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Cycles of length three and four in tournaments∗

Timothy F. N. Chan† Andrzej Grzesik‡ Daniel Král’§

Jonathan A. Noel¶

Abstract

Linial and Morgenstern conjectured that, among all n-vertex tourna-
ments with d

(
n
3

)
cycles of length three, the number of cycles of length four

is asymptotically minimized by a random blow-up of a transitive tourna-
ment with all but one part of equal size and one smaller part. We prove
the conjecture for d ≥ 1/36 by analyzing the possible spectrum of adja-
cency matrices of tournaments. We also demonstrate that the family of
extremal examples is broader than expected and give its full description
for d ≥ 1/16.

1 Introduction

One of the oldest theorems in extremal graph theory is Mantel’s theorem [14],
which asserts that every n-vertex graph with more than n2/4 edges contains a
triangle. The Erdős–Rademacher Problem, which can be traced back to the work
of Rademacher in the 1940’s and the later work of Erdős [4], asks for the minimum
possible number of triangles in a graph with a given number of vertices and edges.
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It was conjectured that this minimum is asymptotically attained by a complete
multipartite graph (i.e. a blow-up of a constant-sized clique) with all but one part
of equal size and one smaller part. This conjecture attracted substantial attention
for several decades, see e.g. [1,5,8,12], until its solution by Razborov [17] in 2008
using his newly developed flag algebra method. Pikhurko and Razborov [16]
described the asymptotic structure of all extremal graphs for this problem and
an exact description was obtained by Liu, Pikhurko and Staden [10]. The more
general problem of determining the minimum asymptotic density of k-cliques in
graphs with given edge-density (the Erdős–Rademacher Problem corresponds to
the case k = 3) has also been solved by Nikiforov [15] (the case k = 4) and by
Reiher [18] in full generality.

In this paper, we investigate a related problem for tournaments posed by
Linial and Morgenstern [9], who asked for the minimum density of 4-cycles in
a large tournament with fixed density of 3-cycles. They conjectured that the
tournament asymptotically minimizing this density is a blow-up of a transitive
tournament with all but one part of equal size and one smaller part in which the
arcs within each part are oriented randomly (they call this construction a random
blow-up), i.e., the structure of the conjectured extremal examples is akin to those
of the Erdős–Rademacher problem.

We confirm this conjecture in the case where the proposed extremal examples
have two or three parts and provide a full description of extremal tournaments in
the two-part case. In contrast to many of the recent proofs in this area that use
the flag algebra method, our approach is based on the analysis of the spectrum
of adjacency matrices of tournaments.

We now state the problem that we study in the paper more formally. The
density of the directed cycle C` of length ` in a tournament T , denoted by t(C`, T ),
is the probability that a random mapping from V (C`) to V (T ) is a homomorphism
(i.e. arcs of C` map to arcs of T ). Note that, for fixed `, a tournament T on n
vertices contains t(C`, T )n`/`+O(n`−1) cycles of length `. In fact, for ` ∈ {3, 4, 5},
the error term is zero as every homomorphism of C` to T is injective. A standard
application of the Cauchy–Schwarz inequality shows that t(C3, T ) ≤ 1/8 for every
tournament T (see [3, Fact 1] for details). Our focus is on bounding the minimum
possible value of t(C4, T ) asymptotically as a function of t(C3, T ).

Next, we describe the family of conjectured tight examples from [9] which will
motivate the definition of the function g below. Given z ∈ [0, 1], we let n be an
integer chosen large with respect to z and define an n-vertex tournament T as
follows. If z = 0, then let T be a transitive tournament. Otherwise, the vertices
of T are split into bz−1c+ 1 disjoint parts V1, . . . , Vbz−1c+1 such that bz−1c parts
contain exactly bznc vertices and the remaining part contains the rest of the
vertices (note that if z−1 and zn are integers, then the last part is empty). If two
vertices v and v′ respectively belong to distinct parts Vi and Vj with i < j, then
the tournament T contains an edge from v to v′. If v and v′ instead belong to the
same part, then the edge between them is oriented from v to v′ with probability
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Figure 1: An illustration of the random blow up construction for z = 3/8.

1/2, i.e., the vertices of each part induce a randomly oriented tournament. See
Figure 1 for an illustration. It is easy to see that t(C3, T ) = t(C4, T ) = 0 if z = 0
and, if z ∈ (0, 1], then, with high probability, it holds that

t(C3, T ) =
1

8

(
bz−1cz3 +

(
1− bz−1cz

)3)
+ o(1)

and

t(C4, T ) =
1

16

(
bz−1cz4 +

(
1− bz−1cz

)4)
+ o(1)

because of the concentration around the expected values.
The conjecture of Linial and Morgenstern [9] asserts that the above construc-

tion is asymptotically optimal. In light of this, we write the regime of k parts
to denote the set of values of t(C3, T ) between 1/(8k2) and 1/(8(k − 1)2), corre-
sponding to the range of values for which the above construction has its vertices
split into k parts. In particular, the focus of this paper is on the regimes of two
and three parts, which refer to values of t(C3, T ) in the ranges [1/32, 1/8] and
[1/72, 1/32], respectively.

To formally state the conjecture, define g : [0, 1/8]→ [0, 1] as follows: g(0) = 0
and

g

(
1

8

(
bz−1cz3 +

(
1− bz−1cz

)3))
=

1

16

(
bz−1cz4 +

(
1− bz−1cz

)4)
for z ∈ (0, 1].

Conjecture 1 (Linial and Morgenstern [9, Conjecture 2.2]). It holds that

t (C4, T ) ≥ g (t(C3, T )) + o(1)

for every tournament T .1

Although 0 ≤ t(C3, T ) ≤ 1/8 for every tournament T , the conjecture is cur-
rently only known to hold for tournaments with 3-cycle density asymptotically
equal to 0, 1/8, or 1/32 [9].

1Linial and Morgenstern phrased their conjecture equivalently in terms of subgraph counts as
opposed to homomorphism densities; the quantities c3 and c4 in their paper are asymptotically
equal to 2t(C3, T ) and 6t(C4, T ), respectively.
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Figure 2: The conjectured region of asymptotically feasible densities of C3 and
C4 in tournaments. The lower bound for t(C3, T ) ∈ {1/8, 1/32} and the upper
bound were proved in [9]. The rest of the lower bound is conjectured except for
the part depicted in bold, which we prove in this paper.

We confirm the conjecture for all 3-cycle densities in the range [1/72, 1/8]
(Theorems 5 and 11, see the discussion after Conjecture 2 in Section 2) and
characterize the asymptotic structure of the extremal tournaments for densities
in [1/32, 1/8] (Corollary 6). We refer the reader to Figure 2 for the visualization
of the conjectured feasible region of 3-cycle and 4-cycle densities.

Conjecture 1 appears to be resistant to the flag algebra method and we follow
a different approach based on spectral analysis of adjacency matrices of tourna-
ments. We believe that the difficulty in applying the flag algebra method is rooted
in the fact that random blow-ups of transitive tournaments are far from being the
unique extremal examples for Conjecture 1. In particular, a rather complicated
family of extremal examples T is described as follows. Denote the vertices of
T by v1, . . . , vn and associate vi with a real number pi ∈ [0, 1/2], i = 1, . . . , n.

4



Then, direct the edge vivj from vi to vj with probability 1/2 + pi − pj. Note
that, if all the values of pi are either 0 or 1/2, then this construction is nothing
more than a random blow-up of a 2-vertex tournament, i.e., it is identical to the
examples of [9] for 3-cycle density in [1/32, 1/8]. For large n, this tournament
satisfies t(C4, T ) = g(t(C3, T )) + o(1) with high probability (this follows from
Theorem 5). In particular, all tournaments obtained in this way are extremal
with respect to Conjecture 1 in the regime of two parts. In Corollary 6, we prove
that these are asymptotically the only extremal constructions in this regime. As
we have said, we believe that this complex structure of extremal examples makes
it challenging to apply the flag algebra method. Indeed, the method relies on
finding suitable positive semidefinite matrices such that the vectors of rooted
homomorphism densities belong to their kernels for all choices of roots in any
extremal example. However, the richness of the structure of extremal examples
restricts significantly which matrices could possibly appear in the flag algebra
argument.

We conclude this introductory section by summarizing the previous results
on the interplay between the densities of C3 and C4 in tournaments. Linial and

Morgenstern [9] proved t(C4, T ) ≥ 12t(C3,T )2

1+16t(C3,T )
which confirmed Conjecture 1 in

the case t(C3, T ) = 1/32 + o(1). They also proved that, for d ∈ [0, 1/8], the
asymptotically feasible densities of cycles of length four in tournaments with
t(C3, T ) = d + o(1) form an interval [9, Proof of Lemma 1.3]. For the related
problem of maximizing the 4-cycle density relative to t(C3, T ), they proved that
t(C4, T ) ≤ 2t(C3, T )/3 for all T where equality holds if and only if |V (T )| ≥ 4
and every set of 4 vertices either induces a transitive tournament or contains a
4-cycle.

For completeness, we briefly describe a tight family of tournaments from [9]
for the upper bound t(C4, T ) ≤ 2t(C3, T )/3. Let ξ ∈ [0, 1/2] and denote the
vertices by v1, . . . , vn with n large. The edge between vi and vj, i ≤ j, is directed
from vi to vj if and only if j ≤ i + (1 − ξ)n. If ξ = 0, we obtain a transitive
tournament and if ξ = 1/2, we obtain the “circular” n-vertex tournament, i.e.,
the tournament contains edges from vi to vi+1, . . . , vi+bn/2c (indices modulo n).
These tournaments achieve all possible values of t(C3, T ) in the limit as n tends
to infinity and their 4-vertex subtournaments are either transitive or contain a
4-cycle (see [9, Proof of Observation 2.1]); therefore, they show that the upper
boundary in Figure 2 is asymptotically feasible.

2 Preliminaries

In this section, we introduce the notation used throughout the paper. The set
of all positive integers is denoted by N and the set of integers 1, . . . , n by [n].
Some of the matrices that we consider have complex eigenvalues and the complex
unit will be denoted by ι. If A is a matrix (or a vector), then we write AT for
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its transpose and A∗ for its conjugate transpose; in particular, if A is real, then
AT = A∗. The trace of a square matrix A is the sum of the entries in its diagonal
and is denoted by TrA. We let 〈· | ·〉 denote the standard inner (dot) product on
Rn. We use Jn to denote the square matrix of order n such that each entry of Jn
is equal to one; if n is clear from the context, we will omit the subscript. Note
that Jn has one eigenvalue equal to n and the remaining n − 1 eigenvalues are
equal to zero. The n-dimensional column vector with all entries equal to one is
denoted by ~jn and we again omit the subscript when n is clear from the context.
Note that Jn = ~jn~j

T
n .

2.1 Tournament matrices

We say that a square matrix A of order n is a tournament matrix if A is non-
negative and A + AT = J; in particular, if A is a tournament matrix, then
each diagonal entry of A is equal to 1/2. Every n-vertex tournament T can
be associated with a tournament matrix A of order n, which we refer to as the
adjacency matrix of T , in the following way. Each diagonal entry A is equal to
1/2 and, for i 6= j, the entry of A in the i-th row and the j-th column (denoted
Ai,j) is equal to 1 if T contains an arc from the i-th vertex to the j-th vertex,
and it is equal to 0 otherwise. The following proposition readily follows.

Proposition 1. Let T be a tournament on n vertices, A be the adjacency matrix
of T and ` ≥ 3. The number of homomorphisms of C` to T is TrA` +O(n`−1).

Recall that the trace of a matrix is equal to the sum of its eigenvalues and
that the eigenvalues of the `-th power of a matrix are the `-th powers of its
eigenvalues. In view of Proposition 1, for ` ≥ 1, we define σ`(A) for a square
matrix A of order n to be

σ`(A) =
1

n`

n∑
i=1

λ`i =
1

n`
TrA`

where λ1, . . . , λn ∈ C are the eigenvalues of A. Note that the normalization of the
sum is chosen in such a way that σ1(A) = 1/2 for every tournament matrix A.

Next, we argue that Conjecture 1 is equivalent to the following.

Conjecture 2. If A is a tournament matrix, then σ4(A) ≥ g(σ3(A)).

Indeed, Conjecture 2 implies Conjecture 1 by Proposition 1. In the other
direction, suppose that there exists a tournament matrix A of order n such that
σ4(A) < g(σ3(A)). We consider the following (random) tournament T with k · n
vertices, k ∈ N: the vertices of T are split into n sets V1, . . . , Vn, each containing k
vertices, and a vertex v ∈ Vi is joined by an arc to a vertex v′ ∈ Vj with probability
Ai,j; note that v′ is joined by an arc to v with probability Aj,i = 1 − Ai,j, i.e.,
the tournament T is well defined. Since n is fixed, for ` ∈ {3, 4} and large k,
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the number of homomorphisms from C` to T is σ`(A)(nk)` + O(k`−1) with high
probability and so Conjecture 1 fails for t(C3, T ) ≈ σ3(A).

We conclude this subsection by establishing the following lemma. A similar
result appears in Brauer and Gentry [2], but for a slightly different definition of
a tournament matrix.

Lemma 2. If A is a tournament matrix, then every eigenvalue of A has non-
negative real part.

Proof. Let λ be any eigenvalue of A and let v be a corresponding eigenvector.
Observe that the following holds:

0 ≤ (~jTv)(~jTv) = v∗Jv = v∗(A+ AT )v = v∗(Av) + (v∗AT )v

= v∗(λ+ λ)v = (λ+ λ)v∗v .

Since v∗v is a non-negative real number, it follows that λ + λ is a non-negative
real. In particular, the real part of λ is non-negative.

2.2 Tournament limits

One of the substantial recent developments in combinatorics is the theory of
graph limits which aims to provide analytic tools to represent and analyze large
graphs. In an analogous way, one can develop a limit theory for tournaments,
in which essentially all of the foundational results for graph limits, which can be
found, e.g., in the monograph on graph limits by Lovász [11], translate to similar
statements for tournament limits with essentially the same proofs. Below, we
define tournament limits and outline some of the basic results that we will use.

A tournament limit is a measurable function W : [0, 1]2 → [0, 1] such that
W (x, y) + W (y, x) = 1 for all (x, y) ∈ [0, 1]2. One can define the density of the
cycle C` in W as follows:

t(C`,W ) =

∫
x1,...,x`∈[0,1]

W (x1, x2)W (x2, x3) · · ·W (x`−1, x`)W (x`, x1) dx1 · · ·x` .

Note that any n-dimensional tournament matrix A can be represented by a tour-
nament limit WA by dividing [0, 1] into sets I1, . . . , In of measure 1/n and setting
W equal to Ai,j on the set Ii× Ij. It is easily observed that t(C`,WA) is precisely
σ`(A). The following proposition links densities of cycles in tournament limits
and in tournaments.

Proposition 3. The following two statements are equivalent for every sequence
(s`)`≥3 of non-negative reals:

• There exists a tournament limit W such that t(C`,W ) = s` for every ` ≥ 3.
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• There exists a sequence (Ti)i∈N of tournaments with increasing orders such
that

lim
i→∞

t(C`, Ti) = s`

for every ` ≥ 3.

The first statement easily implies the second by letting Ti be a W -random
tournament of order i; that is, we let x1, . . . , xi be independent uniformly random
points of [0, 1] and join the ith vertex to the jth with probability W (xi, xj). For
the other direction, the tournament limit W can be constructed by adapting
one of the existing arguments in the graph case, e.g., the argument of Lovász and
Szegedy [13] based on weak regularity and the Martingale Convergence Theorem.
In light of Proposition 3, Conjecture 1 is equivalent to the following.

Conjecture 3. For every tournament limit W , it holds that t(C4,W ) ≥ g(t(C3,W )).

The notion of regularity decompositions of graphs readily extends to tour-
naments. We present here the notion of weak regular partitions introduced by
Frieze and Kannan in [6] adapted to the setting of tournament limits. We use |X|
to denote the measure of a measurable subset X of [0, 1]. Given a tournament
limit W and ε ∈ (0, 1), a partition Z1, . . . , Zn of [0, 1] into sets of measure 1/n is
weak ε-regular for W if∣∣∣∣∣

∫
(x,y)∈X×Y

W (x, y) dx dy −
n∑

i,j=1

Ai,j · |Zi ∩X| · |Zj ∩ Y |

∣∣∣∣∣ ≤ ε

for all measurable subsets X and Y of [0, 1], where A is the tournament matrix
defined by

Ai,j =

∫
(x,y)∈Zi×Zj

W (x, y) dx dy

|Zi| · |Zj|
.

We say that a tournament limit W ′ is a weak ε-regular approximation of W if
there exists a weak ε-regular partition {Z1, . . . , Zn} such that W ′(x, y) = Ai,j for
(x, y) ∈ Zi×Zj, i, j ∈ [n], where A is the tournament matrix associated with the
partition.

The results of Frieze and Kannan [6] adapted to the setting of tournament
limits and the corresponding arguments for graph limits [13] yield the following:
for every tournament limit W and k ≥ 2, there exists a weak 1/k-regular partition
{Zk,1, . . . , Zk,nk

} with the following properties: (a) nk is bounded by a function
of k, and (b) the partitions are refining in the sense that, for every k < k′

and i′ ∈ [nk′ ], the set Zk′,i′ is contained in Zk,i for some i ∈ [nk]. It can be
shown analogously to the graph case that the corresponding weak 1/k-regular
approximations converge to W in L1. In particular, it holds that

lim
k→∞

σ`(Ak) = t(C`,W )
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for every ` ≥ 3, where, for k ∈ N, Ak is the tournament matrix associated with
the partition Zk,1, . . . , Zk,nk

.
We conclude with a proposition on the density of C3 in a weak regular ap-

proximation of a tournament limit. The proof of the proposition is also valid in
a more general setting of step approximations of tournament limits, which need
not be weak regular, however, we prefer stating the proposition in the restricted
setting of weak regular approximations to avoid introducing additional notation
not needed for our exposition.

Proposition 4. Let W be a tournament limit and W ′ a weak ε-regular approxi-
mation of W . It holds that t(C3,W ) ≤ t(C3,W

′).

Proof. We begin by showing that any tournament limit U satisfies

t(C3, U) =
1

2
− 3

2

∫
x∈[0,1]

(∫
y∈[0,1]

U(x, y) dy

)2

dx . (1)

To do this, we derive two identities based on the symmetry of variables x, y and
z. Firstly,

1 =

∫
x,y,z∈[0,1]

(U(x, y) + U(y, x))(U(x, z) + U(z, x))(U(y, z) + U(z, y)) dx dy dz

= 2

∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(z, x) dx dy dz

+ 6

∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(x, z) dx dy dz

= 2t(C3, U) + 6

∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(x, z) dx dy dz , (2)

and similarly,∫
x∈[0,1]

(∫
y∈[0,1]

U(x, y) dy

)2

dx =

∫
x,y,z∈[0,1]

U(x, y)U(x, z) dx dy dz

=

∫
x,y,z∈[0,1]

U(x, y)U(x, z)(U(y, z) + U(z, y)) dx dy dz

= 2

∫
x,y,z∈[0,1]

U(x, y)U(x, z)U(y, z) dx dy dz . (3)

Noticing that the integrals on the last lines in (2) and (3) are the same, the equal-
ity (1) is obtained. Hence, the inequality from the statement of the proposition
is equivalent to ∫

x∈[0,1]
f ′(x)2 dx ≤

∫
x∈[0,1]

f(x)2 dx , (4)
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where for brevity we have set

f ′(x) =

∫
y∈[0,1]

W ′(x, y) dy and f(x) =

∫
y∈[0,1]

W (x, y) dy .

Since

f ′(x) =
1

|Zi|

∫
x′∈Zi

f(x′) dx′

for every x in a part Zi of the weak ε-regular partition defining the tournament
limit W ′, it holds that∫

x∈Zi

f ′(x)2 dx = |Zi|
(

1

|Zi|

∫
x′∈Zi

f(x′) dx′
)2

≤
∫
x∈Zi

f(x)2 dx , (5)

where the last line follows from the Cauchy–Schwarz inequality. Summing the
inequalities obtained from applying (5) to each Zi yields (4).

3 Regime of two parts

Our goal in this section is to prove Conjecture 2 in the case that σ3(A) ≥ 1/32, as
well as describe the tournament matrices which achieve equality. We then apply
this result to characterise the extremal tournament limits for Conjecture 3 for
t(C3,W ) ≥ 1/32. Throughout the proof of the next theorem, we will frequently
use the property that the trace of a product of matrices is invariant under “cyclic
permutations”, i.e., Tr (M1M2 · · ·Mk) = Tr (M2 · · ·MkM1).

Theorem 5. Let A be a tournament matrix of order n. If σ3(A) ≥ 1/32, then
σ4(A) ≥ g(σ3(A)) and equality holds if and only if there exists a vector z ∈ Rn

such that Ai,j = 1/2 + zi − zj for i, j ∈ [n].

Proof. Fix a tournament matrix A of order n. Let B = J − 2A. Note that B is
a skew-symmetric matrix, i.e., B = −BT . It follows (see, e.g., [7, p. 293]) that
B can be written as B = ULUT where the columns v1, v2, . . . , vn of U form an
orthonormal basis of Rn and L has the form

L =



0 λ1n 0 0 · · · 0 0
−λ1n 0 0 0 · · · 0 0

0 0 0 λ2n · · · 0 0
0 0 −λ2n 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 λkn
0 0 0 0 · · · −λkn 0


10



if n is even, and

L =



0 λ1n 0 0 · · · 0 0 0
−λ1n 0 0 0 · · · 0 0 0

0 0 0 λ2n · · · 0 0 0
0 0 −λ2n 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 λkn 0
0 0 0 0 · · · −λkn 0 0
0 0 0 0 · · · 0 0 0


otherwise, where k = bn/2c and λ1, . . . , λk are real numbers. (Note that they
are not the eigenvalues of B.) Since replacing v2i−1 and v2i with v2i−1 cos β +
v2i sin β and v2i cos β − v2i−1 sin β, respectively, does not change the matrix B
(this corresponds to rotating the basis inside the plane spanned by v2i−1 and
v2i), we can assume that the vectors v2, v4, . . . , v2k are orthogonal to the vec-

tor ~j. Set αi = cos−1
〈
v2i−1 | n−1/2~j

〉
for i ∈ [k], and additionally set αk+1 =

cos−1
〈
v2k+1 | n−1/2~j

〉
if n is odd.

We next examine TrA3 and TrA4 in terms of J and B. We start with the
trace of A3:

8 TrA3 = Tr(J−B)3 = Tr J3 − 3 Tr J2B + 3 Tr JB2 − TrB3 .

Since both B and B3 are skew-symmetric, it follows that Tr J2B = 0 and TrB3 =
0. We next analyze the term Tr JB2. Since v1, . . . , vn are mutually orthogonal
and v2, v4, . . . , v2k are orthogonal to ~j, we have

Tr JB2 =
1

n
Tr J2B2 =

1

n
Tr JB2J =

1

n
Tr J(ULUT )2J =

1

n
Tr JUL2UTJ

= −n2

k∑
i=1

λ2i

〈
v2i−1 | ~j

〉2
= −n3

k∑
i=1

λ2i cos2 αi .

Hence, we obtain that

8σ3(A) = 1− 3
k∑

i=1

λ2i cos2 αi. (6)

Similarly, we can express the trace of A4 as follows:

16 TrA4 = Tr J4 − 4 Tr J3B + 4 Tr J2B2 + 2 Tr JBJB − 4 Tr JB3 + TrB4 .

Since B and B3 are skew-symmetric, it follows that Tr J3B = 0, Tr JBJB = 0
and Tr JB3 = 0. Also, TrB4 = 2n4

∑k
i=1 λ

4
i by the cyclic property. Consequently,

11



we get that

16σ4(A) = 1− 4
k∑

i=1

λ2i cos2 αi + 2
k∑

i=1

λ4i . (7)

Recall that, if σ3(A) ∈ [1/32, 1/8], then g(σ3(A)) = 1
16

(z4 + (1 − z)4) where
z ∈ [1/2, 1] such that σ3(A) = 1

8
(z3 + (1 − z)3). So, for σ3(A) in the considered

range, we have
8σ3(A) = z3 + (1− z)3 = 1− 3(z − z2) .

By comparing this equation to (6), it must be the case that

z − z2 =
k∑

i=1

λ2i cos2 αi . (8)

It follows that

16g(σ3(A)) = z4 + (1− z)4 = 1− 4z + 6z2 − 4z3 + 2z4

= 1− 4(z − z2) + 2(z − z2)2

= 1− 4
k∑

i=1

λ2i cos2 αi + 2

(
k∑

i=1

λ2i cos2 αi

)2

.

Combining this with (7), we see that the inequality σ4(A) ≥ g(σ3(A)) holds if
and only if

k∑
i=1

λ4i ≥

(
k∑

i=1

λ2i cos2 αi

)2

, (9)

and σ4(A) = g(σ3(A)) if and only if (9) holds with equality.
Since v1, . . . , vn form an orthonormal basis of Rn,

n∑
i=1

〈
vi | n−1/2~j

〉2
=
〈
n−1/2~j | n−1/2~j

〉2
= 1.

Thus,
∑k

i=1 cos2 αi = 1 if n is even and
∑k+1

i=1 cos2 αi = 1 otherwise. In either

case,
∑k

i=1 cos4 αi ≤ 1 and the equality holds if and only if exactly one of the
values of α1, . . . , αk is equal to zero and the remainder are equal to π/2. Since
the Cauchy–Schwarz inequality implies that(

k∑
i=1

λ2i cos2 αi

)2

≤

(
k∑

i=1

λ4i

)
·

(
k∑

i=1

cos4 αi

)
, (10)

we obtain that the inequality (9) indeed holds.
Now, assume that the inequality (9) holds with equality. As we have seen,

this can only occur if exactly one of the αi are zero and the rest are π/2. By

12



symmetry, we can assume that α1 = 0 and αi = π/2 for i > 1. It follows that
λ2 = · · · = λk = 0, and v1 = n−1/2~j. Hence, as B = ULUT , the entry Bi,j is equal
to λ1n

1/2(v2,j − v2,i) for all i, j ∈ [n]. It follows that, for σ3(A) ∈ [1/32, 1/8], if
σ4(A) = g(σ3(A)), then Ai,j = 1/2 + zi − zj where zi = λ1n

1/2v2,i/2. Conversely,
any matrix of this form satisfies (9) with equality and therefore satisfies σ4(A) =
g(σ3(A)).

Reinterpreting Theorem 5 in the language of tournament limits, we obtain
the following corollary.

Corollary 6. Let W be a tournament limit. If t(C3,W ) ≥ 1/32, then t(C4,W ) ≥
g(t(C3,W )) and the equality holds if and only if there exists a measurable function
f : [0, 1] → [0, 1/2] such that W (x, y) = 1/2 + f(x) − f(y) for almost every
(x, y) ∈ [0, 1]2.

Proof. Let (Wk)k∈N be a sequence of refining weak 1/k-regular approximations
of W and let Ak, k ∈ N, be the corresponding tournament matrices. Since
t(C3,W ) ≥ 1/32, it holds that σ3(Ak) = t(C3,Wk) ≥ 1/32 by Proposition 4.
Thus, by Theorem 5, we have that

t(C4,Wk) = σ4(Ak) ≥ g (σ3(Ak)) = g(t(C3,Wk)) .

and so t(C4,W ) ≥ g(t(C3,W )) by the fact that (Wk)k∈N converges to W in L1.
To prove the structure of W in the case of equality, assume that t(C4,W ) =

g(t(C3,W )). Let nk be the order of Ak for k ∈ N, and let λk,1, . . . , λk,bnk/2c,
αk,1, . . . , αk,bnk/2c and Bk be defined as in the proof of Theorem 5 (we may assume
that nk is even and so αk,bnk/2c+1 is not defined). The analysis of the case of
equality in the proof of Theorem 5 implies that

lim
k→∞

λk,1 =

√
1− 8t(C3,W )

3
and lim

k→∞
αk,1 = 0 . (11)

Let {Zk,1, . . . , Zk,nk
} be the partition of the interval [0, 1] corresponding to Wk,

and let wk = (wk,1, . . . , wk,nk
) be the vector v2 as defined in the proof of Theo-

rem 5. Define a function fk : [0, 1]→ R by setting

fk(x) =
λk,1n

1/2
k

2

(
wk,i −

∑nk

i′=1wk,i′

nk

)
where i ∈ [nk] such that x ∈ Zk,i. It follows from (11) that

lim
k→∞

∫
x,y∈[0,1]

|Wk(x, y)− (1/2 + fk(x)− fk(y))| dx dy = 0 . (12)

Also observe that the definition of fk implies that∫
x∈[0,1]

fk(x) = 0 . (13)

13



We next define functions f̃k : [0, 1]→ R by setting

f̃k(x) =
1

|Zk,i|

∫
(x′,y)∈Zk,i×[0,1]

W (x′, y) dx′ dy − 1

2

for x ∈ Zk,i, i ∈ [nk]. Note that

f̃k(x) =

∫
y∈[0,1]

Wk(x, y) dy − 1

2
. (14)

In particular, f̃k(x) ∈ [−1/2, 1/2] for all x ∈ [0, 1]. Observe that the just defined
functions satisfy that ∫

x∈Zk,i

f̃k′(x) dx =

∫
x∈Zk,i

f̃k(x) dx

for every k ∈ N, i ∈ [nk] and k′ ≥ k. In particular, it holds that the sequence
(f̃k)k∈N forms a martingale when viewed as a sequence of random variables on
[0, 1]. So, Doob’s Martingale Convergence Theorem yields that the sequence
(f̃k)k∈N L1-converges to a function f̃ : [0, 1]→ [−1/2, 1/2].

We derive by applying the L1-convergence of (f̃k)k∈N, (14), (13), the triangle
inequality and (12) (in this order) that

lim
k→∞

∫
x∈[0,1]

∣∣∣f̃(x)− fk(x)
∣∣∣ dx = lim

k→∞

∫
x∈[0,1]

∣∣∣f̃k(x)− fk(x)
∣∣∣ dx

= lim
k→∞

∫
x∈[0,1]

∣∣∣∣∫
y∈[0,1]

Wk(x, y) dy − 1/2− fk(x)

∣∣∣∣ dx

= lim
k→∞

∫
x∈[0,1]

∣∣∣∣∫
y∈[0,1]

Wk(x, y)− (1/2 + fk(x)− fk(y)) dy

∣∣∣∣ dx

≤ lim
k→∞

∫
x,y∈[0,1]

|Wk(x, y)− (1/2 + fk(x)− fk(y))| dx dy = 0 .

This implies that the sequence (fk)k∈N also L1-converges to the function f̃ . It
follows from (12) and the L1-convergence of Wk to W that W (x, y) is equal to
1/2 + f̃(x)− f̃(y) for almost every (x, y) ∈ [0, 1]2.

It remains to shift f̃ so that its range lies in [0, 1/2]. Let z0 be the infimum
of those values z such that the measure of f̃−1 ((−∞, z]) is positive, and define a
function f : [0, 1]→ [0, 1/2] as follows:

f(x) =

{
f̃(x)− z0 if f̃(x) ∈ [z0, z0 + 1/2], and

0 otherwise.

Since W (x, y) = 1/2 + f̃(x)− f̃(y) for almost every (x, y) ∈ [0, 1]2 and W (x, y) ∈
[0, 1] for all (x, y) ∈ [0, 1]2, the set of x ∈ [0, 1] such that the second case in
the definition of f(x) applies has measure zero. It follows that W (x, y) = 1/2 +
f(x)− f(y) for almost every (x, y) ∈ [0, 1]2 as desired.
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4 Regime of three parts

Having confirmed Conjecture 1 in the regime of two parts, we now turn towards
the next case, namely 1/72 ≤ σ3(A) ≤ 1/32 (Theorem 11). Indeed, the proof
of Theorem 11 will apply to both regimes, although it does not characterise the
extremal tournaments.

We start with analyzing the following optimization problem, which we refer to
as the problem Spectrum. This optimization problem is obtained from constraints
that (normalized) eigenvalues of a non-negative matrix of order n with trace n/2
must satisfy. We state this formally in Lemma 7, which follows the statement of
the problem.

Optimization problem Spectrum
Parameters: reals s3 ∈ [0, 1/8] and ρ ∈ [0, 1/2]

non-negative integers k and ` such that k + ` ≥ 1
Variables: real numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b`
Constraints: 0 ≤ r1, . . . , rk ≤ ρ

0 ≤ a1, . . . , a`

ρ+
k∑

i=1

ri + 2
∑̀
i=1

ai = 1/2

ρ3 +
k∑

i=1

r3i + 2
∑̀
i=1

(a3i − 3aib
2
i ) = s3

Objective: minimize ρ4 +
k∑

i=1

r4i + 2
∑̀
i=1

(a4i − 6a2i b
2
i + b4i )

Lemma 7. Let A be a tournament matrix of order n with spectral radius equal
to ρ · n. Let k be one less than the number of real eigenvalues of A (count-
ing multiplicities) and ` the number of conjugate pairs of complex eigenvalues
(again counting multiplicities). Further, let ρ ·n, r1 ·n, . . . , rk ·n be the k+ 1 real
eigenvalues and (a1± ιb1)n, . . . , (a`± ιb`)n be the ` pairs of complex eigenvalues.
Then the numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b` satisfy all constraints in the
optimization problem Spectrum for the parameters s3 = σ3(A), ρ, k and `.

Proof. Since ρ ·n is the spectral radius of A, it holds that ri ≤ ρ for every i ∈ [k]
and that ρ · n is an eigenvalue of A by the Perron–Frobenius theorem. Since the
real part of every eigenvalue of A is non-negative by Lemma 2, all r1, . . . , rk and
a1, . . . , a` are non-negative. Since the diagonal entries of A are all 1/2 and trace
of A is equal to the sum of its eigenvalues, we have

ρn+
k∑

i=1

rin+ 2
∑̀
i=1

ain = n/2.

Similarly, the trace of A3 gives us

s3n
3 = σ3(A)n3 = ρ3n3 +

k∑
i=1

r3i n
3 + 2

∑̀
i=1

(
a3i − 3aib

2
i

)
n3.
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Thus, we conclude that the numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b` satisfy all
constraints in the optimization problem Spectrum.

Note that the objective function of Spectrum is precisely σ4(A). Next, we
analyze the structure of optimal solutions of the optimization problem Spectrum.

Lemma 8. Let r1, . . . , rk, a1, . . . , a` and b1, . . . , b` be an optimal solution of the
optimization problem Spectrum with the parameters s3, ρ, k and `. Then, at least
one of the following two cases must hold:

• There exist positive reals r′ and r′′ such that r1, . . . , rk ∈ {0, r′, r′′, ρ},
(a1, b1), . . . , (a`, b`) ∈ {(0, 0), (r′, 0), (r′′, 0)}.

• There exist reals a′ and b′ 6= 0 such that r1, . . . , rk ∈ {0, ρ} and (a1, b1), . . .,
(a`, b`) ∈ {(0, 0), (a′, b′), (a′,−b′)}.

Proof. The method of Lagrange multipliers implies that the gradient of the objec-
tive function is a linear combination of the gradient of the two equality constraints
when restricted to the entries indexed by ri /∈ {0, ρ}, by ai 6= 0 and bi 6= 0, i.e.,
when we are not on the boundary of the feasible set. In particular, the rank of
the matrix M with rows being the described restrictions of the three gradient
vectors is at most two.

We first analyze the case that one of the numbers b1, . . . , b` is non-zero. Our
aim is to show that the second case described in the statement of the lemma
applies. By symmetry, we can assume that b1 6= 0. Also note the following holds
for every i ∈ [`]: if bi 6= 0, then ai 6= 0. Indeed, if ai = 0 and bi 6= 0, then setting
bi = 0 does not affect the constraints and decreases the objective function, which
contradicts that the solution is optimal. It follows that a1 is positive.

Suppose that there exist ri such that 0 < ri < ρ. The restriction of the matrix
M to the columns corresponding to a1, b1 and ri is the following. 2 0 1

6a21 − 6b21 −12a1b1 3r2i
8a31 − 24a1b

2
1 8b31 − 24a21b1 4r3i

 (15)

Dividing the first column by 2 and the second by 4b1, dividing the second row by
3 and the third by 2, and subtracting the last column from the first one yields
the following matrix, which has the same rank. 0 0 1

a21 − b21 − r2i −a1 r2i
2(a31 − 3a1b

2
1 − r3i ) b21 − 3a21 2r3i


This matrix is not full rank if and only if the determinant of its submatrix formed
by the intersection of the second and third rows with the first and second columns,
which is equal to

−(a21 + b21)
2 + (3a21 − b21)r2i − 2a1r

3
i ,
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is zero. However, this determinant can be rewritten as

−(2a1ri + a21 + b21)
(
(ri − a1)2 + b21

)
,

which is negative since a1 > 0 and b1 6= 0. It follows that ri ∈ {0, ρ} for all
i ∈ [k].

Further suppose that there exists an index i ∈ [`] for which it holds (ai, bi) /∈
{(0, 0), (a1, b1), (a1,−b1)}. If bi = 0, then the restriction of the matrix M to
the columns corresponding to a1, b1 and ai is the same as the restriction of the
matrix M considered in the previous paragraph with ri replaced by ai and the
corresponding column multiplied by two. In particular, the restriction cannot
have rank two in this case. Hence, we can assume that bi 6= 0 and so ai > 0 (the
argument is the same as when we argued that a1 > 0). The restriction of the
matrix M to the columns corresponding to a1, b1, ai and bi is the following. 2 0 2 0

6a21 − 6b21 −12a1b1 6a2i − 6b2i −12aibi
8a31 − 24a1b

2
1 8b31 − 24a21b1 8a3i − 24aib

2
i 8b3i − 24a2i bi


The rank of this matrix is the same as the rank of the following matrix (the rows
are multiplied by 1/2, 1/6 and 1/4, the columns by 1, −a1/2b1, 1 and −ai/2bi,
respectively).  1 0 1 0

a21 − b21 a21 a2i − b2i a2i
2a31 − 6a1b

2
1 3a31 − a1b21 2a3i − 6aib

2
i 3a3i − aib2i


By subtracting twice the second column from the first column and twice the
fourth column from the third column, we obtain the following matrix. 1 0 1 0

−(a21 + b21) a21 −(a2i + b2i ) a2i
−4a1(a

2
1 + b21) 3a31 − a1b21 −4ai(a

2
i + b2i ) 3a3i − aib2i


Since the last row of the matrix is a linear combination of the previous two rows
(the operation that we have performed so far has preserved this property of the
matrix M), it follows that

3a21 − b21
a1

=
3a2i − b2i

ai
(16)

We now subtract the second row multiplied by the value given in (16) from the
third row and obtain the following matrix, which has the rank two. 1 0 1 0

−(a21 + b21) a21 −(a2i + b2i ) a2i
−(a21 + b21)

2/a1 0 −(a2i + b2i )
2/ai 0


17



It follows that
(a21 + b21)

2

a1
=

(a2i + b2i )
2

ai
,

which yields that

b2i = −a2i +

√
ai
a1

(a21 + b21) . (17)

On the other hand, we derive from (16) that

b2i = 3a2i −
ai
a1

(
3a21 − b21

)
. (18)

We obtain by comparing (17) and (18) the following.

0 = 4a2i −
ai
a1

(
3a21 − b21

)
−
√
ai
a1

(a21 + b21)

=
√
ai(
√
ai −

√
a1)

(
4ai + 4

√
a1ai +

a21 + b21
a1

)
Since both a1 and ai are positive, this expression can be equal to zero only if
ai = a1. Consequently, the equality (17) implies that bi = b1 or bi = −b1, which
contradicts the choice of (ai, bi). Hence, we have established that if at least one
of b1, . . . , b` is non-zero, then the second case indeed applies.

We now consider the case that b1 = · · · = b` = 0. Suppose that the first
case in the statement of the lemma does not apply. This implies that there
exist three distinct positive reals α, β and γ such that at least one of the values
r1, . . . , rk, a1, . . . , a` is α, at least one is β and at least one is γ. Consequently, the
matrix M contains the following submatrix possibly after dividing some columns
by two (the columns correspond to those of the variables r1, . . . , rk, a1, . . . , a` that
are equal to α, β and γ, respectively; the columns corresponding to the variables
a1, . . . , a` are divided by two).  1 1 1

3α2 3β2 3γ2

4α3 4β3 4γ3


The determinant of this matrix is equal to

12(α2β3 + β2γ3 + γ2α3 − α2γ3 − β2α3 − γ2β3) ,

which is equal to

12(α− β)(β − γ)(γ − α)(αβ + αγ + βγ) .

Since this expression is non-zero for all distinct positive reals α, β and γ, we
conclude that the rank of M is three, which contradicts our assumption that the
first case as described in the statement of the lemma does not apply.
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Before we can prove the main result of this section, we need two additional
auxiliary lemmas.

Lemma 9. Let z ∈ (0, 1], and let x1, . . . , xn be non-negative reals such that
x1 + · · ·+ xn = 1/2 and xi ≤ z for every i ∈ [n]. Then it holds that

n∑
i=1

x3i ≤ bz−1/2c · z3 + (1/2− bz−1/2c · z)3,

and the equality holds if and only if all but at most one of x1, . . . , xn are equal to
0 or z.

Proof. Consider any n-tuple x1, . . . , xn that maximizes the sum x31 + · · · + x3n
among all n-tuples of non-negative reals x1, . . . , xn such that x1 + · · ·+ xn = 1/2
and xi ≤ z, i ∈ [n]. If xi ∈ {0, z} for all but at most one i ∈ [n], then the sum
of x31 + · · ·+ x3n is equal to

∑n
i=1 x

3
i ≤ bz−1/2c · z3 + (1/2− bz−1/2c · z)3 and the

lemma holds. Otherwise, there exist xi and xj such that 0 < xi ≤ xj < z. Choose
ε > 0 such that ε < xi and ε < z − xj, and replace xi with xi − ε and xj with
xj + ε. This preserves the sum x1 + · · ·+ xn and increases the sum x31 + · · ·+ x3n,
which contradicts the choice of the n-tuple x1, . . . , xn.

Linial and Morgenstern [9] proved that, among the random blow-ups of tran-
sitive tournaments with the fixed density of C3, the density of C4 is minimized
if all parts have the same size except possibly for a single smaller part. This
statement is equivalent to the following.

Lemma 10 (Linial and Morgenstern [9, Lemma 2.7]). Let x1, . . . , xn be any non-
negative reals such that their sum is 1/2. It holds that

x41 + · · ·+ x4n ≥ g(x31 + · · ·+ x3n) .

We are now ready to prove the main result of this section.

Theorem 11. Let A be a tournament matrix of order n. If σ3(A) ≥ 1/72, then
σ4(A) ≥ g(σ3(A)).

Proof. Let s3 = σ3(A). We start with lower bounding the spectral radius of A.
Let λ1, . . . , λn be the eigenvalues of A. By Lemma 2, the real parts of all the
eigenvalues are non-negative, which implies that

s3 =
n∑

i=1

(
λi
n

)3

≤
n∑

i=1

(
Reλi
n

)3

.

By Lemma 9, the last sum is at most

bρ−1A /2c · ρ3A + (1/2− bρ−1A /2c · ρA)3
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where ρA is the spectral radius of A divided by n. Consequently, ρA is at least z
where z is the unique real between 0 and 1/2 satisfying that

s3 = bz−1/2c · z3 + (1/2− bz−1/2c · z)3 .

Note that z ≥ 1/6 since s3 ≥ 1/72.
Lemma 7 now yields that the theorem will be proven if we show that the

optimal solution of the problem Spectrum is at least g(s3) for s3, any ρ ≥ z
and all non-negative integers k and `. By Lemma 8, this would be implied by
the following two claims, which correspond to the two cases described in the
statement of Lemma 8.

Claim 1. If r1, . . . , rk are any positive real numbers that have at most three
distinct values and that satisfy r1 + · · · + rk = 1/2 and r31 + · · · + r3k = s3,
then r41 + · · ·+ r4k ≥ g(s3).

Claim 2. If m and m′ are positive integers, ρ ≥ z, a is a non-negative real and
b is a real such that mρ+ 2m′a = 1/2 and mρ3 + 2m′(a3− 3ab2) = s3, then
mρ4 + 2m′(a4 − 6a2b2 + b4) ≥ g(s3).

Claim 1 follows from Lemma 10 (even without the restriction on the number of
the distinct values that r1, . . . , rk may have). So, we focus on proving Claim 2 in
the remainder of the proof. Note that it holds that m ∈ {1, 2} in this case since
ρ ≥ z ≥ 1/6.

To prove Claim 2, we fix m and m′ and consider the following optimization
problem: minimize the sum mρ4+2m′(a4−6a2b2+b4) subject to mρ+2m′a = 1/2,
mρ3+2m′(a3−3ab2) = s3, ρ ≥ z and a ≥ 0. The method of Langrange multipliers
implies that the following matrix is not full rank m 2m′ 0

3mρ2 6m′a2 − 6m′b2 −12m′ab
4mρ3 8m′a3 − 24m′ab2 8m′b3 − 24m′a2b

 (19)

for the values of ρ, a and b that minimize the sum unless ρ = z or a = 0.
However, dividing the first column by m and the remaining two by m′, permuting
the columns and renaming the variables yields the same matrix as in (15), which
we have analyzed in the proof of Lemma 8. In particular, the matrix in (19)
has full rank unless a = 0 or (possibly) b = 0. We conclude that the expression
mρ4 + 2(a4 − 6a2b2 + b4) is minimized when at least one of the following holds:
ρ = z, a = 0 or b = 0. We next analyze these three cases.

The case ρ = z. In this case, Lemma 9 implies that mρ3 + 2m′a3 < s3 unless
a ≥ ρ, i.e., there is no such feasible solution unless a ≥ ρ. If indeed a ≥ ρ,
then since mρ + 2m′ρ = 1/2 and ρ ≥ 1/6, it must be that m = m′ = 1,
ρ = a = 1/6, s3 = 1/72 and b = 0, in which case mρ4+2m′(a4−6a2b2+b4) =
1/432 = g(s3).
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The case a = 0. If a = 0, then, as noted in the proof of Lemma 8, setting b = 0
does not affect the constraints, but does decrease the objective function.
Hence this case reduces to the final case b = 0.

The case b = 0. If b = 0, then using Lemma 10 we get that mρ4 + 2m′a4 ≥
g(mρ3 + 2m′a3) = g(s3).

Hence, we have shown that mρ4 + 2m′(a4 − 6a2b2 + b4) ≥ g(s3) for all ρ, a and b
such that mρ + 2m′a = 1/2, mρ3 + 2m′(a3 − 3ab2) = s3, ρ ≥ z and a ≥ 0. The
proof of Claim 2 is now finished and so is the proof of the theorem.

Proposition 3 yields the following corollary in the tournament limit setting.

Corollary 12. Let W be a tournament limit. If t(C3,W ) ≥ 1/72, then it holds
that t(C4,W ) ≥ g(t(C3,W )).

5 Concluding remarks

Unfortunately, the proof of Theorem 11 does not immediately work in higher
regimes because, in the case of four or more parts, the solution to the optimiza-
tion problem Spectrum beats the conjectured minimum. Of course, as solutions
need not be realizable as the eigenvalues of a tournament matrix, this does not
invalidate Conjecture 1. It is possible that the current method can be pushed
further by introducing to the optimization problem additional constraints that
reflect the properties that eigenvalues of tournament matrices must satisfy.

Meanwhile, in the regime of two parts, we have been able to fully determine the
asymptotic structure of extremal examples. These constructions can be extended
to the remaining regimes as follows. Fix k ∈ N, z ∈ [1/(k + 1), 1/k] and i, i′ ∈
[k + 1] such that |i − i′| = 1. We construct a tournament T with n vertices
as follows. The vertices of T are split into k + 1 parts V1, . . . , Vk+1 such that
|Vi| = n − kbznc and |Vj| = bznc if j 6= i. If two vertices v and v′ respectively
belong to distinct parts Vj and Vj′ with j < j′ and {j, j′} 6= {i, i′}, then the
tournament T contains an arc from v to v′. If, instead, v and v′ belong to the
same part Vj, where j 6∈ {i, i′}, then the edge between v and v′ is oriented from v
to v′ with probability 1/2, i.e., the vertices of every such part induce a randomly
oriented tournament. Finally, each vertex v ∈ Vi ∪ Vi′ is assigned a real number
pv ∈ [0, 1/2] and the edge between v and v′ ∈ Vi∪Vi′ is directed from v to v′ with
probability 1/2 + pv − pv′ . If the expected number of triangles in T is equal to
1
8

(
kbznc3 + (n− kbznc)3

)
, then the expected value of the density t(C4, T ) is

g

(
1

8

(
kbznc3 + (n− kbznc)3

))
+ o(1)

and both of these random variables are concentrated. In particular, unless z−1 is a
positive integer, there are infinitely many different types of extremal tournaments.
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As discussed in the introduction, we believe this is the reason why the problem
is resistant to the standard flag algebra techniques.

It is also interesting to note that the problem of determining the set of feasible
densities of cycles of length three and four is equivalent to the analogous problems
for transitive tournaments of order three and four and for the cycle and transitive
tournament of order four [9, Proposition 1.1]. To see this, let Tk be the transitive
tournament of order k and let t(Tk, T ) be the probability that a random mapping
from V (Tk) to V (T ) is a homomorphism. The following holds for every n-vertex
tournament T :

8t(C3, T ) + 24t(T4, T )− 6t(C4, T ) = 1−O(n−1).

Thus, the problem of minimizing the density of C4 when the density of C3 is fixed
is equivalent to minimizing the density of T4 when the density of T3 is fixed, and
also equivalent to minimizing the density of C4 when T4 is fixed, in the sense that
a complete solution to any of these three problems yield complete solutions to
the remaining two.
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