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Abstract

We introduce the Dyck path triangulation of the cartesian product of two simplices ∆n−1×∆n−1.
The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally
generalizes to produce triangulations of ∆rn−1 × ∆n−1 using rational Dyck paths. Our study of
the Dyck path triangulation is motivated by extendability problems of partial triangulations of

products of two simplices. We show that whenever m ≥ k > n, any triangulation of ∆
(k−1)
m−1 ×∆n−1

extends to a unique triangulation of ∆m−1 × ∆n−1. Moreover, with an explicit construction, we
prove that the bound k > n is optimal. We also exhibit interesting interpretations of our results
in the language of tropical oriented matroids, which are analogous to classical results in oriented
matroid theory.

1 Introduction

The cartesian product of a standard (m− 1)-simplex with a standard (n− 1)-simplex is the (m+
n− 2)-dimensional polytope

∆m−1 ×∆n−1 := conv{(ei, ej) : ei ∈ ∆m−1, ej ∈ ∆n−1} ⊂ Rm+n,

where ei and ej range over the standard basis vectors of Rm and Rn, respectively.
Triangulations of the product of two simplices are intricate objects that have been extensively

studied with various purposes. They are a key ingredient for understanding triangulations of
products of polytopes [9, 14, 20, 21]. Via the Cayley trick, they are in bijection with fine mixed
subdivisions of a dilated simplex m∆n−1 [22], which provides a relation to tropical (pseudo) hy-
perplane arrangements and tropical oriented matroids [3, 11]. Moreover, they have also attracted
interest in algebraic geometry and commutative algebra [6, 8, 13, 25] and in Schubert calculus [1].

In this paper, we present an intriguing family of triangulations of ∆n−1 × ∆n−1 that we call
Dyck path triangulations, whose maximal simplices are described in terms of Dyck paths in a n×n
grid under a cyclic action. The maximal simplices of the Dyck path triangulation of ∆2 ×∆2 and
the corresponding fine mixed subdivision of 3∆2 are illustrated in Figure 1.

Figure 1: The Dyck path triangulation of ∆2 ×∆2 drawn as a subdivision of 3∆2.

Besides the combinatorial beauty of these triangulations, they are motivated by extendability
problems of partial triangulations of ∆m−1×∆n−1. The (k−1)-skeleton of ∆m−1, which we denote

by ∆
(k−1)
m−1 , is the polyhedral complex of all faces of ∆m−1 of dimension less than or equal to k−1. A
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partial triangulation of ∆m−1 ×∆n−1 is a triangulation of the polyhedral complex ∆
(k−1)
m−1 ×∆n−1.

Such a triangulation is said to be extendable if it is equal to the restriction of a triangulation

of ∆m−1×∆n−1 to ∆
(k−1)
m−1 ×∆n−1. The smallest example of a non-extendable partial triangulation

is shown in Figure 2a; a more interesting example due to Santos [23] is shown in Figure 2b.

(a) A non-extendable triangulation of ∆
(1)
2 ×∆1.
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(b) A non-extendable triangulation of ∆
(2)
3 ×∆2 (Santos).

Figure 2: Two examples of non-extendable partial triangulations. The triangulation in part (b),

due to Francisco Santos [23], is shown as a subdivision of 3∆
(2)
3 = ∂ (3∆3).

The question of extendability of triangulations of ∆
(k−1)
m−1 ×∆n−1 was first systematically consid-

ered for k = 2 by Ardila and Ceballos in [2], who completely characterized the extendable triangula-

tions of ∆
(1)
2 ×∆n−1. There, in an attempt to prove the Spread Out Simplices Conjecture of Ardila

and Billey [1, Conjecture 7.1], the authors formulated the Acyclic System Conjecture [2, Conjecture

5.7], which concerned a sufficient condition for the extendability of triangulations of ∆
(1)
m−1×∆n−1.

Shortly after, however, the Acyclic System Conjecture was disproved by Santos [23]. These results
motivate the search for necessary and sufficient conditions for extendability.

Our first contribution is the following extendability theorem.

Theorem 3.2. Let m,n, k be positive integers such that m ≥ k > n. Every triangulation

of ∆
(k−1)
m−1 ×∆n−1 extends to a unique triangulation of ∆m−1 ×∆n−1.

In considering whether the bound k > n in Theorem 3.2 is optimal, we are led to the Dyck
path triangulation of ∆n−1 ×∆n−1. This triangulation is our main tool to explicitly construct a
family of partial triangulations that shows that the assertion of Theorem 3.2 does not generally
hold when m > k = n.

Theorem 4.5. For every n ≥ 2 there is a non-extendable triangulation of ∂ (∆n)×∆n−1.

As suggested by its name, the Dyck path triangulation is based on Dyck paths and is related
to Catalan combinatorics. We devote the rest of the paper to the study of this triangulation and
its relatives. In particular, we present a natural generalization in terms of rational Dyck paths in
the “Fuss-Catalan” case (rn, n). It would be interesting to know if it can be further generalized to
other families of rational Dyck paths.

Via the Cayley trick [22], Theorems 3.2 and 4.5 transform into statements about the extendabil-

ity of “partial fine mixed subdivisions” of n∆
(k−1)
m−1 , coming from triangulations of ∆

(k−1)
m−1 ×∆n−1,

which we refer to as authentic subdivisions.

Corollary 1.1. For m ≥ k > n, every authentic subdivision of n∆
(k−1)
m−1 can be extended to a unique

fine mixed subdivision of n∆m−1. Moreover, for every n ≥ 2 there is a non-extendable authentic
subdivision of ∂ (n∆n).

Apart from providing a characterization of extendable of triangulations of ∆
(k−1)
m−1 ×∆n−1, our

results admit additional interpretations that render them of broader interest.
On the one hand, Theorems 3.2 and 4.5 naturally translate into the language of tropical oriented

matroids (which we abbreviate as TOMs). This concept was introduced by Ardila and Develin as
an analogue of classical oriented matroids for the tropical semiring [3]. The combinatorics of an ar-
rangement of m tropical pseudohyperplanes in the tropical space Tn−1 is captured by its TOM. The
Topological Representation Theorem establishes a correspondence between TOMs (with parameters
(m,n)) and subdivisions of ∆m−1×∆n−1 [3, 17, 18]. More concretely, triangulations of ∆m−1×∆n−1

correspond to generic TOMs and triangulations of ∆
(k−1)
m−1 × ∆n−1 correspond to compatible col-

lections of generic subarrangements of k pseudohyperplanes; in this context, Lemma 3.1 reads as
follows.

Corollary 1.2. The TOM of any generic arrangement of tropical pseudohyperplanes in Tn−1 is
completely determined by the TOMs of its subarrangements of n pseudohyperplanes.
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IfM is a TOM of an arrangement whose pseudohyperplanes have labels in [m], denote byM|S
the TOM of the subarrangement corresponding to the hyperplanes with labels in S ⊆ [m]. This
turns Theorems 3.2 and 4.5 into the following statements, respectively.

Corollary 1.3. For each S ∈
(

[m]
n+1

)
, let MS be the TOM of a generic arrangement of n + 1

pseudohyperplanes in Tn−1 with labels in S. If the matroids in this collection are compatible,
i.e. MS |S∩T = MT |S∩T for every T, S ∈

(
[m]
n+1

)
, then there exists a unique arrangement of m

pseudohyperplanes in Tn−1 whose TOM M fulfills M|S =MS.

Corollary 1.4. There exists a collection of pairwise compatible TOMs on the subsets in
(

[n+1]
n

)
that cannot be completed to the TOM of an arrangement of n+ 1 pseudohyperplanes in Tn−1.

These corollaries should be compared with analogue results in classical oriented matroid theory:
every oriented matroid of rank n− 1 is completely determined by its submatroids with n elements
and every compatible collection of submatroids with n + 1 elements can be completed to a full
oriented matroid (cf. [7, Corollaries 3.6.3 and 3.6.4]).

On the other hand, Theorem 3.2 can be regarded as a “finiteness” result for triangulations of
∆m−1×∆n−1: it says that, as long as m ≥ n+ 1, triangulations of ∆m−1×∆n−1 are “built” from
the collection of triangulations of ∆n × ∆n−1, no matter how large m is. From this viewpoint,
Theorem 3.2 should be contrasted with recent results in commutative algebra regarding finiteness
properties of the generating sets of certain families of polynomial ideals (see, for instance, [15, 16,
24]).

Here is the layout of the paper. The next section contains some preliminaries concerning notation
and representations for triangulations of products of simplices. Section 3 contains the proof of
Theorem 3.2. The Dyck path triangulation is then presented in Section 4, along with the explicit
construction behind Theorem 4.5. The proof of the fact that the Dyck path triangulation is indeed
a triangulation is postponed to Section 5, which also includes other revelant proofs; in Section 6 we
prove that the Dyck path triangulation is regular. Finally, Section 7 is devoted to generalizations
of the Dyck path triangulation.
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2 Preliminaries

In this section, in order to set our notation and conventions, we recall some well-known facts related
to triangulations of ∆m−1 ×∆n−1 (we refer to [10, Section 6.2] for a more detailed exposition).

Bipartite graph representation

Let Km,n be the complete bipartite graph on m+n vertices, whose parts we label by [m] and [n]1.
A vertex (ei, ej) of ∆m−1×∆n−1 can be represented as the undirected edge (i, j) of Km,n. It turns
out that independent sets, spanning sets and circuits of ∆m−1 ×∆n−1 are easy to read from the
bipartite graph representation.

Lemma 2.1 ([10, Lemma 6.2.8]). In the bipartite graph representation:

1. A subset of vertices of ∆m−1 ×∆n−1 is affinely independent if and only if the corresponding
subgraph has no cycles. In particular, affine bases correspond to spanning trees.

2. A subset of vertices of ∆m−1 × ∆n−1 is affinely spanning if and only if the corresponding
subgraph is connected and spanning.

3. A subset of vertices of ∆m−1 × ∆n−1 is a circuit if and only if the corresponding subgraph
is a cycle. The positive and negative elements of the circuit alternate along the cycle. In
other words, two edges of the cycle have the same sign (as elements in the circuit) if and
only if they are an even number of steps away from each other. In the standard realization
of ∆m−1 ×∆n−1, all the coefficients of the affine dependences corresponding to these circuits
are ±1.

We will often work with induced subgraphs of Km,n, which we will write as KI,J , where I ⊂ [m]

and J ⊂ [n]. These provide the bipartite graph representation of the faces of ∆m−1 ×∆n−1 of the
form ∆I ×∆J , where ∆I := {ei ∈ ∆m−1 : i ∈ I}.

1Throughout we use overlined numbers and variables to distinguish the vertices of both factors
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Grid representation

The m × n grid, which we denote by Gm×n, is a rectangular array of width m and height n
composed of mn unit squares. Every unit square in Gm×n has a position (i, j) in the grid, where
index i increases to the right and index j̄ increases upwards (i.e., in the usual cartesian way). Thus,
the point (ei, ej) in ∆m−1 × ∆n−1 is represented by the square at position (i, j) in Gm×n. The
resulting grid representation for subsets of vertices of ∆m−1 ×∆n−1 is mainly used in this paper
to describe certain triangulations of ∆m−1 ×∆n−1.

Example 2.2 (Staircase triangulation of ∆m−1 × ∆n−1). Consider all monotone paths in Gm×n
from (1, 1) to (m,n). These are sequences of squares {(ik, jk)}1≤k≤m+n−1, such that (i1, j1) = (1, 1),
(im+n−1, jm+n−1) = (m,n) and such that (ik+1, jk+1) is either (ik + 1, jk) or (ik, jk + 1) for
1 ≤ k < m + n − 1. Every such monotone path, or staircase, defines a (m + n − 2)-simplex of
∆m−1 ×∆n−1, whose points are labelled by the squares in the path.

It is easy to see that this collection of simplices forms a triangulation of ∆m−1×∆n−1, which is
called the staircase triangulation, and that it is completely specified by the linear ordering chosen
for the vertices of ∆m−1 and ∆n−1. Even more, one can easily prove that the staircase triangulation
is regular, because it is a pulling triangulation (cf. [10, Proposition 6.2.15]).

Matching ensemble representation

Every triangulation of ∆m−1×∆n−1 gives rise to a collection of perfect matchings on all subgraphs
of Km,n induced by subsets I ⊂ [m] and J ⊂ [n] of the same cardinality. Roughly, it collects
the information of what subset of every circuit of ∆m−1 × ∆n−1 appears as a simplex of the
triangulation.

Recently, Suho Oh and Hwanchul Yoo [19] have found a concise characterization of those collec-
tions of perfect matchings which correspond to triangulations of ∆m−1 ×∆n−1, hence discovering
a novel matching ensemble representation for triangulations of ∆m−1 ×∆n−1.

Definition 2.3 ([19, Definition 4.1]). A family of perfect matchings M on all induced subgraphs
of Km,n is a matching ensemble if:

(SA). for each I ⊂ [m] and J ⊂ [n] with |I| = |J |, there exists a unique m ∈M on the subgraph of
Km,n induced by I and J (supports axiom),

(CA). for each m ∈M and for each (perfect sub-matching) m′ ⊆ m, m′ ∈M (closure axiom), and

(LA). for each m ∈M and for each v ∈ [n]∪ [m] \ (I ∪ J), there are two edges e′ ∈ Km,n and e ∈ m
sharing a common vertex such that v ∈ e′ and (m \ e ∪ e′) ∈M (linkage axiom).

Theorem 2.4 ([19, Theorem 5.4]). A family of perfect matchings M is the family of perfect
matchings of a triangulation T of ∆m−1 ×∆n−1 if and only if it is a matching ensemble.

The lemma below indicates how a triangulation can be recovered from a matching ensemble:

Lemma 2.5. LetM be a matching ensemble on Km,n, and let T be its corresponding triangulation
of ∆m−1×∆n−1. Then a spanning tree s ∈ Km,n represents a (maximal) simplex in T if and only
if for each m ∈M, there is no cycle in s ∪m that alternates between s and m.

Example 2.6. The matching ensemble corresponding to the staircase triangulation of ∆m−1×∆n−1

from Example 2.2 consists of all non-crossing perfect matchings on the induced subgraphs of Km,n,
where non-crossing means with non-intersecting edges in the standard embedding of Km,n in the
plane (see Figure 3).

Figure 3: A non-crossing perfect matching on K{2,3,4,5,9},{1,2,4,6,7} that belongs to the matching
ensemble of the staircase triangulation of ∆8 ×∆6.

Since Km,n admits a perfect matching if and only if m = n, when speaking of a perfect matching
on KI,J , we will frequently take the assumption |I| = |J | for granted. This understood, we will
also omit the adjective “perfect” whenever there is no risk of confusion.
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Mixed subdivisions and tropical arrangements

In order to illustrate some of our constructions, we shall draw triangulations of ∆m−1 × ∆n−1

as fine mixed subdivisions of m∆n−1. Let T be a triangulation of ∆m−1 × ∆n−1. To each sim-
plex s ∈ T associate the simplex si = conv {ej : (ei, ej) ∈ s} ⊂ ∆n−1. The set of Minkowski
sums {s1 + · · ·+ sm : s ∈ T } forms a mixed subdivision of m∆n−1. The Cayley trick states that
this correspondence is a bijection between triangulations of ∆m−1 ×∆n−1 and fine mixed subdivi-
sions of m∆n−1 (see [22] for more details). This provides the link to an interpretation mentioned
in the introduction: the dual of such a mixed subdivision can be seen as an arrangement of tropical
pseudohyperplanes. In fact, it turns out that there is a bijection between tropical oriented matroids
and mixed subdivisions of m∆n−1 [3, 17, 18].

Figure 4: Several representations of a triangulation of ∆1 ×∆2.

3 Extendable partial triangulations

In order to present the proof of our extendability Theorem 3.2, we first observe that, whenever

m ≥ k ≥ n, if a triangulation of ∆
(k−1)
m−1 ×∆n−1 extends to a triangulation of ∆m−1 ×∆n−1, then

this extension is unique. We omit the proof, which can be easily deduced from Theorem 2.4 (it is
also implicit in the proof of a classical result of Dey, cf. [12, Section 3] and [10, Lemma 8.4.1]).

Lemma 3.1. Let m,n, k be natural numbers such that n ≥ 2 and m ≥ k ≥ n. Every triangulation

of ∆m−1 ×∆n−1 is uniquely determined by its restriction to ∆
(k−1)
m−1 ×∆n−1.

Not every triangulation of ∆
(k−1)
m−1 ×∆n−1 can be extended to a triangulation of ∆m−1×∆n−1, as

is already known from the familiar non-extendable triangulation of ∆
(1)
2 ×∆1 depicted in Figure 2a,

often called “the mother of all examples”. However, by strengthening the hypotheses to k > n, it
becomes possible to certify extendability.

Theorem 3.2. Let m,n, k be positive integers such that m ≥ k > n. Every triangulation of

∆
(k−1)
m−1 ×∆n−1 extends to a unique triangulation of ∆m−1 ×∆n−1.

Proof. Let T ′ be a triangulation of ∆
(k−1)
m−1 × ∆n−1 in the conditions of the theorem, and let M

be the set of all perfect matchings contained in the simplices of T ′, when viewed as subgraphs of
Km,n. We prove that M is necessarily a matching ensemble (cf. Definition 2.3) and hence, by
Theorem 2.4, that it is the family of perfect matchings of a triangulation of ∆m−1 ×∆n−1.

(SA). For each I ⊂ [n], J ⊂ [m] with |I| = |J | ≤ n, the restriction T ′|∆I×∆J
is a triangulation of

the face ∆I ×∆J of ∆m−1×∆n−1. LetM|KI,J
be the set of perfect matchings associated to

this restricted triangulation. Since this face is a product of simplices, Theorem 2.4 applies,
so that there is a unique perfect matching m ∈M|KI,J

on the induced subgraph KI,J .

(CA). Again, for each perfect matching m ∈M on KI,J , T ′|∆I×∆J
is a legal triangulation, as are all

of its restrictions. In particular, by Theorem 2.4, it follows that m′ ∈M whenever m′ ⊆ m.

(LA). Fix a perfect matching m ∈M on KI,J , where |I| = |J | ≤ n, and let v ∈ ([m]∪ [n])\([I]∪ [J ]).
Observe that T ′|∆I∪v×∆J

(resp. T ′|∆I×∆J∪v ) is a legal triangulation, because k ≥ n + 1. In
particular, that means that there are two edges e′ ∈ KI∪v,J (resp. e′ ∈ KI,J∪v) and e ∈ m
sharing a common vertex such that v ∈ e′ and (m \ e ∪ e′) ∈M.
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Finally, the uniqueness of the resulting triangulation was established in Lemma 3.1.

4 The Dyck path triangulation and some relatives

There are two main ingredients towards our construction for Theorem 4.5: the Dyck path triangu-
lation and the extended Dyck path triangulation. We present them here and explain how they can
be used to prove Theorem 4.5.

4.1 The Dyck path triangulation

The first ingredient is a triangulation of ∆n−1×∆n−1 that we dub the Dyck path triangulation and
denote by Dn. This triangulation can be described in terms of Dyck paths in the grid representation
Gn×n, that is, monotonically increasing paths from the square (1, 1) to the square (n, n) of Gn×n,
in which every square (i, j) satisfies i ≤ j. The maximal simplices of Dn are the Dyck paths in
Gn×n, together with the orbit of simplices they generate under an action that cyclically shifts the
indices in both factors of ∆n−1×∆n−1 simultaneously. Examples for n = 3 and n = 4 are depicted
in Figures 5a and 6.

(a) The triangulation D3 of ∆2 ×∆2. (b) The triangulation D3 of ∆2 ×∆2.

Figure 5: The Dyck path triangulation of ∆2 ×∆2 and its flipped version in the grid and mixed
subdivisions representations.

Figure 6: The triangulation D4 of ∆3 ×∆3.

Theorem 4.1. The Dyck path triangulation is a triangulation of ∆n−1 × ∆n−1. Moreover, it is
regular.

We defer the proof of Theorem 4.1 to Propositions 5.2 and 6.1.

Remark 4.2. The Dyck path triangulation of ∆n−1 × ∆n−1 is a natural refinement of a coarse
regular subdivision introduced by Gelfand, Kapranov and Zelevinsky in [13, Example 3.14]. Indeed,
the union of all Dyck paths is a cell of this subdivision, and the remaining cells are obtained by
applying the cyclic action that shifts the indices.

For us, the crucial property of Dn that underlies the construction for Theorem 4.5, is that it
admits a geometric bistellar flip supported on the circuit C = (C+,C−) of maximal dimension
given by

C+ := {(e1, e2), (e2, e3), . . . , (en−1, en), (en, e1)} (1)

C− := {(e1, e1), (e2, e2), . . . , (en−1, en−1), (en, en)}.

Therefore, performing this flip consists in replacing only the simplices in T + := {C \ {v} : v ∈
C+} ⊂Dn by those in T − := {C\{v} : v ∈ C−}, while leaving the rest of Dn intact; in particular,
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(a) An extended Dyck path,
representing a full-dimensional

simplex in Dext
n .

(b) The triangulation Dext
3 of ∆3 ×∆2 in the grid and mixed

subdivision representations

Figure 7: Illustration of the extended Dyck path triangulation Dext
n .

the flip does not alter the restriction of Dn to the boundary of ∆n−1 ×∆n−1. We refer the reader
to [10, Section 4.4.1] for the precise definition of a geometric bistellar flip. We call the resulting
triangulation the flipped Dyck path triangulation, and denote it by Dn; it is illustrated for n = 3
in Figure 5b.

4.2 The extended Dyck path triangulation

The second ingredient is a natural extension of Dn to a triangulation of ∆n×∆n−1, which we call
the extended Dyck path triangulation and denote by Dext

n . In the grid representation, an extended
Dyck path is formed by several Dyck paths, concatenated one after the other in the grid G(n+1)×n,
and a square in the (n+1)-th column and last row of each Dyck path; this is illustrated in Figure 7a.
The maximal simplices of Dext

n are given by the extended Dyck paths in G(n+1)×n, together with
the orbit of simplices they define under an action that cyclically shifts the indices in both factors of
∆[n] ×∆n−1 ⊂ ∆n ×∆n−1 simultaneously (note that here the action ignores the (n+ 1)-th vertex
of the first factor). The simplices of the extended Dyck path triangulation for n = 3 are shown
in Figure 7b. Interestingly, the simplices obtained this way constitute a regular triangulation of
∆n ×∆n−1.

Theorem 4.3. The extended Dyck path triangulation Dext
n is a triangulation of ∆n×∆n−1. More-

over, it is regular.

The proof of Theorem 4.3 is addressed in Propositions 5.4 and 6.2.

Remark 4.4. Substituting the word “square” by “edge” in the definitions of Dn and Dext
n , we

automatically get their descriptions in the bipartite graph representation. Thus, the maximal
simplices of Dn are represented in Kn,n by non-crossing and weakly increasing spanning trees, plus
the orbit of spanning trees they generate under the action that cyclically shifts the indices of [n]
and [n] simultaneously, as shown in Figure 8a.

Likewise, the maximal simplices of Dext
n consist of concatenated non-crossing and weakly in-

creasing spanning trees on subgraphs of K[n],n with an edge between n + 1 and the last vertex of
[n] in every subgraph, along with their images under the cyclic shift of the indices [n] ⊂ [n+ 1] and
[n]. This is best understood looking at Figure 8b.

(a) A non-crossing and weakly increasing
spanning tree in K4,4, and its orbit under cyclic

shifting.
(b) Bipartite graph representation of an orbit

of maximal simplices in Dext
4 .

Figure 8: Illustration of the bipartite graph representation of Dn and Dext
n .

The restriction of Dext
n to ∂ (∆n) × ∆n−1 gives a partial triangulation of ∆n × ∆n−1 whose

restriction to the facet ∆[n] ×∆n−1 coincides with Dn. Denote by D∂ext
n this restricted triangu-

lation, whose facet ∆[n] × ∆n−1 admits a bistellar flip supported on the circuit (1). By this, we
mean that the triangulation of the facet ∆[n] × ∆n−1 can be changed from Dn to Dn, without
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affecting the triangulation of the remaining facets of ∂ (∆n) ×∆n−1. Hence, the result of the flip
is still a triangulation ∂ (∆n) ×∆n−1, which we call flipped extended Dyck path triangulation and
denote D∂ext

n . An example is depicted in Figure 9.

Figure 9: A non-extendable D∂extn triangulation of ∂ (∆3)×∆3−1.

Theorem 4.5. The flipped extended Dyck path triangulation D∂extn of ∂ (∆n) × ∆n−1 is non-
extendable.

Our proof of Theorem 4.5 uses also the language of matching ensembles, and is delayed until
Section 5.

Corollary 4.6. For every m ≥ n there exist non-extendable triangulations of ∆
(n−1)
m ×∆n−1.

Proof. The same construction that produces D∂ext
n from Dext

n can be applied on any triangulation
of ∆m×∆n−1 that restricts to Dext

n on a face. Such a triangulation is easy to construct from Dext
n ,

for example, by doing a pushing refinement (cf. [10, Lemma 4.3.2]).

5 Perfect matching representations

In this section, we present the proofs of Theorem 4.1 and Theorem 4.3, which assert that the Dyck
path triangulation Dn and its extension Dext

n are indeed triangulations, along with the proof of
Theorem 4.5. All are phrased in terms of the matching ensemble representation for triangulations
of ∆m−1×∆n−1, characterized in Theorem 2.4. Therefore, our first task is to describe the matching
ensembles arising from Dn and Dext

n , which closely resembles the construction of Dn and of Dext
n .

5.1 Matching ensemble of the Dyck path triangulation Dn

We begin with the set of all perfect matchings on the subgraphs of Kn,n induced by I ⊂ [n], J ⊂ [n]
(with |I| = |J |) which are non-crossing (nc) and weakly increasing (wi), that is, those matchings m
that satisfy {

i < i′ ⇒ j < j
′

for every (i, j), (i′, j
′
) ∈ m,

i ≤ j for every (i, j) ∈ m
. (nc+wi)

Next, for ` ∈ [n], we introduce the collection of matchings of the form{(
i+ ` (mod n), j + ` (mod n)

)
: (i, j) ∈ m, m fulfills (nc+wi)

}
, (cyc)

obtained by “cyclically shifting” the indices of the perfect matchings that satisfy (nc+wi), and call
Mn the set of all matchings obtained after ranging over all ` ∈ [n] (see Figure 10).

Figure 10: A perfect matching on K{1,2,5},{2,4,5} satisfying (nc+wi), together with its orbit of

perfect matchings gotten as (cyc).

Proposition 5.1. The collection of matchings Mn constitutes a matching ensemble.
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Proof. Proof of (SA). View the elements of [n] ∪ [n] as a totally ordered string that extends the
order of [n] and [n] with i ≺ j whenever i ≤ j for i ∈ [n], j ∈ [n]. For every I ⊂ [n] and J ⊂ [n]
with |I| = |J |, accordingly view the subset I ∪ J as a totally ordered substring of [n] ∪ [n].

To define a matching m′ on KI,J , “cyclically rotate” the ordering ≺ (by putting the first elements

last) so that all the final substrings of I ∪J , consisting of the last elements in the string I ∪J , have
at least as many elements from J as from I. Then, m′ is gotten by matching the k-th element of I
with the k-th element of J in the rotated string I ∪ J . It is easy to check that, given I and J , this
rule uniquely determines m′; it is illustrated in Figure 11a.

Denoting the first element of the rotated string I ∪ J by `+ 1 (which belongs to I), we see that
the resulting m′ has the form (cyc). Conversely, all matchings of the form (cyc) can be obtained
as explained above.

(a) Retrieving the unique perfect
matching on K{4,5,8},{2,5,7}.

(b) Three possible situations when checking (LA) for the collection of
matchingsMn.

Figure 11: Proof of Proposition 5.2

Proof of (CA). Clearly, if m′ is a perfect sub-matching of the perfect matching m ∈ Mn on
KI,J , it is still of the form (cyc), so m′ ∈Mn.

Proof of (LA). Assume m is a perfect matching on KI,J satisfying (nc+wi), and let v ∈ [n] \ J
(the general case follows by rotation and symmetry). If there is some (i, j) ∈ m with v > j, set
j0 := max{j < v : (i, j) ∈ m} and define

m′ = m \ (i0, j0) ∪ (i0, v).

On the other hand, if v < j for every (i, j) ∈ m, set i1 := min{i : (i, j) ∈ m}, i2 := max{i : (i, j) ∈ m},
and define:

m′ :=

{
m \ (i1, j1) ∪ (i1, v) if v ≥ i1
m \ (i2, j2) ∪ (i2, v) otherwise

Either way, m′ is a perfect matching on KI,J\j∪v obtained as (cyc); hence m′ ∈Mn. The three
cases are drawn in Figure 11b.

This settles the proof that the Dyck path triangulation is indeed a triangulation.

Proposition 5.2. The Dyck path triangulation Dn is the triangulation associated to the matching
ensemble Mn.

Proof. By Lemma 2.5, we need to check that there is no circuit C in s ∪ m alternating between
s and m, for a simplex s ∈ Dn and a matching m ∈ Mn. If C existed, then there would be
matchings m1 ⊂ s and m2 ⊂ m that have the same support. However, it is straightforward to
check that every matching m1 ⊂ s belongs toMn by construction, and hence fulfills Axiom (SA).
This shows that every simplex s ∈Dn is a simplex in the triangulation associated to the matching
ensembleMn. On the other hand, no further simplices belong to the triangulation associated to the
matching ensemble Mn, for Dn already exhausts the nCn−1 =

(
2n−2
n−1

)
full-dimensional simplices

every triangulation of ∆n−1 ×∆n−1 has.

5.2 Matching ensemble of the extended Dyck path triangulation Dext
n

Now we start with the set of matchings m between I ⊂ [n+ 1] and J ⊂ [n] with the property{
i < i′ ⇒ j < j

′
for every (i, j), (i′, j

′
) ∈ m,

i ≤ j for every (i, j) ∈ m with i 6= n+ 1.
(nc+wiext)

As before, we consider the set of perfect matchings on induced subgraphs of Kn+1,n of the form

9



{(
ρ`(i), j + ` (mod n)

)
: (i, j) ∈ m, m fulfills (nc+wiext)

}
, (cycext)

where ρ`(i) :=

{
i+ ` (mod n) if i 6= n+ 1

n+ 1 otherwise
,

with ` ranging over [n], and denote it by Mext
n .

Proposition 5.3. The collection Mext
n of matchings constitutes a matching ensemble.

Proof. We only have to verify the conditions in Definition 2.3 when n+ 1 ∈ [n+ 1] gets involved;
the remaining cases have already been dealt with in Proposition 5.1.

Proof of (SA). Let I ⊂ [n + 1] and J ⊂ [n] with n + 1 ∈ I and |I| = |J |. We order [n] ∪ [n]
again as in the proof of Proposition 5.1, and consider the substring I ′ ∪ J , where I ′ = I \ n + 1.
This time, we cyclically rotate the order ≺ so that all final substrings of I ′ ∪ J have strictly more
elements from J than from I (thereby, in particular, the ordering of the substring I ′ ∪ J becomes
fixed).

Let m be the perfect matching on KI,J that pairs the k-th element of I ′ with the k-th element

of J in the rotated string I ′ ∪ J , and n+ 1 with the unpaired last element from J (cf. Figure 12a).
This yields a unique matching on KI,J of the form (cycext). Conversely, all perfect matchings on

induced subgraphs of Kn+1,n of the form (cycext) can be obtained with this rule.

(a) Retrieving the
unique perfect
matching on

K{1,5,6,8},{3,4,5,7}.

(b) Some of the possible situations when checking (LA) for the collection of matchings
Mext

n .

Figure 12: Proof of Proposition 5.4

Proof of (CA). If m fulfills (cycext) then, trivially, so do all its perfect sub-matchings.
Proof of (LA). Let m be a perfect matching on KI,J for which (nc+wiext) holds, and let

v ∈ ([n+ 1] ∪ [n]) \ (I ∪ J). We distinguish several cases, that we have depicted in Figure 12b:

1. v = n+ 1: set i′ = max{i : (i, j) ∈ m}, then m \ (i
′
, j
′
) ∪ (v, j

′
) also satisfies (nc+wiext).

2. v ∈ [n+ 1], v 6= n+ 1 and v > i for all (i, j) ∈ m: write (n+ 1, j
∗
) ∈ m, then either

• v ≤ j∗ and m \ (n+ 1, j
∗
) ∪ (v, j

∗
) is of the form (nc+wiext), or

• v > j
∗
, in which case m\ (i1, j1)∪ (v, j1) is gotten as (cycext), where i1 := min{i : (i, j) ∈

m}.
3. v ∈ [n] and either v < i1 or v > j2, where i1 := min{i : (i, j) ∈ m} and j2 := max{j : (i, j)}:

here m \ (n+ 1, j
∗
) ∪ (n+ 1, v) ∈Mext

n , with j
∗

as previously defined.

The verification of the remaining cases

2’. v ∈ [n+ 1], v 6= n+ 1 and v < i for some (i, j) ∈ m,

3’. v ∈ [n] and i1 < v < j2, where i1, j2 are as in 3. above,

is skipped, for these do not involve n+ 1 and thus reduce to the situation of Proposition 5.1.

We omit the proof of the following proposition, that shows that Dext
n is a triangulation, because

it is analogous to that of Proposition 5.2. Indeed, one can see that the perfect matchings contained
in every simplex of Dext

n can be rotated to satisfy conditions (nc+wiext), and that there are
precisely

(
2n−1
n−1

)
full-dimensional simplices in Dext

n , as in every triangulation of ∆n ×∆n−1.

Proposition 5.4. The extended Dyck path triangulation Dext
n is the triangulation corresponding

to the matching ensemble Mext
n .

We conclude this section with the promised proof of Theorem 4.5.
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Proof of Theorem 4.5. The triangulation D∂ext
n of ∂ (∆n)×∆n−1 produces a collection of perfect

matchings on all induced subgraphs of Kn+1,n, that we refer to as M′ (for which the reader can
check that the axioms (SA) and (CA) hold). Observe that, by construction, Mext

n and M′ agree
on all the induced subgraphs KI,[n], where n /∈ I ⊂ [n + 1]. In contrast, the triangulation Dn of
∆n−1 ×∆n−1 contributes the following matching on the induced subgraph K[n],[n]:

m := {(1, 2), (2, 3), (3, 4), . . . , (n− 1, n), (n, 1)}.

Suppose, for the sake of absurdity, that axiom (LA) holds for m ∈ M′. Then, there is a
unique perfect matching m′ ∈M′ on K[n]\w∪n+1,[n] that differs from m in a single edge. However,
letting w = n ∈ [n] (which we may by symmetry), we see that the unique perfect matching on
K[n]\w∪n+1,[n] in the matching ensemble Mext

n is

{(1, 1), (2, 2), (3, 3), . . . , (n− 1, n− 1), (n+ 1, n)},

so m cannot satisfy axiom (LA), M′ is not a matching ensemble and D∂ext
n cannot be extended

to a triangulation of ∆n ×∆n−1.

6 Proof of regularity

We have already seen that Dn and Dext
n are triangulations of ∆n−1 × ∆n−1 and ∆n × ∆n−1,

respectively. In this section we prove that they are also regular. We refer to [10] for the definitions
of regular triangulation, height function, pushing triangulation, etc.

Proposition 6.1. The Dyck path triangulation Dn of ∆n−1 × ∆n−1 coincides with its pushing
triangulation with respect to any order of the boxes in the grid that extends the partial order:

(i, j) < (i′, j
′
) ⇔ j − i (mod n) < j′ − i′ (mod n),

where j − i (mod n) and j′ − i′ (mod n) are taken in [n].
Hence, the triangulation Dn is regular, and can be obtained by the height function h : ∆n−1 ×

∆n−1 → R that assigns to the point (ei, ej) the height hij = cj−i (mod n), for some real number
c > 1 sufficiently large.

We omit the proof of Proposition 6.1, because it is a direct consequence of Proposition 6.2
below.

Proposition 6.2. The extended Dyck path triangulation Dext
n of ∆n ×∆n−1 is regular, obtained

by assigning the height hij to the point (ei, ej), defined by:

hij =


cj−i if j ≥ i
cn+j−i if j < i < n+ 1

1 if i = n+ 1;

(2)

where c > 1 is a large enough real number.

To prove this, we use the following result. It is a direct consequence of [10, Theorem 2.3.20 and
Lemma 2.4.2], restricted to the special case of the product of two simplices and expressed in terms
of perfect matchings.

Lemma 6.3. Let T be the regular subdivision of ∆m−1×∆n−1 induced by the height function that
maps (ei, ej) onto hij. Then T is a triangulation with matching ensemble M if and only if for any
perfect matching m ∈M on KI,J it holds∑

(i,j)∈m

hij <
∑

(i,j)∈m′
hij , (3)

whenever m′ 6= m is a perfect matching on KI,J .

Proof of Proposition 6.2. Fix I = {i1 < · · · < is} ⊆ [n+ 1] and J = {j1 < · · · < js} ⊆ [n], and let
m be the perfect matching in KI,J that minimizes ω(m), where we abbreviate ω(m) :=

∑
(i,j)∈m hij .

We claim that m ∈Mext
n .

Using the symmetry in the definition of hij we observe that ω(m) = ω(m′) whenever m′ is
obtained from m by changing every (i, j) ∈ m by

(
ρ`(i), j+ ` (mod n)

)
. Therefore, without loss of
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generality we can shift I and J and always assume that ik ≤ jk for all k with ik 6= n+ 1 (compare
the proof of Proposition 5.3).

Therefore we only need to show that m is non-crossing. In our setting, m has a crossing if and
only if it contains an edge (ik, j`) ∈ m with k > `. The proof is by induction on s = |I| = |J |
and if s = 1 then it is trivially true. For s > 1, let ` be such that (is, j`) ∈ m. Then m induces a
submatching in I \is, J \j` that still fulfills ik ≤ jk. By induction hypothesis this submatching must
be non-crossing. Hence m must be of the form m =

⋃
1≤k<`(ik, jk) ∪

⋃
`≤k<s(ik, jk+1) ∪ (is, j`). If

` = s then m is non-crossing as desired.
On the contrary, if ` 6= s, define m′ :=

⋃
1≤k≤s(ik, jk). We claim that for every k there is an

edge (i, j) ∈ m such that hikjk ≤ hij (and strict inequality for at least one k). Indeed,

• for 1 ≤ k < `, there is nothing to prove because m and m′ coincide;

• if ` ≤ k < s then hikjk < hikjk+1
because ik ≤ jk < jk+1;

• for k = s, if is 6= n+ 1 then hisjs < his−1js because is−1 < is ≤ js;
• finally, if is = n+ 1, then hisjs = hisj` by definition.

To conclude the proof we just need to observe that when c is large enough then max(i,j)∈m′ hij <

max(i,j)∈m hij implies that ω(m′) < ω(m), which contradicts the assumption of m being minimal.

7 Generalized Dyck path triangulations

In this section we show how Dyck path triangulations, and their extended versions, have a natural
generalization to triangulations D(rn,n) of ∆rn−1×∆n−1 for any positive integer r. This shows an
interesting connection to rational Catalan combinatorics, which is an active area of recent interest,
see for example [4, 5].
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(a) Mixed subdivision representation of D(6,3) and Dext
(6,3).

(b) Grid representation of D(6,3).

Figure 13: The triangulation D(6,3) and its extension Dext
(6,3).

The Dyck path triangulation D(n,n) = Dn exploits the identity

n · Cn−1 =

(
2n− 2

n− 1

)
,

where Cn−1 is the (n − 1)th Catalan number. Indeed, there are Cn−1 Dyck paths from (1, 1) to
(n, n), each of which represents a simplex of (normalized) volume 1 in ∆n−1 × ∆n−1, and every
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such a simplex generates an orbit of n simplices. Thus, altogether the orbits yield the correct
(normalized) volume of ∆n−1 ×∆n−1, equal to

(
2n−2
n−1

)
.

The triangulation D(rn,n) of ∆rn−1 ×∆n−1 analogously exploits the identity

n · C(n, rn− 1) =

(
(r + 1)n− 2

n− 1

)
,

where C(a, b) = 1
a+b

(
a+b
a

)
, for a and b relatively prime, are known as the rational Catalan numbers.

Define a (rn, n)-Dyck path2 in the grid Grn×n as a monotonically increasing path from (1, 1)
to (rn, n) such that every step (i, j) satisfies i ≤ rj. There are exactly C(n, rn− 1) such paths. The
(rn, n)-Dyck path triangulation D(rn,n) is the triangulation of ∆rn−1 ×∆n−1 that has as maximal
simplices the (rn, n)-Dyck paths together with their orbit under the action that
maps (i, j) 7→ (i+ r (mod rn), j + 1 (mod n)). We show an example in Figure 13.

Theorem 7.1. The (rn, n)-Dyck path triangulation D(rn,n) is a triangulation of ∆rn−1 ×∆n−1.
Moreover, it is regular.

This theorem is immediate corollary of the following observation.

Lemma 7.2. The restriction of Drn to the facet of ∆rn−1×∆rn−1 spanned by the vertices (ei, erj)
with i ∈ [rn], j ∈ [n] coincides with D(rn,n).

Since the proof is straightforward, we provide an illustrative example: in Figure 14 we obtain
D(4,2) from D4 (which was depicted in Figure 6). In general, to recover D(rn,n) from Drn, we just
need to remove the rows of the grid Grn×rn that are not labeled by multiples of r; then we relabel
the rows by j 7→ j/r. Observe that not all simplices in the orbit of a (rn, rn)-Dyck path in Grn×rn
give simplices of ∆rn−1 ×∆n−1 of maximal dimension, but only those obtained by a shift divisible
by r.

Figure 14: Obtaining D(4,2) from D4.

The arguments from Section 4 leading to the non-extendable triangulation in Theorem 4.5 can
be reproduced in the setting of the (rn, n)-Dyck path triangulation:

• Restricting the extended Dyck path triangulation Dext
rn to the facet of ∆rn ×∆rn−1 spanned

by the vertices (ei, erj) with i ∈ [rn + 1], j ∈ [n] defines the extended (rn, n)-Dyck path
triangulation Dext

(rn,n).

• Dext
(rn,n) bears the Dyck path triangulation Dn on the face F of ∆rn−1 × ∆n−1 spanned by
{(eri, ej) : i ∈ [n], j ∈ [n]}.

• In the restriction of Dext
(rn,n) to ∆

(n−1)
rn−1 × ∆n−1, we can flip the triangulation of F to Dn,

without altering the triangulations of the remaining faces of ∆
(n−1)
rn−1 × ∆n−1. In particular,

this supplies further examples of non-extendable partial triangulations of ∆
(n−1)
rn−1 ×∆n−1.

We end the article with an open question. If a, b ∈ N are coprime, then

a · C(a, b) =

(
a+ b− 1

a− 1

)
or (a+ b) · C(a, b) =

(
a+ b

a

)
Question 7.3. Is there a Dyck path triangulation of ∆a−1 × ∆b by rational Dyck paths that
captures the first identity? or, is there a Dyck path triangulation of ∆a × ∆b by rational Dyck
paths that captures the second identity?

2The standard definition of a rational (a, b)-Dyck path is slightly different: it uses a grid from (0, 0) to (a, b) and
imposes that i < rj for any i 6= 0, b. It is used, for example, in [5].
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