
ar
X

iv
:1

50
1.

00
05

1v
2 

 [
m

at
h.

C
O

] 
 1

4 
O

ct
 2

01
5

A LITTLEWOOD-RICHARDSON RULE FOR DUAL

STABLE GROTHENDIECK POLYNOMIALS

PAVEL GALASHIN

Abstract. For a given skew shape, we build a crystal graph
on the set of all reverse plane partitions that have this shape.
As a consequence, we get a simple extension of the Littlewood-
Richardson rule for the expansion of the corresponding dual stable
Grothendieck polynomial in terms of Schur polynomials.

1. Introduction

Dual stable Grothendieck polynomials gλ/µ(x) were introduced in
[7]. They are Hopf-dual to the stable Grothendieck polynomials, which
represent some classes of the structure sheaves of Schubert varieties.
The connection of stable and dual stable Grothendieck polynomials
with the K-theory of the Grassmannian has been discussed in various
papers including [9, 3, 2], and [7]. The paper [7] gives an explicit
combinatorial rule for the coefficients of polynomials gλ(x) in the basis
of Schur polynomials sµ(x). We extend this result to the case of gλ/µ(x)
for a skew shape λ/µ, and give a different rule (for straight shapes, it
coincides with the rule of [1]) that provides the same coefficients for
straight shapes and extends the classical Littlewood-Richardson rule.
We do this by constructing a crystal graph (see [5]) on the set R(λ/µ)
of all reverse plane partitions of shape λ/µ with entries not exceeding
a fixed number m > 0.

1.1. Main results. To a reverse plane partition T ∈ R(λ/µ) we as-
sign a reading word r(T ) in the following way: ignore each entry of T
that is equal to the entry directly below it; then read all the remain-
ing entries in the left-to-right bottom-to-top order (the usual reading
order for the Young tableaux). After that we define a family of opera-
tors e1, e2, . . . , em−1 on the set R(λ/µ) which are essentially the usual
parenthesation operators applied to the reading word (see [8]).

Theorem 1. The operators e1, e2, . . . , em−1 satisfy the crystal axioms
(which can be found in [5] and will also be discussed in the sequel).
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Therefore we get a crystal graph structure on R(λ/µ). As a direct
application of that (see [5]), we get a Littlewood-Richardson rule for
the reverse plane partitions:

Corollary 2. The dual stable Grothendieck polynomial gλ/µ(x) is ex-
panded in terms of Schur polynomials sν(x) as follows:

gλ/µ(x) =
∑

ν

hν
λ/µsν(x),

where the sum is over all Young diagrams ν, and the coefficient hν
λ/µ

is equal to the number of reverse plane partitions T of shape λ/µ and
weight ν such that the reading word r(T ) is a lattice word.

We also give a self-contained proof of this Corollary without using
the theory of crystal graphs. Note that the highest degree homogeneous
component of gλ/µ(x) is the skew-Schur polynomial sλ/µ(x), so Corol-
lary 2 is an extension of the Littlewood-Richardson rule for skew-Schur
polynomials.

Remark 3. In [4], the following refinement g̃λ/µ(x; t) of gλ/µ(x) was
introduced. For a reverse plane partition T ∈ R(λ/µ) let ceq(T ) :=
(c1, c2, . . . ) be a weak composition whose i-th entry ci is equal to the
number of columns j such that the boxes (i, j) and (i+1, j) both belong
to λ/µ and the entries of T in these boxes are the same. Let t =
(t1, t2, . . . ) be a vector of indeterminates, and put tceq(T ) := tc11 t

c2
2 . . . .

Then the bounded degree power series g̃λ/µ(x; t) is defined as a sum

over all reverse plane partitions T of shape λ/µ of xT tceq(T ). It will be
clear later that the operators e1, e2, . . . , em−1 preserve this ceq-statistic,
therefore, Corollary 2 also admits a refinement:

g̃λ/µ(x; t) =
∑

α

tα
∑

ν

hν,α
λ/µsν(x),

where the first sum is over all weak compositions α, and hν,α
λ/µ counts

the number of reverse plane partitions T of shape λ/µ and weight ν
such that the reading word r(T ) is a lattice word with an extra property
that ceq(T ) = α.

1.2. Previous research. There already is a combinatorial rule for
the coefficients hν

λ/µ in [7] for the case when µ = ∅ and λ/µ = λ is a
straight shape. Namely, hν

λ equals to the number f ν
λ of elegant fillings of

λ/ν, that is, the number of semi-standard Young tableaux T of shape
λ/ν such that all entries in the i-th row of T are strictly less than
i. This formula is Hopf-dual to the corresponding formula for stable
Grothendieck polynomials that appeared earlier in [10, Theorem 2.16],
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which implies that the dual stable Grothendieck polynomials are indeed
Hopf-dual to the usual stable Grothendieck polynomials. To prove this
rule, Lam and Pylyavskyy in [7] construct a weight preserving bijection
between reverse plane partitions of shape λ and pairs (S, U), where S
is a semi-standard Young tableau of some shape µ and U is an elegant
filling of λ/µ. Following this bijection one can deduce that T is a
reverse plane partition of shape λ and weight ν whose reading word is
a lattice word if and only if it corresponds to a pair (S, U) such that
S is the filling of the shape ν with all entries in the i-th row equal to
i, and U is an elegant tableau of shape λ/ν. Therefore the bijection
from [7] restricted to the reverse plane partitions whose reading word
is a lattice word proves the equality of the numbers hν

λ and f ν
λ .

For straight shapes, a combinatorial rule that involved the coeffi-
cients hν

λ instead of f ν
λ was given in [1, Proposition 5.3] together with

bijections that also show the equality of the numbers hν
λ and f ν

λ .

1.3. The structure of the paper. The rest of this section contains
some background information about dual stable Grothendieck polyno-
mials, crystal graphs, and introduction to the operators ei that occur
in the statement of Theorem 1.
The second section is dedicated to the proof of Theorem 1 and Corol-

lary 2 by exploring further properties and connections between the
reading words of reverse plane partitions and the action of operators
ei.

1.4. Preliminaries.

1.4.1. Reverse plane partitions. We follow the notations of [7]. Let λ/µ
be a skew shape and m a positive integer. A reverse plane partition
T of shape λ/µ with entries in [m] := {1, . . . , m} is a tableau of this
shape such that its entries do not exceed m and weakly increase both
in rows and in columns. For i ∈ [m], by T (i) we denote the number
of columns of T that contain i. To each reverse plane partition T we

attach a monomial xT = Πi∈[m]x
T (i)
i . For a skew shape λ/µ, define

the dual stable Grothendieck polynomial gλ/µ(x1, . . . , xm) as the sum
of weights of all reverse plane partitions T of shape λ/µ with entries in
[m]:

gλ/µ(x) =
∑

T

xT .

As it was shown in [7], these polynomials are symmetric.
3



1.4.2. Crystal graphs. Crystal graphs are important for representation
theory of certain quantized universal enveloping algebras, and have
been a fruitful topic of research for the past two decades. We give a
brief adaptation of the crystal graph theory based on [5, 13, 11] with
a very low yet sufficient for the rest of this paper level of detail.
A crystal graph G can be viewed as a set V of vertices together with

a set e1, . . . , em−1 : V → V ∪{0} of operators that act on the vertices of
G and return either a vertex of G or zero. In addition, these operators
are required to satisfy a set of simple crystal axioms. If they do, then
they are called crystal operators, and G is called a crystal graph.
Instead of providing the list of these axioms, we give an important

example of a crystal graph, which is the only crystal graph that we will
be interested in. Fix n > 0. Let S := [m]n be the set of all strings of
length n in the alphabet [m]. For s = (s1, s2, . . . , sn) ∈ S, the weight
w(s) = (w1(s), . . . , wm(s)) is defined as

wi(s) := #{j ∈ [n] : sj = i}.

For i ∈ [m − 1] we define the operator Ei : S → S ∪ {0}. For s :=
(s1, s2, . . . , sn) ∈ S the value Ei(s) is evaluated using the following
algorithm:

(1) Ignore all entries of s other than the ones equal to i or to i+1;
(2) Ignore all occurrences of i+ 1 immediately followed by i;
(3) After doing the previous step as many times as possible we

obtain a string that consists of several i’s followed by several
i+1’s. If there is at least one i+1, then Ei replaces the leftmost
i+ 1 by an i, and otherwise we set Ei(s) := 0.

In other words, Ei labels each i by a closing parenthesis, each i+1 by an
opening parenthesis, and then it replaces the leftmost unmatched open-
ing parenthesis by a closing one if there are any unmatched opening
parentheses present. As an example, let i = 1, m = 3, n = 13 and con-
sider the following string s := (1, 2, 2, 3, 1, 3, 2, 2, 2, 1, 3, 1, 2). After step
(1) we ignore all 3’s, so the string s becomes (1, 2, 2, ∗, 1, ∗, 2, 2, 2, 1, ∗, 1, 2).
Here the ignored entries are represented as stars. Next, we do step 2
as many times as needed, so our string is modified as follows:

s = (1, 2, 2, 3, 1, 3, 2, 2, 2, 1, 3, 1, 2)

→ (1, 2, 2, ∗, 1, ∗, 2, 2, 2, 1, ∗, 1, 2)

→ (1, 2, ∗, ∗, ∗, ∗, 2, 2, 2, 1, ∗, 1, 2)

→ (1, 2, ∗, ∗, ∗, ∗, 2, 2, ∗, ∗, ∗, 1, 2)

→ (1, 2, ∗, ∗, ∗, ∗, 2, 2, ∗, ∗, ∗, 1, 2)

→ (1, 2, ∗, ∗, ∗, ∗, 2, ∗, ∗, ∗, ∗, ∗, 2).
4



Now we can easily calculate the E1-orbit of s:

E0
1(s) = (1, 2, 2, 3, 1, 3, 2, 2, 2, 1, 3, 1, 2)

E1
1(s) = (1, 1, 2, 3, 1, 3, 2, 2, 2, 1, 3, 1, 2)

E2
1(s) = (1, 1, 2, 3, 1, 3, 1, 2, 2, 1, 3, 1, 2)

E3
1(s) = (1, 1, 2, 3, 1, 3, 1, 2, 2, 1, 3, 1,1)

E4
1(s) = 0.

Similarly, define the operators Fi to be the operators that replace
the rightmost unmatched closing parenthesis by an opening one. The
operators Ei and Fi are “inverse to each other” in the sense that for
any two strings u, v ∈ S, Ei(u) = v if and only if Fi(v) = u.
These operators satisfy the crystal axioms and therefore have a lot

of nice properties, which we summarize in the following Lemma:

Lemma 4. (1) Each connected component of the corresponding edge-
colored graph has exactly one vertex v ∈ S such that for every
i ∈ [m− 1], Ei(v) = 0.

(2) This component is completely determined (up to an isomor-
phism of edge-colored graphs) by the weight w(v), which is clearly
a weakly decreasing sequence of integers.

(3) The sum of xw(u) over all vertices u in this connected component
is equal to the Schur polynomial sw(v).

Even though all of these properties follow from the fact that Ei and
Fi satisfy crystal axioms, we prove them just to make the proof of
Corollary 2 self-contained. Note that a somewhat related proof can be
found in [12].

Proof. Note that if the words u, u′ ∈ S are Knuth equivalent (see [6]),
then the words Ei(u) and Ei(u

′) are Knuth equivalent (or both zero),
and also the words Fi(u) and Fi(u

′) are Knuth equivalent (or both
zero). And for each word u ∈ S there is exactly one word u′ ∈ S which
is Knuth equivalent to u and such that it is a reading word of some
semi-standard Young tableau T . But the operators Ei and Fi applied
to the reading word of T produce a reading word of some other tableau
that has the same shape as T .
Now all three properties follow from the fact that any two semi-

standard Young tableaux of the same straight shape can be obtained
from one another by applying a sequence of operators Ei and Fi. To
show this, consider a tableau T0 of shape λ such that for every j, all of
its entries in the j-th row are equal to j. Consider an integer k ≥ 1,
and let T be a tableau of shape λ such that for j ≥ k, all entries of T
in the j-th row are equal to j and such that for j < k, the entries of T
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in the j-th row are less than or equal to k. Then we claim that such
T can be obtained from T0 by applying a sequence of operators Fi for
different i’s. This statement is true for k = 1 and can be easily proven
by induction for all k ≥ 1. �

1.5. The crystal operators for reverse plane partitions.

1.5.1. The descent-resolution algorithm. We describe the descent-resolution
algorithm for reverse plane partitions from [4], where it was used in or-
der to describe the analogue of the Bender-Knuth involution for reverse
plane partitions. Let λ/µ be a skew shape, and fix i ∈ [m− 1]. For a
tableau T ′ of shape λ/µ such that the entries of T ′ are equal to either
i or i+ 1 and weakly increase in columns but not necessarily in rows,
we say that a column of T ′ is i-pure, if it contains an i but does not
contain an i+1. Similarly, we call a column i+1-pure if it contains an
i+ 1 but does not contain an i. If a column contains both i and i+ 1,
then we call this column mixed.

Definition 5 (see [4]). A tableau T ′ is a benign tableau if the entries
of T ′ weakly increase in columns and for every two mixed columns A
and B (A is to the left of B), the lowest i in A is not higher than the
lowest i in B. In other words, the vertical coordinates of the borders
between i’s and i + 1’s in mixed columns weakly increase from left to
right (see Figure 1).

1 1
2

2 2

1
2 1

2 2

1
1 2

2
2

(a) (b) (c)

Figure 1. The table (a) is not benign, (b) is benign
but is not a reverse plane partition, (c) is a reverse plane
partition.

The descent-resolution algorithm takes a benign tableau T ′ and con-
verts it into a reverse plane partition of the same shape and weight.
A benign tableau T ′ may easily fail to be a reverse plane partition.

More specifically, it may contain an i + 1 with an i directly to the
right of it – we call such a situation a descent. Let A be the column
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containing an i + 1 and A + 1 be the column containing an i. Then
there are three possible types of descents depending on the types of the
columns A and A+ 1 (their abbreviations are relevant when i = 1):

(2M) A is i+ 1-pure and A + 1 is mixed
(M1) A is mixed and A+ 1 is i-pure
(21) A is i+ 1-pure and A + 1 is i-pure

There is a fourth type of descents in which both columns are mixed,
but the benign tableau property implies that such descents are im-
possible. For a descent of each of these three types, [4] provides a
descent-resolution step, which changes only the entries of A and A+ 1
and resolves this descent.
For descents of the first two types, the descent-resolution step switches

the roles of the columns but preserves the vertical coordinate of the low-
est i in the mixed column; this determines the operation uniquely. For
a descent of the third type, it simply replaces all i’s by i+1’s and vice
versa in both columns. It is clear that the resulting tableau will also be
a benign tableau. The descent-resolution steps for i = 1 are visualized
in Figure 2.

1 1

2

→

1

1
2

1

2
2

→
1 2

2

1
2

→
2

1

(M1) (2M) (21)

Figure 2. The descent-resolution steps (taken from [4]).

The descent-resolution algorithm performs these descent-resolution
steps until there are no descents left, which means that we get a reverse
plane partition. This algorithm terminates, because i-pure columns
always move to the right while i+ 1-pure columns always move to the
left. Also, it is shown in [4] that the result of the algorithm does not
depend on the order in which the descents are resolved.

1.5.2. The definition of ei’s and fi’s. Let λ/µ be a skew shape, and fix
i ∈ [m− 1]. For a reverse plane partition T of shape λ/µ with entries
in [m], define ei(T ) as follows. First, consider only the subtableau of
T that consists of entries equal to either i or i + 1. Then, label each
i-pure column by a closing parenthesis and each i+ 1-pure column by
an opening parenthesis (and ignore the mixed columns).

7



Choose the (i+1-pure) column A that corresponds to the leftmost un-
matched opening parenthesis (if all opening parentheses are matched,
set ei(T ) := 0). Replace all the i+ 1’s in A by i’s, and then apply the
descent-resolution algorithm to the resulting benign tableau.
Similarly, fi chooses the (i-pure) column B that corresponds to the

rightmost unmatched closing parenthesis and replaces all the i’s in it
by i+ 1’s and then applies the descent-resolution algorithm.
We discuss the properties of ei’s and fi’s and their connection to the

defined above reading word in the next section.

2. Properties of the reading words of reverse plane

partitions

Recall that the reading word r(T ) of a reverse plane partition T of
shape λ/µ is defined as the usual left-to-right bottom-to-top Young
tableaux reading word that ignores each entry that has the same entry
below it. An example is shown in Figure 3.

1 2
1 1 4

1 1 1 4
1 3 3 4
2 3 5
2 4 5
3 4 →

2

1 1
1 3 4

3
2 5
3 4 → 34253134112

Figure 3. The reading word of a skew-shaped reverse
plane partition.

We assume the coordinates of the boxes are in the matrix nota-
tion. For a reverse plane partition T , define its height vector h(T ) to
be the sequence of vertical coordinates of the entries of T that con-
tribute to r(T ) arranged in the exact same order as they appear in
the reading word. For example, for T as in Figure 3 we put h(T ) :=
(7, 7, 6, 6, 5, 4, 4, 4, 3, 3, 1). It is always a weakly decreasing sequence of
positive integers. Similarly, we define the height vector of a benign
tableau. Note that each descent-resolution step preserves the height
vector, and, therefore, so do the operators ei and fi.

Lemma 6. Fix a skew shape λ/µ and a sequence h of positive inte-
gers. Then for each reading word r there is at most one reverse plane
partition T of shape λ/µ with r(T ) = r and h(T ) = h.

8



Proof. Suppose that there exists a reverse plane partition T of shape
λ/µ with r(T ) = r and h(T ) = h. Then T can be uniquely recon-
structed from r and h by filling the boxes of λ/µ in the reading order:

(1) Set j = 1;
(2) Let B be the first (in the reading order) box of λ/µ which is

not filled with a number. Let a be the value in the box directly
below it, and let c be the value in the box directly to the left of
it (if there is no such box then we put a := +∞ or c := 0);

(3) If the height of B is not equal to hj, then set the entry in the
box B equal to a and proceed to the next box (go to step 2);

(4) If the number rj does not satisfy c ≤ rj < a, then, again, set
the entry in the box B equal to a and proceed to the next box;

(5) Otherwise, we set the entry in the box B equal to rj , increase
j by 1 and proceed to the next box.

Note that if r and h are the reading word and the height vector of
some reverse plane partition, then the entries of h weakly decrease,
and the entries of r that have the same height weakly increase. We
prove by induction that the first k entries of T (in the reading order)
are the same as the first k entries of the reverse plane partition that
the algorithm produces. For k = 0 it is true. Now, we want to put rj
somewhere into the row hj so that the entry below it is strictly bigger
than rj and so that the entries in the row weakly increase. Thus if rj
cannot be put into the current box (because either rj ≥ a or rj < b),
then this box should be ignored by the reading word, so its value should
be the same as the value directly below it. If b ≤ rj < a, then rj has
to be put into the current box, because if we put rj somewhere to the
right, then we have to fill this box with the value directly below it (with
a), which is strictly bigger than rj, so the entries in the row will not
be weakly increasing. �

Recall that the operators Fi are defined on the set S = [m]n of all
strings of length n, and replace the rightmost unmatched closing paren-
thesis (corresponding to an entry equal to i) by an opening parenthesis
(by an i+1). Meanwhile, the operators fi act on R(λ/µ), which is the
set of all reverse plane partitions of shape λ/µ with entries less than
or equal to m. It turns out that these two actions commute with the
operation of taking the reading word:

Lemma 7. Let T be a reverse plane partition. Then

Fi(r(T )) = r(fi(T )).

In particular, if fi(T ) is zero then Fi(r(T )) is zero and the converse is
also true.

9



And, because ei and fi are “inverse to each other” (in the same sense
as above), and the same is true for Ei and Fi, we get

Corollary 8. Let T be a reverse plane partition. Then

Ei(r(T )) = r(ei(T )).

Proof of Lemma 7. The operator fi labels i-pure columns by closing
parentheses and i + 1-pure columns by opening parentheses. Then it
finds the rightmost unmatched closing parenthesis and replaces the cor-
responding i-pure column by an i+1-pure column. After that we get a
benign tableau T ′, and then we apply the descent-resolution algorithm
to T ′ which produces a reverse plane partition T ′′ =: fi(T ). Our proof
consists of two parts:

(1) r(T ′) = r(T ′′);
(2) Fi(r(T )) = r(T ′).

Remark 9. Note that both of these parts are false for ei and Ei. To
make them true, one needs to introduce the reading word that ignores
each entry equal to the entry directly above it, rather than directly below
it.

We start with the first part. Note that even though T ′ and T ′′ differ
by a sequence of descent-resolution steps, it is not true in general that
the descent-resolution steps preserve the reading word. Fortunately, as
we will see later, all the appearing descents are of the first type. And
the corresponding descent-resolution step (see Figure 4) clearly does
not change the reading word.

1 1

2

→

1

1
2

Figure 4. The first descent-resolution step (M1).

The reason we only need this descent-resolution step is the definition
of fi. Namely, fi changes only one i-pure column A into an i+ 1-pure
column. And this column is required to be labeled by the rightmost
unmatched closing parenthesis. Let B be the leftmost i+1-pure column
to the right of A, and let C be the rightmost i-pure column to the left of

10



A. If there was an i-pure column between A and B, then it would also
be unmatched, so A would not be labeled by the rightmost unmatched
closing parenthesis. Also, if there was an i+1-pure column D between
C and A, then it would have to be matched to some i-pure column
between D and A, so C would not be the rightmost i-pure column to
the left of A. All in all we can see that all the columns between C and
A and between A and B are mixed. If either C or B is undefined, then
all the columns to the left (resp., to the right) of A are mixed.
Now it is clear why only the descents of the first type appear while

the descent-resolution steps are performed. The column A becomes
i+1-pure, so the only possible descent can occur between A and A+1,
and as we resolve it, the i + 1-pure column moves to the right. But
because it is surrounded by mixed columns, the only appearing descents
are between this i+ 1-pure column and the mixed column to the right
of it. And if this i+ 1-pure column moves to the position B − 1, then
there are no descents left, because B is also i + 1-pure. This finishes
the proof of the first part.
The second part asks for a certain correspondence between two dif-

ferent matchings. The first one appears when we label i-pure columns
by closing parentheses, i+1-pure columns by opening parentheses, and
then say that two pure columns match each other if their labels (two
parentheses) match each other in the parenthesis sequence. In this
situation we say that these two columns match in the reverse plane
partition. The second matching appears when we label the entries of
the reading word by parentheses and say that two entries of the read-
ing word match each other if their labels match each other. In this
situation we say that these two entries match in the reading word.
The second part of the Lemma states that an i-pure column is la-

beled by the rightmost unmatched closing parenthesis in the reverse
plane partition if and only if the corresponding entry in the reading
word is also labeled by the rightmost unmatched closing parenthesis in
the reading word. Here we can restrict our attention to reverse plane
partitions that are filled only with i’s and i+ 1’s. For a column A, let
j(A) be the position of the corresponding entry of the reading word if
A is either i- or i + 1-pure. If A is mixed, then set j−(A) to be the
position of the entry of the reading word corresponding to i and set
j+(A) to be the position of the entry of the reading word corresponding
to i+ 1.
We need to check three implications:

(1) If a column A is i-pure and unmatched in the reverse plane
partition, then the entry j(A) is unmatched in the reading word.

11



(2) If a column A is mixed, then the entry j−(A) is matched to
something (not necessarily to j+(A)) in the reading word.

(3) If a column A is i-pure and matched to some i+1-pure column
B in the reverse plane partition, then the entry j(A) is also
matched to something (not necessarily to j(B)) in the reading
word.

It is clear that these three properties together imply that the i-pure
columns unmatched in the reverse plane partition correspond exactly
to the unmatched i’s in the reading word. And because the reading
word preserves the order of pure columns, the second part of the lemma
reduces to proving these three implications.
Note that if a column A is i-pure, then for every other column B

that is to the right (resp., left) of A, the entry j(B) or j−(B) or j+(B)
if defined is also to the right (resp. left) of j(A). Another simple useful
observation is that if we have any injective map that attaches to each
i+1 in the reading word an i to the right of it, then all the i+1’s in this
reading word are matched. Now we are ready to check the implications
(1)-(3).
(1) If a column A is i-pure and unmatched, then we can just throw

everything to the right of A and j(A) out. Now, every i+1-pure column
to the left of A is matched to something in the reverse plane partition,
so for every i+ 1 to the left of j(A) in the reading word we have an i
that is between it and j(A), and for different i + 1’s these i’s are also
different. Therefore every i + 1 to the left of j(A) is matched in the
reading word as well, so j(A) is unmatched in the reading word.
(2) Suppose A is mixed. If we throw out all the columns that are

to the right of A, then several i + 1’s between j+(A) and j−(A) will
be thrown out of the reading word, but all the i’s to the left of j−(A)
will remain untouched. Let B be the rightmost i-pure column to the
left of A. Now we throw out all the columns to the left of B and
also B itself, which corresponds to erasing the part the reading word
from the beginning to j(B) (if there was no such B then we do not
throw anything out of the reading word). Now we have a reverse plane
partition that contains no i-pure columns, so by the counting argument
j−(A) is matched in the reading word. But then it was also matched
in the original reading word.
(3) Suppose A is i-pure and is matched in the reverse plane partition

to some i+ 1-pure column B to the left of A. Let C be the rightmost
i-pure column to the left of B. We throw out everything that is to
the right of A or to the left of C, which corresponds to keeping all the
entries of the reading word between j(C) and j(A). We also remove
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C and j(C). All the i-pure columns between A and B are matched in
the reverse plane partition to some i+ 1-pure columns between A and
B, and there are no i-pure columns between B and C, so the number
of i+ 1’s between j(C) and j(A) is strictly bigger than the number of
i’s between j(C) and j(A), so j(A) has to be matched to something in
the reading word. We finish the proof of the third implication, which
finishes the proof of the second (last) part of the Lemma. �

Let λ/µ be a skew shape, and let h be a sequence of positive integers.
Lemmas 6 and 7 give a vertex-injective map from the graph of all
reverse plane partitions T of shape λ/µ with h(T ) = h to the graph S
of all strings of the same length as h, and this map takes the operators
ei and fi to Ei and Fi. Therefore each connected component of the
graph of all reverse plane partitions is isomorphic to the corresponding
connected component of the graph S. Now the proof of Theorem 1
follows from the observations about crystal graphs made in Subsection
1.4.2, in particular, the proof of Corollary 2 follows from Lemma 4. �
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