
ar
X

iv
:1

81
1.

10
56

7v
4 

 [
m

at
h.

C
O

] 
 1

3 
D

ec
 2

01
9

Chromatic numbers of Kneser-type graphs

Dmitriy Zakharov

Abstract

Let G(n, r, s) be a graph whose vertices are all r-element subsets of an n-element set, in which
two vertices are adjacent if they intersect in exactly s elements. In this paper we study chromatic
numbers of G(n, r, s) with r, s being fixed constants and n tending to infinity. Using a recent result

of Keevash on existence of designs we deduce an inequality χ(G(n, r, s)) 6 (1 + o(1))nr−s (r−s−1)!
(2r−2s−1)!

for r > s with r, s fixed constants. This inequality gives sharp upper bounds for r 6 2s + 1. Also
we develop an elementary approach to this problem and prove that χ(G(n, 4, 2)) ∼ n2

6 without use of
Keevash’s results.

Some bounds on the list chromatic number of G(n, r, s) are also obtained.

1 Introduction

Let G(n, r, s) be a graph whose vertices are all r-element subsets of an n-element set, in which two
vertices are adjacent if they intersect in exactly s elements. If we let s = 0 then we obtain a classical
family of graphs, namely Kneser graphs KG(n, r). On the other hand, if s = r − 1 then we obtain the
sequence of Johnson graphs J(n, r). So, G(n, r, s) may be regarded as a generalization of both Kneser and
Johnson graphs. These graphs have many applications in combinatorial geometry ([FW], [KK], [CKR]),
coding theory ([WS], [R]) and Ramsey theory ([N]). In many applications it is important to estimate the
chromatic number ofG(n, r, s). Recall that the chromatic number χ(G) of a graphG is the minimal number
k such that the vertices of G can be colored in k colors in such a way that there is no monochromatic
edge. In this paper we study upper bounds on χ(G(n, r, s)) where r > s are fixed constants and n tends
to infinity (see [BKK] for known results, also see [P], [Z]). Some recent related results can be found in
[KBC], [KKup], [Kup], [C], [SR], [ZR].

Denote by [n] = {1, . . . , n} the set of first n positive integers, by
(

X
r

)

the set of all r-element subsets of

X . It is convenient to assume that the set of vertices of G(n, r, s) coincides with
(

[n]
r

)

.
The chromatic number χ(G(n, r, s)) behaves quite differently depending on the relation between r and

s: if r > 2s+1 then χ(G(n, r, s)) = Θ(ns+1) and if r 6 2s+1 then χ(G(n, r, s)) = Θ(nr−s). The reason is
that there are two different types of independent sets1 in these graphs. The first example of an independent
set in G(n, r, s) is a star: the family of sets containing a fixed (s+1)-set. It has cardinality

(

n−s−1
r−s−1

)

which

is asymptotically nr−s−1

(r−s−1)!
= Θ(nr−s−1) if r, s are fixed. It was proved by Frankl and Füredi [FF] that if

r > 2s+ 1 and n is sufficiently large then the star is the maximal independent set in G(n, r, s). Recently
the result has been significantly extended in [KL] to the regime where s is fixed and C < r < n/C for
some absolute constant C.

In the case r 6 2s + 1 the maximal independent sets can not be classified is any reasonable way. All
known constructions come from design theory (the connection will be indicated in Section 2) and explicit
constructions are known in very special cases only. In particular, Rödl [Rö], using a probabilistic method,

showed that α(G(n, r, s)) > (1 + o(1))ns (2r−2s−1)!
r!(r−s−1)!

= Θ(ns) (see [BKK] for more details). The matching

1Recall that the set of vertices of a graph is independent if any two of its vertices are not adjacent. The independence
number α(G) is the size of the largest independent set of G. For any graph G one has χ(G) > |V |/α(G).
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upper bound is known if (r− s) is a power of a prime [FW] and it is a major open problem to obtain the
same upper bound without the assumption that (r − s) is a power of a prime.

The intermediate case r = 2s + 1 is of particular interest. For this choice of parameters both star
and design-type constructions give lower bounds of the same order of magnitude Θ(ns), so one may
wonder which construction gives a better estimate. Miraculously, both constructions result in exactly the
same bound α(G(n, 2s + 1, s)) > (1 + o(1))n

s

s!
(although, the o-term is slightly better in the design-type

construction).
It is not difficult to see that the chromatic number of G(n, r, s) has the order of magnitude Θ( nr

α(G(n,r,s))
)

which explains the aforementioned dichotomy. The problem now is to determine the constant C (depending
on r, s) such that χ(G(n, r, s)) ∼ Cnmin{s+1,r−s}.

For r > 2s+1 all known upper bounds on χ(G(n, r, s)) are obtained using Turán numbers (see [BKK],
[S]). The author is unaware of any improvements of the trivial inequality χ(G(n, r, s)) >

(

n
r

)

/α(G(n, r, s)) ∼
ns+1 (r−s−1)!

r!
for r > 2s+1, except for the case s = 0 in which the chromatic number is known exactly and

equals to χ(G(n, r, 0)) = n− 2r + 2, (n > 2r) (this is a celebrated result of Lovász [L]).
In this paper we will consider the region r 6 2s+1. The simplest upper bound on the chromatic number

of G(n, r, s) is this case is the maximal degree bound: χ(G(n, r, s)) 6 ∆(G(n, r, s)) + 1 ∼ nr−s r!
s!((r−s)!)2

which already gives the correct order of magnitude. Some non-trivial estimates were obtained by the
author in [Z], for instance, χ(G(n, r, s)) 6 (1 + o(1))nr−s which improves the maximal degree bound if
(r − s) is less than

√
s. The first result of the present paper is the following sharp result.

Theorem 1.1. Let r > s. Then χ(G(n, r, s)) 6 (1 + o(1))nr−s (r−s−1)!
(2r−2s−1)!

as n→ ∞.

Note that if r 6 2s+1 and (r− s) is a power of a prime then the bound in Theorem 1.1 coincides with
known lower bounds. In fact, Theorem 1.1 is a simple corollary of recent results of Keevash [K2]. Results
of [K2] require n to be extremely large compared to r, s whereas in most of the applications of graphs
G(n, r, s) one needs to consider r, s growing with n. Moreover, in applications to combinatorial geometry
one typically requires r, s to grow linearly with n.

The main aim of this paper is to present a different approach to the problem. Namely, we develop a new
elementary approach and solve the special case (r, s) = (4, 2), which is the first unsolved case in the region
r 6 2s+1. The best known upper bound on the chromatic number of G(n, 4, 2) is n2

2
+100n [BKK]. Note

that if we consider the family of vertices of G(n, 4, 2) which contain element {1}, the induced subgraph
will be isomorphic to G(n− 1, 3, 1). This means that any proper coloring of G(n, 4, 2) will automatically
lead to a proper coloring of G(n, 3, 1), so it is important to understand how to color G(n− 1, 3, 1) first. In

Section 3.1 we provide a simple proof of the inequality χ(G(n, 3, 1)) 6 (n−1)(n−2)
6

for n = 2t being a power
of 2.

Theorem 1.2. χ(G(n, 4, 2)) 6 (1 + o(1))n
2

6
.

Of course, Theorem 1.2 is a particular case of Theorem 1.1 but techniques developed in the proof of
this result may be of independent interest.

In addition, in order to prove Theorem 1.2 we need to estimate the list chromatic number of G(n, r, s).
Recall that the list chromatic number χlist(G) of a graph G is the minimal number k such that for any
arrangement of sets L(v), v ∈ V (G), each L(v) of size k, there are colors c(v) ∈ L(v) such that each edge
is not monochromatic. In the end of Section 3.6 we prove the following.

Lemma 1.3. Fix r, s and let n→ ∞, then χlist(G(n, r, s)) = O(ns+1 logn).

It would be interesting to obtain more estimates on χlist(G(n, r, s)) in various asymptotic regimes as
well.

In Section 2 we prove Theorem 1.1 and in Section 3.2 we prove Theorem 1.2, Section 4 contains some
final remarks.
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2 Proof of Theorem 1.1

Recall from [K2] that a family F of r-element subsets of an n-set X forms an (n, r, s)-design if every
s-element subset of [n] belongs to exactly one element of F . A complete resolution of

(

[n]
r

)

is a partition

of
(

[n]
r

)

into (n, r, r − 1)-designs, each of which is partitioned into (n, r, r − 2)-designs, and so on, down to
(n, r, 1)-designs.

Keevash [K2] proved that a complete resolution of
(

[n]
r

)

always exists provided that n ≡ r (mod gcd[r])
and n is sufficiently large.

In particular, given n as above for any p > q there is an (n, r, p)-design which can be decomposed into
(n, r, q)-designs.

We relate decompositions of designs and colorings of G(n, r, s) by the following simple claim.

Claim 2.1. Suppose that there is an (n, 2r−s−1, r)-design which can be decomposed into (n, 2r−s−1, s)-

designs. Then χ(G(n, r, s)) 6 N :=
(nr)

(2r−s−1

r )
/

(ns)
(2r−s−1

s )
.

Proof. If possible, take a decomposition of an (n, 2r − s − 1, r)-design into (n, 2r − s − 1, s)-designs:
D = D1 ∪ . . . ∪ DN where N is as in the statement of the claim. As D is an (n, 2r − s− 1, r)-design, this
decomposition induces a decomposition of

(

[n]
r

)

into N classes: an r-set A belongs to a class i if there is a
set X ∈ Di such that A ⊂ X . If two r-sets A,B belong to the same class i then there are X, Y ∈ Di such
that A ⊂ X,B ⊂ Y . Because Di is an (n, 2r− s− 1, s)-design we have either X = Y and |A∩B| > s+ 1
or |X ∩Y | 6 s− 1 and |A∩B| 6 s− 1. In both cases A and B are not connected by an edge and we have
constructed a proper coloring of G(n, r, s) using N colors.

For any sufficiently large n we take n′ such that n+r! > n′ > n and n′ ≡ r (mod gcd[r]). By Keevash’s
theorem and the above claim we obtain

χ(G(n, r, s)) 6 χ(G(n′, r, s)) 6 (1+o(1))n′r−s r!(r − s− 1)!

r!(2r − s− 1)!
/
s!(2r − 2s− 1)!

s!(2r − s− 1)!
= (1+o(1))nr−s (r − s− 1)!

(2r − 2s− 1)!
.

3 Proof of Theorem 1.2

3.1 Sketch of the proof

In the proof of Theorem 1.1 we colored graph G(n, r, s) using a decomposition of a certain design into
other designs. In the case of G(n, 4, 2) our strategy will be the same but the main difficulty is to construct
the required designs without use of heavy machinery. To color G(n, 4, 2) we need to build a decomposition
of an (n, 5, 4)-design into (n, 5, 2)-designs, but we will be able to provide only an approximate version
of this decomposition and this will suffice for our purposes. We call a family F ⊂

(

[n]
r

)

an approximate
(n, r, s)-design if each s-element set is contained in at most one set from F and if the number of s-element
subsets which are not contained in any set of F is o(

(

n
s

)

).
Our proof is largely inspired by the proof of the following simple result about G(n, 3, 1):

Theorem 3.1 ([BKR]). Let n = 2t. Then χ(G(n, 3, 1)) 6 (n−1)(n−2)
6

.

Note that this bound is tight (see [BKK]).
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Proof. Identify [n] with V = F
t
2. Let us say that two triples of vectors are equivalent if one of them can

be obtained from another by a translation. It is easy to see that there are exactly
(|V |

3

)

/|V | = (n−1)(n−2)
6

equivalence classes.
Now we prove that each class form an independent set, i.e. any two sets from the same class intersect

in an even number of elements. Take a pair of equivalent triples {a, b, c}, {a, d, e}, by definition we have
{a, b, c} + v = {a, d, e} for some v ∈ V \ 0. Note that a + b 6= a + d, a + e, so a + b = d + e because
a+ b = (a+ v) + (b+ v) ∈ {a+ d, a+ e, d+ e}. By the same reasoning a+ c = d+ e and, therefore, b = c.
A contradiction.2

Now we describe ideas of the proof.
At first we note that we may assume that n = p2 − 1, where p is a prime. So we can identify [n]

with the set F
2
p \ 0. Denote V = F

2
p, G = GL2(Fp) and consider the family A = {{v1, . . . , v5} : vi ∈

V \ 0, v1 + . . .+ v5 = 0, v1, . . . , v5 are pairwise non-collinear}. It is easy to see that A is an approximate
(n, 5, 4)-design and |A| ∼ n4

120
.

First, we show how to color in a small number of colors all 4-element sets which are contained in sets
from A. In order to color them properly it is enough to color sets from A in such a way that two sets of
the same color intersect in at most 1 element. To do this, we divide A into orbits under the action of G:
A = A1 ∪ . . . ∪ Al. We note that l ∼ n2

120
because |A| ∼ n4

120
and |G| ∼ n2. The idea is to color each orbit

separately from the others. The main observation is that inside of each orbit the induced subgraph has
a very special structure: to see this, let A1, A2 ∈ Ai be an adjacent pair of vertices from the same orbit,
that is |A1 ∩ A2| > 2; since Ai is an orbit, there is g ∈ G such that A2 = gA1, so the map g maps a pair
of elements of A1 to another pair of elements of A1. Since any linear map on a vector space is completely
determined by its action on a basis elements, this in particular implies that the degree of any vertex in
Ai is always at most 20 · 19. Let Ei be the set of g ∈ G such that |gA1 ∩ A1| > 2. We conclude that the
graph induced on Ai has the structure of a Cayley graph on G with the set of generators Ei.

For most of the orbits Ai we are able to gain enough control on the local structure of this Cayley
graph using algebraic tools. This allows us to construct a proper coloring of a large neighborhood of any
vertex in the orbit Ai. But there may be some “global” obstructions to extend these “local” colorings to
the whole orbit. To overcome this, we construct a reasonably small set Awall ⊂ A such that for almost
all orbits Ai the set Ai \ Awall splits into tiny components for which the local coloring can be applied. It
remains to color the set Awall and all remaining orbits which have not yet been colored. This can be done
by estimating the maximal degrees of the corresponding induced subgraphs and using other crude bounds.
In particular, the following simple observation is used.

Claim 3.2. Let H be a graph. Suppose that the vertex set of H is covered by a system of subsets:

V (H) =
⋃m

i=1Ai. Suppose that for any v ∈ V (H) the number of edges between v and the set
⋃

Ai 6∋v Ai is

at most d. Suppose that for any i χlist(H|Ai
) 6 l holds. Then χ(G) 6 l + d.

3.2 Beginning of the proof

By Prime Number Theorem, for any natural n there is a prime p such that p2 − 1 > n and p2 − 1 ∼ n.
Because G(n, 4, 2) can be embedded into G(p2 − 1, 4, 2) we may assume that n = p2 − 1. Consequently,
we may identify [n] with F

2
p \ 0. Denote V = F

2
p and let G = GL2(Fp) be the general linear group of V .

2The presented proof differs from that given in [BKR]. I found this proof on the cite of Moscow Mathematical Olympiad
(https://olympiads.mccme.ru/mmo/2012/75mmo.pdf, page 44, in Russian). The original proof is by induction on the power

of 2, and it generalizes to the bound χ(G(n, 3, 1)) 6 n(n−1)
6 +cn for arbitrary n [BKR]. Consequently, in [BKK] the same idea

was applied to G(n, 4, 2) and the bound χ(G(n, 4, 2)) 6 n
2

2 + 100n was obtained. The last inequality is the best previously
known upper bound for the chromatic number of G(n, 4, 2).
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First, we introduce some notation. LetA = {{v1, . . . , v5} : vi ∈ V \0, v1+. . .+v5 = 0, vi, vj are not collinear}
and, similarly, Aord = {(v1, . . . , v5) : vi ∈ V \ 0, v1 + . . . + v5 = 0, vi, vj are not collinear} (note that
A ⊂

(

V
5

)

but Aord ⊂ V 5). There is a natural projection π : Aord → A.
Throughout the proof we use indexations like dij or

∏

ij omitting the range of i, j. Unless otherwise
specified, it means that the range is 1 6 i, j 6 5 and i 6= j. For any family F and a set S we denote by
F(S) the subfamily of sets from F containing S.

For linearly independent vectors a, b ∈ V , denote by ga,b the linear map which maps the standard basis
e1, e2 to a, b. Note that ga,b ∈ G and the matrix of this operator is just (a, b). Denote by gij : Aord → G a
function which maps a sequence A = (a1, . . . , a5) ∈ Aord to the operator gai,aj , i.e. gij(A) = gai,aj .

A dependence ω of length t is a sequence (dij) (here 1 6 i, j 6 5, i 6= j) of integers such that
∑

i 6=j dij = 0 and
∑

i<j |dij + dji| = 2t. We think of each dependence ω as of a map Aord → Fp defined as
follows:

ω(A) =
∏

i 6=j

det(gij(A))
dij , (1)

A dependence ω is called trivial if ω(A) = 1 for any A ∈ Aord. Otherwise ω is called nontrivial. Given
two dependencies ω = (dij) and ω

′ = (d′ij) one can define the product: ωω′ := (dij + d′ij). In view of (1),
it will be sometimes convenient to denote a dependence ω = (dij) as ω =

∏

det(gij)
dij .

Fix t = n0.01, denote by Ashort
ord the set of all sequences A ∈ Aord such that there is a nontrivial

dependence ω of length at most t and ω(A) = 1. Denote Ashort = π(Ashort
ord ) and let Along := A \ Ashort

and Along
ord := Aord \ Ashort

ord .
Now we define sets Awall

ord and Awall. Let E be the set of functions Aord → G of the form gijg
−1
kl (A) :=

gij(A)g
−1
kl (A) where i 6= j, k 6= l and (i, j) 6= (k, l). The motivation of this definition is that two element

hA, h′A ∈ GA of the orbit of A intersect in at least two elements if and only if h−1h′ = e(A) for some
e ∈ E.

Each element gijg
−1
kl of E determines a dependence ω = det gijg

−1
kl that is ω is a sequence (drs) with

dij = 1, dkl = −1 and all other coordinates are set to be zero. For a sequence of elements g1, . . . , gm ∈ E we
denote by g1g2 . . . gm : Aord → G a function which maps a sequence A to the operator g1(A)g2(A) . . . gm(A),
also we denote by det(g1g2 . . . gm) the product of dependencies det(gi).

Abusing the notation, for an arbitrary family F and elements α, β denote F(α, β) := F({α, β}).
In Section 3.4 we will prove the following lemma.

Lemma 3.3. There are sets Awall
ord ⊂ Aord and Awall = π(Awall

ord ) such that:

1. Choose any A ∈ Along
ord and g1, . . . , gm ∈ E. Suppose that the dependence ω = det(g1g2 . . . gm) is of

length at least t/3 and ω(A) = 1. Then for some i we have g1g2 . . . gi(A)A ∈ Awall
ord .

2. For any pair of vectors α, β we have |Awall(α, β)| = o(n2).

Let us briefly explain the meaning of these definitions and the role of dependencies in the proof. For the
sake of simplicity, here we ignore the difference between ordered and unordered families. Let A1 ⊂ Along be
an orbit of the action of G and let A be a representative of A1. Let us connect two different sets from A1 if
they intersect in at least two elements. By definition of E, two sets h1A and h2A are connected by an edge
if there is g ∈ E such that h−1

2 h1 = g(A). Thus, for each cycle C = {h1A, . . . , hmA} ⊂ A1 of the resulting
graph we can construct a dependence ω = det(g1 . . . gm) where gi ∈ E are such that gi(A) = h−1

i−1hi. Note
that ω(A) = 1 and vertices of C can be represented as follows:

C = {h1A, h1g1(A)A, h1g1g2(A)A, . . . , h1g1 . . . gm−1(A)A}

We call a cycle C nontrivial if the corresponding dependence is nontrivial. Now the first conclusion of
Lemma 3.3 implies that any nontrivial cycle C in a “long” orbit A1 must intersect Awall (to see this,

5



note the identity h1g1(A)A = g1(h1A)h1A). Thus, the graph induced on the set A1 \ Awall contains only
“trivial” cycles which will allow us to color this set optimally.

Finally, we form a set Agood = A\ (Ashort ∪Awall) and construct a graph G on Agood in which two sets
are adjacent if they intersect in at least two places.

Lemma 3.4. χ(G) 6 (1 + o(1))n
2

6
.

Given this lemma we can color in (1+ o(1))n
2

6
colors vertices of G(n, 4, 2) which are contained in some

set from Agood (just like in the proof of Theorem 1.1). Denote the set of all remaining vertices by U , it
remains to prove that this set can be colored in a small number of colors.

Lemma 3.5. χ(G(n, 4, 2)|U) = o(n2).

Clearly, the combination of these lemmas implies Theorem 1.2.
The rest of the proof is organized as follows. In Section 3.3 we prove auxiliary results about trivial

and nontrivial dependencies. In Section 3.4 we construct the set Awall. In Sections 3.5 and 3.6 we prove
Lemmas 3.4 and 3.5 respectively.

3.3 Dependencies

We begin with a simple observation.

Claim 3.6. Take A ∈ Aord, h ∈ G and arbitrary dependence ω. Then ω(hA) = ω(A).

Proof. Note that for any g ∈ G gha,hb = hga,b and that gij(hA) = ghai,haj = hgai,aj = hgij(A). So,

ω(hA) =
∏

i 6=j

det(gij(hA))
dij =

∏

i 6=j

det(hgij(A))
dij = det(h)

∑
dij

∏

i 6=j

det(gij(A))
dij = ω(A).

Denote by Aord(α, β) the set of sequences A ∈ Aord such that A = (α, β, x1, x2, x3) for some xi ∈ V .
The next lemma states that the set of sufficiently degenerate sequences A ∈ Aord is rather sparse.

Lemma 3.7. |Ashort
ord (α, β)| = O(n1.7) for any linearly independent α, β ∈ V \ 0.

Proof. Note that there are at most 230t10 dependencies of length at most t which determine different
functions A → Fp. Indeed, take a dependence ω = (dij) of length 6 t, then from (1) we have:

ω =
∏

ij

det(g
dij
ij ) = (−1)s

∏

i<j

det(gij)
dij+dji

because det gij = − det gji. So the dependence ω can be recovered as a function from the values of dij +dji
and (−1)s. By definition, |dij + dji| 6 2t so there are at most 2 · (4t)10 < 230t10 choices of ω which are
different as functions.

For each nontrivial ω of length at most t we bound the number of sequences A ∈ Aord(α, β) satisfying
ω(A) = 1. Suppose that ω(A) = 1 for all A ∈ Aord(α, β). Consider a sequence A = (A1, . . . , A5) ∈ Aord,
then there exists h ∈ G such that hA1 = α, hA2 = β so hA ∈ Aord(α, β). By Claim 3.6 and our assumption,
ω(A) = ω(hA) = 1, so ω is trivial. A contradiction.

Now we note that ω determines a rational function ω̃ : F4
p → Fp: let ω̃(x, y) = ω(α, β, x, y,−α− β −

x−y). Each determinant is a degree 2 polynomial, therefore, ω̃(x, y) = P (x,y)
Q(x,y)

where P and Q have degrees

at most 4t. The number of A ∈ Aord(α, β) for which ω(A) = 1 is less than the number of solutions of the
equation R(x, y) = P (x, y)− Q(x, y) = 0. From the previous paragraph we derive that R is a nontrivial
polynomial of degree at most 4t. By Sparse Zeros Lemma ([BF], p. 86) R has at most 4tp3 roots.

Altogether, we have |Ashort
ord (α, β)| 6 (230t10)(4tp3) 6 234n1.61 = O(n1.7).
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Now we prove that short trivial dependencies are indeed “trivial”.

Lemma 3.8. Let ω = (dij) be a trivial dependence of length at most t = n0.01. Then dij + dji = 0 for any

i 6= j and the sum D =
∑

i<j dij is even.

Proof. As we have mentioned before, we have

ω(A) =
∏

i 6=j

det(gai,aj )
dij = (−1)D

∏

i<j

det(gai,aj )
dij+dji .

Analogously to the previous lemma, ω may be written as a fraction P (x1,...,x4)
Q(x1,...,x4)

of polynomials in 8 variables

of degrees at most 4t (each xi represents a vector of two variables (x1i , x
2
i )). As before, we consider the

polynomial R = P − Q. Since the dependence ω is trivial, for any vectors x1, x2, x3, x4 ∈ V such that
(x1, x2, x3, x4,−x1−x2−x3−x4) ∈ Aord it follows that R(x1, x2, x3, x4) = 0. Condition (x1, x2, x3, x4,−x1−
x2 − x3 − x4) ∈ Aord means that these five vectors are in general position. An easy calculation yields that
the number of such tuples is at least p8 − 10p7 > 4tp7 so by Sparse Zeros Lemma R must vanish, i.e.
1 ≡ P

Q
≡ (−1)D

∏

i<j det(xi, xj)
dij+dji . But determinants det(xi, xj) are pairwise coprime for i < j so

each multiple must be equal to 1 (indeed, det(xi, xj) is an irreducible polynomial of degree 2 in variables
x1i , x

2
i , x

1
j , x

2
j ; two different polynomials det(xi, xj) can not be proportional). The lemma follows.

3.4 Construction of Awall

In this section we prove the following crucial lemma:

Lemma 3.9. There are sets Awall
ord ⊂ Aord and Awall = π(Awall

ord ) such that:

1. Choose any A ∈ Along
ord and g1, . . . , gm ∈ E. Suppose that the dependence ω = det(g1g2 . . . gm) is of

length at least t/3 and ω(A) = 1. Then for some i we have g1g2 . . . gi(A)A ∈ Awall
ord .

2. For any pair of vectors α, β we have |Awall(α, β)| = o(n2).

The idea behind the proof is very simple: in each orbit, we sample a random set of relatively small
“boxes” which will almost surely cover most of the orbit. By our assumption that the orbit is in Along we
conclude that a “nontrivial” cycle does not fit in a box, so it must intersect its boundary. We put Awall

to be the union of the boundaries of the sampled boxes.

Proof. Consider the orbit decomposition of Along
ord under the action of G: Along

ord = A1 ∪ . . .∪Al. Note that

by Lemma 3.7 |Along
ord | ∼ |Aord| ∼ n4, also we know that |G| ∼ n2, consequently, l ∼ n4

|G| ∼ n2. Choose a
representative Aj ∈ Aj for each j.

We start by constructing Awall
ord in each orbit separately:

Claim 3.10. For any j = 1, . . . , l there is a set Awall
j ⊂ Aj such that |Awall

j | = O(n2t−0.5) and the following

holds for any A ∈ Aj and g1, . . . , gm ∈ E. Suppose that the dependence ω = det(g1g2 . . . gm) is of length

at least t/3 and ω(A) = 1. Then for some i we have g1g2 . . . gi(A)A ∈ Awall
j .

Proof. Take a representative A ∈ Aj, consider two sets T = {det gij(A) | i 6= j} and T̃ = {det gij(A) | i < j}
both lying in Fp. Note that |T | = 20 and |T̃ | = 10 because A ∈ Along

ord . For a positive integer λ let us define
a box Bλ and the boundary of the box ∂Bλ as follows:

Bλ =







±
∏

a∈T̃

aλa | λa ∈ [−λ, λ],
∑

a∈T̃

λa = 0







,

∂Bλ =







±
∏

a∈T̃

aλa | λa ∈ [−λ, λ],
∑

a∈T̃

λa = 0, ∃b : λb = ±λ







.

7



Here are some properties of these objects:

Claim 3.11. If λ 6 t/30 then:

1. |Bλ| > (2λ)10 and |∂Bλ| 6 216 · λ9.
2. All products of the form ±∏

a∈T̃ a
λa where λa ∈ [−λ, λ], ∑

a∈T̃ λa = 0 are distinct.

Proof. Note that the bound on |∂Bλ| is obvious and the bound on |Bλ| is an immediate consequence of
the Part 2.

Suppose that two different products of the given form do coincide. Bringing everything on the left hand
side we obtain an equality ±∏

a∈T̃ a
λa = 1 where λa ∈ [−2λ, 2λ] and

∑

λa = 0. Expressing this in terms
of gij we obtain an equation ±∏

i>j det(gij)
λij (A) = 1 where λij obey the same conditions. Construct

a dependence ω in the following way: let ω = (λij) if the sign before the product is positive and let
ω = (λij) · det(g12g−1

21 ) if the sign is negative.

We see that ω(A) = 1 and ω has length at most 10 · 2λ + 2 < t. Since A ∈ Along
ord we deduce that ω is

trivial, and so each λij = 0, a contradiction because initially we chose two different products (note that
we considered only λij with i < j).

Now we fix λ = t/1000 and q = p
λ9.5 . Choose independently at random q nonzero residues ρ1, . . . , ρq ∈

F
×
p = Fp \ 0 and consider random sets

C =

q
⋃

i=i

ρi · Bλ, ∂C =

q
⋃

i=i

ρi · ∂Bλ, R = F
×
p \ C.

Let us bound their cardinalities. Every residue does not belong to ρiBλ with probability 1− |Bλ|
p−1

so

E|R| 6 p

(

1− |Bλ|
p− 1

)q

< p

(

1− (2λ)10

p− 1

)q

< pe−
qλ10

p = O(pe−
√
λ).

Next, |∂C| 6 q|∂Bλ| = O(qλ9) = O( p√
λ
). Therefore, there is a choice of ρi-s so that |∂C ∪R| = O(pλ−0.5).

Let Awall
j be the set of all hA ∈ Aj such that det h ∈ ∂C ∪ R. We claim that this is the right choice of

Awall
j .
First, it is straightforward that |Awall

j | = O(n2t−0.5). Next, take an arbitrary hA ∈ Aj and elements
g1, . . . , gm ∈ E such that ω = det(g1 . . . gm) is of length at least t/3 and 1 = ω(hA) = ω(A). Define
dependencies ωi = det(g1 . . . gi) and note that lengths of ωi and ωi+1 differ by at most 2. So there is
k ∈ [1, m] such that the length of ωk lies in the interval (10λ, t/60]. Thus, by Claim 3.11 ωk(A) ∈ Bt/30

and it has a unique product representation, so ωk(A) 6∈ B2λ because otherwise it would have length at
most 10 × 2λ/2 (the length is the half of the sum of degrees). We conclude that residues det h and
ωk(A) deth can not lie in the same homothetic image of Bλ. So there exists a maximal number i such that
ωm(A) det h = det h and ωi(A) deth lie in different boxes (unless they do not lie in any box ρBλ at all, in
which case we are done). Suppose that det h, ωi+1(A) det h ∈ ρfBλ but ωi(A) det h 6∈ ρfBλ. It follows that
ωi+1(A) det h ∈ ρf∂Bλ and so g1 . . . gi+1(hA)hA ∈ Awall

j but this is what we needed to prove. The claim is
proved.

Now we glue Awall
ord fromAwall

j . In view of Claim 3.10, we only need to ensure that all sets Awall
ord (α, β) are

small. Let us choose uniformly at random operators γj ∈ G for j = 1, . . . , l and consider sets Bj = γjAwall
j

and B =
⋃Bj . We claim that with high probability we can take Awall

ord := B, so we only need to prove that
|(πB)(α, β)| is small for any pair of linearly independent vectors α, β. Define ξα,β,j = |(πBj)(α, β)| and
ξα,β = |(πB)(α, β)|. Clearly, ξα,β 6

∑

j ξα,β,j and for any j ξα,β,j 6 20 because there is no two elements
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h1A, h2A ∈ Aj which contain α, β on the same places. Let Q = n2

√
logn

. As variables ξα,β,j are independent

and probability that ξα,β,j > 0 is at most P =
|Aj |
p

= O( 1√
t
) we conclude that

P(ξα,β > Q) <

(

l

Q/20

)

PQ/20 < 2lO(t−0.5)Q/20 < ec1n
2−c2Q logn = O(e−cn2

√
logn) = O(n−10),

(the condition ξα,β > Q implies that there are at least Q/20 nonzero ξ-s). Thus, with high probability
ξα,β 6 Q for all α, β. The lemma is proved.

3.5 Proof of Lemma 3.4

Let us consider the decomposition of Along into the orbits A1, . . . ,Al under the action of G (note that
this is not the same decomposition as in the proof of Lemma 3.9 because now we work inside A instead
of Aord). We have |Along| ∼ n4

120
and G ∼ n2 so l ∼ n2

120
. Thus, to prove Lemma 3.4 we only need to color

each set Aj \ Awall in 20 colors.

Lemma 3.12. For any j = 1, . . . , l we have χ(G|Aj\Awall) 6 20.

Proof. Let us fix Aj and its representative A ∈ Aj and Aord ∈ π−1A. Two vertices gA and hA are adjacent
in G if and only if |gA ∩ hA| > 2 or equivalently |g−1hA ∩ A| > 2, that is, some two elements of A are
mapped by g−1h into other two elements of A. By definition, this means that g−1h = e(Aord) for some
e ∈ E (see Section 3.2), that is h = ge(Aord). The induced subgraph G|Aj\Awall splits into connected
components C1, . . . , Cm. Take a representative hiA from the component Ci.

Every vertex hA ∈ Ci has a representation

hA = hig1f
−1
1 g2f

−1
2 . . . gqf

−1
q A, (2)

where gs, fs ∈ S(A) := {gij(Aord)} and for all s the vertex hig1f
−1
1 . . . gsf

−1
s A lies in Ci. Consider an

arbitrary bijection ψ : S(A) → Z20 such that ψ(gij(A)) = ψ(gji(A)) + 10 (mod 20). Now we define a
coloring c of Aj \ Awall as follows:

c(h) =

q
∑

s=1

ψ(gs)− ψ(fs) (mod 20).

Let us suppose for a moment that this definition does not depend on the choice of the representation (2)
of hA. Then we can write any two adjacent vertices hA, h′A in the form:

hA = hig1f
−1
1 g2f

−1
2 . . . gqf

−1
q A

h′A = hig1f
−1
1 g2f

−1
2 . . . gqf

−1
q g′(f ′)−1A,

and so c(h′)− c(h) = ψ(g′)− ψ(f ′) 6= 0 (mod 20) that is the coloring c is proper.
So it remains to check correctness of the definition of the coloring c. Take a vertex hA ∈ Ci and two

its representations of the from (2). Bringing everything to the left hand side we obtain

hix1y
−1
1 x2y

−1
2 . . . xuy

−1
u A = hiA,

for some xs, ys ∈ S(A) and we need to prove that
∑u

s=1 ψ(xs)− ψ(ys) = 0 (mod 20). Note that for any s
the vertex hix1y

−1
1 . . . xsy

−1
s A has to lie inside Ci. We can write each multiple xsy

−1
s as es(Aord) for some

es ∈ E. Consider the dependence ω = det(e1 . . . eu) =: (dij). By definition, ω(Aord) =
∏

det(xsy
−1
s ) = 1

and
∑u

s=1 ψ(xs)− ψ(ys) =
∑

i 6=j dijψ(gij) (mod 20).
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Suppose that the length of ω is at most t. Then ω is trivial because Aord ∈ Along
ord . Then Lemma 3.8

applies and we obtain:
∑

i 6=j

dijψ(gij) =
∑

i<j

dijψ(gij) + djiψ(gji) =
∑

i<j

ψ(gji)(dji + dij) + 10 · dij = 10
∑

i<j

dij = 0 (mod 20)

and we are done.
Now suppose that the length of ω is at least t > t/3. Then Lemma 3.9 applied to the sequence

e1, . . . , eu and hiAord yields that there exists s such that hie1 . . . es(Aord)Aord ∈ Awall
ord . But this means that

hix1y
−1
1 . . . xsy

−1
s A 6∈ Ci because Ci ∩Awall = ∅. We arrived at a contradiction, Lemma 3.12 is proved.

3.6 Proof of Lemma 3.5

We should color all 4-element subsets which are not subsets of any element of Agood. Take an arbitrary
X = {x1, x2, x3, x4} ⊂ V \ 0 and denote A = X ∪ {−x1 − x2 − x3 − x4}. Let U1 be the set of all 4-element
sets X such that A 6∈ A, that is a pair of elements of A is collinear (this includes the cases then the sum
of xi-s equals 0). Finally, let U2 be the set of all 4-element sets X such that A ∈ Ashort ∪ Awall. Clearly,
U = U1 ∪ U2 and we need to show that χ(G(n, 4, 2)|Ui

) = o(n2) for i = 1, 2. Note that in this section we
are working with 4-element subsets of V \ 0 and, in particular, U1, U2 ⊂

(

V \0
4

)

.
Let us begin with U2, we will deduce the desired bound using the inequality χ(G(n, 4, 2)|U2

) 6

∆(G(n, 4, 2)|U2
)+1. Take a vertex X ∈ U2, by Lemmas 3.7 and 3.9 there are o(n2) sets from Awall∪Ashort

intersecting X in at least two places. Thus, the maximal degree of considered induced subgraph is o(n2).
Now we focus on U1.
Recall that the list chromatic number χlist(H) of a graph H is the smallest number k such that the

following holds. For each assignment of sets L(v), v ∈ V (H) of cardinality at least k there is a proper
coloring c of H such that c(v) ∈ L(v) for any v ∈ V (H). We need the following general result.

Claim 3.13. Let H be a graph. Suppose that the vertex set of H is covered by a system of subsets:

V (H) =
⋃m

i=1Ai. Suppose that for any v ∈ V (H) the number of edges between v and the set
⋃

Ai 6∋v Ai is

at most d. Suppose that for any i χlist(H|Ai
) 6 l holds. Then χ(G) 6 l + d.

Proof. Suppose that we have already colored B = A1 ∪ . . . ∪ Ai in at most l + d colors. Let us show that
the set C = Ai+1 \B can also be colored in at most l+ d colors. For a vertex v ∈ C let L(v) be the list of
colors in which v can be colored without contradicting the coloring of B. By assumption, v has at most
d neighbours in B, therefore, |L(v)| > l. Since C ⊂ Ai+1, we can pick a color from each L(v) so that the
resulting coloring of C ∪ B = A1 ∪ . . . ∪ Ai+1 is proper. The claim now follows by induction.

To apply Claim 3.13 we construct a covering system of U1 as follows. Let U∗ be the set of quadruples
{x1, . . . , x4} for which −x1 − x2 − x3 − x4 either equals 0 or is proportional to xi for some i. For a pair
of collinear nonzero vectors α, β let U(α, β) be the set of all X ∈ U1 containing α and β. It follows that
U1 = U∗ ∪⋃

α∼β U(α, β) (here α ∼ β means that α and β are collinear). Indeed, if X = {x1, . . . , x4} ∈ U1

then either xi ∼ xj for some i 6= j, which means that X ∈ U(xi, xj), either xi ∼ −x1 − x2 − x3 − x4 for
some i, which means that X ∈ U∗. Let dX be the number of edges between X and the subset

⋃

P of U1,
where the union is taken over P ∈ {U∗, Uα,β} such that X 6∈ P .

Claim 3.14. dX = O(n3/2) for any X ∈ U1.

Proof. We count the number of neighbors Y of X in
⋃

P . The intersection Z = X ∩ Y can be fixed in
6 ways. There are at most 4np sets Y ∈ U∗ containing Z. If Y ∈ U(α, β) for {α, β} 6⊂ X then we can
choose two last elements of Y in at most np ways. So, altogether, there are at most O(n3/2) neighbors of
X .
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Using a similar argument one can prove that ∆(G(n, 4, 2)|U∗) = O(n) and, by the trivial inequality
χlist(H) 6 ∆(H) + 1, we obtain χlist(G(n, 4, 2)|U∗) = O(n). Now we bound the list chromatic number
of the graph induced on U(α, β). Clearly, this subgraph is isomorphic to a subgraph of G(n, 2, 0). So it
remains to bound the list chromatic number of the latter graph. We will prove a slightly more general
result.

Lemma 3.15. Fix r, s and let n→ ∞, then χlist(G(n, r, s)) = O(ns+1 logn).

Proof. The assertion follows immediately from the standard fact that χlist(G) 6 χ(G) log |G| for any graph
G.

Thus, we checked assumptions of Claim 3.13 with d, l = O(n3/2). Therefore, χ(G(n, 4, 2)|U1
) = o(n2).

4 Remarks

In this Section we very briefly discuss the limitations of the presented techniques.
Unfortunately, the presented approach depends heavily on the particular choice of the parameters

(r, s) = (4, 2) and it is not completely clear how one can extend it to larger values of r, s or to other
families of graphs.

In particular, if one tries to generalize the method to an arbitrary graph G(n, r, s) with r 6 2s+1 one
faces the following problems:

1. What should replace the set A, that is an approximate design which is invariant under an action of a
large group (more precisely, a group of large transitivity, for instance, GLt(Fp))? It is only straightforward
to come up with such a family in the case then s = r− 2: identify [n] with F

s
p \ 0 and consider a family of

sets which elements sum up to 0. The action of the general linear group GLs(Fp) will preserve this family.
2. During the proof, it was essential to work with determinants of linear operators instead of operators

themselves. For instance, it allowed us to use polynomial methods in Section 3.3, the commutativity of
F
×
p allowed us to construct the “wall” in Section 3.4: indeed, the key observation was that the size of the

boundary of a box is much smaller than the size of the box itself. It is completely false if one tries to apply
this idea to GL2(Fp) directly. But for s > 3 the determinant is not strong enough to capture all the edges
of the graph: the set E of linear operators in F

s
p which map a fixed set A to a set which intersects A in at

least s elements always contains operators of determinant 1, unless s = 2.
3. Splitting the graph into “structured” (4-element subsets of elements of Agood in our case) and

“degenerate” (the set U in our case) parts will also become harder. Consider, for instance, the graph
G = G(n, r, r−2). We would like to prove that χ(G(n, r, r−2)) ∼ n2

6
. But note that G(n, r, r−2) contains

a lot of copies of the graph G(n− r + 3, 3, 1) which has almost the same chromatic number and has only
O(n3) vertices. This means that the “degenerate” part of the graph should be very carefully defined so
that it will not accidentally contain a copy of G(n − r + 3, 3, 1) inside. Note that the case (r, s) = (4, 2)
the set U contains many subgraphs isomorphic to G(n, 2, 0) but, luckily for us, the chromatic number of
the latter graph grows linearly.

The most natural candidates for a future generalization of the approach are the graphs G(n, 5, 2) and
G(n, 5, 3) both of which represent some of the new difficulties mentioned above. Also one may consider a
simpler sequence of graphs, namely graphs G(n, r,> s) which have the same sets of vertices as G(n, r, s)
but two vertices of G(n, r,> s) are connected if their intersection contains at least s elements. This
simplification eliminates the need of approximate designs in the coloring.
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