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An upper bound on the size of diamond-free families of sets

Daniel Grosz* Abhishek Methuku' Casey Tompkins
Abstract
Let La(n, P) be the maximum size of a family of subsets of [n] = {1,2,...,n} not containing P

as a (weak) subposet. The diamond poset, denoted Qa, is defined on four elements z,y, z,w with
the relations = < y,z and y,z < w. La(n, P) has been studied for many posets; one of the major
open problems is determining La(n, Q2). It is conjectured that La(n, Q2) = (2 + 0(1))(Ln72j), and
infinitely many significantly different, asymptotically tight constructions are known.

Studying the average number of sets from a family of subsets of [n] on a maximal chain in the
Boolean lattice 2[" has been a fruitful method. We use a partitioning of the maximal chains and
introduce an induction method to show that La(n, Q2) < (2.20711 + 0(1))([n72j)7 improving on the

earlier bound of (2.25 + 0(1))(Ln72j) by Kramer, Martin and Young.

1 Introduction

Let [n] = {1,2,...,n}. The Boolean lattice 2"} is defined as the family of all subsets of [n] = {1,2,...,n},
and the ith level of 21" refers to the collection of all sets of size 7. In 1928, Sperner proved the following
well-known theorem.

Theorem 1.1 (Sperner [24]). If F is a family of subsets of [n] such that no set contains another (A, B € F
implies A ¢ B), then |F| < (Ln72J)' Moreover, equality occurs if and only if F is a level of mazimum

size in 2",

Definition 1.2. Let P be a finite poset, and F be a family of subsets of [n]. We say that P is contained
in F as a (weak) subposet if there is an injection ¢ : P — F satisfying x1 <, 22 = ¢(x1) C ¢(x2)
for every z1,29 € P. F is called P-free if P is not contained in F as a weak subposet. We define the
corresponding extremal function as La(n, P) := max{|F| : F is P-free}.

A k-chain, denoted by Py, is defined to be the poset on the set {z1,zs,...,zr} with the relations
x1 < g < -+ < xg. Using the above notation, Sperner’s theorem can be stated as La(n, Py) = (Ln%J)'
Let X(n, k) denote the sum of the k largest binomial coefficients of order n. An important generalization
of Sperner’s theorem due to Erdés [10] states that La(n, Py+1) = X(n, k). Moreover, equality occurs if
and only if F is the union of k of the largest levels in 2",

Definition 1.3 (Posets Qs,V and A). The diamond poset, denoted Qz (or Dy or Bs), is a poset on four
elements {x,y, z, w}, with the relations z < y,z and y,z < w. That is, Qs is a subposet of a family of
sets A if there are different sets A, B,C,D € A with A C B,C and B,C C D. (Note that B and C' are
not necessarily unrelated.) The V poset is a poset on {z,y, z} with the relations x < y, z; the A poset is
defined on {x,y, z} with the relations =,y < z. That is, the A is a subposet of a family of sets A if there
are different sets B,C, D € A with B,C C D.

The general study of forbidden poset problems was initiated in the paper of Katona and Tarjan [I1] in
1983. They determined the size of the largest family of sets containing neither a V nor a A. They also gave
an estimate on the maximum size of V-free families: (1 + 2 + o(2)) (Ln%j) <La(n,V)< (1+2) (Ln%j)'
This result was later generalized by De Bonis and Katona [§] who obtained bounds for the r-fork poset,
V, defined by the relations = < y1,¥2,...,yr. Other posets for which La(n, P) has been studied include
complete two level posets, batons [25], crowns Ogj (cycle of length 2k on two levels, asymptotically
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solved except for k € {3,5} [15, [18]), butterfly [9], skew-butterfly [22], the N poset [12], harp posets
H(l1,la, ..., k), defined by k chains of length I; between two fixed elements [14], and recently the complete
3 level poset K, s+ [23] among others. (See [I3] for a nice survey by Griggs and Li.)

One of the first general results is due to Bukh [4] who determined the asymptotic value of La(n, P) for
all posets whose Hasse diagram is a tree: If T is a finite poset whose Hasse diagram is a tree of height
W(T) > 2, then La(n, T) = (W(T) = 1)(|,}5)) (1+0(3)) -

Using more general structures instead of chains for double counting, Burcsi and Nagy [5] obtained a
weaker version of this theorem for general posets showing that La(n, P) < (W — 1) (LN%J)' Later

this was generalized by Chen and Li [6] and recently this general bound was improved by the authors of
the present article [16].

The most investigated poset for which even the asymptotic value of La(n, P) has yet to be determined
is the diamond Qs which is the topic of our paper. The two middle levels of the Boolean lattice do not
contain a diamond, so La(n, Q2) > (2 — 0(1))(@7%). Czabarka, Dutle, Johnston and Székely [7] gave
infinitely many asymptotically tight constructions by using random set families defined from posets based
on Abelian groups. Such constructions suggest that the diamond problem is hard. Using a simple and
elegant argument, Griggs, Li and Lu [I4] showed that La(n, Q2) < 2'296(|_n72j)' Some time after they
had announced this bound, Axenovich, Manske and Martin [I] improved the upper bound to 2.283(Ln72 J)'
This bound was further improved to 2.273(Ln72 J) by Griggs, Li and Lu [T4]. The best known upper bound

on La(n, Q2) is (2.25 + 0(1))(Ln72J) due to Kramer, Martin and Young [17].

Definition 1.4. A mazimal chain or, for the rest of this article, simply a chain of the Boolean lattice is
a sequence of sets 0, {z1}, {z1, 2}, {z1, 22,23}, .. ., [n] with z1, 22,23 ... € [n]. We refer to {z1,...,z;}
as the ith set on the chain. In particular, we refer to {z1} as the first set on the chain, or just say that
the chain starts with the element 21 (as a singleton). We refer to z; as the ith element added to form
the chain.

Definition 1.5. The Lubell function of a family of sets F C 2[7] is defined as

I, F) = (i).

FeF \|F|

The notation is shortened to just I(F) when there is no ambiguity as to the dimension of the Boolean
lattice.

Observation 1.6. The Lubell function of a family F is the average number of sets from F on a chain,
taken over all n! chains. In particular, the Lubell function of a level is 1, and the Lubell function of
an antichain F is the number of chains containing a set from F divided by n!. The Lubell function is
additive across a union of disjoint families of sets. Furthermore, |F| < l(]:)(LnT/lQJ) ([19]).

The Lubell function was derived from the celebrated YMBL inequality which was independently discov-
ered by Yamamoto, Meshalkin, Bollobas and Lubell. Using the Lubell function terminology, it states
that

YMBL inequality (Yamamoto, Meshalkin, Bollobas, Lubell [26 2T, 8, 19]). If F C 2" is an antichain,
then I(F) < 1.

For a poset P, let I(n, P) be the maximum of I(n, F) over all families 7 C 2"} which are both P-free and
contain the empty set. Let [(P) = limsup,,_, I(n, P). Griggs, Li and Lu proved that

Lemma 1.7 (Griggs, Li and Lu [14]).

La(n. @2) < (1(Q2) + o) ( 1 )

Kramer, Martin and Young used flag algebras to prove that

Lemma 1.8 (Kramer, Martin and Young [I7]). 1(Q2) = 2.25

thereby proving



Theorem 1.9 (Kramer, Martin and Young [17]).

La(n, Qs) < (2.25 + 0(1))(Ln72j)'

The following construction shows that [(Qz) > 2.25 in Lemma [[.8 There are other constructions known
as well.

Example 1.10. Let F C 2 consist of all the sets of the following forms: (), {e}, {e, 0}, {01, 02} where
e denotes any even number in [n|, and o, 0; and o2 denote any odd numbers in [n]. This family is

diamond-free, and I(F) = 2.25 + o(1).

Example 1.11. This construction is a generalization of the previous one. Let A C [n] with |A| = an.
Let F C 2 consist of all the sets of the following forms: 0, {e},{e, 0}, {01,002} where now e denotes
any element of A, while o, 01 and o2 denote any elements of [n] \ A. This family is diamond-free, and
I(F)=2+a—a?4o(1). This family contains all size 2 sets that do not form a diamond with {) and the
singletons, so all maximal diamond-free families on levels 0, 1 and 2 that contain @) are of this form.

The following restriction of the problem of diamond-free families has been investigated: How big can a
diamond-free family be if it can only contain sets from the middle three levels of 2(* (denoted B(n, 3))?
Better bounds are known with this restriction. Axenovich, Manske and Martin showed that

Theorem 1.12 (Axenovich, Manske and Martin [1]). If F C B(n,3) is diamond-free, then |F| <
(2:20711 + 0(1)) (|,,)o)) -

Later, Manske and Shen improved it to 2.1547(Ln72 J) in [20] and recently, Balogh, Hu, Lidicky and Liu

gave the best known bound of 2.15121(@7%) in [2] using flag algebras.

Definition 1.13. We call a chain mazimal-non-mazimal (MNM) with respect to (w.r.t.) F if it contains
a set from F, and the biggest set contained in F on the chain is not maximal in F (i.e., there are other
sets from F containing it on some other chains).

It is easy to see that an (-free family is A-free if and only if the family we get by adding () is diamond-free;
adding @ increases the Lubell function by 1. In Section 2] of this paper, we prove the following lemma:

Lemma 1.14. Let F C 2" be a A-free family that does not contain the empty set, nor any set of size
bigger than n —n’ for some n’ € N (that can be chosen independently of n). Assume that there are cn!

MNM chains w.r.t. F. Then I(F) <1—min(c+ &, 1) + /min(c+ 5, 1) + 2.

It is easy to see that in Example[LTT]the number of MNM-chains is approximately a?n! (so a ~ /c): these
are the chains whose second set is {e1, ea} with e1,es € A. Thus, this lemma is (asymptotically) sharp,
and states that for a given number of MNM chains, Example [[.TTlcannot be beaten (with some restriction
on the sizes of the sets). Barring the requirement that the topmost n’ levels be empty, Lemma [[T4 is a
generalization of Lemmal[lL8 The proof of Lemmall[7lin [17] actually works with the restriction of Lemma
[L14 concerning the topmost sets (that there is no set of size bigger than n — n') with n’ = n/2 — n?/3,
immediately giving a new proof of Theorem [ Our proof of Lemma [[ T4l includes an intricate induction
step and a (non-combinatorial) lemma about functions involving a lot of elementary algebra and calculus;
but it does not require flag algebras, and it does not use details of the structure of F above the second
level (except inside the induction).

Section [3 of this paper uses Lemma [[.T4] to prove our main theorem:

Theorem 1.15. La(n, @2) < (Y25 + 0(1)) () < (220711 + 0(1)) (,]}5))-

The proof is inspired by the proof of Theorem (the same bound when restricted to 3 levels) as in
[1], using the idea of grouping chains by the smallest set contained in F on a chain (as developed in [14]
and [17]).
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2 A-free families — Proof of Lemma [1.14]

2.1 Definitions and main lemma
Definition 2.1. We define the following functions:

e For x € 0,1],¢c € [0, 0),

1—$+(ﬁ—1)0 ifxgéandc<4(x—x2)2

Flz,c) = 22 —2x+1—c+/c ifxﬁ%andél(zf:ﬂ)?gcgi
x? —2x+1.25 ifxﬁ%andigc
11—z if%g:c.

? x4a

o Forz e[0,1),ce0,00),a€0,1—x),ac [O,min(a c )]
g(x,c,a,d):a—l—(l—x—a)f(x—l—a,

e For z € [0,1),c€[0,00),a € [0,1 —x),a € [O,min(a,z—fra —x)},

c—(x+a)(z+a)
l—-z—a

h(x,c,a,d)a+(1:ca)f<:c+a, >+2&(1za)+z3:c(z+a).

Lemma 2.2. The functions above satisfy the following conditions:

1. For all c € [0,00), ifézmin(c, i), then f(0,¢) =1 — ¢+ Ve.



2. f(z,c) is concave and monotonously increasing in ¢, and monotonously decreasing in x.

3. For all x € [0,1],¢ € [0,00),a € [0,1 —x),a € [O,min(a, z—fr(lﬂ cg(x,c,a,a) < f(x,0).

4. For all z €]0,1],c € [0,00),a € [0,1 —z),a € [O,min(a, —a —z)} sh(z,c,a,a) < f(z,c).

5. Forallce[0,00):1—2 < f(x,c).

We prove Lemma [Z.2]in Appendix [Al

Rather that proving Lemma [[.T4l directly, we prove a strengthening of it — Lemma[Z3l This strengthened
version involves additional parameters, X and X, and their functions x, a and p, which we introduce in
order to make the inductive proof possible. Lemma [[.T4lis a special case of Lemma with X = X = (.
In the rest of Section 2] we prove Lemma

Lemma 2.3. Let F C 2" be a A-free family which does not contain 0, nor any set larger than n — n/
for some n' € N. Let us assume that we are given a “forbidden” set X C [n], with x = % Also, let
X c 2 be a “forbidden” antichain in which each set contains exactly one element of X (and may or
may not be a singleton). Let us assume that the sets in F are disjoint from X, and unrelated to every set
in X. Let « = 1(X), and let un! be the number of chains which start with an element of X as a singleton,
but do not contain any set in X. Assume, furthermore, that there are cn! MNM chains w.r.t. F. Then

UF)< flzetp+ L) —(a—p—2z)+ .
First we verify the base case of the induction.

Proposition 2.4. Lemma[Z3 holds for n < n'.

Proof. F = (). X is an antichain, so, by the YMBL inequality, o < 1. By Lemma [2.2] Point [2 and Point
B f(ectpty)—(@—p—2)+5> fle,etp)—(@a—p—2)>1-x—(a—2)>0=IF). O

From now on we assume n’ < n — 1.

Notation. Let A C [n]\ X be the set of elements of [n] that appear as singletons in F, and let a = T‘
Let B be the family of those sets in F which contain at least one element of A, but which are not
singletons. Let 8 be the Lubell function of B. Let C be the family of those sets in F which only contain
elements of [n] \ X \ A.

Let A = {ec A:(3BeB:ecB)}, andlet a = @. Let con! be the number of chains that start with
{e} as a singleton for some e € A, but do not contain any set from B. Let vn! be the number of chains
that start with {e} as a singleton for some e € A, continue with an element of [n] \ X \ A as the second

element added to form the chain, yet do not contain any set from B.

Let 1 = g >1land 1= % < 1. These correction factors will account for the difference from
the asymptotic behavior. (They are both typically close to 1. If 2 +a = 0, let 1 = 1; it is irrelevant as it

will always be multiplied by = + a.)

Outline of the proof: In Subsection [Z2] we make some observations on the structure of X and B. In
Subsection 2.4, we will finish the proof by applying induction to the Boolean lattices [{Oi}, [nH where
0; € [n]\ X \ A. When applying Lemma [2Z3] by induction, we will use X U A in the place of X, while
sets from X and B will contribute to the family we use in the place of X' (which we will denote by X}).
We know little about the parameters of each X/, but we will be able to bound their sums. The relevant
calculations are done in Subsection [Z3]

2.2 On the structure of X and B

Proposition 2.5. Every D € X is of the form {d,o01,...,05} withd € X,01,...,01 € [n]\ X \ A (where
k may be 0).

Proof. D contains exactly one element of X by definition. Let e € A; then e ¢ D for otherwise D and
{e} € F would be related. O



Summary of notation

X “Forbidden” set (sets in F are disjoint from it — parameter of Lemma[2Z3) | = = |X| /n
X “Forbidden” antichain (sets in F are unrelated to sets in it — parameter | a =I(X)
of Lemma [23))
p #{chains containing {d} for d € X but no set from X'} /n!
¢ #{MNM chains}/n! (parameter of Lemma [[[T4] / Lemma 23]
A {ee[n]:{e} e F} a=|A]|/n
B {BeF:(B|>2,AnB#0)} {{e} :ec AyUuBUC=F B=1(B)
C {CeF:CCn]\X\A}
A {ecA:(3BeB:ecB)} d:’fl’/n
v #{chains containing {e} and {e, o} for e € Aoc€
[n] \ X \ A but no set from B} /n!
co  #{chains containing {e} for e € A but no set from B}/n!

Proposition 2.6. Sets in B only contain one element of A. B is an antichain, and the sets in B are
also unrelated to every set in C.

Proof. If e; € B € B with e; € A, and B was related to another set S € F, then {e;}, B and S would
form a A. This applies to any S € BUC, as well as S = {es} for any e; # e2 € A. O

Proposition 2.7. a(z +a)l < a(z +a)l +v =co < ¢, and thus a < EETE

Proof. Any chain on which the singleton is {e} and the second set is {e,d} with e € A and d € X U A is
always an MNM chain: {e,d} and any set that contains it is forbidden from being in B either because it
is not disjoint from X (when d € X), or because it would contain two elements of A (when d € A). The
number of such chains is an - (an + an — 1) - (n — 2)! = a(z + a)n!l. And out of the chains which start
with {e}, and whose second set is {e, 0} with some o € [n]\ X \ A, vn! do not contain any set from 5.

We have ¢y < ¢ because a chain whose first set is {e} for some e € A, but does not contain any set from
B, is an MNM chain. O

For a family of sets A C 2[") let m(A)n! be the number of chains which start with an element of X as
a singleton and do not contain any set from A. (For example, m(X) = p, and therefore [(X) — m(X) =
a — p.) For a fixed d € X, let mg(A)n! be the number of chains on which the singleton is {d}, and do
not contain any element of A.

Proposition 2.8. For anyd € X, let Xy ={D € X : d € D}. We can assume without loss of generality
that for any di,d2 € X, {D\{d1}: D € X4,} ={D\ {d2} : D € Xy,}. That is, if X does not satisfy this
condition, we show a family X which does, and also satisfies the conditions of Lemma [2.3’s statement
(each set contains exactly one element of X, the sets are unrelated to each other and to every set in JF),

and for which f(z,chm(A?)Jr#) — (Z(A?)—m(.i’) —z) < fzetp+ ) — (00— p—2).
Proof. Let dy € X be such that
1
(e X man () + 2 ) = (X1 ~ |X () ~ )
. 1
=i £ (X ma) + = ) = (X118  X] ma(X) ~ 2
dex n
Let X = {D\ {do} U{d}:d € X,D € Xy, }.
X = |jex Xa, 50 @ = > o5 1(Ay). Tt immediately follows from the definition of Ay that if a chain

has {d} as a singleton, and does not contain any set from Xg, then it does not contain any set from
X. So p = ) ex ma(Xg). Similarly, I(X) = [X[I(Xg,) and m(X) = [X|mga,(Xy,). Since f(z,c) is



monotonously increasing and concave in ¢, using Jensen’s inequality

e+ XD ma () + ) = (X108 = Xy () ~ )

<m[2f(xc+|X|md(Xd ) (X1 1x) = 1X] Y ma(Xa) — | X|2)

deXx deX deX

Sf(x,c+u+%) —(a—p—ux).

Sets in X contain exactly one element of X, and form an antichain. They are also unrelated to every set
S € F: S cannot contain any element of X, so it could only be related to a set in A by being its subset.
But S must also be unrelated to every D € Xy, C X, so it cannot be a subset of D\ {do} U{d} either. O

In fact we will only use the following simple corollary of Proposition 2.8 In many parts of the rest of
this section we will treat the two cases of the corollary below separately.

Corollary 2.9. With the assumption of Proposition [2.8,

o cither X = {{d} : d € X} (we refer to it as the singletons case),

e or X does not contain any singleton (referred to as the no singleton case).

Proof. Let d; € X. (If X = 0, both statements trivially hold.) If {d;} € Xy, = {D € X : dy € D}, then
Xa, = {{d1}}, because sets in Xy, are unrelated. So either Xy, = {{di}} or X4, does not contain any
singleton, yielding the two cases above by Proposition O

Remark. The fact that sets in X contain an element of X implies that sets in F do not contain sets in
X. Now, let us consider what restrictions are imposed on F by the fact that sets in F are not contained
in the sets in X, beyond the other conditions of Lemma 23] (namely that all the sets in F are disjoint
from X).

In the singletons case, clearly there are no such additional restrictions. However, in the no singleton case,
there are two additional restrictions that are not already implied by the set X:

e The union of singletons in F, A C [n]\ |JX.

e Sets in C must not be contained in sets in X. Clearly this imposes a restriction only if X contains
sets bigger than 2.

Example 2.10. Let C C [n]\ X, and let X = {{d,0} : d € X,0 € C}. Then oo = I(X) = W =
23@'0‘ I, and p = =& (m"”m D-0=2! _ (2 + a)1. The only restriction on F that this X creates is that
the union of singletons A C [n]\ X\ C.

In other words, let us assume that a = [(X) = 2271 for v € R (without assuming that X is of the above

form). Then it is possible that a = ‘%‘ can be as big as 1 — x — v with X not creating any restrictions
on C (depending on the actual structure of X, namely, if it is made up of sets of size 2 as above; then
a=2zx(l—z—a)l and p = z(z+a)l). But ifa > 1 —z —, then o = 221 implies that X contains sets
bigger than 2, and thus it creates restrictions on C. So, in the no singleton case, one way to understand
the calculations that follow is to check them for X = {{d, o}:deX,0eC }; then check what happens
if z, c and a are fixed, but X’ is changed.

2.3 Chain calculations

Now we estimate the numbers of certain types of chains, in preparation for applying induction.

Proposition 2.11. In the no singleton case, (o — x + p) n! chains start with {o} for some o € [n]\ X\ A4,
and contain a set from X.

Proof. A total of an! chains contain a set D € X. By Proposition 2.5 the singleton on such a chain is
either from X or [n]\ X \ A. The number of chains which start with an element of X as their singleton
and do not contain a set from X is un!, so the number of chains which contain a set from X', and which
start with an element of X, is (z — p)n!. On the rest, the singleton is from [n] \ X \ A. O



Proposition 2.12. (8 —a(1 — z — a)1 + v) n! chains start with {0} for some o € [n]\ X\ A, and contain
a set from B.

Proof. A total of n! chains contain a set from B. A set in B is of the form {e,o1,...,05} with e €
Ajo1,...,0r € [n]\ X\ Ak > 1. A chain that contains a B € B, and does not start with {0} for some
o € [n]\ X \ A, must start with an element of A, and continue with an element of [n] \ X \ A as the

second element added to form the chain. There are an - (1 —z —a)n - (n —2)! = a(l — z — a)1n! such
chains, out of which vn! do not contain any set from B. So (@(1 —z —a)I — v) n! chains contain a set
from B and start with an element of A. The rest start with {o} for some o € [n] \ X \ A. O

Proposition 2.13. In the no singleton case, p > x(x + a)l; and the number of chains of the form
0,{d},{d,0},... withd € X,0 € [n]\ X \ A, which do not contain any set from X, is (u — x(z + a)L)n!.

Proof. A total of un! chains start with an element of X and do not contain any set from X. The chains
of the form 0, {dy}, {d1,d2}, ... with di € X,ds € X U A never contain a set from X when X contains no
singleton. The number of these chains is an - (zn +an — 1) - (n — 2)! = (x(z + a)1)n!. For the rest, the
second element added to form the chain is from [n] \ X \ A. O

Notation. Let X’ = XUA. Let Y = {{d,0} : d € X,0 € [n]\ X\ A}, and let Z = {{e,0} : e € A\A o€
[n]\ X \ A}}. In the singletons case, let X’ =Y UB L Z. (Note that here and in the rest of the paper,
Ll stands for a union of sets which are pairwise disjoint.) In the no singleton case, let X' = X UBU Z.

Proposition 2.14. The three families which make up X' are indeed disjoint in each case, and their
union forms an antichain.

Proof. B is an antichain by Proposition 2.6t X is an antichain by definition; and ) and Z are an-
tichains because both consist of size 2 sets only. Let D = {c{, 01,...,0k}~€ X, Y = {d,o} € Y,
B ={e1,p1,...,m} € Band Z = {es,q} € Zwithd € X, e; € A, ea € A\ A, 0;,0,p;,q € [n]\ X \ A4,
and [ > 1. B is unrelated to D by definition, and to Y because d ¢ B and |B| > 2. Z is unrelated to D
and Y because d ¢ Z and e3 ¢ D,Y; Z is unrelated to B because e; ¢ Z and ey ¢ B. O

Proposition 2.15. Sets in C are disjoint from X', and they are unrelated to every set in X' (in both
cases).

Proof. For every C' € C, C C [n]\ X’ and it is unrelated to every set in X’ by definition. C' is unrelated
to every set in B by Proposition It also cannot be a superset of a Y € Y or a Z € Z, since those
contain an element of X or A; neither a proper subset of Y or Z because |Y| = |Z| =2 < |C|. O

Proposition 2.16. The number of chains that start with an element of [n] \ X' and contain a set from
X' is
e at least [z(1—z—a)T+ (B—a(l—z—a)l+v)+ (1 -z —a)(a—a)I]n! in the singletons case,
and

e at least [(a —x+p)+ (B—a(l—z—a)l+v)+ (1 —x —a) (a —a) 1] n! in the no singleton case.

Proof. The number of chains on which the singleton is {0} with o € [n]\ X’ = [n]\ X \ 4, and the second
set is {0,d} € Y withd € X, isazn-(1—x—a)n-(n—2)! = 2(1 —z—a)1n!. The number of chains on which
the singleton is {o}, and the second set is {o,e} € Z withe € A\ A, is (1—z—a)n-(a—a)n- (n—2)! =
(1 —z —a) (a — a) In!. The rest follows from Proposition ZZI1 and Proposition O

Proposition 2.17. The number of chains on which the singleton is {o} with o € [n]\ X', the second set
is {o,d} with d € X' = X U A, and which do not contain any set from X', is

e vn! in the singletons case, and

e (u—z(x+a)l+v)n! in the no singleton case.



Proof. Let A = 0, A1, Ay, ..., A,_1,[n] be a chain with § C A1 C Ay C ... C A,—1 C [n]. Let p(A)
be the chain (), Ay \ A1, As, As, ..., An_1,[n]. (In other words, in the order in which elements of [n] are
added to form the chain, the first two are swapped.) ¢ is a bijection.

It is easy to check that X’ does not contain singletons. ¢ is a bijection between chains of the form
0,{o},{0,d},... containing no set from X', and chains of the form 0, {d},{o,d},... containing no set
from X', with o € [n] \ X’ and d € X U A. Below we classify the chains (), {d}, {o,d}, ... based on what
set d belongs to and count them separately.

e For d € X, {0,d} € Y in the singletons case. In the no singleton case, (,u —z(x + a)l)n! chains of
the form 0, {d}, {0,d}, ... contain no set from X by Proposition 213} these chains also contain no
set from B or Z, since sets from those do not contain any element of X.

e For d € A, the number of chains of this form which contain no set from B is vn!; these chains also
contain no set from X',) or Z, since sets from those contain no element of A.

e Forde A\ A, {o,d} € Z.

Summing these cases, we get the statement of the proposition. ([l

2.4 Inductive step

Notation. Using standard notation for intervals, let [A4, [n]] denote the Boolean lattice {S C [n] : A C S}.
Let [n]\X" = [n]\X\A = {01,02,...,0(1—2—a)n }; and for a family of sets A, let A—o0; = {S'\ {0;} : S € A}.
Let C/ = (CN [{os}, [n]]) — 0i, and X] = (X' N [{0i}, [n]]) — 0i. Let af =1(n —1,X/). (Here the Lubell
function on the Boolean lattice 2["\2:} of order n — 1 is used.)

C! C 2o} i a A-free family which does not contain () (since o; ¢ A, so {0;} ¢ F), nor any set larger
than n — 1 —n’. Sets in C] are disjoint from X', and are unrelated to sets in X] by Proposition 215
Moreover, every set in X/ contains exactly one element of X’. Therefore, the conditions of Lemma [23]

are satisfied for the family C/ C 2["\Me:} where the corresponding “forbidden” set is X’ C [n] \ {o;}, with
% = (z + a)1 and the corresponding “forbidden” antichain is X .

Since X/ is an antichain, a;(n — 1)! is the number of chains in 2["\{°i} that contain a set from X]. Chains
of 2["\Mei} correspond to chains of 2" that start with {0;}. So by Proposition 216, in the singletons

case
(1—z—a)n

Z o> [t(l-z—a)l+ (-—a(l—z—a)l+v)+(1—z—a)(a—a)l]n,
i=1
and in the no singleton case
(1—z—a)n
Z o> (a—z+p)+(B-all-z—a)l+v)+(1—z—a)(a—a)l]n

i=1

Let zif(n — 1)! be the number of chains in the Boolean lattice 2["\{°:} which start with an element of X’
as a singleton, but do not contain any set from X;. By Proposition [ZI7, in the singletons case

(1—z—a)n

E [
My = VT,
i=1

and in the no singleton case
(1—z—a)n

Z pi = (p—z(z +a)l +v)n.

Let ¢/(n—1)! be the number of MNM chains w.r.t. C/ in 2["/\{°:} The corresponding 2"-chains, starting
with {0;}, are MNM chains w.r.t. 7. The total number of MNM chains w.r.t. F is en!, out of which cyn!
start with an element of A as a singleton. By Proposition [2.7]

(1—z—a)n

Z ¢ =(c—co)n=(c—a(r+a)l—v)n.

i=1



The following two examples are typical cases where, in the induction step for the C.’s, we will get the
singletons case and the no singleton case respectively.

Example 2.18. Let X = X = () and B = {{e,0} : e € A,0 € [n]\ A}. Then A = A, B = 2a(1 — a)1,

and v =0. X' = A, and X] = {{e} : e € A}. Sl = a1 —a)In, o) = ol = L{J and p = 0.
S — (c — a?) n and the average of the ¢}’s is $=%

Example 2.19. Let X =X =0 and BC B := {{e,01,02} e € A 01,05 € [n] \ A}. Then X’ = A, and
X! C {{e;o}:e€ Aoen]\ A\ {o;}}. Chains on 27l of the form 0, {e1}, {e1,0}, {e1,0, €3}, ... do not
intersect B. So 27" ul = v > a2(1 — a)TQ%n (greater if B G B), and the average of the y!’s

_ ¥
n

Ta(n=1)—1 _ ;2 @/(n—1)— — . In the case of B = B, the size of the sets in C is at

. 2_
is > a“l I R (e 1)
least 3, and the size of those in C] is at least 2.

where 2’

Proposition 2.20.

(1—z—a)n (1—z—a)n
1
z(C):E I(n—1,C}) and l(]f):a+ﬁ+z(cz):a+5+E Z I(n—1,C).

i=1 i=1
(Still understanding the one parameter version [(F) as l(n,F) for a family F C 2I".)

Proof. Every chain in the Boolean lattice 2[" that intersects C has an {o0;} as a singleton, and thus
corresponds to a chain in the Boolean lattice [{0;}, [n]] — 0; that intersects C..

(1—z—a)n (1—z—a)n
1 1 L1 ,
1ey=— > MNCl=— Z | Z MNCi| =~ Z I(n—1,Cl).
H is a chain in 2[7] i=1 H is a chain in [{o;},[n]]—o; =1
Let A= {{e} : e € A}. Then F = AUBUC. So I(F) = I(A) + I(B) +1(C) with [(A) = =l = a and
1(B) = 8. 0

We now prove Lemma 23] (and thus Lemma [[LT4) using induction on n. According to Proposition 2.4
Lemma holds for n < n/. By induction and Lemma Point [2,

_ 1 _ 3
l(n—l,CZ{)gf((x—i-a)l,cg—i-,u'i—i—;) —(a’i—ug—(x—i—a)l)-i-ﬁ
/ I 1 ! ! ED 3
<7f THac it g *(ai*lﬁi*(zﬁLG)l)Jrﬁ-

So, by Proposition 220 we have

(1-z—a)n (1—z—a)n
1 , 1 ) 1
iey=- ;:1 l(n—1,¢)) < — § f(x+a +ui+ﬁ)
(I—z—a)n (1—z—a)n (17170,)71

e X e X @ral po oo

=1 =1

We handle the case of 1 — 2z —a = 0 separately. If 1 —x —a = 0, A = [n] \ X and, since any non-
singleton {ej,es,...} € F would form a A with the singletons {e1},{e2} € F, we have F = A and
I(F) =a=1— 2. This is only possible in the singletons case, since a non-singleton in X would have to
contain elements of [n] \ X \ A. In the singletons case « = x and g =0, so I(F) =1 -z < f(z,¢) <
f(x,c+u+ #) —(a—p—x)+ % by Lemma 2.2 Point Bl From now on, we assume that 1 —z —a > 0.

Since f is concave in ¢, by Jensen’s inequality, and since f is monotonously decreasing in x,

Z(l 11 a)n ¢ A Z(l T— a)n / 1
C)<(1—x— . -
)<1l-= a)f<z+a, (1—x—a)n +TL/
(1—z—a)n (1—z—a)n
1 , 1 , - 31—z—a)
— | = f— — (1 —x — 1 i
D I S LA

10



Correction term calculations that we will use later (assuming n’ <n —1):

(1_1)($+d)(x+a)+1_x_a: ($+d)(1—x—a)+1—gg_a

n’ n—1 n’/ (1)
S(laner)(/l—:Efa)S1—(:E/Jra) Si
(171)&(x+a)+17xl “_(1f1)(x+a)(x+a)+1*§,*“g%. (2)
2&(17x7a)(171)+2(171)z7(2(T71)+(171))z(x+a)+3(1_n3/6_a)
2a + 3z 3(17x7a)<i 3)
-~ n-1 n’ '
21—z —a)T—1)+ 1 *n:f*a) < n2f1 30 7757“) < % (4)
In the singletons case:
l(f)§a+ﬂ+(1xa)f<x+a,(ca(fti)%ay)ijJr%)
7([SC(l*SC*G,)T%’(ﬂ*&(l*iE*d)TJrl/)+(17£C7a)(a7(~1)T]
—V—(l—z—a)(era)T)jLw
a+(1za)f<z+a,clé(f67t(c?l+;>+2a(lza) M

:a—l—(l—x—a)f(x—l—a,c&(era)Jr(llzl)&((;cha 19011) +2a(1 —x —a)
3(1l—z—a)

!’

+2a(l—z—a)(1—-1)+ -

By Lemma Point 2 and Point B} and (@) and @) in the Correction term calculations (note that in
this case @ = z and p = 0),

1 3 1 3 1 3

n n LY

(Note that & < iy, s0 0 < SGAHOl < SHar 80t o) q 5 < %)

In the no singleton case:

l(f)§a+ﬂ+(1za)f<$+a, (C&(““)l””“z(““)“”+i>
l—z—a n'
—([(a—x—i—u)—l—(ﬁ—d(l—x—a)i—i—u)+(1—x—a)(a—d)ﬂ
—[,u—x(ac—i—a)l—l—u]—(1—x—a)(ac+a)T)—i—w
a+(1xa)f<x+a,C+'u_1(i;i)ff+a)l+%) —(a—z(z+a)l —x)
+2&(1fzfaﬁ+(2ifl)zf(2-T+l)x(z+a)+w
_ ~ _ ~ l-x—a

e rmap{oen A 00 e )
+2a(1l—xz—a)+2—3x(x+a) — (a—2z(z+a)l —x)
+2d(1—x—a)(T—1)+2(T—1)x—(2(T—1)+(l—1))x(m+a)+w.

11



By Lemma[Z2 Point 2land Point [ Proposition 213 and () and (8] in the Correction term calculations,

1 3 1 3
l(}')gh(ac,c—i—,u—i——/,a,d) —(a—u—x)—i——/gf(x,c—i—,u—i——/)—(a—u—x)—i——/.
n n n n

s00< &= a(z—i—a)l ctpt L —(z4a)(z+a) cand @ < ctpt )

(Note that a < =57, Tmr—a = j— = Tata

3 Diamond-free families — Proof of Theorem

Let F be a diamond-free family on 20",

We cite Lemma 1 from [1]:

Lemma 3.1 (Axenovich, Manske, Martin [I).

n 1/3 1/3 n
< 2n7(2(n ) — 27(2(71 ) )
2 <’<?> B [n/2]

ke{0,1,...,n}
lk—n/2|>n>/?

By this lemma, the number of sets in F in the top and bottom n’ := n/2 — n3 levels is 0(1)(Ln72J)’ =)
since we are bounding the cardinality of F, we may assume that those levels do not contain any set from

F.

Notation. For ¢ € [0,1], let ¢ = min(c, i), and let f(c) = 1 — &+ /& (This is equal to f(0,¢) as defined
in Definition 1) For A € F, recall that [A, [n]] denotes the Boolean lattice {S C [n]: A C S}. A chain
of this lattice is of the form A C Aj441 C Ajaj42 C ... C Ap—1 C [n]. (When saying just “chain”, we
continue to mean a maximal chain in the Boolean lattice 2[").) Let

1 C is a chain in [A, [n]] :
o(4) = i { C is MNM w.r.t. FN[A, [n]]} '

Further, we can assume without loss of generality that

1 Cis a chain: CNF =0 or 1 Cis a chain: CNF =0 or

C:=—=+# . . . . > . :
n! min(C N F) is not minimal in F n! C is MNM w.r.t. F

(If this does not hold, we can replace F with {[n] \ A: A € F}: this family is diamond-free, has the same
C is a chain:
C is MNM w.r.t. F

I(F) =~ > #CnF) = ,Z > #EnF),

C is a chain AeF C is a chain
A=min(CNF)

since each chain C will be counted when A = min(C N F) — except if CNF = @, but then #(C N F) = 0.
Continuing,

1
cardinality, and the opposite inequality holds.) Clearly C' > #

> #(CnF)

I(F) = 1 Z C is a chain containing A : AC;;;(%I%?)
nt AeF A =min(C N F) C is a chain containing A : |
3 a chain C: A=min(CNF) A— mln(c A ]__)

Each chain on [4,[n]] can be extended to a full 2("l-chain in |A|! ways. Furthermore, the Boolean
lattice [A, [n]] can be made equivalent to the Boolean lattice 2"\ by subtracting A from each set; for
A C[A,[n]], we denote A— A={S\A:SeA}. T A=min(CNF), #CNF)=#(CNI[A, [n]]NnF). If

12



A is minimal in F (that is, on every chain),

> #CnF)
o Bl > #(CNF N A, [n]])
A=min(CNF) _ C is a chain in [A,[n]]
C is a chain containing A : |A|! (n — [A])!
A =min(CNF)
> #CN(FNIA, [n]) - A))
C is a chain in 2[n]\A
= =l(n—|A],(FN[A,[n]]) — A).
—Tm (n— AL (F N [A, o]}~ 4)
(FN[A,[n]]) — A is diamond-free, so ((FN[A, [n]]) — A)\ 0 is A-free; and the top n’ levels are assumed to
be empty. Using Lemma [[.T4] as well as that % = ﬁ = 0(1) and the subadditivity of the square root
function,
l(n—1A], (FNn[A[n]]) = A)\0) <1—min C(A)+i ! + 4/ min c(A)Jrl E Jri
’ ’ - n'’ 4 n'’ 4 n’
1 3
< fle(A)) + o= f(e(A)) +o(1),

sol(n—|Al,(FN[A n]]) —A) <1+ f(c(A)) + o(1). Whereas if A is not minimal in F, i.e. 35 € F
such that A 2 S, then for any chain C for which min(C N F) = A, we have #(C N F) < 2 (otherwise S
2 Cis a chain #(CNF)

and three sets in C N F would form a diamond), so CA;T:}](:i:f})Hough +7 <2
#{ A=min(CNF) }
U(F) < o Z #{C is a chain containing A} (1 4+ f(c(A4)) + o(1))

AeF
A is minimal in F

C is a chain containing A :

1
T 2 #{ A= min(CNF) }'2

AEF
A is not minimal in F

<2+ l' g # {C is a chain containing A} (f (c(4)) —1+0(1)).
n!
AeF
A is minimal in F

. . . . : . is a chai ining A .
Since f is concave, we can use Jensen’s inequality with the weights €152 C(fflcc)(;n,talmng b (where A is

minimal in F). Notice that the sum of all the weights is 1 because the sum of numerators is the total
number of chains C where min(C N F) is minimal in F, that is, (1 — C)nl.

Z #{C is a chain containing A} ¢(A)
AeF

l(]:) < 2+ (1 o C) f A is minimal in F (1 — C)n| 14 0(1)

¢(A) is the fraction of the chains containing A which are MNM, so # {C is a chain containing A} ¢(A) is
the number of MNM chains through A. In the numerator, each MNM chain in the whole Boolean lattice
is counted once, except if the minimal element on it is not a global minimal, then it is not counted. So
the numerator is less than or equal to the total number of MNM chains in the Boolean lattice, which is
at most Cn!. Substituting, we get

n!lC C
<2 1-— — ] -1 1] =1 1-— — 1).
1) <24 0-0) (175 ) - 1ow) =1+ 04 - 0f (155 ) +o)
C varies between 0 and 1. 1< is increasing in C. Above ;%= = 1 (corresponding to C' = 1), f(1%5) is

constant 2, s0 1+ C+ (1 -C)f (&) =92 % is decreasing in C. So it is enough to take the maximum

13



in the interval [O, %]

Gy (oo o 75)) o
Ln/2] s

_ ‘/5; 3 1 o(1) < 220711 + o(1).
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Appendix A Proof of Lemma 2.2

Points [Tl and [f] are easy to see.

Proof of Point [2L It is also easy to check that f is continuous at the points z = %, c=4 (m — x2)2,
i, and that the function is monotonously decreasing in x and increasing in ¢ in each range.

f(x,0) =1—a; 22 —2x + 1 — ¢+ /c is a concave and monotonously increasing expression in c. When

0<:E§%,c»—>17z+(mfl)cisthetangentialline0fthegraph0fc»—>x272z+1fc+\/5

CcC =

at the point ¢ =4 (z — xQ)Q, since both their values, and their derivatives at this point coincide. So f is
concave in c. |

Since the graph of a concave function is below the tangent line at any point, we also have that for
z€[0,3],ce0,1],

flz,e) >2® =22+ 1—c+e=: f(z,c). (5)
We will use this inequality in the proof of Point [Bland @l

Proof of Point Bl If  + a =0, g(x,¢,a,a) = f(x,c). From now on, we assume that x + a > 0.

We first show that g is monotonously increasing in a.

5 Ty ! ifxﬁ%andc<4(zfz2)2 L | i<l
11 ifr<i
(5e/)@a=[{ -1+ esiamda(-st) <ot S{S“‘”’ f1<, ©
0 if%gcorégx 2=

So,

%g(m,c,a,d) =2(l-z-a)+(l-z—a)- (%f) (WF‘"W) E (M)

— 1 if <
>2(1 -z —a)— (z+a) | Heta=—(@+a)?) ) ?Jr ‘=
0 if 5<r+a

-1 ifr+a<i 1of <1
ZQ(l-x—a)_(x+a)<{S‘é(m+a) =2 >2(1—z—a)— 5 Utrxt+a<; > 0.

if%§z+a

o=
N———

15



Therefore, from now on we assume a = min(a ) since if g(x,c,a,a) < f(z,¢) holds for a =

_c
? x+a

min (a, m_‘f_a) then it also holds for any a € [0, min (a, zia)} .

Case 1. First assume a < —%= (so @ = a), which is equivalent to a(z +a) < ¢ or @ < =FRGEEAe e R

c—a(z+a)
l-z—a °

2 =xz+aand d =

2
Case 1.1. When 2/ < = and 4(90’ — x’2) < ¢, we bound g from above:

1
2

—a(z+a)

g(ac,c,a,a):a—i—(l—x—a)f(m—i—a,cl )+2a(1—x—a)
—xr—a

§a+(1—x—a)f(m+a,%) +2a(1 —x —a) =: g(z,c,a,a).
—z—a

2
We now consider subcases based on the values of ¢ and —%— compared to %. Note that 4(3@' — 2 2) <

l—-z—a
< L.
— l—x—a

Case 1.1.1. When ¢ < —— < i, using (@),

—1;a-i-\/l\/;%)+2a(1—x—a)—(m2—2x+1—c+\/5) (7)

:—.’L‘(l—.’L‘—Qa)—f—(l—$—a)(x+a)2+(\/1_—1_,_1)\/5-

Thus,

&(g(x,c,a,a) - f(x,c)) = % <0.

. 2
So it is enough to check that g(x,c,a,a) — f(z,¢) < 0 when ¢/ = 4(3@’ - $’2) or, equivalently, when

2
c=4(z - z’2) (1 — 2')+a(r+a); then it is also < 0 for bigger c¢. First some auxiliary calculations:

12 /
VIiew —1< 1—x’+%—1:—%§0. 8)
2 2 1\* 1
4(x/f:c/2) §4:c/2 and 4(z'—z'2) <4 <Z) ot S0
4(z" —2'7) < min 495’2,l <a 9)
< 1) =

So,
4(2" — x’2)2 (1—2')+a(z+a)>4(z - z/2)2 (1—a')+4(« - z/2)2a

= (2(' - z’Q))2(1 —a) = (2 - z’Q))2(1 — )2
Putting c = 4(z' — 2'%)* (1 — ') + a(x + a) in (7) and then using (8) and (IT),
gz, c,a,a) — f(x,¢) = —2x(1—x —2a) + (1 — z — a)(z + a)?
+(Vi—a-1) VA — 22’ (1 - o) + oz + a)

< —x(l—x—2a)+(1—x—a)($+a)2—x’(m’—x'2)(1—x)

=-—z[l-2—-2a)—(1-z—0a)(z+0a)’] < -2z (1—:5—2@)—(1—30—a)1

4
. 3—3x—"Ta
= — )
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331

which is < 0 when a < W = 3% Assume a > . Since ¢’ > a, ¥’ > % (and we have also

assumed 3 > z’); and

(3 —32")a’

c=4(m’—x’2)2(1—x)+ax+a 4(x" — 2 ) (1—2")+ 1

1
contrary to our assumption that ¢ < ;—— < 7.

2
Case 1.1.2. When ¢ < 1 < —5— (and recall 4(2/ — x’2) (1—2')+a(x +a) <c¢), using (@),

g(z,c,a,a) — f(z,¢) < glz,c,a,a) — f(z,¢) =a+ (1 —z—a) ((z+a)®> = 2(z + a) + 1.25)
+2a(l—2—a)— (2> —22+1—c++c) (11)
=-z(l—2-2a)+(1—z—a)((z+a)®+025) +c— e

Case 1.1.2.1. If 4(2 — x’2)2 (1—2')+a(z+a) <i(1—-2—a) (whichis < ¢),
since t — v/t is decreasing in 0 < t < i, replacing ¢ by i(l —x —a) in ([, we get

g(z,c,a,a) — f(z,¢) < —2(1 —x —2a)+ (1 —x —a) ((x+a)2+0.25)+i(lf:c—a)

- i(l—x—a)zg(x,i(l—x—a),a,a) —f(x,i(l—x—a)) <0,

as it falls in Case [L.TT] above.

2
Case 1.1.2.2. If 2(1 -z —a) < 4(2/ — x’Q) (1—2')+a(z+a) (which is < ¢),
again, by (1) we have,

g(z,c,a,a) — f(z,¢) < —z(1 —z — 2a) + (1 — 2 — a) ((z + a)® + 0.25)

2,2 212 (12)
+4(z’ —a'%) (1—$')+a(ac+a)—\/4(x’—x’ ) (1—a')+a(z +a).
Let b = max(4 («/ — x'2)2 (1—a)4a% - 1 0). Now some auxiliary calculations follow. Since
d 1
GVt = 57> and by (@3,
\/4(1" — z’2)2 1—a)+a?—b— \/4(:E’ — z’2)2 (I1—a)+alx+a)
1 1 (13)

(z(x+a)—b) < (z(z +a) —b).

< 2
h 2\/4(96’—x’2)2(1—x’)+a(ac+a) 4(:6/756/ )(lfz)

(lfa)~4(:c’f:c’2) (1fx)24(:c’fx’2) (1—2")=4(1—2")%" > 4- (%)Qz/era.

So,
1
—z(l—x—2a —1|(z(x+a)—0
g—x(l—x—Qa)—l—(i;i—l)x(x—i—a):O.

By (@), 4(3@’ — x’2)2 <z, so

4z’ — x’2)2 (1—2a)+2"” > 4(x" — x'2)2 (1—2')+4(a’ - x’2)2$' = (2(90’ - x’2))2. (15)

4(2" — x’2) (1—-2")+ 2 —b> (2(:0’ - x’2))2, (16)

17



: : / 12\2 / 12 1 1 1 72 2 / 12 2.
since if b>0,4(2/ —2'") (1—a/)+2"" —-b=7 > (2(17(5750) )) = (Q(z —x )) (iftb =
0, then it holds by (IH)). Now using (I3) in (), and then using (I4) and (I6) and that ¢ — v/# is
decreasing in 0 <t < 1/4, we get

9(z,c,a,a) — f(z,¢) < (1—z—a) ((z+a)* +0.25) + 4(2' — z'2)2 (1-2')+ %= b

1

\/4(x’x’2)2(1z’)+z’2b:c(1z2a)+<
2 / /2 2 / 12
<(1-z-a)((z+a) +0.25)—|—(2($ —x )) —2(2" —2'%)
1 1\°
4<z/1) (z/i) (' = 1),
which is < 0 when % <z’ <1. When 2’ < i, we show that this subcase cannot hold:

4(m’—x’2)2(1—x’)+a($+a)—i(l—x—a)< 4(i_(1)> —i (1—2a")+2

Case 1.1.3. When 1 < ¢ (which is < —%—),

l—z—a

g(z,c,a,a) — f(z,¢) < §(z,c,a,a) — f(z,c)=a+ (1 —z—a) ((z+a)® — 2(x + a) + 1.25)

1 ~ 1
+2a(l —z —a) — (2% — 22 + 1.25) §<x,1,a,a> —f :L',Z) <0,

as it falls in Case [[L1.T] or [[L.T.2] above.
2
Case 1.2. When 2’ < % and ¢ < 4(x’ — x’Q) ,

!/ 1 /
gx,c,a,a) =a+ (1 —z—a) (1—90 + (m—1>c> +2a(1 —z —a),

which is linear in ¢, so also in ¢. f(z,¢) is concave in ¢, so it is enough to check that g is smaller than

f in the ends of the interval ¢ € [a(a +z),4(2" — x’2)2 (1—-2")+a(x+ a)}:

g(z,a(a+2),a,a) =a+ (1 —2—a)*+2a(l —z —a)
200 (3 —v—a+ (1-%)x)

a(x +a)+ax+a
=2 —2z+1—a(z+a)+Valz+a) < f(z,a(z+a)),

<a+(1—-z—-a)*+2a(l—-2—a)+

since % —x—a>0and a(z+a) < z'? < %, and using (B). Whereas the higher end of the interval was
handled above in Case [[.T] since f is continuous.

Case 1.3. Finally, when % <,

g(x,ca,a) =a+(1—z—a)?+2a(1—z—a)=2°-22+1—d’>+a.
If z < 3, let ¢ = min(c, §). Since ¢ > a(z + a) > a?, and by (B)

gz, coa,a) =2 —2r+1—a’+a<a®—20+1-c+Ve< f(x,c).
If% <z, thena<l—2z< % —a?+ais monotonously increasing in a € [0, %], SO

g(xz,c,a,0) =2 20 +1—-a*+a<z?—22+1-(1—-2)+1-2=1-2< f(z,¢),

by Point

18



. . — 2 N ~ _ 2
Case 2. Now consider a > —<—, that is, @ > =2Eve"+ic Thep g = & < < = —ztveitde
z+a 2 T+a ot —t 22 44c 2
2

and%:o,sof(era,@):lfzfa.

a l—z—a

c

a) = l—2—a)®+2
g(z,c,a,a) = a+ ( x—a)+ Tt

(1—zfa)§a+(1—zfa)2+(f:c+ z2+4c)(1—zfa),

which is quadratic in a with a positive leading coefficient, so its maximum is at one end of the interval

—r+vritde \/212+407 1— x} q = —ttvzitde V212+40 (ie., a = e = a) was handled above in Case[[] If a = 1 — z, the
right side of the inequality equals 1 — & which is < f(z, ¢) by Point O

Proof of Point [dl If © + a =0, h(z,c¢,a,a) = f(z,c). From now on, we assume that  + a > 0.

We first show that h is monotonously increasing in a. Using (@) and a calculation similar to the one in
the proof of Point Bl we have

ih(m,c,a,d):2(1_x_a)+(1_x_a). (ﬁf)(x_i_a’c—(x—i—d)(x—i—a))

oa oc l-z—a
0 (c—(x+a)(z+a) 4%71 fr+a<ti
L >9%1—2—a)— ((z+a)—(z+a)?) 2 ] >0.
8&( l—-z—a > 2 z-a)-(@+a) 0 ifl<z+a) ™

Therefore, from now on we assume @ = min (a, e z)

C

Case 1. First assume a < — (so @ = a), which is equivalent to (z + a)? < cor a < \/c —z. Let

gt
’r_ / _ c—(xz+a)
xr —.’I]+aandc = q2—a *
2
Case 1.1. When 2’ < % and 4(x’ — x’Q) < ¢, we bound h from above:

c— (x4 a)?

h(x,c,a,a)a+(1za)f<z+a, )+2a(1xa)+z3x(z+a)

§a+(1za)f<z+a, >+2a(1xa)+x3z(x+a) =: h(z,c,a,a).

c
l—-z—a
2
We now consider subcases based on the values of ¢ and ;—— compared to i. Note that 4(z’ - z’2) <
/ c
c < .
— l—xz—a

1 .
Case 1.1.1. When ¢ < =5— < 7, using (&),

h(z,c,a,a)f(z,c)giz(x,c,a,a)f(z,c)a+(1xa)<(:c+a)22(x+a)+1

e

l—-z2—a V1-z—a
:72x2—za+(1—zfa)(:c+a)2+(\/lf:c’fl)\/g.

)+2a(1—x—a)+x—3x(m+a)—(x2—2x+1—c+\/5) (18)

0

&(ﬁ(x,c,a,a) - f(x,c)) =

So it is enough to check that ﬁ(ac, cya,a) — f(x, ¢) <0 when ¢ = 4(3@' - x’2)2 or, equivalently, when
c = 4(a’ fx’2)2 (1 —a') + 2’ then it is also < 0 for bigger ¢. As seen in (IF) and [®) in the
proof of Point [3] 4(z’ — z’2)2 (1—-2a)+ z/? > (Q(x’ — x’Q))Q, and V1 —2/ —1< f%/ < 0. Putting
c=4(z - x'2)2 (1 —a')+ 2’ in (I8) and using these inequalities, we get
h(z,c,a,a) — f(z,¢) = —22° —za+ (1 —z — a)(z + a)?
+ (m— 1) \/4(:E’ — z’2)2 (1—2a')+ a'?

<22 —za+ (1 —z—a)(z+a) fx’(z’—zﬂ) =—22% —2a <0.
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2
Case 1.1.2. When ¢ < 1 < —¢— (and recall (Q(x’ fz’Q)) < A2 fx’2)2 (1—a) +2"” < ¢,

using (@), o
h(z,c,a,a) — f(z,¢) < h(z,c,a,a) — f(z,¢) =a+ (1 —z —a) ((z + a)® — 2(z + a) + 1.25)
+2a(l—z—a)+z—3z(x+a)— (2* =22+ 1 —c+ ) (19)
=-22"—2a+ (1—z—a)((z+a)>+0.25) + c— e

2
Case 1.1.2.1. If 4(a’ — x’2) (1—a')+a%< 1(1 — 2 —a) (which is < ¢),
since ¢ — v/t is decreasing in 0 < ¢ < 1, replacing ¢ by (1 — z — a) in (IJ), we get

1

h(z,c,a,a) — f(z,c) < —22° —za+ (1 —2 —a) ((z+a)2 +0.25) + 1

(1—z—a)
[0-a—a)=i(s50-2-a.aa) - f(e50-2-0) <0
1 ¢ —a)=h{z,7 xr—a),a,aq 7 r—a)) <0,
as it falls in Case [[LI.T] above. ,
Case 1.1.2.2. If (1 —z —a) < 4(2' — x’2) (1—2) 4 2’ (which is < ¢),
again, by (I9) (and since —22% — za < 0), we get
2 / 12 2 / 72
h(z,c,a,a) = f(z,¢c) < (1— 2 —a) ((x+a)* +0.25) + (2(:1: -z )) —2(a' —2'")

4<zi) (z'%)2(z'1),

which is < 0 when i <z’ <1. When 2’ < i, we show that this subcase cannot hold:

2
Az 2\ 2 / 2 1 1 1 ’ 1 / 12
(' =27y 1-a)+= 71(1—z7a)< 4. 11 1 (1—-2")+2'7 <0,

like in (7)) in the proof of Point
Case 1.1.3. When 1 < ¢ (which is <

c
1—x—

a%
h(z,c,a,a) — f(z,¢) < h(z,¢,a,a) — flz,¢) =a+ (1 —z — a) ((z 4+ a)® = 2(z + a) + 1.25)

- 1 ~ 1
+2a(l— 2z —a)+z—3z(z+a) — (2° — 22+ 1.25) :h<$,1,a,a> —f(:z:, —) <0,

as it falls in Case[[LI.1] or [[LT.2] above.
Case 1.2. When 2’ < % and ¢’ < 4(90’ — x’2)2,

h(m,c,a,a):a—l—(l—x—a)(1—90’—1—( ! )—1)0’)+2a(1—x—a)+x—3x(w+a),

4 (x’ —a?
which is linear in ¢, so also in ¢. f(x,¢) is concave in ¢, so it is enough to check that A is smaller than
f in the ends of the interval ¢ € [(:c +a)?,4(2’ — z'2)2 (1—2")+ x’Q} :
h(z,(z +a)’ a,a) =a+ (1 —2z—a)®+2a(l —2 —a) + 2 — 3z(x + a)
<a+(1—2—-a)*+2a(1l —2—a)+x—3z(x+a)+x(2z +a)
=2 —20+1—(z+a)’+ (x+a) < f(z,(x+0a)?)

since (z 4 a)? = 2/% < 1, and using (B). Whereas the higher end of the interval was handled above in
Case [Tl since f is continuous.

Case 1.3. Finally, when £ </, ¢ > (z +a)? > 1, so

h(z,c,a,a) =a+ (1 —x—a)?+2a(l —x—a)+z—3z(x+a) <z?—22+1—(z+a)+ (z+a).

20



If x < %, then
h(z,c,a,a) <a? =22+ 1— (v +a)®+ (v +a) <z — 22+ 1.25 = f(z,c).
If 1 <, then —(z + a)? + (x + a) is monotonously decreasing in a, so

h(z,c,a,a) <a? =20 +1—(z+a)+ (x4+a)<a* 20 +1—2?+zx=1—-2=f(z,c).

Case 2. Now we consider a > - — w, that is, a>+/c— . Thena—m1n(a,z—;—x)zz—ﬂ—x<
\/Efz,andW:O,sof(zwLa,W):lfzfa.

h(z,c,a,d)a+(1xa)2+2< z> (1—2—a)+x—3z(z+a)

r+a
<a+(l-z-a)+2(We—2)(1-2—a)+z—3z(x+a),

which is quadratic in a with a positive leading coefficient, so its maximum is at one end of the interval

[Ve—z,1—z]. a=+c—x (le,a= a) was handled above in Case[[] If « = 1 — z, the right
side of the inequality equals 1 — 3z Wthh is < f(x,¢) by Point Bl O
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