable poset.
(Labels are suppressed for readability.)

Definition 4.5. Suppose we are given a bottom quark Q0, middle quarks Q1, . . . , Qk−1,
and a top quark Qk. For each choice (α1, . . . , αk) ∈ {S,G}k, we say that a trimmed poset P
is of the form Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk

Qk if the following conditions hold:

• For i ∈ {0, . . . , k+ 1}, the ith rank set P (i) consists of the disjoint union of Qi(0) and
Qi−1(1) and, if αi = G, an unlabeled all-seeing vertex.

• For i ∈ {0, . . . , k}, if v, w ∈ Qi then v < w in P if and only if v <· w in Qi.

• For i ∈ {0, . . . , k − 1} and j ∈ {0, 1}, if v ∈ Qi(j) and w ∈ Qi+1(j) then v <· w.

• For i ∈ {0, . . . , k − 2}, if v ∈ Qi(1) and w ∈ Qi+2(0) then v <· w.

• All other order relations of P follow by transitivity from those of the four preceding
bullet points.

• The labeling of vertices of P is consistent with the labelings of the Qi.

As before, we denote this relation by P = Q0 ⊕α1 · · · ⊕αk
Qk. An example of a poset of

height 4 formed by sticking and gluing is shown in Figure 9.
The quark decomposition is useful because it behaves nicely with resprect to up-seeing

and down-seeing vertices.

Proposition 4.6. Suppose that Q0 is a bottom quark, Q1, . . . , Qk−1 are middle quarks and
Qk is a top quark, and

P = Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk
Qk.

A vertex v ∈ Qi is up-seeing (respectively, down-seeing) in Qi if and only if it is up-seeing
(respectively, down-seeing) in P .

Proof. Choose i ∈ {0, . . . , k} and choose v ∈ Qi. If v is not down-seeing in Qi, then v ∈ Qi(1)
and there is some w ∈ Qi(0) such that v 6> w. In this case, v ∈ P (i + 1) is not larger than
w ∈ P (i), and so v is not down-seeing in P . On the other hand, if v ∈ Qi is down-seeing in
Qi then by construction v covers all vertices of one lower rank in P .

Proposition 4.7. Suppose that Q0 is a bottom quark, Q1, . . . , Qk−1 are middle quarks and
Qk is a top quark, and

P = Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk
Qk.

We have that P is sum-indecomposable.

10



Proof. It follows immediately from the construction that P is weakly graded, vigilant and
trimmed. Observe that the restrictions on the quarks guarantee that every vertex not of
maximal rank is covered by something and that every vertex not of minimal rank covers
something, so that P is strongly graded as well. Finally, for all i ∈ {0, . . . , k}, Qi(0) contains
a vertex that is not up-seeing. Thus, by Proposition 4.6, P (i) contains such a vertex, and
thus P is sum-indecomposable.

In fact, every sum-indecomposable poset may be written as a sticking and gluing of
quarks in a unique way, as the next result shows.

Proposition 4.8. For k ≥ 1, suppose that P is a sum-indecomposable poset of height k+ 2.
There exists a unique bottom quark Q0, top quark Qk, collection Q1, . . . , Qk−1 of middle
quarks, and choice (α1, . . . , αk) ∈ {S,G}k such that

P = Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk
Qk.

Proof. For some k ≥ 1, choose a sum-indecomposable poset P of height k + 2. We first
describe the decomposition of P into quarks, then show that it is unique.

For i ∈ {1, . . . , k−1}, define Qi as follows: the lower rank set Qi(0) consists of all vertices
of P (i) that are not up-seeing, the upper rank set Qi(1) consists of all vertices of P (i + 1)
that are not down-seeing, and the vertices are labeled in accordance with the labeling of P .
The top and bottom quark Q0 and Qk are defined similarly, except that Q0(0) = P (0) and
Qk(1) = P (k+ 1) (i.e., we remove the additional restriction in this case). For i ∈ {1, . . . , k},
we set αi = G if P (i) contains an all-seeing vertex, and αi = S otherwise.

Since P is sum-indecomposable, both rank sets of every Qi are nonempty, and no Qi

contains an all-seeing vertex except possibly in the bottom rank set of Q0 or the top rank
set of Qk. Since P is strongly graded, every vertex in P (1) covers some vertex in P (0), so
Q0(1) has no isolated vertices (and likewise Qk(0) has no isolated vertices). Thus, Q0 is a
bottom quark, Qk a top quark, and Q1, . . . , Qk−1 are middle quarks. Since P is trimmed,
every vertex of P either belongs to exactly one of the Qi or is an all-seeing vertex not of
top or bottom rank. Finally, it’s easy to check that the cover relations of P and those of
Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk

Qk are the same, as desired.
The uniqueness of this decomposition is straightforward: the presence of all-seeing ver-

tices indicates which of the αi are G, vertices of rank i that are not down-seeing can only
come from Qi−1(1), and vertices of rank i that are not up-seeing can only come from Qi(0).
Thus, the partition of the underlying set of P into the underlying sets of the Qi is uniquely
determined; the uniqueness of the Qi as quarks follows immediately.

Now we can connect our characterization of sum-indecomposable posets as quarks that
have been glued or stuck together to our ultimate goal of studying (3 + 1)-avoiding posets.

Theorem 4.9. A sum-indecomposable poset P is (3 + 1)-avoiding if and only if the decom-
position P = Q0 ⊕α1 Q1 ⊕α2 · · · ⊕αk

Qk into quarks satisfies the following condition: for
every occurrence of Qi ⊕S Qi+1 in the decomposition, either Qi has no isolated vertices on
its bottom rank or Qi+1 has no isolated vertices on its top rank, or both.

11



Proof. The poset P avoids 3 + 1 if and only if the conditions of Theorem 3.1(III ) hold.
The first condition holds for every sum-indecomposable poset by definition, so the desired
statement reduces to the claim that P contains two incomparable vertices whose ranks differ
by 2 if and only if there is some i ≥ 0 such that αi+1 = S, Qi has an isolated vertex on its
lower rank set and Qi+1 has an isolated vertex on its upper rank set.

The vertices u and w are comparable as elements of P if and only if there is some
v ∈ P (i + 1) such that u < v < w. If u 6∈ Qi(0) then we can take v to be any vertex in
Qi(1), while if w 6∈ Qi+1(1) then we can take v to be any vertex in Qi+1(0), so in these cases
u and w are always comparable. Now we consider the case that u ∈ Qi(0) and w ∈ Qi+1(1).
If αi+1 = G then we can take v to be the all-seeing vertex at rank i+ 1, so in this case u and
w are comparable. If αi+1 = S and u and w are not both isolated in their respective quarks,
we may assume without loss of generality that there is some v ∈ Qi(1) such that u < v. By
the sticking construction, v < w, and so u and w are comparable in this case as well. Finally,
suppose that αi+1 = S and that u and w are both isolated in their respective quarks. We wish
to show that u and w are incomparable. Since αi+1 = S, we have P (i+1) = Qi(1)∪Qi+1(0).
Thus, for any v ∈ P (i+ 1) we have that v is incomparable with u or with w.

It follows that P contains two isolated vertices whose rank differs by 2, and so a copy of
3 + 1, if and only if there is some i such that αi+1 = S, Qi has an isolated vertex of rank 0,
and Qi+1 has an isolated vertex of rank 1, as desired.

With this result in hand, we now turn to the task of counting quarks.

5 Quarks

Theorem 4.9 implies that studying sum-indecomposable (3 + 1)-avoiding posets reduces to
studying quarks. In this section, we set out to enumerate quarks. Following the observation
at the beginning of the previous section, this amounts to enumerating bipartite graphs
with certain restrictions: a quark Q with m vertices in Q(0) and n vertices in Q(1) is,
up to differences in the labeling scheme, just a particular kind of bipartite graph on the
disjoint union [m]] [n]. We enumerate such graphs, keeping track of some simple structural
information about them.

We define a family of sets Aνµ(m,n), where µ and ν are subsets (possibly empty) of
{�,◦,�,⊗}, as follows:

• Aνµ(m,n) is the set of bipartite graphs on [m]] [n] with some restrictions. The elements
of ν correspond to restrictions on the vertices in [n] and the elements of µ correspond
to restrictions on the vertices of [m]. (Here the placement of indices is meant to suggest
that vertices in [m] form a bottom rank and the vertices in [n] a top rank.) An empty
set of symbols corresponds to no restrictions on the corresponding set.

• A � corresponds to the requirement that there be at least one all-seeing vertex; a �
corresponds to the requirement that there be no all-seeing vertex.

• A ◦ corresponds to the requirement that there be an isolated vertex; a ⊗ corresponds
to the requirement that there be no isolated vertex.
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For example, A(m,n) is the set of all bipartite graphs on [m] ] [n] and A�
�(m,n) is the

subset of A(m,n) containing those graphs with at least one all-seeing vertex in [n] but no
all-seeing vertices in [m].

Of these sets, we are particularly interested in those that contain quarks. The top
quarks correspond to the graphs in A�⊗, the bottom quarks correspond to the graphs in
A�⊗, and the middle quarks correspond to the graphs in A�

�. In the next section, we will
need to consider a more refined count of middle quarks; thus, for ν, µ ⊂ {◦,⊗} we define

Bν
µ(m,n) = A

{�}∪ν
{�}∪µ(m,n). For example, B⊗◦(m,n) is the set of bipartite graphs on [m] ] [n]

with no all-seeing vertices, no isolated vertices in [n], and at least one isolated vertex in [m].
For each µ and ν, let

F ν
µ (x) =

∑
m,n≥1

|Bν
µ(m,n)|x

m+n

m!n!
(1)

be the corresponding generating function, so for example the coefficient of xN

N !
in F⊗◦ (x) is

the number of middle quarks on N vertices with at least one isolated vertex of rank 0 but
none of rank 1. Finally, let Bν

µ be the union over m and n of all Bν
µ(m,n). Note that the set

of middle quarks is a disjoint union

B = B◦◦ ∪B◦⊗ ∪B
⊗
◦ ∪B

⊗
⊗ ,

which manifests as a sum of formal power series

F = F◦◦ + F◦⊗ + F⊗◦ + F⊗⊗ .

Proposition 5.1. Let

Ψ(x) =
∑
m,n≥0

2mnxm+n

m!n!

and let F ν
µ be defined as in Equation (1). We have

F◦◦ (x) = (1− e−x)2Ψ(x),

F◦⊗ (x) = F⊗◦ (x) = (1− e−x)((2e−x − 1)Ψ(x)− 1),

and

F⊗⊗ (x) = (2e−x − 1)((2e−x − 1)Ψ(x)− 1).

Proof. See Appendix A.

6 Strongly Graded Posets

In this section, we use the F ν
µ as building blocks to obtain the generating function for

sum-indecomposable (3 + 1)-avoiding posets, and then proceed to enumerate all strongly
graded (3 + 1)-avoiding posets. (Recall that by our definition, sum-indecomposable posets
are necessarily strongly graded.) We begin by encoding a sum-indecomposable poset in

13



terms of a word that keeps track of its quarks and how they are combined (i.e., gluing and
sticking). Then we use the transfer-matrix method to enumerate words while keeping track
of the restrictions imposed by Theorem 4.9.

Given any quark Q, we define its type as follows: if Q is a middle quark (i.e., an element
of B), then the type of Q is the symbol Bν

µ corresponding to the unique subset among the four
Bν
µ to which it belongs. (This is a slight abuse of notation that will never cause ambiguity in

context.) If Q is a top or bottom quark, first remove any all-seeing vertices from Q, leaving
a middle quark Q′; then set the type of Q to be the type of Q′. Define a word to be any
monomial in the noncommutative algebra R〈〈S,G,B◦◦ , B◦⊗, B

⊗
◦ , B

⊗
⊗〉〉. We now encode the

properties of sum-indecomposability and (3 + 1)-avoidance into conditions on words.

Definition 6.1. We say that a word L is legal if for some k ≥ 0 there are αi ∈ {S,G}
and Bi ∈ {B◦◦ , B◦⊗, B

⊗
◦ , B

⊗
⊗} such that L = α0B0α1B1α2 · · ·Bk−1αkBkαk+1, and none of the

following occur:

1. α0 = S and B0 has a ◦ in the superscript;

2. αk+1 = S and Bk has a ◦ in the subscript;

3. there is some i, 1 ≤ i ≤ k, such that Bi−1 has a ◦ in the subscript, αi = S, and Bi has
a ◦ in the superscript.

We define a weight function wt : R〈〈S,G,B◦◦ , B◦⊗, B
⊗
◦ , B

⊗
⊗〉〉 → R[[x, z]] as follows: we

set wt(S) = 1, wt(G) = z, and wt(Bν
µ) = F ν

µ and we extend by linearity and multiplication.
Let I≥2(x, z) be the generating function for sum-indecomposable (3 + 1)-avoiding posets

of height at least 2, where the variable z counts all-seeing vertices, the variable x counts
other vertices, and I≥2(x, z) is exponential in x and ordinary in z.

Theorem 6.2. The generating function for sum-indecomposable (3 + 1)-avoiding posets of
height at least 2 is

I≥2(x, z) =
∑
L

wt(L),

where the sum is over all legal words L.

Proof. First we handle the height-2 case. By considering the presence or absence of an all-
seeing vertex of rank 0 or 1, it’s easy to see that the generating function for such posets is
precisely

z2 · F + z · F⊗ + z · F⊗ + F⊗⊗

and that this is equal to the sum of wt(L) over all legal words L of length 3 (i.e., those of
the form α0B0α1 satisfying certain restrictions). Now we handle the case of larger heights.

Let P be a sum-indecomposable (3 + 1)-avoiding poset of height k + 2 for some k ≥ 1.
Suppose P decomposes into quarks as P = Q0 ⊕α1 · · · ⊕αk

Qk. Set W (P ) to be the word
α0B0α1B1α2 · · ·Bk−1αkBkαk+1 defined as follows:

• for 0 ≤ i ≤ k + 1, αi = G if P has an all-seeing vertex of rank i and αi = S otherwise;

• for 0 ≤ i ≤ k, Bi is the type of Qi.

14



It is easy to check that the map W is well-defined and that the constraints imposed on the
Qi and αi by Theorem 4.9 correspond precisely to the condition that W (P ) is a legal word.
Given a legal word L, we now show that the generating function for posets P such that
W (P ) = L is precisely wt(L); our result follows immediately from summing over all legal
words L.

Fix a word L = α0B0α1 · · ·Bk−1αkBkαk+1, and consider its preimage W−1(L) = {P |
W (P ) = L}. Any P ∈ W−1(L) can be written in the form P = Q0 ⊕α1 · · · ⊕αk

Qk with
the types of the Qi determined by the Bi. However, after we fix the type Bi, any quark
of that type can be used as part of a sum-indecomposable (3 + 1)-avoiding poset. Thus,
the posets in the preimage of L contribute exactly F ν

µ for each occurrence of Bi = Bν
µ.

Furthermore, each occurrence of αi = G corresponds to a single all-seeing vertex, and so
contributes z. Thus, by standard rules for generating functions, the generating function for
posets in W−1(L) is exactly wt(L). It follows that I≥2(x, z) is the result of summing wt(L)
over the legal words L, as desired.

Let I(x, z) be the generating function for nonempty sum-indecomposable (3 + 1)-avoiding
posets, where the variable z counts all-seeing vertices, the variable x counts other vertices,
and I(x, z) is exponential in x and ordinary in z.

Corollary 6.3. The generating function for all nonempty sum-indecomposable (3 + 1)-
avoiding posets is

I(x, z) = z +
∑
L

wt(L),

where the sum is over all legal words L.

The preceding results establish that to enumerate posets we may focus our energies on
enumerating words. We accomplish this task with the transfer-matrix method. Let MW be
the matrix

MW = G ·


B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗

+ S ·


0 0 B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
0 0 B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗


with entries in the noncommutative algebra R〈〈S,G,B◦◦ , B◦⊗, B

⊗
◦ , B

⊗
⊗〉〉 of words.

Proposition 6.4. With MW as above, the sum of the legal words of length 2k + 3 is

[
G ·B◦◦ G ·B◦⊗ (S +G)B⊗◦ (S +G)B⊗⊗

]
· (MW )k ·


G

S +G
G

S +G

 .
Proof. Consider the graph Gw with vertices {∗, B◦◦ , B◦⊗, B

⊗
◦ , B

⊗
⊗} and the following directed,

labeled edges: for every pair u, v of vertices (allowing u = v), Gw has a directed edge u
G−→ v,

and Gw has a directed edge u
S−→ v unless u = Bν◦ or u = ∗ and v = B◦µ or v = ∗. The graph

Gw is illustrated in Figure 10.
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B◦◦

∗

B⊗◦

B⊗⊗

B◦⊗

Figure 10: The S-labeled edges of the graph Gw defined in the proof of Proposition 6.4.
Each pair of vertices is also joined by directed edges labeled G (not shown).

We identify each walk

∗ α0−→ B0
α1−→ · · · αk−→ Bk

αk+1−−−→ ∗

with the word
α0B0α1 · · ·Bkαk+1.

Observe that the first two conditions in Definition 6.1 correspond to the restrictions on edges
involving ∗ and the final condition corresponds to edges not involving ∗. Thus the legal words
are exactly the walks on this graph that start and end at ∗, with no intermediate copies of
∗. We enumerate these walks using the transfer-matrix method, as in [Sta97, Section 4.7].

Let

X =


B◦◦ 0 0 0
0 B◦⊗ 0 0
0 0 B⊗◦ 0
0 0 0 B⊗⊗


and

Y = G · J + S ·


0 0 1 1
1 1 1 1
0 0 1 1
1 1 1 1

 ,
where J is the 4 × 4 matrix whose entries are all equal to 1. Examining Gw and applying
[Sta97, Theorem 4.7.1], we have that the sum of the words associated to the aforementioned
walks is

[
G G S +G S +G

]
XYXY · · ·X


G

S +G
G

S +G

 ,
which is equivalent to the desired expression.
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Let M be the matrix

M = z ·


F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗

+


0 0 F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
0 0 F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗


(whose entries are in R[[x, z]]).

Corollary 6.5. The generating function for all sum-indecomposable (3 + 1)-avoiding posets
of height at least 2 is

I≥2(x, z) =
[
zF◦◦ zF◦⊗ (1 + z)F⊗◦ (1 + z)F⊗⊗

]
· (I−M)−1 ·


z

1 + z
z

1 + z

 ,
where I is the 4× 4 identity matrix and M is as above.

Proof. The result follows from Theorem 6.2, Proposition 6.4 and the fact that the weight
map wt is an algebra homomorphism between R〈〈S,G,B◦◦ , B◦⊗, B

⊗
◦ , B

⊗
⊗〉〉 and R[[x, z]].

Now that we have enumerated sum-indecomposable (3 + 1)-avoiding posets, the only
remaining step is to express the generating function for all (3 + 1)-avoiding posets in terms
of the generating function for sum-indecomposables. This turns out to be extremely simple.

Proposition 6.6. The generating function GT (x, z) for all trimmed strongly graded (3 + 1)-
avoiding posets is given by

GT (x, z) = (1− I(x, z))−1.

(Recall that I(x, z) is the generating function for nonempty sum-indecomposable posets.)

Proof. By Proposition 4.3 and Proposition 4.4 each trimmed strongly graded (3 + 1)-avoiding
poset P corresponds to a unique ordinal sum P1⊕P2⊕· · ·⊕Pk of sum-indecomposable (3 + 1)-
avoiding posets, and all such sequences give a trimmed strongly graded (3 + 1)-avoiding poset
P . The result follows from the compositional formula for generating functions.

The only thing remaining is arithmetic.

Theorem 6.7. The generating function for all strongly graded (3 + 1)-avoiding posets is

1 +
e2x(2ex − 3) + ex(ex − 2)2Ψ(x)

ex(2ex + 1) + (e2x − 2ex − 1)Ψ(x)
.

Proof. This is just a calculation, combining Corollaries 6.3 and 6.5 with Propositions 4.2,
5.1 and 6.6. For #P = 0, 1, . . . , the resulting number of posets is 1, 1, 3, 13, 111, 1381,
22383, . . . .
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7 Strongly Graded Posets Counted by Height

In this section, we refine the generating function of the previous section to count strongly
graded (3 + 1)-avoiding posets with n vertices of height k. (This refinement is a natural one
to ask for on its own terms; it will also be of use to us when we enumerate weakly graded
(3 + 1)-avoiding posets in the next section.) The only change in our approach is that we
keep track of the height of the poset as we glue and stick quarks, and then again as we take
the ordinal sum of sum-indecomposables. To this end, let bn,k be the number of strongly
graded (3 + 1)-avoiding posets on n vertices of height k and let

H(x, t) =
∑
n,k

bn,k
xn

n!
tk (2)

be the generating function for these numbers. To compute H(x, t), we return to the ideas
of Section 6. Using the same method as in the proof of Corollary 6.5 but keeping track
of height, we have that the generating function for sum-indecomposable (3 + 1)-avoiding
posets of height 2 or more is

HI(x, z, t) = t2
[
zF◦◦ zF◦⊗ (1 + z)F⊗◦ (1 + z)F⊗⊗

]
· (I− t ·M)−1 ·


z

1 + z
z

1 + z

 .
If we let HT (x, z, t) be the generating function for trimmed strongly graded (3 + 1)-avoiding
posets, then (as in Proposition 6.6) we have that

HT (x, z, t) = (1− tz −HI(x, z, t))
−1,

while from the same reasoning as in the proof of Proposition 4.2 we have H(x, t) = HT (x, ex−
1, t). Working out the arithmetic gives the following result.

Proposition 7.1. Let H(x, t) be the generating function counting strongly graded (3 + 1)-
avoiding posets by number of vertices and height (as in Equation (2)). We have

H(x, t) =
ex(ex + te2x + t2(ex − 1)2) + t((1− 3ex + e2x) + t(ex − 1)2(ex − 2))Ψ(x)

ex(ex + tex + t2) + ((1− 3ex + e2x)t+ (ex − 2)t2)Ψ(x)
.

The resulting coefficients are shown in Table 1.

8 Weakly Graded Posets

In this section, we expand our study to weakly graded posets. We seek to apply the same
methods that worked in the strongly graded case. The results of Section 3, the definition
of a trimmed poset, and the results of Section 4.1 carry over immediately to weakly graded
posets. We now seek to extend the rest of our work to this context.

We begin by proving Proposition 8.1, which shows that weakly graded (3 + 1)-avoiding
posets mostly “look just like” strongly graded posets.
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Height

0 1 2 3 4 5 6
0 1
1 1
2 1 2

#P 3 1 6 6
4 1 50 36 24
5 1 510 510 240 120
6 1 7682 7380 4800 1800 720

Table 1: The number of strongly graded (3 + 1)-avoiding posets of six or fewer vertices, by
height.

Proposition 8.1. In a weakly graded (3 + 1)-avoiding poset of height k+1 such that k ≥ 1,
all maximal elements are of rank k or k − 1 and all minimal elements are of rank 0 or 1.

Proof. Let P be a weakly graded (3 + 1)-avoiding poset of height at least 3. A maximal
vertex in P is precisely the same as a vertex not comparable to vertices of any higher rank.
However, by Theorem 3.1, every vertex of P is comparable to all vertices of rank two larger.
Putting these two facts together, we immediately conclude that P has no vertices of rank
two larger than any of its maximal vertices; this is the desired result. The case of minimal
vertices is identical.

With this result in hand, we can immediately extend the remaining results of Section 4
to weakly graded posets.

Corollary 8.2. Every trimmed (3 + 1)-avoiding poset P can be decomposed uniquely as
an ordinal sum of sum-indecomposable posets and each of the resulting sum-indecomposable
posets can be decomposed uniquely by sticking and gluing quarks (including a top and bottom
quark), where these objects and operations are defined as before, subject to the following
changes:

• when P is written as a maximal ordinal sum of nonempty posets, the topmost and
bottommost summands may be weakly graded, not necessarily strongly graded; and

• when P is written as an ordinal sum and the topmost summand is written as a sticking
and gluing of quarks, the top quark may have isolated vertices on its lower rank set;
similarly, the bottom quark of the bottommost summand may have isolated vertices on
its upper rank set. (These isolated vertices are exactly the maximal vertices not of
maximum rank and the minimal vertices not of minimum rank, respectively.) In other
words, the topmost and bottommost quarks in these summands may be middle quarks.

This result allows us to directly apply the methods of Section 6.
Observe that any (3 + 1)-avoiding poset with a chain containing 3 or more elements must

be connected, while posets of height 2 can be somewhat more “wild.” This suggests that we
should consider separately posets of height 2 or less and posets of height 3 or more. We do
this in the following sections.
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8.1 Posets of height at most 2

All posets of height at most 2 are weakly graded and avoid 3 + 1. Of these, there is exactly
one with height 0 (the empty poset), and for each n ≥ 1 there is exactly one poset on n
vertices of height 1 (the antichain on n vertices). The number of posets of height 2 on n
vertices is precisely

∑n−1
m=1

(
n
m

)
|A⊗(n − m,m)|: we choose m vertices to be at rank 1, and

none of these can be isolated. It follows from these three cases and from Appendix A that
the generating function for weakly graded (3 + 1)-avoiding posets of height at most 2 is

1 + t(ex − 1) + t2(e−xΨ(x)− ex).

8.2 Posets of height at least 3

It follows from Corollary 8.2 that when we write a trimmed (3 + 1)-avoiding poset as a
maximal ordinal sum of smaller posets, the middle summands (if any) are all strongly graded,
and so are sum-indecomposable under the definition of Section 4.2. The bottom summand
satisfies the same rules for gluing and sticking quarks as before, except that the bottommost
quark may be a middle quark rather than a bottom quark, and similarly for the top summand.
Equivalently, we may redefine legal word by removing conditions 1 and 2 in Definition 6.1 to
allow words that begin with SB◦◦ or SB◦⊗ and end with B◦◦S or B⊗◦S. This corresponds to
a straightforward change in the generating function computations of Section 6: the matrices
MW and M that appear in Proposition 6.4 and Corollary 6.5 do not need to change at all,
though the vectors by which we multiply on the left and right need to be adjusted. We must
only take care in proving the analogue of Proposition 6.6 in this context.

We now give a detailed plan of action. We handle separately those posets that can and
cannot be a summand in a nontrivial ordinal sum. This gives us two cases:

• posets of height k + 1, where k ≥ 2, that consist of a single sum-indecomposable layer
with at least one minimal vertex of rank 1 and at least one maximal vertex of rank
k − 1, and

• posets of height k + 1, where k ≥ 2, that do not fall into the previous class; these
posets have no minimal vertices above rank 0, or have no maximal vertices below rank
k, or decompose as a nontrivial ordinal sum.

We compute the generating functions in these cases following the transfer-matrix approach
used previously. Note one important subtlety: in both cases, the transfer-matrix method
generates some posets of height 2 or less which we view as spurious. Thus, we use the
refined version of the generating functions computed in Section 7 and make sure to eliminate
the height-0, 1 and 2 terms in the first two cases. (The reason for this approach is that
the transfer-matrix method as applied here fundamentally works on quarks; thus, it counts
posets with isolated vertices multiple times (once for every possible assignment of the isolated
vertices to rank 0 or rank 1). Strongly graded posets of height 2 or larger have no isolated
vertices and so this issue does not arise in the strongly graded case.)
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8.2.1 Sum-indecomposable posets that cannot be used in an ordinal sum

Some sum-indecomposable (3 + 1)-avoiding posets of height k + 1 cannot be used in a non-
trivial ordinal sum to make another (3 + 1)-avoiding poset; these are exactly the ones with
maximal vertices of rank k − 1 and minimal vertices of rank 1. Following the line of argu-
ment that culminated in Corollary 6.5, we see that the generating function for these posets
is precisely

t2 ·
[
F◦◦ F◦⊗ 0 0

]
· (I− tM)−1 ·


1
0
1
0


where

M = z ·


F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗

+


0 0 F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗
0 0 F⊗◦ F⊗⊗
F◦◦ F◦⊗ F⊗◦ F⊗⊗


as before.

8.2.2 All other posets

Trimmed (3 + 1)-avoiding posets not counted in the previous cases have height at least 3
and can be written as (possibly trivial) ordinal sums of the following form:

• they may or may not have a bottom layer (i.e., a sum-indecomposable ordinal sum-
mand) with all maximal vertices of the same rank but with minimal vertices at ranks
0 and 1;

• they have some number (possibly 0) of “middle layers” that are strongly graded sum-
indecomposable posets; and

• they may or may not have a top layer with all minimal vertices at rank 0 but with
maximal vertices at the rank below maximum rank.

The generating function for strongly graded sum-indecomposable (3 + 1)-avoiding posets
is the function HI(x, z, t) defined in Section 7. We define top(x, z, t) to be the generating
function for sum-indecomposable (3 + 1)-avoiding posets with all minimal vertices of rank
0 and with some maximal vertices of non-maximum rank, and analogously we define the
generating function bot(x, z, t). Then the generating function for posets in this class coincides
with

(1 + top(x, z, t))(1−HI(x, z, t))
−1(1 + bot(x, z, t)) (3)

for all powers of t greater than or equal to 3. Moreover, we have

top(x, z, t) = t2 ·
[
zF◦◦ zF◦⊗ (1 + z)F⊗◦ (1 + z)F⊗⊗

]
· (I− tM)−1 ·


1
0
1
0


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Height

0 1 2 3 4 5 6
0 1
1 1
2 1 2

#P 3 1 12 6
4 1 86 84 24
5 1 840 1110 480 120
6 1 11642 16620 9120 3240 720

Table 2: The number of weakly graded (3 + 1)-avoiding posets of six or fewer vertices, by
height.

and

bot(x, z, t) = t2 ·
[
F◦◦ F◦⊗ 0 0

]
· (I− tM)−1 ·


z

1 + z
z

1 + z

 .
8.3 All weakly graded (3 + 1)-avoiding posets

Finally, we combine the work in the preceding subsections to enumerate weakly graded
(3 + 1)-avoiding posets.

Theorem 8.3. The generating function for weakly graded (3 + 1)-avoiding posets counted
by number of vertices and height is

1 + (ex − 1)t+ (e−xΨ(x)− ex)t2+

t3
e3x + e3xt− ex(2ex + (1 + 2ex − e2x)t)Ψ(x)− ((1− 3ex + e2x) + (ex − 2)t)Ψ(x)2

ex(ex + tex + t2) + ((1− 3ex + e2x)t+ (ex − 2)t2)Ψ(x)
.

The generating function for weakly graded (3 + 1)-avoiding posets counted by number of
vertices is

(e−x − 1)Ψ(x) +
2e3x + e2x(ex − 2)Ψ(x)

ex(2ex + 1) + (e2x − 2ex − 1)Ψ(x)
.

Proof. The proof is a straightforward (albeit messy) computation: we add the generating
functions from Section 8.2.1 to the expression from Equation (3), kill the t0, t1 and t2 terms,
and add the result to the generating function from Section 8.1. Substituting t = 1 and
rearranging slightly gives the second formula.

The resulting coefficients are shown in Table 2. Disregarding height, the numbers of
weakly graded (3 + 1)-avoiding posets on 0, 1, 2, . . . vertices are 1, 1, 3, 19, 195, 2551,
41343, . . . .
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9 Asymptotics

In this section, we compute asymptotics for the number of graded (3 + 1)-avoiding posets.
First, we give asymptotics for the coefficients of the series Ψ(x); then we give the asymptotics

for our posets in terms of the asymptotics of Ψ. Define ψn =
n∑
i=0

2i(n−i)

i!(n− i)!
so that Ψ(x) =

1 +
∑

n≥1 ψnx
n. In the next result, we give asymptotics for the coefficients ψn.

Proposition 9.1. There exist constants C1 and C2 such that

ψ2k ∼ C1 ·
2k

2

(k!)2
and ψ2k+1 ∼ C2 ·

2k(k+1)

k!(k + 1)!
.

Proof. For n = 2k even, we can write

ψ2k =
2k∑
i=0

2i(2k−i)

i!(2k − i)!

=
k∑

i=−k

2k
2−i2

(k + i)!(k − i)!

∼ 2k
2

(k!)2
ϑ3(0, 1/2)

where ϑ3 is a Jacobi theta function. Similarly, when n = 2k + 1 is odd we find

ψ2k+1 ∼ 21/4ϑ2(0, 1/2)
2k(k+1)

k!(k + 1)!
,

as needed.

Let gn be the number of strongly graded (3 + 1)-avoiding posets on n vertices and let wn
be the number of weakly graded (3 + 1)-avoiding posets on n vertices.

Theorem 9.2. We have gn ∼ wn ∼ n! · ψn.

The proof relies on the following special case of a theorem of Bender [Ben75], which may
also be found in [Odl95, Theorem 7.3]:

Theorem 9.3 ([Ben75, Theorem 1]). Suppose A(x) =
∑

n≥1 anx
n, that F (x, y) is a formal

power series in x and y, and that B(x) =
∑

n≥0 bnx
n = F (x,A(x)). Let C = ∂

∂y
F
∣∣∣
(0,0)

.

Suppose further that

1. F (x, y) is analytic in a neighborhood of (0, 0),

2. lim
n→∞

an−1
an

= 0, and
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3.
n−1∑
k=1

|akan−k| = O(an−1).

Then
bn = C · an +O(an−1)

and in particular bn ∼ Can.

We now use this result to prove Theorem 9.2.

Proof. Define

F1(x, y) = 1 +
e2x(2ex − 3) + ex(ex − 2)2(y + 1)

ex(2ex + 1) + (e2x − 2ex − 1)(y + 1)

and

F2(x, y) = (e−x − 1)(y + 1) +
2e3x + e2x(ex − 2)(y + 1)

ex(2ex + 1) + (e2x − 2ex − 1)(y + 1)

so that
F1(x,Ψ(x)− 1) = G(x)

is the exponential generating function for strongly graded (3 + 1)-avoiding posets (compare
Theorem 6.7) and

F2(x,Ψ(x)− 1) = W (x)

is the exponential generating function for weakly graded (3 + 1)-avoiding posets (compare
Theorem 8.3). (We compose with Ψ − 1 instead of Ψ so that the composition is formally
valid.) We seek to apply Theorem 9.3 to compute asymptotics for the coefficients of G and
W . To apply the theorem, we have three conditions to check. The first condition is that F1

and F2 are analytic in a neighborhood of (0, 0), which is clear by inspection. The second
condition follows immediately from Proposition 9.1. The third condition is slightly trickier:
we must show that

n−1∑
k=1

ψkψn−k = O(ψn−1).

We do that now.
The proof of Proposition 9.1 not only gives asymptotics for ψn but also shows that

ψn ≤ C
2n

2/4

bn/2c! · dn/2e!

for all n. In addition, by taking only one term of the sum we have

ψn−1 ≥
2b(n−1)/2c·d(n−1)/2e

b(n− 1)/2c! · d(n− 1)/2e!

for all n. Thus

n−1∑
k=1

ψkψn−k
ψn−1

≤ C ′
n−1∑
k=1

b(n− 1)/2c! · d(n− 1)/2e! · 2−(k−1)(n−k−1)/2

bk/2c! · dk/2e! · b(n− k)/2c! · d(n− k)/2e!
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for some constant C ′. This last summation is bounded by an absolute constant independent
of n: the k = 1 and k = n − 1 terms of the sum are constant in n while the k = 2 and
k = n− 2 terms contribute a combined

O
(
d(n− 1)/2e2−n/2

)
= o(1)

to the sum. Each of the remaining terms can be seen to be O(n−2), so their total contribution
is also o(1).

We have shown that the conditions of Theorem 9.3 hold and we now apply it directly.

By direct computation, ∂
∂y
F1(x, y)

∣∣∣
(0,0)

= ∂
∂y
F2(x, y)

∣∣∣
(0,0)

= 1. Thus, we have

gn
n!

= ψn +O(ψn−1) ∼ ψn

and similarly for wn, as desired.
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A Computing generating functions for quarks

In this appendix, we enumerate and compute generating functions counting those sets of
the form Aνµ (introduced in Section 5) that are of use to us. For bookkeeping purposes, we
make these generating functions bivariate in variables x and y, with each bipartite graph in
Aνµ(m,n) (i.e., each graph on the vertex set [m] ] [n] with appropriate restrictions) giving a

contribution of xmyn

m!n!
.

It is very convenient to introduce the generating function

Ψ(x, y) =
∑
m,n≥0

2mnxmyn

m!n!
,

as most of our generating functions are most easily expressed in terms of Ψ(x, y).

1. |A(m,n)| = 2mn: we have no restrictions, so all of the mn edges may choose inde-
pendently to be present or absent. Equivalently, we have

∑
m,n≥1 |A(m,n)|xmyn

m!n!
=

Ψ(x, y)− ex− ey + 1. (The extra terms at the end simply account for the fact that we
sum here only over positive values of m, n.)

2. |A�(m,n)| = |A⊗(m,n)| = (2n − 1)m: we need every vertex on the m-side to be not
all-seeing (respectively, isolated) and there are no other restrictions. It is not hard to
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compute the generating function∑
m,n≥1

|A⊗(m,n)|x
myn

m!n!
= e−xΨ(x, y)− ey.

It follows by symmetry that the generating function for A� and A⊗ is e−yΨ(x, y)− ex.

3. |A�⊗(m,n)| = (2n − 2)m: each vertex on the m-side can be connected to any subset
on the n-side except the empty set or everything. The associated generating function
is e−2xΨ(x, y)− e−x − ey + 1.

4. |A�
�(m,n)| = |B(m,n)|: First, we show that

|B(m,n)| =
m∑
i=0

(−1)i
(
m

i

)
(2m−i − 1)n. (4)

The proof is by inclusion-exclusion on the all-seeing vertices in [n]. For a subset S ⊆ [n],
the number of graphs in which the vertices of S are all-seeing and no vertices of [m] are
all-seeing is (2n−|S|−1)m: each vertex in [m] may choose the union of S with any proper
subset of [n] \ S to be its neighbors, and these choices may be made independently.
Applying inclusion-exclusion immediately gives the result. (As an aside, this means
that the summation expression on the right-hand side of Equation (4) is symmetric in
m and n, a fact not immediately obvious from its formula.)

Now, a routine calculation gives

1 +
∑
m,n≥1

|B(m,n)|x
myn

m!n!
=
∑
m,n≥0

|B(m,n)|x
myn

m!n!
= e−x−yΨ(x, y).

5. |A�
�◦(m,n)| = |B◦(m,n)|: From the definitions of the sets Aνµ and the preceding

computations we have

|A�
�◦| = |A�◦| − |A�

�◦| = |A�◦| = (2n − 1)m − (2n − 2)m.

The associated generating function is (1− e−x)(e−xΨ(x, y)− 1).

6. |A�◦
�◦(m,n)| = |B◦◦(m,n)|: We have, by similar computations, that

|A�◦
�◦| = |A| − |A

⊗| − |A⊗|+ |B|

and so the associated generating function is (1− e−x)(1− e−y)Ψ(x, y).

Finally, we may use the work above to compute the generating functions we desire. We
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have

F◦◦ (x) =
∑
m,n≥1

|B◦◦(m,n)|x
m+n

m!n!

= (1− e−x)2Ψ(x, x),

F⊗◦ (x) =
∑
m,n≥1

|B⊗◦(m,n)|x
m+n

m!n!

=
∑
m,n≥1

(
|B◦(m,n)| − |B◦◦(m,n)|

) xm+n

m!n!

= (1− e−x)((2e−x − 1)Ψ(x, x)− 1),

and similarly
F◦⊗ (x) = (1− e−x)((2e−x − 1)Ψ(x, x)− 1)

and
F⊗⊗ (x) = (2e−x − 1)((2e−x − 1)Ψ(x, x)− 1).
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