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Abstract

Cover-inclusive Dyck tilings are tilings of skew Young diagrams with ribbon tiles
shaped like Dyck paths, in which tiles are no larger than the tiles they cover. These
tilings arise in the study of certain statistical physics models and also Kazhdan–Lusztig
polynomials. We give two bijections between cover-inclusive Dyck tilings and linear
extensions of tree posets. The first bijection maps the statistic (area + tiles)/2 to
inversions of the linear extension, and the second bijection maps the “discrepancy”
between the upper and lower boundary of the tiling to descents of the linear extension.

1 Introduction

Kenyon andWilson [KW11a] and Shigechi and Zinn-Justin [SZJ12] independently introduced
the notion of “cover-inclusive Dyck tilings” (defined below). The probabilities of certain
events pertaining to the double-dimer model and spanning trees are given by formulas that
involve counting these Dyck tilings [KW11a, KW11b]. Dyck tilings are also relevant to the
study of Kazhdan–Lusztig polynomials [SZJ12]. More recently, Dyck tilings have arisen in
connection with fully packed loop systems [FN12, Remark 2.10] and other contexts [Fay13].

We give two new bijections between Dyck tilings and perfect matchings, which when
restricted to Dyck tilings with a certain “lower path,” become bijections to linear extensions
of a tree poset. The first bijection is compatible with the number of inversions of a linear
extension, and gives a bijective proof of a formula that was conjectured by Kenyon and
Wilson [KW11a, Conjecture 1] and proved non-bijectively by Kim [Kim12]. The second
bijection is compatible with descents of the linear extension, and leads to a new enumeration
formula. We also conjecture a third enumeration formula.

1.1 Background

Dyck paths of order n are often defined as staircase lattice paths on an n × n square grid,
from the lower-left corner to the upper-right corner, which do not go below the diagonal.
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Figure 1: A Dyck path λ of order n = 12 is shown in bold on the left. Above it is its
associated (rotated) Young diagram. Below the Dyck path is its corresponding Dyck word,
its balanced parentheses expression, and coordinates for the step positions. The horizontal
dotted lines depict the chords between the matching up and down steps. In the middle is
the planted plane tree corresponding to the Dyck path, where each node other than the root
corresponds to a chord. On the right is the set of chords of the Dyck path, where each chord
is represented as the pair of coordinates of the matching up and down steps. (See [Sta99,
Exercise 6.19].) A linear extension of the chord poset of λ can be represented by placing
the numbers 1, . . . , n on the chords of the diagram on the left (so that if one chord is nested
within another, it gets a higher number), or equivalently by placing the numbers 0, . . . , n
on the vertices of the planted plane tree (so that the numbers increase when going up the
tree), or equivalently by ordering the set of chords represented as pairs (so that if one pair
is nested within another, it occurs later). See also Figure 4.

Each such Dyck path has associated with it a Young diagram formed from the boxes above
and to the left of it. If we rotate the lattice by 45◦ and dilate it by a factor of

√
2, then

each step of the Dyck path is either (+1,+1) (an up or “U” step) or (+1,−1) (a down or
“D” step). (See Figure 1.) This rotated form will be more convenient for us to work with.
A Dyck path’s sequence of U and D steps, when concatenated, forms a word which is called
a Dyck word. If the U steps are written as “(” and the down steps are written as “)”, then
the Dyck word is a balanced parentheses expression.

We define a chord of a Dyck path λ to be the horizontal segment between an up step
and the matching down step, as shown in Figure 1. The chords of a Dyck path λ naturally
form a chord poset Pλ, where nesting is the order relation, i.e., one chord is above another
chord in the partial order if its horizontal span lies within the span of the other chord, or
equivalently, if the ( and ) corresponding to the first chord are nested within the ( and )

corresponding to the second chord. If we adjoin a bottom-most element to the chord poset,
we call the result the tree poset (see Figure 1), since its Hasse diagram is a planted plane

tree, i.e., a tree embedded in the upper half-plane with a single distinguished vertex (the
root) on the boundary of the half-plane, where two such embedded trees are considered
equivalent if their embeddings are isotopic. Combinatorially, a planted plane tree is a tree
with a distinguished root vertex, such that the children of any vertex are ordered. There is a
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Figure 2: Natural labelings of a planted plane tree and their associated permutations.

natural bijection between Dyck paths of order n and planted plane trees with n+ 1 vertices
(see [Sta99, Exercise 6.19], or Figure 1).

A natural labeling of a poset P with n elements is an order-preserving bijection L :
P → [n], where [n] denotes {1, 2, . . . , n}. For the tree poset associated with λ, it is more
convenient to take a natural labeling of the chord poset Pλ, and then label the root by 0,
as shown in Figure 2. A planted plane tree with a natural labeling is called an increasing

planted plane tree. As is well known, there are (2n− 1)!! increasing planted plane trees
on n + 1 vertices (see [BFS92, Corollary 1(iv)]). Given a labeled tree L, if we delete all
vertices with labels larger than k ≤ n, the result is a labeled tree L(k) on k + 1 vertices
(including the root labeled 0). Given L(k−1), there are 2k − 1 possible positions where the
vertex with label k may be attached to the labeled tree L(k−1). (Each time a new vertex gets
added to the tree, the subsequent vertex has one less possible attachment location but three
new ones: just before, just after, and on top of the new vertex.) Thus, to each labeled tree
(Pλ, L) we can derive a sequence of attachment sites p1, . . . , pn, where 0 ≤ pi < 2i− 1. Any
such sequence determines a poset Pλ together with a natural labeling L of Pλ, and the map
from sequences to pairs (Pλ, L) is a bijection. In terms of the endpoints of the chords, this
sequence of insertion locations is given by

pi = #{j < i : ℓj < ℓi}+#{j < i : rj < ℓi},
where ℓi and ri denote the left and right endpoints of the chord labeled i, as in Figure 2 c.

Let L0 be the natural labeling of Pλ which orders the chords by their left endpoints
(Figure 2 a). The preorder word of a natural labeling L of Pλ is L ◦ L−1

0 , which is the
permutation on [n] obtained by reading the labels of L (excluding 0) in a left-to-right depth-
first order (Figure 2 d). The inverse of the preorder word, σ = L0 ◦ L−1, turns out to be
a more natural object. It can also be obtained as the “standardization” of the sequence
of left-endpoints ℓ1, . . . , ℓn, i.e., σ is the permutation on [n] for which σi < σj iff ℓi < ℓj
(Figure 2 e). If ω is a natural labeling of the poset P , Stanley [Sta72] defines

L (P, ω) = {ω ◦ L−1 : L is a natural labeling of P},
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and these are sometimes called the linear extensions of the labeled poset (P, ω). We will
abbreviate L (Pλ) = L (Pλ, L0).

It is also well known that there are (2n−1)!! perfect matchings on the numbers 1, . . . , 2n.
Given the sequence p1, . . . , pn, one natural way to associate a perfect matching match(p1, . . . , pn)
with it is to take match(p1, . . . , pn−1), increment all the numbers that are bigger then pn,
and then adjoin pair (pn+1, 2n). We define the min-word of the matching to be the list of
the smaller item of each pair, sorted in order of the larger item in each pair, see Figure 4.

Given two Dyck paths λ and µ of order n, if the path µ is at least as high as the path λ
at each horizontal position, then we write µ ⊂ λ (since the Young diagram associated with
µ is a subset of λ’s Young diagram), and we write λ/µ for the skew Young diagram which
consists of the boxes between λ and µ.

Dyck tiles, also called “Dyck strips” in [SZJ12], are ribbon tiles (connected skew shapes
that do not contain a 2× 2 rectangle) in which the leftmost and rightmost boxes are at the
same height, and no box within the tile is below these endpoints. (If each vertex in a Dyck
path is replaced with a box, and the boxes are glued together, then the result is a Dyck tile,
which explains the terminology.) A tiling of a skew Young diagram by Dyck tiles is a Dyck

tiling. We say that one Dyck tile covers another Dyck tile if the first tile has at least one
box whose center lies straight above the center of a box in the second tile. A Dyck tiling is
called cover-inclusive if for each pair of its tiles, when the first tile covers the second tile,
then the horizontal extent of the first tile is included as a subset within the horizontal extent
of the second tile. We denote by D(λ, µ) the set of all cover-inclusive Dyck tilings of shape
λ/µ, and let

D(λ, ∗) =
⋃

µ

D(λ/µ).

Figure 3 shows all the cover-inclusive Dyck tilings of a certain skew shape.

1.2 Connections between Dyck tilings and increasing trees

It was observed empirically that there is a close connection between Dyck tilings and linear
extensions of planted plane trees. More specifically, for a Dyck path λ of order n, the
total number of cover-inclusive Dyck tilings of skew shape λ/µ for some µ was conjectured
[KW11a, Conjecture 1] and subsequently proven [Kim12] to be

|D(λ, ∗)| = n!
∏

chords c of λ |c|
, (1)

where |c| is the length of the chord c as measured in terms of number of up steps in λ
between and including its ends. This formula has the form of the tree hook-length formula
of Knuth [Knu73, pg. 70] for the number of linear extensions of the tree poset Pλ. These
formulas call out for a bijection between cover-inclusive Dyck tilings and linear extensions.
Here we give two such bijections. These bijections were in part inspired by a bijection due
to Aval, Boussicault, and Dasse-Hartaut [ABDH13] (see also [ABN11]), to which one of our
bijections specializes in the case where Pλ is the antichain. Our bijections actually provide
refined enumeration formulas, which relate statistics (defined below) on the Dyck tilings to
well-studied statistics on the permutations.
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Figure 3: All the cover-inclusive Dyck tilings of a particular skew shape. (This figure first
appeared in [KW11a].) The generating function for the tilings of this skew shape by number
of tiles is t7 + 2t9 + 4t11 + 5t13 + 5t15 + 4t17 + 2t19 + t21, which, as discussed in [SZJ12], is
closely related to a Kazhdan–Lusztig polynomial.

For two Dyck paths λ and µ, let dis(λ, µ) be the “discrepancy” between λ and µ, i.e., the
number of locations where λ has a down step while µ has an up step (which also equals half the
number of locations where λ and µ step in opposite directions, i.e., half the Hamming distance
between the Dyck words of λ and µ). For a skew shape λ/µ we define dis(λ/µ) = dis(λ, µ).

For a Dyck tiling T of shape sh(T ) = λ/µ, we define dis(T ) = dis(λ, µ), and tiles(T ) to
be the number of tiles in T , and area(T ) to be the number of boxes of the skew shape λ/µ.
We define

art(T ) = (area(T ) + tiles(T ))/2.

The art statistic is always integer-valued since each tile has odd area, and appears to be
more natural than the area statistic.

Recall that the inversion statistic of a permutation σ on [n] is defined by

inv(σ) = #{(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}

and the descent statistic is defined by

des(σ) = #{i < n : σi > σi+1}.

In § 2 we give our two bijections, which we call DTS and DTR, which stand for “Dyck
tiling strip” and “Dyck tiling ribbon” respectively, for reasons that will become apparent.
The functions DTS and DTR are bijections from the sequences p1, . . . , pn to cover-inclusive
Dyck tilings of order n (without restrictions on the lower path λ or upper path µ). As
discussed above, these sequences p1, . . . , pn are also in bijection with increasing planted
plane trees, so we can write DTS(λ, σ) and DTR(λ, σ) for the maps which take the labeled
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Figure 4: Objects associated with the Dyck path λ =UDUUDUDD. Row 1 shows natural
labelings of the chord poset Pλ. Row 2 shows essentially the same thing — natural labelings
of the planted plane tree associated with λ. Row 3 shows the labels of the planted plane
tree listed in depth-first search order, where children are searched in left-to-right order.
This is equivalent to listing the chord labels in order of the left endpoint. Row 4 shows
the inverse of the permutation from the sixth row, with marks at the descents. These are
the permutations σ of L (Pλ). Row 5 shows the left and right endpoints of the chords of λ,
listed in the order of the natural labeling. Row 6 shows the growth sequences p1, . . . , pn which
correspond to the increasing planted plane trees in row 2. Row 7 shows perfect matchings
on 1, . . . , 2n that correspond to the sequences p1, . . . , pn in row 6. Row 8 shows these same
perfect matchings, represented as a 2 × n array of numbers, where the columns are sorted,
and the bottom row is sorted, together with markings at the descents in the top row. The
top row of each 2 × n array is the min-word w. Rows 9 and 10 show the cover-inclusive
Dyck tilings DTS(λ, σ) and DTR(λ, σ) whose lower path is λ. The last three rows give
statistics on these objects. Row 11 gives des(w) = des(σ) = des(ℓ) = dis(DTR). Row 12
gives inv(σ) = inv(ℓ) = art(DTS). Row 13 gives inv(w) = tiles(DTS) = nestings(matching).
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tree defined by λ and σ to the sequence p1, . . . , pn and then to the Dyck tiling. These three
bijections are compatible with one another in the sense that the lower paths of DTS(λ, σ)
and DTR(λ, σ) are both λ. Thus, for a given Dyck path λ of order n, the maps DTS(λ, ·) and
DTR(λ, ·) are bijections from L (Pλ) to D(λ, ∗), see Figure 4. Furthermore, if σ ∈ L (Pλ),
then

art(DTS(λ, σ)) = inv(σ)

and
dis(DTR(λ, σ)) = des(σ).

It is natural to ask if there is a bijection from linear extensions in L (Pλ) to cover-inclusive
Dyck tilings with lower path λ that simultaneously maps inv to art and des to dis, but as
can be seen from Figure 4, no such bijection exists.

Björner and Wachs [BW89] gave the following q-analog of Knuth’s tree hook-length for-
mula:

∑

σ∈L (Pλ)

qinv(σ) =
[n]q!

∏

vertices v ∈ Pλ
[|subtree rooted at v|]q

,

where [n]q = 1 + q + · · · + qn−1 and [n]q! = [1]q · · · [n]q. Using this formula together with
the DTS bijection, we get a bijective proof of the following theorem, originally proven in
[Kim12] using inductive computation:

Theorem 1.1. [KW11a, Conjecture 1][Kim12] Given a Dyck path λ of order n, we have

∑

Dyck tilings T ∈ D(λ, ∗)

qart(T ) =
[n]q!

∏

chords c of λ [|c|]q
. (2)

In turn, the DTR bijection implies

Theorem 1.2.
∑

Dyck tilings T ∈ D(λ, ∗)

zdis(T ) =
∑

σ∈L (Pλ)

zdes(σ). (3)

It is evident from the form of (2) that if λ1 and λ2 are two Dyck paths whose corresponding
trees are isomorphic when we ignore their embeddings in the plane, then

∑

T∈D(λ1,∗)

qart(T ) =
∑

T∈D(λ2,∗)

qart(T ).

The corresponding fact is not obvious for the dis statistic, but Stanley [Sta72, Thm. 9.1 and
Prop. 14.1] proved that for any naturally labeled poset (P, ω),

∑

σ∈L (P,ω)

zdes(σ)

is independent of the labeling ω, so then it follows from (3) that
∑

T∈D(λ1,∗)

zdis(T ) =
∑

T∈D(λ2,∗)

zdis(T ).

These sums can be computed recursively using [Sta72, 12.6(ii) and 12.2].
Experimentally the tiles statistic also appears to behave nicely in this fashion:
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Conjecture 1.3. If λ1 and λ2 are two Dyck paths whose corresponding trees are isomorphic
when we ignore their embeddings in the plane, then

∑

T∈D(λ1,∗)

ttiles(T ) =
∑

T∈D(λ2,∗)

ttiles(T ).

We have confirmed this equation by direct computation for all Dyck paths λ1 and λ2 of
order 8 or less.

In contrast, the area statistic does not have this property, nor do any of the joint statistics
between art, dis, and tiles.

The Dyck tilings DTS(p1, . . . , pn) and DTR(p1, . . . , pn) can also be understood in terms
of the perfect matching match(p1, . . . , pn), as we discuss in § 2. We shall see, for example,
that

dis(DTR(p1, . . . , pn)) = des(min-word(match(p1, . . . , pn)))

and
tiles(DTS(p1, . . . , pn)) = inv(min-word(match(p1, . . . , pn))).

An interesting special case for our bijections is when the lower path λ is the “zig-zag”
path

zigzagn = UDUDUD . . .UD = (UD)n,

so that Pλ is the antichain, and L (Pλ) is the set of all permutations. In this case, the bijection
DTR restricts to the bijection between permutations and Dyck tableaux in [ABDH13], as
discussed in § 4.

We show in § 6 that when λ = zigzagn,

art(DTR(zigzagn, σ)) = mad(σ),

where mad is a Mahonian statistic on permutations defined in [CSZ97] (which we review
later). The composition of the two Dyck tiling bijections DTS−1(zigzagn, ·)◦DTR(zigzagn, ·)
gives a bijection mapping mad to inv which is different than the one given in [CSZ97].

If we further restrict to the case where both λ = zigzagn and all the Dyck tiles have size 1,
then the Dyck tiling is determined by its upper path µ. In § 5 we show that in this case,
both DTS(zigzagn, ·) and DTR(zigzagn, ·) restrict to (classical) bijections from permutations
avoiding the pattern 231 to Dyck paths.

2 Dyck tiling bijections

2.1 Bijections with increasing trees

Recall that λ/µ denotes the skew shape between the lower Dyck path λ and upper Dyck
path µ. We choose coordinates so that when λ and µ are of order n, they start at (−n, 0),
each step is either (+1,+1) or (+1,−1), and the ending location is (+n, 0). We coordinatize
a Dyck tile by the Dyck path formed from the lower corners of the boxes contained within
the Dyck tile. Column s ∈ Z refers to the set of points (s, y).

8



Given a Dyck path ρ and a column s, we define the spread of ρ at s to be the Dyck
path ρ′ whose points are

{(x, y) + (−1, 0) : (x, y) ∈ ρ and x ≤ s} ∪
{(x, y) + (0, 1) : (x, y) ∈ ρ and x = s} ∪
{(x, y) + (+1, 0) : (x, y) ∈ ρ and x ≥ s}.

Notice that the spread of ρ at s makes sense whether or not Dyck path ρ overlaps column s.
Given a Dyck path ρ′ and a column s, we define the contraction of ρ′ at s to be the

Dyck path ρ whose spread at s is ρ′. Not all Dyck paths ρ′ will have a contraction at s. If
there is a contraction at s, then it is unique.

We define the spread and contraction of a Dyck tile at column s by taking the spread
or contraction of the Dyck path that coordinatizes the Dyck tile. We define the spread and
contraction of a Dyck tiling at column s by taking the spread or contraction of the upper
and lower bounding Dyck paths as well as of all the Dyck tiles within the tiling.

Given a Dyck tiling T of λ/µ, a column s is eligible if:

1. The upper boundary µ contains an up step that ends in column s.

2. The intersection of µ with column s is not the top corner of a Dyck tile of T containing
just one box.

There is always at least one eligible column of a Dyck tiling T , since the leftmost step
of µ ends at an eligible column. We define the special column of a Dyck tiling to be its
rightmost eligible column.

We now define two growth processes on Dyck tilings, one of which is used in the DTS
bijection, the other in the DTR bijection. These processes are very similar — they both
involve spreading the Dyck tiling at a certain column s and adding boxes to the right of the
new column. In the strip-grow process, we add a “broken strip” of one-box tiles from the
growth site to the right boundary of the tile, so that a portion of µ is pushed up and left at a
45◦ angle; see Figures 5 and 6. In the ribbon-grow process, we add a “ribbon” of one-box
tiles from the growth site right-wards to the special column, so that a portion of µ is pushed
up; see Figures 5 and 6.

Formally, given a Dyck tiling T of order n, and a column s such that −n ≤ s ≤ n, we
define strip-grow(T, s) to be the Dyck tiling formed by first spreading T at s to get T ′′, and
then adding a NE “broken strip” of one-box tiles to each up (NE) step of the upper boundary
of T from the growth site until the right boundary of T ′′ to obtain T ′ = strip-grow(T, s).

Similarly, we define ribbon-grow(T, s) to be the Dyck tiling formed by first spreading T
at s to get T ′′, and then if T ′′’s special column Q is to the right of s, adding a ribbon of
one-box tiles on top of T ′′ at columns that are strictly between columns s and Q to obtain
T ′ = ribbon-grow(T, s). Notice that the upper boundary of tiling T ′′ has a down step starting
at column s, and an up step ending at column Q, so adding this ribbon of one-box tiles to T ′′

results in a valid Dyck tiling T ′.
If T is cover-inclusive, then both strip-grow(T, s) and ribbon-grow(T, s) are also cover-

inclusive. The maps strip-grow and ribbon-grow are the grow maps.
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Figure 5: The growth process for the DTS bijection (left column) and the DTR bijection
(right column). The spread and contract steps are the same for both bijections, as is the
definition of the special column. In the DTS bijection, a “broken strip” of one-box tiles is
always added to each up step to the right of the growth site, which has the effect of pushing
up-and-left the upper boundary (as indicated by the arrows). In the DTR bijection, when
the growth is at a column to the left of the special column, a “ribbon” of one-box tiles is
added from the growth site to the special column, which has the effect of pushing up the
upper boundary of the tiling (as indicated by the arrows).
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Figure 6: Example showing the bijections from increasing planted plane trees (linear ex-
tensions of a chord poset) to Dyck tilings, with the DTS bijection on the left, and the
DTR bijection on the right. The increasing planted plane tree is built up one vertex at
a time in numerical order of the vertex labels, while the Dyck tilings are built up, start-
ing from the empty Dyck tiling, by a sequence of the growth steps illustrated in Figure 5,
with newly added tiles shown in gray. At each stage k, the linear extension of the chord
poset Pλ(k) is shown together with the kth Dyck tiling, whose lower boundary is λ(k). The
preorder word of the final linear extension is 3, 7, 10, 12, 6, 1, 4, 9, 8, 5, 11, 2, whose inverse is
6, 12, 1, 7, 10, 5, 2, 9, 8, 3, 11, 4, which has 6 descents and 34 inversions. The discrepancy be-
tween the upper and lower paths of the final tiling on the right is 6, and (area + tiles)/2 of
the final tiling on the left is 34. 11



Column s is eligible for T ′. Because we added a strip or a ribbon to the spread of T to
get T ′, there are no eligible columns of T ′ to the right of s, so s is T ′’s special column in
both growth processes.

Given a cover-inclusive Dyck tiling T ′ of order n + 1, we now define strip-shrink(T ′)
and ribbon-shrink(T ′), which we will show to be the inverses of the corresponding grow
maps. First, we identify T ′’s special column s. For the strip-shrink map, we then remove all
the one-box tiles to the right of s that are part of an up step in T ′’s upper boundary. This
operation gives a new cover-inclusive Dyck tiling T ′′ since the speciality of s ensures that
to the right of s all up steps of µ are part of one-box tiles, so removing them will keep the
upper boundary a Dyck path. For the ribbon-shrink map, we find the column r for which
the tiling T ′ has one-box Dyck tiles on top of columns s+1, s+2, . . . , r−1 but not on top of
column r. (If there are no such one-box Dyck tiles, then r = s + 1.) We then remove these
one-box Dyck tiles to obtain a new cover-inclusive Dyck tiling T ′′.

For both the strip-shrink and ribbon-shrink maps, since s was special, the upper bound-
ary µ′ of T ′ makes an up step from s − 1 to s. Because s + 1 was not eligible in T ′, either
µ′ makes a down step from column s to s+ 1, or it makes an up step but there is a one-box
Dyck tile on the top border, which is then removed in T ′′. In T ′′, the top tile in column s has
a peak at s. Because T ′ is cover-inclusive, T ′′ is also cover-inclusive, and so any tile of T ′′

which intersects columns s − 1, s, or s + 1 in fact intersects all three columns, and has a
peak at s. Therefore T ′′ can be contracted at column s to obtain a new cover-inclusive Dyck
tiling T . The maps from T ′ to (T, s) are the shrink maps.

Lemma 2.1. The strip/ribbon-grow maps and the strip/ribbon-shrink maps are inverses and
define a bijection from pairs (T, s), where T is a cover-inclusive Dyck tiling of order n and s
is an integer between −n and n inclusive, to cover-inclusive Dyck tilings T ′ of order n+ 1.

Proof. Suppose that we apply one of the grow maps to (T, s) to get T ′ and then apply the
corresponding shrink map to T ′. We already saw that s is the special column of T ′, which
is then recovered by the shrink map.

Consider the strip-grow followed by the strip-shrink map. The addition of a one-box tile
strip to the right of s ensures that s is the special column of T ′ and thus shrinking T ′ results
in removing that same strip of boxes.

Consider the ribbon-grow followed by the ribbon-shrink map. Let q denote T ’s special
column. If q ≤ s then no new one-box Dyck tiles are added by the ribbon-grow map, column
s+ 1 of T ′ does not contain a one-box Dyck tile, and no one-box Dyck tiles are removed by
the shrink map. If q > s, then T ′′’s special column is q+1, and q− s one-box Dyck tiles are
added by the grow map, one in each of columns s + 1, . . . , q. Because q + 1 is T ′′’s special
column, there is no one-box Dyck tile of either T ′′ or T ′ in column q+1. Thus ribbon-shrink
will remove precisely the one-box tiles that ribbon-grow added to columns s+ 1, . . . , q.

In either the strip or ribbon cases, the shrink map removes precisely those one-box Dyck
tiles that the grow map added. The contraction of the shrink map undoes the spreading of
the grow map, so shrinking T ′ results in (T, s).

Next, suppose that we apply the shrink map to T ′ to get (T, s) and then apply the grow
map to (T, s). Column s was T ′’s special column.

Consider the strip-shrink followed by the strip-grow map. Since s was T ′’s special column,
all up steps of T ′’s upper boundary to the right of s are the top boundary of a one-box tile,
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which strip-shrink then removes. Each of these up-steps still exist in T ′′ (translated by
(+1,−1)) and in T ′ (translated by (0,−1)). The strip-grow map then adds back the one-box
tiles at these locations.

Consider the ribbon-shrink followed by the ribbon-grow map. Let Q denote the first
column to the right of s for which T ′ does not have a one-box Dyck tile (such a column
exists). If Q > s + 1, then upon removing the topmost one-box Dyck tiles in columns
s+ 1, . . . , Q− 1 to get cover-inclusive Dyck tiling T ′′, column Q is an eligible column of T ′′,
and the rightmost such column (since s < Q was special for T ′), so Q is T ′′’s special column.
Upon shrinking, Q− 1 > s is T ’s special column, so the ribbon-grow map adds back in the
one-box Dyck tiles to positions s+1, . . . , Q−1. Otherwise, s = Q−1 is T ′′’s special column,
ribbon-shrink does not remove any one-box tiles, the special column of T is ≤ s, and the
ribbon-grow map does not add any one-box tiles.

In either the strip or ribbon cases, the spreading of the grow map undoes the contraction
of the shrink map, and the grow map then adds one-box Dyck tiles precisely in the positions
where the shrink map removed them, so growing (T, s) results in T ′.

The bijections DTS and DTR are given by repeated application of the strip-grow and
ribbon-grow maps respectively. More precisely, we first do a minor change of coordinates,

pi = (i− 1) + si,

so that 0 ≤ pi ≤ 2(i− 1), and then define

DTS(p1, . . . , pn) =

{

∅ n = 0,

strip-grow(DTS(p1, . . . , pn−1), pn − (n− 1)) n > 0,

and

DTR(p1, . . . , pn) =

{

∅ n = 0,

ribbon-grow(DTR(p1, . . . , pn−1), pn − (n− 1)) n > 0.

Theorem 2.2. The maps DTS and DTR are bijections from integer sequences p1, . . . , pn
with 0 ≤ pi ≤ 2(i− 1) to cover-inclusive Dyck tilings of order n.

Proof. Immediate from Lemma 2.1.

2.2 Comparison of statistics

Next we compare the bijections DTS and DTR to the bijection from integer sequences
p1, . . . , pn to increasing planted plane trees. The strip-grow and ribbon-grow maps introduce
a new chord in the lower boundary of the Dyck tiling; the existing chords may be stretched,
but their relative order is unchanged. (By induction, the lower boundaries of DTS(p1, . . . , pn)
and DTR(p1, . . . , pn) are the same.) If we keep track of the order in which the chords are
introduced, the result is a natural labeling L of the chord poset Pλ of the lower boundary λ,
which together comprise an increasing planted plane tree, as shown in Figure 6. In fact,
this increasing planted plane tree is the one given by the standard bijection from sequences
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p1, . . . , pn to increasing planted plane trees. We can represent an increasing planted plane
tree by a Dyck path λ and a permutation σ ∈ L (Pλ), as shown in Figure 2. Given such a
pair (λ, σ), we define

DTS(λ, σ) = DTS(sequence p1, . . . , pn which yields labeled tree defined by (λ, σ))

and

DTR(λ, σ) = DTR(sequence p1, . . . , pn which yields labeled tree defined by (λ, σ)).

We therefore obtain the following theorem:

Theorem 2.3. For each Dyck path λ, the maps DTS(λ, ·) and DTR(λ, ·) are bijections from
linear extensions in L (Pλ) to cover-inclusive Dyck tilings with lower path λ.

Next we compare statistics of the Dyck tiling T to statistics of the permutation σ. To
do this, it is convenient to view an increasing planted plane tree as having its edges labeled
rather than its vertices, and when the tree is represented by a Dyck path λ, for the labels
to reside on the up steps of λ. The preorder word (σ−1) is the listing of these labels in
order. Both grow maps will insert a new chord into λ at a position s. Let n be the order
of Dyck path λ, and let λ′ and σ′ be the Dyck path and linear extension associated with
strip-grow(T, s) or ribbon-grow(T, s). The word (σ′)−1 is just σ−1 with n+1 inserted at the
location which is the number of up steps of λ to the left of s.

Theorem 2.4. For each Dyck path λ and linear extension σ ∈ L (Pλ),

art(DTS(λ, σ)) = inv(σ).

Proof. By the above discussion,

inv((σ′)−1)− inv(σ−1) = # up steps of λ to the right of s.

Notice that with T ′ = strip-grow(T, s), we have tiles(T ′)− tiles(T ) = (n− s− µs)/2, which
is the number of up steps of µ to the right of column s, and that area(T ′) − area(T ) =
µs − λs + (n− s− µs)/2. (Here ρs denotes the height of Dyck path ρ in column s.) In other
words, art(T ′)− art(T ) = (n− s− λs)/2, which we can write as

art(strip-grow(T, s))− art(T ) = # up steps of λ to the right of s.

Upon combining these equations and using induction, and using the fact that inv(σ−1) =
inv(σ), the theorem follows.

Theorem 2.5. For each Dyck path λ and linear extension σ ∈ L (Pλ),

dis(DTR(λ, σ)) = des(σ).
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Proof. Let T ′ = ribbon-grow(T, s). By the above discussion, we see that the n + 1 occurs
before the n in σ′ iff T ′’s special column s is smaller than T ’s special column. Thus

des(σ′)− des(σ) =

{

1 ribbon-grow map added a ribbon

0 otherwise.

Notice that spreading T at s does not change the discrepancy between the lower and upper
paths. If the ribbon-grow map added a ribbon to the spread of T at s, then T ′ has one
extra location, the place between s and s + 1, where the upper path µ′ goes up while the
lower path λ′ goes down. Thus dis(T ′)−dis(T ) = des(σ′)−des(σ). Induction completes the
proof.

Proof of Theorem 1.1. Immediate from Theorem 2.3 and Theorem 2.4 and the theorem of
Björner and Wachs [BW89] on the q-hook-length formula for the q-distribution of the inver-
sion statistic of linear extensions.

Proof of Theorem 1.2. Immediate from Theorem 2.3 and Theorem 2.5.

3 Histoires d’Hermite

Next we compare the growth of the perfect matching match(p1, . . . , pn) with the Dyck tilings
DTS(p1, . . . , pn) and DTR(p1, . . . , pn). The shape of a perfect matching of {1, . . . , 2n} is the
Dyck path of order n which has an up-step at the location of the smaller item in each pair,
and a down-step at the location of the larger items. For each pair (a, b) of the matching, we
can record the number of other pairs (c, d) which nest it, i.e., for which c < a < b < d. If
we record these nesting numbers on the down-steps of the Dyck path, the resulting labeled
Dyck path is called an histoire d’Hermite, and the perfect matching can be recovered
from it. The down-steps can also be labeled according to crossings, i.e., the number of other
pairs (c, d) for which a < c < b < d, but for our purposes it is more convenient to work with
nestings, and to record the nesting numbers on the up steps of the Dyck path.

Kim [Kim12] and Konvalinka showed how to transform a cover-inclusive Dyck tiling into
an histoire d’Hermite, which we illustrate in Figure 7 without defining it formally. Each
number on the up step counts the number of tiles of the tiling which are encountered by the
exploration process of gray paths (shown in Figure 7), and each tile is encountered exactly
once.

Theorem 3.1. The histoire d’Hermite arising from exploring DTS(p1, . . . , pn) from the left
is the same as the histoire d’Hermite arising from match(p1, . . . , pn) resulting from recording
the nesting numbers on the up steps.

Proof. The theorem is trivially true when n = 0. Suppose that it is true for n, and T is a
Dyck tiling of order n. The strip-grow map modifies the upper boundary µ of T by inserting
an up step at the special column, and appending a down step at the end. When we update
the perfect matching, a new smaller element is inserted at the location specified by pn+1,
which is matched with 2(n + 1), so by induction, the upper boundary of the Dyck tiling is
the shape of the perfect matching. The strip-grow map adds one-box tiles at each of the
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Figure 7: The growth of the DTS Dyck tiling from Figure 6 (on left) together with its
corresponding perfect matching (on right). The histoire d’Hermite is shown with the perfect
matching, where the numbers count nestings, and with the Dyck tiling, where the numbers
count tiles. 16



up steps to the right of the new special column, so the numbers in the associated histoire
d’Hermite after the special column are incremented. In the perfect matching, after the new
pair is added, the nesting numbers of each pair whose smaller element is to the right of the
insertion point are incremented. This completes the induction.

From this we see that the number of tiles in DTS(p1, . . . , pn) equals the nesting number of
match(p1, . . . , pn), which in turn is the number of inversions in min-word(match(p1, . . . , pn)).

Theorem 3.2. If (λ, σ) is the labeled tree arising from (p1, . . . , pn), then

DES(σ) = DES(min-word(match(p1, . . . , pn))).

In particular, dis(DTR(p1, . . . , pn)) = des(min-word(match(p1, . . . , pn))).

Proof. Recalling the construction of the perfect matching, we see that i is a descent of the
min-word when pi+1 ≤ pi. In the construction of the increasing planted plane tree, this is
precisely when the node labeled i+1 occurs to the left of the node labeled i in the left-to-right
depth-first search order, which occurs precisely when σi+1 < σi.

4 Dyck tableaux

In this section we explain how the DTR bijection from Dyck tilings to perfect matchings is
related to the work by Aval, Boussicault, and Dasse-Hartaut [ABDH13] on what they call
Dyck tableaux. We make use of a bijection from Dyck tilings of a skew shape λ/µ to bounded
weakly increasing labelings of the planted plane tree associated with λ, which is illustrated
in Figure 8. This bijection appears in [KW11a, Prop. 1.11] in the case λ = zigzagn, and
in [SZJ12, Sect. 4] for general skew shapes. For the reader’s convenience, we review the
bijection in Proposition 4.1.

0 00
1 1

1
0 2

2
1

11

0

0 1 0 0

0 1 1 2 1

1 2 1

0

≤ 0 ≤ 3 ≤ 1 ≤ 0

≤ 0 ≤ 1 ≤ 3 ≤ 3 ≤ 1

≤ 1 ≤ 3 ≤ 1

Figure 8: On the left is a cover-inclusive Dyck tiling of a certain skew shape λ/µ, in which
the chords of λ have been labeled according to the number Dyck tiles above the chord which
cover both endpoints of the chord. Given λ/µ and these labels, the cover-inclusive Dyck
tiling can be recovered. These chord labels define a weakly increasing labeling of the tree
poset associated with λ, as shown in the middle. On the right is shown the maximum values
of these labels for any cover-inclusive Dyck tiling of D(λ, µ).
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Proposition 4.1 ([SZJ12]). Let λ/µ be a skew shape. For each chord c of the lower Dyck
path λ, let hc denote the minimal thickness of the portion of the skew shape λ/µ between
the endpoints of the chord, i.e., hc is the maximal number of Dyck tiles that can fit in the
shape λ/µ and cover chord c. There is a bijection between the cover-inclusive Dyck tilings T
of λ/µ and the weakly increasing assignments of nonnegative integers to the poset of chords
Pλ, such that the number gc assigned to chord c satisfies 0 ≤ gc ≤ hc. This bijection satisfies
∑

c gc = (area(T )− tiles(T ))/2.

Proof. First observe that in any cover-inclusive Dyck tiling of skew shape λ/µ, every tile
is shaped like the portion of the lower boundary λ directly beneath it. We can assign to
chord c a number gc, where 0 ≤ gc ≤ hc, which encodes the number of tiles directly above c
in which the boxes in columns ℓ and r are in the same tile, as shown in Figure 8. Since we
are tiling with Dyck tiles, if a chord c′ is above chord c, then gc′ ≥ gc, so this labeling of the
chord poset Pλ is weakly increasing.

The map from weakly increasing labelings of the chords in Pλ to Dyck tilings is as follows.
Inductively we add Dyck tiles on top of chords, starting from the lowest chords. If c1 covers
c2 in the poset, then we add gc1 − gc2 ≥ 0 new Dyck tiles whose endpoints are exactly above
the endpoints of c1. By construction, this ensures cover-inclusiveness since smaller tiles are
added on top of larger ones. By definition of hc, all added tiles will fit in λ/µ.

It is straightforward to check that these maps are inverses.

The tree structure leads to a recursive algorithm for enumerating the number of bounded
weakly increasing labelings of trees by the statistic

∑

c gc, which Lascoux and Schützenberger
showed to be equivalent to computing Kazhdan–Lusztig polynomials for pairs of Grassman-
nian permutations [LS81].

Using the above bijection, we see that cover-inclusive Dyck tilings are a natural general-
ization of the Dyck tableaux recently introduced by Aval, Boussicault, and Dasse-Hartaut
in [ABDH13]. They defined a Dyck tableau of order n to be a skew shape between the
zig-zag path zigzagn+1 and upper Dyck path µ containing exactly n dots, such that each
column of the skew shape going through the valleys of zigzagn+1 contain exactly one dot, as
shown in Figure 9.

Proposition 4.2. There is a bijection between the cover-inclusive Dyck tilings whose lower
path is the zig-zag path zigzagn = (UD)n of n up-down steps and Dyck tableaux of order n.

0 1 1 0 2 0 0

to c.i. Dyck tiling
↼−−−−−−−−−−−−−−−−−−−−⇁
to Dyck tableau

Figure 9: The bijection between cover-inclusive Dyck tilings with λ = zigzagn and Dyck
tableaux. The dot heights encode the chord labels.
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Proof. Let the dot-height of a dot in zigzagn+1/µ be the number of boxes in the column
of the dot, which are in zigzagn+1/µ and below the dot. These dot heights are naturally
associated with the chords of zigzagn, and are independent of one another. Now Pzigzagn is
just the antichain on n points, so the weakly increasing condition is vacuously true, and the
maximum dot heights are precisely the maximum number of Dyck tiles that can fit within
λ/µ and cover the chord associated with the dot’s column (see Figure 9). Thus, Dyck tilings
with lower path zigzagn and Dyck tableaux of order n are different representations of the
same object.

With this interpretation of Dyck tableaux as cover-inclusive Dyck tilings in D(zigzagn, ∗),
the bijection DTR(zigzagn, ·) is equivalent to the bijection given in [ABDH13].

5 Dyck tilings and 231-avoiding permutations

We consider Dyck tilings whose lower path λ is the zigzag path, i.e., λ = zigzagn = (UD)n.
The poset Pλ is just an antichain of n points, so that its linear extensions are exactly the
permutations on n letters, i.e., L (Pzigzagn) = Sn, the symmetric group on n letters. We
consider 231-avoiding permutations in the usual sense — namely, permutations σ, such that
there are no indices i < j < k for which σk < σi < σj .

Theorem 5.1. The maps DTS(zigzagn, ·) and DTR(zigzagn, ·) restrict to bijections between
231-avoiding permutations in Sn and Dyck tilings whose lower path is zigzagn and which
contain only one-box tiles.

Proof. The map DTS places a tile above a position iff there is an element to the left of the
position that is larger than an element to the right of the position, i.e., if it is surrounded by
a “2, 1.” Thus, the image of DTS has no long tiles iff there are no 231’s in the permutation.
The map DTR places a tile above a position iff there is an element to the left of the position
which is one larger than an element to the right of the position. But this occurs precisely
when there is an element to the left of the position that is larger than an element to the
right of the position. Thus the image of DTR also has no long tiles iff there are no 231’s in
the permutation.

Reflecting µ about the y-axis and reversing the permutation σ, i.e., σn, . . . , σ1, gives
a bijection between Dyck paths and 132-avoiding permutations. For the case DTR, this
bijection has been given by Knuth in [Knu75, Problem 2.2.1–4].

6 Dyck tilings and the mad statistic

In this section we relate Dyck tilings to the permutation statistic mad, which was defined by
Clarke, Steingŕımsson, and Zeng [CSZ97], and whose definition we now review. For a word
w = w1 · · ·wn of order n, the descent set of w is denoted by

DES(w) = {i < n : wi > wi+1}.
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The statistic mad of a permutation σ is then defined by

desdif(σ) =
∑

i∈DES(σ)

(σi − σi+1),

res(σ) =
∑

i∈DES(σ)

#{k < i : σi > σk > σi+1},

mad(σ) = desdif(σ) + res(σ).

This can also be written as

mad(σ) =
∑

i∈DES(σ)

[

1 + #{k > i+ 1 : σi > σk > σi+1}+ 2×#{k < i : σi > σk > σi+1}
]

.

Clarke et al. gave a bijective proof that mad is a Mahonian statistic [CSZ97], i.e., that it is
equidistributed with inv.

In this section we prove

Theorem 6.1. For each permutation σ of order n,

art(DTR(zigzagn, σ)) = mad(σ).

When we combine Theorem 6.1 with Theorem 2.4, we obtain an involution

DTS(zigzagn, ·)−1 ◦DTR(zigzagn, ·)

on permutations of order n which goes by way of Dyck tilings and which maps mad to inv.
This involution of course shows that mad is equidistributed with inv. We do not see any
connection between this involution and the one given by Clarke et al.

Lemma 6.2. Suppose λ is a Dyck tiling and σ ∈ L (Pλ). In the increasing planted plane
tree associated with λ and σ, let ℓi and ri be the left and right endpoints of the chord of Pλ

labeled i, as shown in Figure 2. Letting T = DTR(λ, σ), we have

area(T ) =
∑

i∈DES(ℓ)

(ℓi − ri+1), (4)

tiles(T ) =
∑

i∈DES(ℓ)

(ℓi − ri+1 − 2×#{j > i+ 1 : ri+1 < ℓj < ℓi}), (5)

where ℓ denotes the word ℓ1 · · · ℓn.

Proof. We let ℓ
(k)
i and r

(k)
i denote the left and right endpoints of the chord labeled i after

the kth ribbon-grow map. Recall that p1, . . . , pn gives the sequence of growth locations, and
that si = pi − (i − 1). We have ℓ

(i)
i = pi + 1 and r

(i)
i = pi + 2. Suppose i > 1. If si ≥ si−1,

then the ith ribbon-grow map adds no new one-box tiles, ℓ
(i)
i > ℓ

(i)
i−1, and so ℓ

(n)
i > ℓ

(n)
i−1, so

i− 1 /∈ DES(ℓ(n)). If on the other hand si < si−1, then the number of one-box tiles that the

ith ribbon-grow map adds is si−1−si = pi−1−pi−1 = ℓ
(i)
i−1−r

(i)
i , and i−1 ∈ DES(ℓ(n)). Later

on in the growth process, new chords may get added between ri and ℓi−1, which of course
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increases the difference between them. For j > i, this happens iff r
(j)
i < ℓ

(j)
j < r

(j)
j < ℓ

(j)
i−1,

which happens iff r
(j)
i < ℓ

(j)
j < ℓ

(j)
i−1, which happens iff r

(n)
i < ℓ

(n)
j < ℓ

(n)
i−1, and when this

happens the distance between ri and ℓi−1 increases by 2 (i.e., r
(j)
i − ℓ

(j)
i−1 = r

(j−1)
i − ℓ

(j−1)
i−1 +2)

and otherwise increases by 0. This establishes the tiles formula (5). Notice that any such
chord j also increases by 2 the area of one of the tiles produced by chord i. This establishes
the area formula (4).

For a word w, the inversion set of w is denoted by

INV(w) = {(i, j) : i < j and wj < wi}.

Lemma 6.3. For a Dyck path λ and a natural labeling L of Pλ, let ℓi and ri denote the left
and right endpoints of the chord labeled i. Then INV(ℓ) ⊂ INV(r). In particular, if σ and τ
are the standardizations of ℓ and r respectively, then INV(σ) ⊂ INV(τ).

Proof. Suppose i < j. Let x and y denote the chords of Pλ which are labeled i and j by L.
Since L is natural, either x < y in Pλ, or x and y are incomparable in Pλ.

If x < y in Pλ, then ℓi < ℓj < rj < ri. Thus (i, j) is not an inversion of ℓ, but it is an
inversion of r.

If x and y are incomparable in Pλ, then either ℓi < ri < ℓj < rj, or else ℓj < rj < ℓi < ri.
In this case, (i, j) is either an inversion in both ℓ and r, or an inversion in neither of them.

If σ and τ are two permutations on [n] with INV(σ) ⊂ INV(τ), then we define

desdif(σ, τ) =
∑

i∈DES(σ)

(σi − σi+1 + τi − τi+1).

For a word w = w1 · · ·wn and a descent i ∈ DES(w), we define the set REMi(w) of right
embraced numbers of w with respect to descent i by

REMi(w) = {k > i : wi > wk > wi+1}.

Lemma 6.4. Let λ be a Dyck path, σ ∈ L (Pλ), and T = DTR(λ, σ). Let ℓi and ri denote the
left and right endpoints of the chord labeled i in the increasing planted plane tree associated
with λ, σ. Recall that σ is the standardization of ℓ, and let τ denote the standardization of r.
Then

area(T ) = desdif(σ, τ)− des(σ)−
∑

i∈DES(σ)

|REMi(σ)∆REMi(τ)|, (6)

tiles(T ) = desdif(σ, τ)− des(σ)−
∑

i∈DES(σ)

(|REMi(σ)|+ |REMi(τ)|), (7)

where A∆B = (A ∪ B) \ (A ∩ B).

Proof. Suppose i ∈ DES(ℓ), i.e., ℓi+1 < ℓi. Then in fact ℓi+1 < ri+1 < ℓi < ri. To characterize
ℓi − ri+1, consider any other chord, say with label j (j 6= i and j 6= i+1), which has at least
one step between ri+1 and ℓi. There are three cases as follows:
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Case 1: Both ℓj and rj are between ri+1 and ℓi, i.e., ℓi+1 < ri+1 < ℓj < rj < ℓi < ri. Because
the chords are noncrossing, this case happens iff both ℓi+1 < ℓj < ℓi and ri+1 < rj < ri.

Case 2: Only ℓj is between ri+1 and ℓi, which happens iff ℓi+1 < ri+1 < ℓj < ℓi < ri < rj. It
is easy to see that this case occurs iff j < i and ℓi+1 < ℓj < ℓi and ri+1 < ri < rj .

Case 3: Only rj is between ri+1 and ℓi. This case is similar to case 2, and occurs iff j < i
and ℓj < ℓi+1 < ℓi and ri+1 < rj < ri.

By considering chords j that fall into one of these three cases, and using the fact that σ
is the standardization of ℓ and τ is the standardization of r, we obtain

ℓi − ri+1 =1+2×
+

+

#{j : σi+1 < σj < σi and τi+1 < τj < τi}
#{j < i : σi+1 < σj < σi and τi+1 < τi < τj}
#{j < i : σj < σi+1 < σi and τi+1 < τj < τi}

=1+

−
−

(σi − σi+1 − 1) + (τi − τi+1 − 1)

#{j > i : σi+1 < σj < σi and τi+1 < τi < τj}
#{j > i : σj < σi+1 < σi and τi+1 < τj < τi}

=σi − σi+1 + τi − τi+1 − 1− |REMi(σ)∆REMi(τ)|. (8)

Upon summing over descents of σ and using (4), we obtain (6).
Recall equation (5). For j > i + 1, we have ri+1 < ℓj < ℓi if and only if ri+1 < rj < ℓi,

which in turn occurs if and only if both ℓi+1 < ℓj < ℓi and ri+1 < rj < ri. Thus

#{j > i+ 1 : ri+1 < ℓj < ℓi} = |REMi(σ) ∩ REMi(τ)|,

and combining this with (5) and (8) yields (7).

Proof of Theorem 6.1. We use Lemma 6.4, and observe that when λ = zigzagn we have
σ = τ , so when we evaluate art(T ) = (area(T ) + tiles(T ))/2, we obtain

art(DTR(zigzagn, σ)) = desdif(σ, σ)− des(σ)−
∑

i∈DES(σ)

|REMi(σ)|.

Now desdif(σ, σ) = 2× desdif(σ), and it is easy to see that

res(σ) = desdif(σ)− des(σ)−
∑

i∈DES(σ)

#{k > i : σi+1 < σk < σi},

so we obtain
art(DTR(zigzagn, σ)) = desdif(σ) + res(σ) = mad(σ).
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