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HEDETNIEMI’S CONJECTURE FOR KNESER HYPERGRAPHS

HOSSEIN HAJIABOLHASSAN AND FRÉDÉRIC MEUNIER

Abstract. One of the most famous conjecture in graph theory is Hedetniemi’s conjecture stating
that the chromatic number of the categorical product of graphs is the minimum of their chromatic
numbers. Using a suitable extension of the definition of the categorical product, Zhu proposed in
1992 a similar conjecture for hypergraphs. We prove that Zhu’s conjecture is true for the usual
Kneser hypergraphs of same rank. It provides to the best of our knowledge the first non-trivial and
explicit family of hypergraphs with rank larger than two satisfying this conjecture (the rank two case
being Hedetniemi’s conjecture). We actually prove a more general result providing a lower bound
on the chromatic number of the categorical product of any Kneser hypergraphs as soon as they all
have same rank. We derive from it new families of graphs satisfying Hedetniemi’s conjecture. The
proof of the lower bound relies on the Zp-Tucker lemma.

1. Introduction

1.1. Categorical product and coloring. Let G = (V,E) and G′ = (V ′, E′) be two graphs. Their
categorical product, denoted G×G′, is the graph defined by

V (G×G′) = V × V ′

E(G×G′) = {{(u, u′), (v, v′)} : {u, v} ∈ E, {u′, v′} ∈ E′}.

Hedetniemi’s conjecture – one of the most intriguing conjecture in graph theory – states that the
chromatic number of the categorical product of two graphs is the minimum of their chromatic num-
bers. Hedetniemi’s conjecture has been verified in many cases, but the general case is still open.
Tardif [23] and Zhu [27] provide extensive surveys of this topic. There exists also a categorical
product for hypergraphs, defined by Döfler and Waller [9] in 1980. Using this definition of the cat-
egorical product of hypergraphs, Zhu [26] conjectured in 1992 that a generalization of Hedetniemi’s
conjecture holds for hypergraphs as well.

Let G = (V,E) and G′ = (V ′, E′) be two hypergraphs. Their categorical product, denoted G ×G′,
is the hypergraph defined by

V (G × G′) = V × V ′

E(G × G′) = {{(u1, u
′
1), . . . , (ur, u

′
r)} : r ∈ Z+, {u1, . . . , ur} ∈ E, {u′1, . . . , u

′
r} ∈ E′} ,

where the ui’s and the u′i’s do not need to be distinct. In other words, a subset of V × V ′ is an
edge of G × G′ if its projection on the first component is an edge of G and its projection on the
second component is an edge of G′. Note that this product can be made associative by a natural
identification and thus defined for more than two hypergraphs.

We recall that a proper coloring of a hypergraph is an assignment of colors to the vertices so
that there are no monochromatic edges. The chromatic number of a hypergraph G, denoted χ(G),
is the minimum number of colors a proper coloring of G may have. If the chromatic number is k
or less, the hypergraph is k-colorable.

Conjecture 1 ([26]). Let G and G′ be two hypergraphs. We have

χ(G × G′) = min{χ(G), χ(G′)}.

Key words and phrases. Categorical product; Kneser graphs and hypergraphs; Hedetniemi’s conjecture; Zp-Tucker
lemma.

1

http://arxiv.org/abs/1410.3021v1


The chromatic number of the product is at most the chromatic number of each of the hypergraphs,
since a coloring of any of them provides a coloring of the product. The difficult part in this
conjecture is thus the reverse inequality.

When G and G′ are graphs, their categorical product according to the definition for hypergraphs
is not a graph anymore, since it will in general contain edges of cardinality four. Anyway, the
chromatic number does not depend on the definition we take for the categorical product, as it can
be easily checked (further explanations are given in the next paragraph). Thus Conjecture 1 is a
true generalization of Hedetniemi’s conjecture.

We take this remark as an opportunity to give another point of view on this categorical product
for hypergraphs. Let e ∈ E and e′ ∈ E′. Consider the set of all simple bipartite graphs with
no isolated vertices and with color classes e and e′. The edges of the product G × G′ obtained
from e and e′ are in one-to-one relation with these bipartite graphs. When G and G′ are graphs,
these bipartite graphs are those with two vertices in each color class and no isolated vertices. Such
bipartite graphs all have a perfect matching: in other words, any edge of the product of the graphs
seen as hypergraphs contains an edge of the product with the usual definition of the categorical
product of graphs. It explains why the chromatic number of the categorical product of two graphs
does not depend on the definition we take for the categorical product.

1.2. Kneser hypergraphs. In 1976, Erdős [10] initiated the study of Kneser hypergraphs KGr(H)
defined for a hypergraph H = (V (H), E(H)) and an integer r ≥ 2 by

V (KGr(H)) = E(H)
E(KGr(H)) = {{e1, . . . , er} : e1, . . . , er ∈ E(H), ei ∩ ej = ∅ for all i, j with i 6= j}.

These hypergraphs enjoy several properties, which are interesting from both graph theoretical and
set theoretical point of views, especially when r = 2, i.e. when we are dealing with Kneser graphs.
Among many references dealing with the Kneser hypergraphs, one can cite [5, 15, 28]. For Kneser
graphs, there are much more references, see [11, 16, 20, 21, 22, 24] among many of them.

There are also “usual” Kneser hypergraphs, which are obtained with H = ([n],
([n]
k

)
). They are

denoted KGr(n, k). In the present paper, we prove that Conjecture 1 is true for the usual Kneser
hypergraphs, which provides to the best of our knowledge the first non-trivial and explicit family
of hypergraphs not being graphs for which Conjecture 1 is true. We actually prove a more general
result involving the colorability defect of a hypergraph. The r-colorability defect of a hypergraph
H, introduced by Dol’nikov [8] for r = 2 and by Kř́ıž [13, 14] for any r, is denoted cdr(H) and is the
minimum number of vertices to be removed from H so that the remaining induced subhypergraph
is r-colorable. The subhypergraph of H induced by a set X is denoted H[X] and is the hypergraph
with vertex set X and with edge set {e ∈ E(H) : e ⊆ X} (note that this definition of an induced
subhypergraph departs from the usual way to define it). We have thus

cdr(H) = min{|Y | : Y ⊆ V (H) and χ(H[V (H) \ Y ]) ≤ r}.

Kř́ıž [13, 14] proved that χ(KGr(H)) ≥ cdr(H). The r-colorability defect has then been used by
other authors as a tool for exploring further properties of coloring of graphs and hypergraphs [19,
21, 28].

1.3. Main results. In this paper, we prove the following theorem.

Theorem 1. Let H1, . . . ,Ht be hypergraphs and r ≥ 2 be a positive integer. If none of the Hℓ’s

have ∅ as an edge, then

χ (KGr(H1)× · · · ×KGr(Ht)) ≥
1

r − 1
min

ℓ=1,...,t
cdr(Hℓ).
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The case t = 1 is Kř́ıž’s theorem.
Note that the product in this theorem involves an arbitrary number of Kneser hypergraphs, while

in Conjecture 1 only two hypergraphs are involved. The reason is that the categorical product of
hypergraphs is associative and if the conjecture holds for two hypergraphs, it can be straightfor-
wardly extended to the product of any number of hypergraphs. On the contrary, it is easy to see
that Theorem 1 for only two Kneser hypergraphs does not imply its correctness for any number of
Kneser hypergraphs.

We will actually see that a stronger result involving the r-alternation number instead of the
r-colorability defect holds. The r-alternation number of a hypergraph has been introduced by
Alishahi and Hajiabolhassan [4] and it provides better lower bounds for Kneser hypergraphs. The
definition is given later in the paper.

The fact that Conjecture 1 is true for the usual Kneser hypergraphs is obtained via the easy
equality

cdr

(
[n],

(
[n]

k

))
= n− r(k − 1)

and a theorem by Alon, Frankl, and Lovász [6] stating that

χ(KGr(n, k)) =

⌈
n− r(k − 1)

r − 1

⌉
.

Corollary 1. Let r ≥ 2 be an integer and let n1 . . . , nt and k1, . . . , kt be positive integers such that

nℓ ≥ rkℓ for ℓ = 1, . . . , t. We have

χ (KGr(n1, k1)× · · · ×KGr(nt, kt)) = min
ℓ=1,...,t

χ (KGr(nℓ, kℓ)) .

If Conjecture 1 is true, then the equality of Corollary 1 is also true when the Kneser hypergraphs
have not the same rank r. However, we were not able to find a proof of this more general result.
When r = 2, Corollary 1 implies the already known fact that Hedetniemi’s conjecture is true for
the usual Kneser graphs [7, 12, 25].

2. Proof of the main result

2.1. Main steps of the proof. The proof consists in proving the following two lemmas. Their
combination provides a proof of Theorem 1. They are respectively proved in Section 2.2 and in
Section 2.3.

Lemma 1. Let r′ and r′′ be two positive integers. If Theorem 1 holds for both r′ and r′′, then it

holds also for r = r′r′′.

Lemma 2. Let H1, . . . ,Ht be hypergraphs and p be a prime number. If none of the Hℓ’s have ∅ as

an edge, then

χ (KGp(H1)× · · · ×KGp(Ht)) ≥
1

p− 1
min

ℓ=1,...,t
cdp(Hℓ).

Proof of Theorem 1. The theorem is a direct consequence of Lemmas 1 and 2. �

2.2. Reduction to the case when r is a prime number. The proof of Lemma 1 is based on
the following lemma. Given a hypergraph H and two positive integers s and C, we define a new
hypergraph TH,C,s by

V (TH,C,s) = V (H)
E(TH,C,s) = {A ⊆ V (H) : cds(H[A]) > (s− 1)C}.

Lemma 3. The following inequality holds for any positive integer r

cdrs(H) ≤ r(s− 1)C + cdr(TH,C,s).
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Proof. Let A ⊆ V (H) be such that |A| = |V (H)|−cdr(TH,C,s) and such that TH,C,s[A] is r-colorable.
The existence of such an A is ensured by the definition of cdr(TH,C,s). Consider any proper coloring
of TH,C,s[A] with r colors and denote by Xj ⊆ A the set of vertices of color j. Since the coloring
is proper, Xj is never an edge of TH,C,s. It implies that we have cds(H[Xj ]) ≤ (s − 1)C for all
j ∈ [r]. We can thus remove at most (s − 1)C vertices from each Xj and get Yj ⊆ Xj with
χ(H[Yj]) ≤ s. There is thus a proper coloring of H[

⋃r
j=1 Yj] with at most rs colors and H[

⋃r
j=1 Yj ]

is a subhypergraph of H obtained by the removal of at most r(s− 1)C + cdr(TH,C,s) vertices. �

Proof of Lemma 1. Assume for a contradiction that there is proper coloring c of KGr′r′′(H1) ×

· · · ×KGr′r′′(Ht) with C colors such that cdr′r′′(Hℓ) > (r′r′′ − 1)C for all ℓ. Lemma 3 ensures then
that each THℓ,C,r′ has at least one edge. Let (e1, . . . , et) ∈ TH1,C,r′ × · · · × THt,C,r′ . The inequality

χ(KGr′(H1[e1]) × · · · × KGr′(Ht[et])) > C holds because Theorem 1 holds for r′. There is thus a

monochromatic edge in KGr′(H1[e1]) × · · · × KGr′(Ht[et]). We define h(e1, . . . , et) to be the color

of such an edge. Since c is a proper coloring of KGr′r′′(H1) × · · · × KGr′r′′(Ht), the map h is a

proper coloring of KGr′′(TH1,C,r′)× · · · ×KGr′′(THt,C,r′) with C colors. Since Theorem 1 holds for
r′′, we have

C ≥
1

r′′ − 1
min

ℓ=1,...,t
cdr′′(THℓ,C,r′).

Lemma 3 implies via a direct calculation that (r′r′′ − 1)C ≥ minℓ∈[t] cdr′r′′(Hℓ), which is in contra-
diction with the starting assumption. �

2.3. Proof of the main result when r is a prime number. The proof of Lemma 2 makes use
of a “Zp-Tucker lemma” proposed in [18] as a slight generalization of a “Zp-Tucker lemma” used
by Ziegler [28] in a combinatorial proof of Kř́ıž’s theorem (proof inspired by Matoušek’s proof of
the special case of usual Kneser graphs [17]). Before stating it, we introduce some notations.

We denote by Zr the cyclic and multiplicative group of the rth roots of unity. We denote by ω
one of its generators. Let x = (x1, . . . , xn) and x

′ = (x′1, . . . , x
′
n) be two vectors of (Zr ∪ {0})n. By

the notation “x ⊆ x
′”, we mean that the following implication holds for all i ∈ [n]

xi 6= 0 =⇒ x′i = xi.

The number of nonzero components of a vector x is denoted |x|. We introduce also the notation
suppj(x) for the set of indices i such that xi = ωj . Note that we have |x| =

∑r
j=1 | suppj(x)|.

For x ∈ (Zr ∪{0})n \ {(0, . . . , 0)}, define ω ·x = (ωx1, . . . , ωxn). It defines a free action of Zr on
(Zr ∪{0})n \ {(0, . . . , 0)}. For (ωj , k) ∈ Zr × [m], where m is a positive integer, we define ω · (ωj , k)
to be (ωj+1, k). It defines a free action of Zr on Zr × [m]. A map between two sets on which Zr

acts freely is equivariant if it commutes with the action of Zr.

Lemma 4 (Zp-Tucker lemma). Let p be a prime number, n,m ≥ 1, α ≤ m and let

λ : (Zp ∪ {0})n \ {(0, . . . , 0)} −→ Zp × [m]
x 7−→ (s(x), v(x))

be a Zp-equivariant map satisfying the following two properties:

• for all x(1) ⊆ x
(2) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}, if v(x(1)) = v(x(2)) ≤ α, then s(x(1)) =

s(x(2));

• for all x(1) ⊆ x
(2) ⊆ · · · ⊆ x

(p) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}, if v(x(1)) = v(x(2)) = · · · =

v(x(p)) ≥ α+ 1, then the s(x(i)) are not pairwise distinct for i = 1, . . . , p.

Then α+ (m− α)(p − 1) ≥ n.
4



The second ingredient of the proof is a Zp-equivariant map

ε : (2Zp × · · · × 2Zp) \ ({∅, Zp} × · · · × {∅, Zp}) −→ Zp,

where we assume p to be a prime number. For B ⊆ Zp, we define ω · B to be ∪b∈B{ωb}. Since p

is a prime number, it defines a free action of Zp on 2Zp \ {∅, Zp}. We extend the action of Zp on
2Zp × · · · × 2Zp \ ({∅, Zp}× · · · × {∅, Zp}) by defining ω · (B1, . . . , Bt) to be (ω ·B1, . . . , ω ·Bt). This
action is again free. We can thus define such a Zp-equivariant map ε(·), which gives a “sign” to
each t-tuple (B1, . . . , Bt) ∈ 2Zp × · · · × 2Zp such that at least one of the Bℓ’s is not in {∅, Zp}.

Proof of Lemma 2. Without loss of generality, we assume that

cdp(H1) = min
ℓ=1,...,t

cdp(Hℓ).

Denote by Vℓ and by Eℓ respectively the vertex set and the edge set of Hℓ. The cardinality
of Vℓ is denoted by nℓ and we arbitrarily identify Vℓ and [nℓ]. Let c : E1 × · · · × Et → [C] be
a proper coloring of KGp(H1) × · · · × KGp(Ht) with C colors. We endow E1 × · · · × Et with
an arbitrary total order � such that (S1, . . . , St) � (T1, . . . , Tt) if c(S1, . . . , St) < c(T1, . . . , Tt).
We shall apply the Zp-Tucker lemma (Lemma 4) with n =

∑t
ℓ=1 nℓ, α = n − cdp(H1) + p − 1,

and m = α + C − 1. The lower bound on C, and thus on the chromatic number, will be a
direct consequence of the inequality α + (m − α)(p − 1) ≥ n. To that purpose, we define a map
λ : x ∈ (Zp ∪ {0})n 7→ (s(x), v(x)) ∈ Zp × [m].

Let x ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}. From this x, we define t vectors y1, . . . ,yt as follows: the
vector y1 is the vector made of the first n1 entries of x, the vector y2 is the vector made of the
following n2 entries of x,... and the vector yt is made of the last nt entries of x. The vector yℓ is
thus an element of (Zp ∪{0})nℓ . We define also Aℓ to be the set of ωj such that suppj(yℓ) contains
at least one edge of Eℓ. Two cases have to be distinguished.

First case: Aℓ 6= Zp for at least one ℓ ∈ [t]. We define

v(x) =
∑

ℓ:Aℓ∈{∅,Zp}

|yℓ|

+
∑

ℓ:Aℓ /∈{∅,Zp}

(
|Aℓ|+max

{
|ỹℓ| : ỹℓ ⊆ yℓ and E(Hℓ[suppj(ỹℓ)]) = ∅ for all j)

})
.

If Aℓ ∈ {∅, Zp} for all ℓ ∈ [t], we define s(x) to be the first nonzero entry of x. Otherwise, we define
s(x) to be ε(A1, . . . , At). We always have in this case 1 ≤ v(x) ≤ α.

Second case: Aℓ = Zp for all ℓ ∈ [t]. For each j, there is at least one t-tuple (S1(j), . . . , St(j)) ∈
E1 × · · · × Et with Sℓ(j) ⊆ suppj(yℓ) for all ℓ ∈ [t]. Among all such t-tuples and over all j, select

the one that is minimal for �. We define then v(x) to be α+ c(S1(j), . . . , St(j)) and s(x) to be ωj

with j ∈ [p] such that (S1(j), . . . , St(j)) has been chosen. Note that because of the definition of �
and because c(·) is a proper coloring, c(S1(j), . . . , St(j)) 6= C, and thus α+ 1 ≤ v(x) ≤ α+C − 1,
as required.

The fact that such a map λ is Zp-equivariant can be easily checked. It remains to check that
this map satisfies the two required properties for the application of Zp-Tucker lemma.

Let x ∈ (Zp∪{0})
n\{(0, . . . , 0)} such that v(x) ≤ α. We are necessarily in the first case. We seek

the condition under which making one of its zero components a nonzero one does not modify v(x).
Such a transformation cannot concern an entry in a yℓ with ℓ such that Aℓ = ∅, nor it can concern
an entry in a yℓ with ℓ such that Aℓ = Zp. It remains to see what happens when the transformation
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concerns an entry in a yℓ with ℓ such that Aℓ /∈ {∅, Zp}. If Aℓ increases its cardinality by one because
of this transformation, then v(x) increases by at least one. Hence, making a zero component of x a
nonzero one modifies v(x) only if at least one of the Aℓ is not in {∅, Zp} and if none of the Aℓ’s are
modified by this transformation. Therefore, making a zero component of x an nonzero one while
not modifying v(x) does not modify s(x) as well. For x ⊆ x

′ ∈ (Zp ∪ {0})n \ {(0, . . . , 0)} such that
v(x′) ≤ α, we necessarily have v(x) ≤ v(x′). Thus, according to the discussion we just proposed,
if v(x(1)) = v(x(2)) ≤ α with x

(1) ⊆ x
(2), we have s(x(1)) = s(x(2)).

Let x(1) ⊆ x
(2) ⊆ · · · ⊆ x

(p) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)} be such that v(x(1)) = v(x(2)) = · · · =

v(x(p)) ≥ α+1. We are necessarily in the second case. Define (S
(i)
1 , . . . , S

(i)
t ) to be the t-tuple used

in the computation of v(x(i)). Suppose for a contradiction that the s(x(i))’s are pairwise distinct

for i = 1, . . . , p. Then the (S
(i)
1 , . . . , S

(i)
t )’s form an edge of KGp(H1)× · · · ×KGp(Ht) while getting

the same color by c(·) since v(x(1)) = v(x(2)) = · · · = v(x(p)). It contradicts the fact that c(·) is a
proper coloring. Hence, the s(x(i)) are not pairwise distinct for i = 1, . . . , p. �

3. Improvements via alternation number

3.1. Main theorem involving the alternation number. An alternating sequence is a se-
quence x1, x2, . . . , xm ∈ Zr such that any two consecutive terms are different. For any x =
(x1, x2, . . . , xn) ∈ (Zr ∪ {0})n and any permutation π ∈ Sn, we denote by altπ(x) the maximum
length of an alternating subsequence of the sequence xπ(1), . . . , xπ(n). Note that by definition this
subsequence uses only elements of Zr. In particular, if x = (0, . . . , 0), then altπ(x) = 0 for any
permutation π.

Let H = (V,E) be a hypergraph with n vertices. We identify V and [n]. The r-alternation
number altr(H) of H is defined as

altr(H) = min
π∈Sn

max{altπ(x) : x ∈ (Zr ∪ {0})n with E(H[suppj(x)]) = ∅ for j = 1, . . . , r}.

In other words, for each permutation π of [n], we choose x such that altπ(x) is maximal while none
of the suppj(x)’s contain an edge of H; then, we take the permutation for which this quantity is
minimal. This number does not depend on the way V and [n] have been identified.

We clearly have |V | − altr(H) ≥ cdr(H). Theorem 1 can now be improved with the help of the
alternation number.

Theorem 2. Let H1, . . . ,Ht be hypergraphs and r ≥ 2 be a positive integer. If none of the Hℓ’s

have ∅ as an edge, then

χ (KGr(H1)× · · · ×KGr(Ht)) ≥
1

r − 1
min

ℓ=1,...,t
(|V (Hℓ)| − altr(Hℓ)) .

This theorem implies that Conjecture 1 holds for Kneser hypergraphs KGr(H) of same rank

whose chromatic number equals
⌈

1
r−1 (|V (H)| − altr(H))

⌉
. The 2-stable Kneser hypergraphs are

such hypergraphs provided that r − 1 do not divide n − k (proved in [4]). These hypergraphs,
denoted KGr(n, k)2-stab, are the Kneser hypergraphs whose vertices are the k-subsets A of [n] no
elements of which are cyclically adjacent (if i 6= i′ are both in A, then 2 ≤ |i− i′| ≤ n− 2). Other

examples of such hypergraphs H having their chromatic number equaling
⌈

1
r−1 (|V (H)| − altr(H))

⌉

are given by some multiple Kneser hypergraphs, see [4] for more details.
The proof of Theorem 2 follows the same lines as the proof of Theorem 1 given in Section 2. We

have lemmas similar to Lemmas 1 and 2.

Lemma 5. Let r′ and r′′ be two positive integers. If Theorem 2 holds for both r′ and r′′, then it

holds also for r = r′r′′.
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Lemma 6. Let H1, . . . ,Ht be hypergraphs and p be a prime number. If none of the Hℓ’s have ∅ as

an edge, then

χ (KGp(H1)× · · · ×KGp(Ht)) ≥
1

p− 1
min

ℓ=1,...,t
(|V (Hℓ)| − altp(Hℓ)) .

Lemma 5 can be proved via a technical lemma similar to Lemma 3. We define T̃H,C,s by

V (T̃H,C,s) = V (H)

E(T̃H,C,s) = {A ⊆ V (H) : |A| − alts(H[A]) > (s− 1)C}.

Lemma 7. The following inequality holds for any positive integer r

altr(T̃H,C,s) ≤ r(s− 1)C + altrs(H).

We omit the proofs of Lemmas 5 and 7 since they are very similar to the proofs given in Sec-
tion 2.2. The proof of Lemma 6 is also almost identical to the proof of Lemma 2: it uses the
Zp-Tucker lemma (Lemma 4) and the sign ε(·) of Section 2.3. We sketch the main changes.

Sketch of proof of Lemma 6. Let nℓ be the cardinality of Vℓ. Without loss of generality, we assume
that n1 − altp(H1) = minℓ∈[t] (nℓ − altp(Hℓ)). Moreover, we identify Vℓ and [nℓ] in such a way that
the permutation for which the minimum is attained in the definition of altp(Hℓ) is the identity
permutation id.

Let c : E1 × · · · × Et → [C] be a proper coloring of KGp(H1) × · · · × KGp(Ht) with C colors.
We endow E1 × · · · × Et with an arbitrary total order � such that (S1, . . . , St) � (T1, . . . , Tt) if
c(S1, . . . , St) < c(T1, . . . , Tt).

Let n =
∑t

ℓ=1 nℓ, α = n − n1 + altp(H1) + p − 1, and m = α + C − 1. We define a map
λ : x ∈ (Zp ∪ {0})n 7→ (s(x), v(x)) ∈ Zp × [m]. To that purpose, we define for an x ∈ (Zp ∪ {0})n

the vectors y1, . . . ,yt and the sets A1, . . . , At as in the proof of Lemma 2.

First case: Aℓ 6= Zp for at least one ℓ ∈ [t]. We define

v(x) =
∑

ℓ:Aℓ=∅

altid(yℓ) +
∑

ℓ:Aℓ=Zp

|yℓ|

+
∑

ℓ:Aℓ /∈{∅,Zp}

(
|Aℓ|+max

{
altid(ỹℓ) : ỹℓ ⊆ yℓ and E(Hℓ[suppj(ỹℓ)]) = ∅ for all j

})
.

If Aℓ ∈ {∅, Zp} for all ℓ ∈ [t], we define s(x) to be the first nonzero entry of x. Otherwise, we define
s(x) to be ε(A1, . . . , At). We always have in this case 1 ≤ v(x) ≤ α as required.

Second case: Aℓ = Zp for all ℓ ∈ [t]. For each j, there is at least one t-tuple (S1(j), . . . , St(j)) ∈
E1 × · · · × Et and Sℓ(j) ⊆ suppj(yℓ) for all j ∈ [p]. Among all such t-tuples and over all j, select

the one that is minimal for �. We define then v(x) to be α+ c(S1(j), . . . , St(j)) and s(x) to be ωj

with j ∈ [p] such that (S1(j), . . . , St(j)) has been chosen. Note that because of the definition of �
and because c(·) is a proper coloring, c(S1(j), . . . , St(j)) 6= C, and thus α+ 1 ≤ v(x) ≤ α+C − 1,
as required.

The map λ satisfies the condition of Lemma 4. The lower bound on C, and thus on the chromatic
number, is a consequence of the inequality α+ (m− α)(p − 1) ≥ n. �
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3.2. An application to graphs. Two graphs G and G′ are homomorphically equivalent when
there exists a homomorphism from G to G′ and a homomorphism from G′ to G. Alishahi and
Hajiabolhassan [2] have defined the altermatic number of a graph G as the quantity

ζ(G) = max
H

(|V (H)| − alt2(H))

where the maximum is taken over all hypergraphs H such that KG(H) and G are homomorphically
equivalent. This definition makes sense since there always exists at least one such a hypergraph,
for which actually a isomorphism holds. This hypergraph is called a Kneser representation of G
(see for instance [15] for a discussion on Kneser representations).

Theorem 2 actually shows that for any two graphs G and G′, we also have

χ(G×G′) ≥ min{ζ(G), ζ(G′)}.

This inequality allows to prove that Hedetniemi’s conjecture is true for new families of graphs.
If two graphs have their chromatic number equaling their altermatic number, then they satisfy
Hedetniemi’s conjecture. Usual Kneser graphs have their chromatic number equaling their alter-
matic number, but this equality holds for other families. By KG(G,H), we denote the Kneser
graphs whose vertex set is the set of all subgraphs of G isomorphic to H and in which two vertices
are adjacent if the corresponding subgraphs are edge-disjoint. The above mentioned equality is
satisfied by the following families, which become new families satisfying Hedetniemi’s conjecture:

(1) the graphs KG(G,H) where G is a multigraph such that the multiplicity of each edge is at
least 2 and where H is a simple graph, see [1].

(2) the graphs KG(G, rK2), where rK2 is a matching of size r, when G is a sufficiently large
dense graph, see [2] for more details.

(3) the graphs KG2(B), where B is the basis set of the truncation of any partition matroid, see
[4] where this graph is called a multiple Kneser graphs (it is a special case of the multiple
Kneser hypergraphs mentioned right after Theorem 2).

(4) the graphs KG(G,Tn) (this is a new notation), when G is a dense graphs: The vertices of
KG(G,Tn) are the spanning trees of G and two vertices are adjacent if the corresponding
spanning trees are edge-disjoint. For more details, see [3].

Moreover, any pair of graphs obtained by iterating the Mycielski construction on a pair of
graphs with the chromatic number equaling the altermatic number satisfies Hedetniemi’s conjecture.
Indeed, Alishahi and Hajiabolhassan [2] proved that if χ(G) = ζ(G), then this equality holds for
the graph obtained via the Mycielski construction applied on G.

Remark 1. Partial results were already obtained by Alishahi and Hajiabolhassan in [2] for the
families (1) and (2) above using the strong altermatic number. There is a general definition of it
for any r, but we restrain it here to the case r = 2. We introduce the following quantity for a
hypergraph H = (V,E):

salt2(H) = min
π∈Sn

max
{
altπ(x) : x ∈ (Z2 ∪ {0})n with E(H[x+]) = ∅ or E(H[x−]) = ∅

}
,

where we identify Z2 and {+,−}, and where x
+ (resp. x−) is the set of indices i such that xi = +

(resp. xi = −). In other words, for each permutation π of [n], we choose x such that altπ(x) is
maximal while at most one of x+ and x

− contains an edge of H; then, we take the permutation for
which this quantity is minimal. The strong altermatic number of a graph G is then the quantity

ζs(G) = 1 + max
H

(|V (H)| − salt2(H))

where the maximum is taken over all hypergraphs H such that KG(H) and G are homomorphically
equivalent. These authors got that for any two graphs G and G′, we have

χ(G×G′) ≥ min{ζs(G), ζs(G
′)}.
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Schrijver graphs are graphs whose chromatic numbers equal their strong altermatic numbers. This
inequality provides another proof of the fact that Schrijver graphs satisfy Hedetniemi’s conjecture.
For some graphs of the families (1) and (2) above, the equality between the chromatic number
and the strong altermatic number holds, which allows to derive yet another proof that they satisfy
Hedetniemi’s conjecture.

Acknowledgment. The research of Hossein Hajiabolhassan is supported by ERC advanced grant
GRACOL. Part of this work was done during a visit of Hossein Hajiabolhassan to the Université
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