ARC-TRANSITIVE CAYLEY GRAPHS ON NONABELIAN SIMPLE GROUPS WITH PRIME VALENCY

FU-GANG YIN, YAN-QUAN FENG, JIN-XIN ZHOU, SHAN-SHAN CHEN

ABSTRACT. In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency d, where either $d \leq 20$ or d is a prime number. The only case for which the complete solution of this problem is known is of d = 3. Except this, a lot of efforts have been made to attack this problem by considering the following problem: Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $d \geq 4$. Even for this problem, it was only solved for the cases when either $d \leq 5$ or d = 7 and the vertex stabilizer is solvable. In this paper, we make crucial progress towards the above problems by completely solving the second problem for the case when $d \geq 11$ is a prime and the vertex stabilizer is solvable.

KEYWORDS. Cayley graph, simple group, arc-transitive graph.

1. INTRODUCTION

Throughout this paper, graphs are assumed to be finite undirected graphs without loops and multiple edges, and groups are assumed to be finite. Let G be a permutation group on a set Ω , and let $\alpha \in \Omega$. Denote by G_{α} the stabiliser of α in G, that is, the subgroup of G fixing the point α . The group G is semiregular if $G_{\alpha} = 1$ for every $\alpha \in \Omega$, and regular if G is transitive and semiregular.

For a graph Γ , denote by $V(\Gamma)$, $E(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ its vertex set, edge set and full automorphism group, respectively. For a vertex $v \in V(\Gamma)$, let $\Gamma(v)$ be the neighbourhood of v in Γ . An *s*-arc in Γ is an ordered (s + 1)-tuple $(v_0, v_1, ..., v_s)$ of vertices of Γ such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i < s$. A graph Γ , with $G \leq \operatorname{Aut}(\Gamma)$, is said to be (G, s)-arc-transitive or G-regular if G is transitive on the *s*-arc set of Γ or G is regular on the vertex set $V(\Gamma)$ of Γ , respectively. For short, a 1-arc means an arc, and (G, 1)-arc-transitive means G-arc-transitive. If a graph Γ is G-regular, then Γ is also called a Cayley graph of G, and the Cayley graph is normal if G is normal in $\operatorname{Aut}(\Gamma)$. A graph Γ is said to be *s*-arc-transitive if it is $(\operatorname{Aut}(\Gamma), s)$ arc-transitive. In particular, 0-arc-transitive is vertex-transitive, and 1-arc-transitive is arc-transitive or symmetric.

A fair amount of work have been done on symmetric Cayley graphs on non-abeian simple groups in the literature. One of the remarkable achievements in this research field is the complete classification of cubic non-normal symmetric Cayley graphs of nonabelian simple groups, and it turns out that up to isomorphism, there are only two cubic non-normal symmetric Cayley graphs of non-abelian simple groups which are both cubic

¹⁹⁹¹ Mathematics Subject Classification. 05C25, 20B25.

This work was supported by the National Natural Science Foundation of China (11731002,11671030) and by the 111 Project of China (B16002).

5-arc-transitive Cayley graphs on A_{47} (see [14, 26, 25]). Recall that a graph Γ is called locally primitive if for any $v \in V(\Gamma)$, the stabilizer $\operatorname{Aut}(\Gamma)_v$ of v in $\operatorname{Aut}(\Gamma)$ is primitive on $\Gamma(v)$. In view of the fact that every cubic symmetric graph is locally primitive, a natural question arises: What can we say about locally primitive non-normal symmetric Cayley graphs of non-abelian simple groups?

On locally primitive graphs, Weiss [23] conjectured that there is a function f defined on the positive integers such that, whenever Γ is a G-vertex-transitive locally primitive graph of valency d with $G \leq \operatorname{Aut}(\Gamma)$ then, for any vertex $v \in V(\Gamma)$, $|G_v| \leq f(d)$. By Conder et al. [1], Weiss conjecture is true for vertex-transitive locally primitive d-valent graphs if $d \leq 20$ or d is a prime number, and by Spiga [21], Weiss conjecture is also true if the restriction $G^{\Gamma(v)}$ of G on $\Gamma(v)$ contains an abelian regular subgroup, that is, of affine type. In 2007, Fang et al. [8, Theorem 1.1] shown that for any valency d for which the Weiss conjecture holds, all but finitely many locally primitive Cayley graphs of valency d on the finite nonabelian simple groups are normal, and based on this, the following problem was proposed:

Problem 1.1. [8, Problem 1.2] Classify non-normal locally primitive Cayley graphs of finite simple groups of valency d, where either $d \leq 20$ or d is a prime number.

As mentioned above, this problem has been completely solved by Li *et al.* for the case when d = 3. For the case when $d \ge 4$, however, it is quite difficult to give a complete solution of Problem 1.1. Because of this, researchers have focused on the following slightly easier problem.

Problem 1.2. Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $d \ge 4$.

Clearly, a tetravalent graph is locally primitive if and only if the graph is 2-arctransitive. In 2004, Fang *et al* [7] proved that except 22 groups given in [7, Table 1], every tetravalent 2-arc-transitive Cayley graph Γ of a non-abelian simple group G is normal, and based on this, in 2018, Du and Feng [5] proved that there are exactly 7 non-abelian simple groups which admit at least one non-normal 2-arc-transitive Cayley graph, thus giving a complete solution of Problem 1.2 for the case when d = 4.

There are also some partial solutions of Problem 1.2 for the case when d is a prime number. It is easy to see that a graph with prime valency is locally primitive if and only if it is symmetric. Fang *et al* in [8] constructed an infinite family of *p*-valent non-normal symmetric Cayley graphs of the alternating groups for all prime $p \ge 5$, and using a result in [9] on the automorphism groups of Cayley graphs of non-abelian simple groups, they also gave all possible candidates of finite nonabelian simple groups which might have a pentavalent non-normal symmetric Cayley graph. This was recently improved by Du *et al* [6] by proving that there are only 13 finite nonabelian simple groups which admit a pentavalent non-normal symmetric Cayley graph.

More recently, Pan *et al* [17] considered Problem 1.2 for the case when d = 7, and they proved that for a 7-valent Cayley graph Γ of a non-abelian simple group G with solvable vertex stabilizer, either Γ is normal, or $\operatorname{Aut}(\Gamma)$ has a normal arc-transitive nonabelian simple subgroup T such that G < T and $(G, T) = (\mathsf{A}_6, \mathsf{A}_7)$, $(\mathsf{A}_{20}, \mathsf{A}_{21})$, $(\mathsf{A}_{62}, \mathsf{A}_{63})$ or $(\mathsf{A}_{83}, \mathsf{A}_{84})$, and for each of these 4 pairs (G, T), there do exist a 7-valent G-regular T-arc-transitive graph. In this paper, we shall prove the following theorem which generalizes the result in [17] to all prime valent cases, and hence gives a solution of Problem 1.2 for the case when d is a prime and the vertex-stabilizer is solvable.

Theorem 1.3. Let G be a non-abelian simple group and Γ a connected arc-transitive Cayley graph of G with prime valency $p \geq 11$. If $\operatorname{Aut}(\Gamma)_v$ is solvable for $v \in V(\Gamma)$, then either $G \leq \operatorname{Aut}(\Gamma)$, or $\operatorname{Aut}(\Gamma)$ has a normal subgroup T with G < T such that Γ is T-arc-transitive and (G, T, p) is one of the following four triples:

$$(\mathsf{A}_5, \mathsf{PSL}(2, 11), 11), (\mathsf{A}_5, \mathsf{PSL}(2, 29), 29), (\mathsf{M}_{22}, \mathsf{M}_{23}, 23), (\mathsf{A}_{n-1}, \mathsf{A}_n, p),$$

where $n = pk\ell$ with $k \mid \ell$ and $\ell \mid (p-1)$, and k and ℓ have the same parity.

Conversely, we show that all the first three triples as well as the fourth triple in case of n = p can happen.

Theorem 1.4. Use the same notation as Theorem 1.3. If (G, T, p) is one of the following triples:

 $(A_5, PSL(2, 11), 11), (A_5, PSL(2, 29), 29), (M_{22}, M_{23}, 23), (A_{p-1}, A_p, p),$

then there exists a p-valent symmetric Cayley graph Γ of G such that $\operatorname{Aut}(\Gamma)_v$ is solvable for some $v \in V(\Gamma)$.

Let p be a prime and ℓ, k integers with $k \mid \ell$ and $\ell \mid (p-1)$ such that k and ℓ have the same parity. The triple (p, ℓ, k) is called *conceivable* if there exists an arc-transitive Cayley graph of the alternating group $A_{pk\ell-1}$ with valency p and its automorphism group has solvable vertex stabilizer. We have been unable to determine all the conceivable triples (p, ℓ, k) , and we would like to leave it as an open problem for future research.

Problem 1.5. Determine conceivable triples (p, ℓ, k) .

By Theorem 1.4, (p, 1, 1) is conceivable for each prime $p \ge 5$, and by [6], (5, 4, 2) is conceivable, but not (5, 2, 2). For the case p = 7, it was shown in [17] that (7, 1, 1), (7, 3, 1), (7, 3, 3) and (7, 6, 2) are the only conceivable triples.

The paper is organized as follows. In Section 2 we introduce some preliminary results on nonabelian simple groups and arc-transitive graphs with prime valency. Then we prove Theorem 1.3 in Section 3 and Theorem 1.4 in Section 4.

2. Preliminary

In this section, we introduce some preliminary results that will be used latter.

For a positive integer n, we use \mathbb{Z}_n to denote the cyclic group of order n. For a group G and a subgroup H of G, denote by $N_G(H)$ and $C_G(H)$ the normalizer and the centralizer of H in G respectively. Given two groups N and H, denote by $N \times H$ the direct product of N and H, by N.H an extension of N by H, and if such an extension is split, then we write N : H instead of N.H.

The following proposition is an exercise in Dixon and Mortimer's textbook [4, p.49].

Proposition 2.1. Let n be a positive integer and p a prime. Let $p^{\nu(n)}$ be the largest power of p which divides n!. Then $\nu(n) = \sum_{i=1} \lfloor \frac{n}{p^i} \rfloor < \frac{n}{p-1}$.

The next proposition is called the *Frattini argument* on transitive permutation group, and we refer to [4, p.9].

Proposition 2.2. Let G be a transitive permutation group on Ω , H a subgroup of G and $v \in \Omega$. Then H is transitive if and only if $G = HG_v$.

We denote by $\operatorname{Aut}(G)$ the automorphism group of a group G, and by $\operatorname{Inn}(G)$ the inner automorphism group of G consisting of these automorphisms of G induced by all element of G by conjugation on G. Then $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$, and the quotient group $\operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the *outer automorphism* of G, denoted by $\operatorname{Out}(G)$. The following proposition is a direct consequence of the classification of finite simple groups (see [13, Table 5.1.A-C] for example).

Proposition 2.3. Let T be a finite non-abelian simple group. Then Out(T) is solvable.

Let G and E be two groups. We call an extension E of G by N a central extension of G if E has a central subgroup N such that $E/N \cong G$, and if further E is perfect, that is, the derived group E' equals to E, we call E a covering group of G. A covering group E of G is called a *double cover* if |E| = 2|G|. Schur [20] proved that for every non-abelian simple group G there is a unique maximal covering group M such that every covering group of G is a factor group of M (see [12, Kapitel V, S23]). This group M is called the *full covering group* of G, and the center of M is the Schur multiplier of G, denoted by Mult(G). By Kleidman and Liebeck [13, Theorem 5.1.4] and Du *et al* [6, Proposition 2.6], we have the following proposition.

Proposition 2.4. $\text{Mult}(A_n) = \mathbb{Z}_2$ with $n \ge 8$. For $n \ge 5$, A_n has a unique double cover 2. A_n , and for $n \ge 7$, all subgroups of index n of 2. A_n are isomorphic to 2. A_{n-1} .

By Kleidman and Liebeck [13, Proposition 5.3.7], we have the following proposition.

Proposition 2.5. Let r be a prime power and f a positive integer. If $A_n \leq GL(f,r)$ with $n \geq 9$, then $f \geq n-2$.

Let Γ be a connected graph and G a group of automorphisms of Γ . For $v \in V(\Gamma)$, denote by $G_v^{\Gamma(v)}$ the induced permutation group of the natural action of G_v on the neighbourhood $\Gamma(v)$. Let G_v^* be the subgroup of G_v fixing every vertex in $\Gamma(v)$. Then G_v^* is the kernel of the natural action of G_v on $\Gamma(v)$, and hence $G_v/G_v^* \cong G_v^{\Gamma(v)}$. By the connectivity of Γ , there exists a path $v = v_0, v_1, v_2, \cdots, v_m$ such that $G_{v_0v_1\cdots v_m}^* :=$ $G_{v_0}^* \cap G_{v_1}^* \cap \cdots \cap G_{v_m}^* = 1$. Clearly,

$$1 = G^*_{v_0v_1\cdots v_m} \trianglelefteq G^*_{v_0v_1\cdots v_{m-1}} \trianglelefteq \cdots \trianglelefteq G^*_{v_0v_1} \trianglelefteq G^*_{v_0} = G^*_v \trianglelefteq G_v,$$

and for $0 \leq i < m$, we have $G^*_{v_0v_1\cdots v_i}/G^*_{v_0v_1\cdots v_{i+1}} \cong (G^*_{v_0v_1\cdots v_i})^{\Gamma(v_{i+1})}$. Then we can easily obtain the following proposition, and this was known from a series of lectures given by Cai Heng Li in Peking University in 2013.

Proposition 2.6. Let Γ be a connected graph and let G be a vertex-transitive group of automorphisms of Γ . Then G_v is nonsolvable if and only if $G_v^{\Gamma(v)}$ is nonsolvable.

For self-containing, we give a short proof of the following proposition, which is mainly owed to an anonymous referee (also see [11] for another proof).

Proposition 2.7. Let Γ be a connected *G*-arc-transitive graph of prime valency $p \geq 5$, and let (u, v) be an arc of Γ . Assume that G_v is solvable. Then $G_{uv}^* = 1$ and $G_v \cong \mathbb{Z}_k \times (\mathbb{Z}_p : \mathbb{Z}_\ell)$ with $k \mid \ell \mid (p-1)$, where $\mathbb{Z}_p : \mathbb{Z}_\ell \leq \mathsf{AGL}(1, p)$. Proof. It follows from [23] that $G_{uv}^* = 1$. Let P be a Sylow p-subgroup of G_v . Note that $G_v^{\Gamma(v)}$ is a transitive solvable group of prime degree. By the Burnside Theorem (also see [4, Theorem 3.5B]), $G_v/G_v^* \cong G_v^{\Gamma(v)} \cong \mathbb{Z}_p : \mathbb{Z}_\ell \leq \mathsf{AGL}(1,p)$ with $\ell \mid (p-1)$ and $G_{uv}/G_v^* \cong \mathbb{Z}_\ell$. In particular, $PG_v^*/G_v^* \leq G_v/G_v^*$, and so $PG_v^* \leq G_v$. Since $G_u^* = G_u^*/G_{uv}^* = G_u^*/(G_u^* \cap G_v^*) \cong G_u^*G_v^*/G_v^* \leq G_{uv}/G_v^* \cong \mathbb{Z}_\ell$, we have $G_v^* \cong \mathbb{Z}_k$ with $k \mid \ell$, and then $|G_v| = pk\ell$ with $k \mid \ell \mid (p-1)$. Since $G_{uv} = G_{uv}/G_{uv}^* = G_{uv}/(G_u^* \cap G_v^*) \cong \mathbb{Z}_\ell$. Then $\langle a \rangle \cong \mathbb{Z}_\ell$ and $\langle a \rangle \cap G_v^* = 1$. It follows that $G_{uv} = \langle a \rangle \times G_v^*$.

Since $|G_v^*| = \ell | (p-1)$, PG_v^* has a unique Sylow *p*-subgroup *P* and hence $PG_v^* = P \times G_v^*$. Then *P* is characteristic in PG_v^* , and since $PG_v^* \trianglelefteq G_v$, we have $P \trianglelefteq G_v$. It follows that $G_v = P : G_{uv} = P : (\langle a \rangle \times G_v^*) = G_v^* \times (P : \langle a \rangle) \cong \mathbb{Z}_k \times (\mathbb{Z}_p : \mathbb{Z}_\ell)$. \Box

Taking normal quotient graphs is a useful method for studying arc-transitive graphs. Let Γ be an X-vertex-transitive graph, where $X \leq \operatorname{Aut}(\Gamma)$ has an intransitive normal subgroup N. The normal quotient graph Γ_N of Γ induced by N is defined to be a graph with vertex set $\{\alpha^N \mid \alpha \in V(\Gamma)\}$, the set of all N-orbits on $V(\Gamma)$, such that two vertices $B, C \in \{\alpha^N \mid \alpha \in V(\Gamma)\}$ are adjacent if and only if some vertex in B is adjacent in Γ to some vertex in C. If Γ and Γ_N have the same valency, then Γ is called a normal cover of Γ_N . The following proposition is a special case of [15, Lemma 2.5], which slightly improves a remarkable result of Praeger [18, Theorem 4.1].

Proposition 2.8. Let Γ be a connected X-arc-transitive graph of prime valency, with $X \leq \operatorname{Aut}(\Gamma)$, and let $N \leq X$ have at least three orbits on $V(\Gamma)$. Then the following statements hold.

- (1) N is semi-regular on $V(\Gamma)$, $X/N \leq \operatorname{Aut}(\Gamma_N)$, Γ_N is a connected X/N-arctransitive graph, and Γ is a normal cover of Γ_N .
- (2) $X_v \cong (X/N)_{\Delta}$ for any $v \in V(\Gamma)$ and $\Delta \in V(\Gamma_N)$.

3. Proof of Theorem 1.3

Throughout this section we make the following assumption.

Assumption: Γ is a symmetric graph of prime valency $p \ge 11$ with $v \in V(\Gamma)$, $\operatorname{Aut}(\Gamma)_v$ is solvable, and $G \le \operatorname{Aut}(\Gamma)$ is a non-abelian simple group and transitive on $V(\Gamma)$.

The proof of the following lemma is straightforward, but will be used frequently latter.

Lemma 3.1. Let X = H : K be a transitive permutation group on Ω . Let $w \in \Omega$. If H is transitive, then K is isomorphic to X_w/H_w .

Proof. Since H is transitive, $X = HX_w$ by Proposition 2.2. So $K \cong X/H = HX_w/H \cong X_w/(X_w \cap H) = X_w/H_w$.

The product of all minimal normal subgroups of a group X is called the *socle* of X, denoted by soc(X), and the largest normal solvable subgroup of X is called the *radical* of X, denoted by rad(X).

Lemma 3.2. Let G, Γ , p and v be as given in Assumption. Let Γ be X-arc-transitive with $G \leq X \leq \operatorname{Aut}(\Gamma)$, and let $\operatorname{rad}(X) = 1$. Then either $\operatorname{soc}(X) = G$, or Γ is $\operatorname{soc}(X)$ -arc-transitive with $G < \operatorname{soc}(X)$ and one of the following holds:

- (1) $(G, \operatorname{soc}(X)) = (A_{n-1}, A_n)$ with $n \ge 6$, and $(\operatorname{soc}(X))_v$ is transitive on $\{1, 2, \dots, n\}$.
- (2) $(G, \operatorname{soc}(X)) = (\mathsf{M}_{22}, \mathsf{M}_{23}), and (\operatorname{soc}(X))_v = \mathbb{Z}_{23}.$
- (3) $(G, \operatorname{soc}(X)) = (A_5, \mathsf{PSL}(2, 11)), and (\operatorname{soc}(X))_v = \mathbb{Z}_{11}.$
- (4) $(G, \operatorname{soc}(X)) = (\mathsf{A}_5, \mathsf{PSL}(2, 29)), and (\operatorname{soc}(X))_v = \mathbb{Z}_{29} : \mathbb{Z}_7.$

In particular, Γ is a Cayley graph of G for cases (2)-(4).

Proof. Let N be a minimal normal subgroup of X. Since rad(X) = 1, we have $N = T_1 \times \cdots \times T_d \cong T^d$ for a non-abelian simple group T. Write K = NG.

Assume that $G \leq X$. If $N \cap G = 1$, applying Lemma 3.1 with K = G : N we have that $N \cong (K)_v/G_v$ is solvable, a contradiction. Therefore, $N \cap G \neq 1$, forcing $G \leq N$, and since G is normal, the minimality of N implies N = G. By the arbitrariness of N, we have $\operatorname{soc}(X) = G$.

In what follows we assume that $G \not\leq X$. If Γ is bipartite, then the transitivity of G on $V(\Gamma)$ implies that G has a normal subgroup of index 2, contradicting the simplicity of G. Thus, Γ is not bipartite. Therefore N has either one or at least three orbits on $V(\Gamma)$. We claim that the latter cannot occur.

We argue by contradiction and we suppose that N has at least three orbits on $V(\Gamma)$. By Proposition 2.8, N is semiregular on $V(\Gamma)$, and so $|N| = |T|^d$ is a divisor of $|V(\Gamma)|$. In particular, $|N| \mid |G|$. Since N has at least three orbits, $|G| \ge 3|N|$ and hence $N \cap G = 1$.

Consider the conjugate action of G on N, and since G is simple, the action is trivial or faithful. If it is trivial then $K = N \times G$, and by Lemma 3.1, $N \cong K_v/G_v$ is solvable, a contradiction. It follows that the conjugate action of G on N is faithful, and hence we may assume $G \leq \operatorname{Aut}(N)$.

Note that $\operatorname{Aut}(N) \cong \operatorname{Aut}(T)^d : S_d$. Set $M = \operatorname{Aut}(T)^d$ and $M_1 = \operatorname{Inn}(N) \cong T^d$. Then $|M_1| = |N|, M_1 \trianglelefteq M, M \trianglelefteq \operatorname{Aut}(N)$ and $M_1 \trianglelefteq \operatorname{Aut}(N)$. Clearly, $G \cap M_1 = 1$ as $|G| \ge 3|N| = 3|M_1|$. If $G \cap M \neq 1$ then $G \le M$ and hence $G \cong G/(G \cap M_1) \cong GM_1/M_1 \le M/M_1 \cong \operatorname{Out}(T)^d$, which is impossible because $\operatorname{Out}(T)$ is solvable by Propostion 2.3. This means that $G \cap M = 1$, and therefore, $G \cong G/(G \cap M) \cong GM/M \le \operatorname{Aut}(N)/M \cong S_d$. Recall that $|N| = |T|^d$ and $|N| \mid |G|$. Then for any prime p with $p \mid |T|$, we have $p^d \mid d!$, and by Proposition 2.1, $d < \frac{d}{p-1}$, a contradiction.

We have just shown that N has one orbit, that is, N is transitive on $V(\Gamma)$. If $N \cap G = 1$, Lemma 3.1 implies that $G \cong K_v/N_v$ is solvable, a contradiction. Therefore, $G \leq N$, and by the arbitrariness of N, X has only one minimal normal subgroup, that is, $\operatorname{soc}(X) = N$.

Since G is not normal in X, we have G < N, and hence $N_v \neq 1$ as Γ is G-vertextransitive. Clearly, we may chose v such that $N_v^{\Gamma(v)} \neq 1$. Since Γ has prime valency and $N_v^{\Gamma(v)} \leq X_v^{\Gamma(v)}$, $N_v^{\Gamma(v)}$ is transitive on $\Gamma(v)$, that is, Γ is N-arc-transitive.

Recall that $N = T_1 \times T_2 \times \cdots \times T_d \cong T^d$. Suppose $d \ge 2$. If T_1 is transitive, then by Lemma 3.1, $T_2 \times \cdots \times T_d \cong N_v/(T_1)_v$ is solvable, a contradiction. Thus, T_1 has at least three orbits, and hence $|G| \ge 3|T_1|$. In particular, $G \cap T_1 = 1$. By the simplicity of G, the conjugate action of G on T_1 is trivial or faithful. If it is trivial then $GT_1 = G \times T_1$, and by Lemma 3.1, $T_1 \cong (GT_1)_v/G_v$ is solvable, a contradiction. Thus, the conjugate action of G on T_1 is faithful and hence we may assume $G \le \operatorname{Aut}(T_1)$. Since $|G| \ge 3|T_1| = 3|\operatorname{Inn}(T_1)|$, we have $G \cap \operatorname{Inn}(T_1) = 1$ and hence $G = G/(G \cap \operatorname{Inn}(T_1)) \cong$ $G\operatorname{Inn}(T_1)/\operatorname{Inn}(T_1) \le \operatorname{Aut}(T_1)/\operatorname{Inn}(T_1) = \operatorname{Out}(T_1)$, which is impossible because $\operatorname{Out}(T_1)$ is solvable. Thus, $\operatorname{soc}(X) = N = T$ is a non-abelian simple group. By the Frattini argument, $T = GT_v$. Then the triple (T, G, T_v) can be read out from [16], where T_v is a group given in Proposition 2.7. Note that $p \ge 11$.

By [16, Proposition 4.2], T cannot be any exceptional group of Lie type.

Assume that $T = A_n$. By [16, Proposition 4.3], one of the following occurs:

- (a) $G = A_{n-1}, T = A_n$ with $n \ge 6$ and T_v is transitive on $\{1, 2, \dots, n\}$, or
- (b) $G = A_{n-2}, T = A_n$ with $n = q^f$ for some prime q, and $T_v \leq A\Gamma L(1, q^f)$ is 2-homogeneous on $\{1, 2, \dots, n\}$.

If (b) occurs, then T_v is primitive on $\{1, 2, 3, \dots, q^f\}$ because it is 2-homogeneous. By Proposition 2.7, T_v has a normal subgroup \mathbb{Z}_p , and by the primitivity of T_v , \mathbb{Z}_p is transitive and so regular on $\{1, 2, 3, \dots, q^f\}$. It follows $q^f = p$ and $T_v \leq \mathsf{AGL}(1, p) = \mathbb{Z}_p : \mathbb{Z}_{p-1}$. Moreover, since $|T_v| = \frac{|T||G_v|}{|G|} \geq \frac{|T|}{|G|} = p(p-1)$, we have that $T_v = \mathsf{AGL}(1, p) = \mathbb{Z}_p : \mathbb{Z}_{p-1}$. Thus, A_p contains a cyclic subgroup \mathbb{Z}_{p-1} , which is impossible because \mathbb{Z}_{p-1} contains odd permutations on $\{1, 2, 3, \dots, p\}$. It follows that $T = \mathsf{A}_n$, $G = \mathsf{A}_{n-1}$ and T_v is transitive on the n points, which is the case (1) of the lemma.

Assume that T is a sporadic simple group. By [16, Proposition 4.4], $G = M_{22}$, $T = M_{23}$, and $T_v = \mathbb{Z}_{23}$ or $\mathbb{Z}_{23} : \mathbb{Z}_{11}$. Suppose on the contrary that $T_v = \mathbb{Z}_{23} : \mathbb{Z}_{11}$. We may let $T_{uv} = \mathbb{Z}_{11}$ for $u \in \Gamma(v)$. Since Γ is T-arc-transitive, there is an element $g \in T$ interchanging u and v, and hence $T_{uv}^g = T_{u^g v^g} = T_{uv}$, that is, $g \in N_T(T_{uv})$. A computation with MAGMA [2] shows that there is only one conjugate class of \mathbb{Z}_{11} in M_{23} , and the normalizer of \mathbb{Z}_{11} in M_{23} is $\mathbb{Z}_{11} : \mathbb{Z}_5$. Thus, $g \in \mathbb{Z}_{11} : \mathbb{Z}_5$ has odd order, which is impossible because g interchanges u and v. It follows that $T_v = \mathbb{Z}_{23}$, which is the case (2) of the lemma.

Assume that T is a classical simple group of Lie type. Note that $T = GT_v$, G is non-abelian simple and T_v is solvable. Let H is a maximal subgroup subject to that $T_v \leq H$ and H is solvable. Then T = GH, and (T, G, H) is listed in [16, Table 1.1 and Table 1.2]. Clearly, $|T : G| ||T_v| ||H|$. For an integer m and a prime r, we use m_r to denote the largest r-power dividing m.

By Proposition 2.7, $T_v = \mathbb{Z}_k \times (\mathbb{Z}_p : \mathbb{Z}_\ell)$ with $k \mid \ell \mid p-1$, where $\mathbb{Z}_p : \mathbb{Z}_\ell \leq \mathsf{AGL}(1, p)$. Let P and Q be the maximal normal r-subgroup of T_v and H respectively. Then $Q \cap T_v \leq P$, and since $T_v/(T_v \cap Q) \cong QT_v/Q \leq H/Q$, we have $|T_v|_r \leq |T_v \cap Q| \cdot |H/Q|_r \leq |P||H/Q|_r$. Clearly, $|T_v|_p = p$ and hence $|T:G|_p \leq p$.

Suppose that $r \neq p$ and $r \mid |T_v|$. If P is not contained in \mathbb{Z}_k , then $1 \neq P\mathbb{Z}_k/\mathbb{Z}_k \leq T_v/\mathbb{Z}_k \cong \mathbb{Z}_p : \mathbb{Z}_\ell$, which is impossible because \mathbb{Z}_p is the unique minimal normal subgroup of $\mathbb{Z}_p : \mathbb{Z}_\ell$. Therefore $P \leq \mathbb{Z}_k$. It follows from $k \mid \ell$ that $|P|^2 \leq |T_v|_r$, and from $|T_v|_r \leq |P||H/Q|_r$ that $|P| \leq |H/Q|_r$. Thus, $|T:G|_r \leq |T_v|_r \leq (|H/Q|_r)^2$.

Since G is a non-abelian simple group, we may exclude Row 1 of [16, Table 1.1] and Rows 7-10, 17 and 21 of [16, Table 1.2], and since $p \ge 11$ and $p \mid \mid H \mid$, we may exclude Rows 6, 11-13, 16-20, 22 and 24-27 of [16, Table 1.2]. The remaining cases are Rows 2-9 of [16, Table 1.1], and Rows 1-5, 14, 15, 23 and 28 of [16, Table 1.2].

In what follows we write $q = r^f$ for some prime r and positive integer f.

For Row 2 of [16, Table 1.1], $T = \mathsf{PSL}(4,q)$, $G = \mathsf{PSp}(4,q)$, and $H = q^3 : \frac{q^3-1}{(4,q-1)}$.3. By [13, Table 5.1A], $q^2 | |T : G|$. Thus $r \neq p$. Note that $|H/Q|_r = 1$ or 3. Since $r^{2f} = q^2 \leq |T_v|_r \leq |H/Q|_r^2$, we have r = 3 and f = 1, that is, q = 3. This is impossible because a computation with MAGMA shows $T = \mathsf{PSL}(4,3)$ has no factorization T = GH. For Row 3 of [16, Table 1.1], $T = \mathsf{PSp}(2m, q)$, $G = \Omega^{-}(2m, q)$, and $H = q^{m(m+1)/2}$: $(q^m - 1).m$ with $m \ge 2$ and q even. Then r = 2. By [13, Table 5.1A], $q^m | |T : G|$, implying $r \ne p$. Furthermore, $r^{fm} = q^m \le |T_v|_r \le |H/Q|_r^2 = m_r^2$. It follows $r^{m_2} \le r^{fm} \le m_2^2$, and this holds if and only if $m_2 = 2$ or 4. If $m_2 = 2$, then $2^{fm} \le m_2^2 = 4$ implies f = 1, m = 2, which is impossible because $\mathsf{PSp}(4, 2) \cong \mathsf{S}_6$ is not a simple group. If $m_2 = 4$, then $2^{fm} \le m_2^2 = 16$ implies that m = 4 and f = 1. In this case, $|H| = 2^{12} \cdot 15$, contradicting that p | |H| with $p \ge 11$.

For Rows 4 and 5 of [16, Table 1.1], $T = \mathsf{PSp}(4, q)$, $G = \mathsf{PSp}(2, q^2)$, and $H = q^3$: $\frac{q^2-1}{(2,q-1)}$.2. By [13, Table 5.1A], $q^2 | |T : G|$, and so $r \neq p$. Note that $|H/Q|_r = 1$ or 2. Since $r^{2f} = q^2 \leq |T_v|_r \leq |H/Q|_r^2$, we have that r = 2 and f = 1. This is impossible because $T = \mathsf{PSp}(4, 2) \cong \mathsf{S}_6$ is not simple.

For Row 6 of [16, Table 1.1], $T = \mathsf{PSU}(2m, q)$, $G = \mathsf{SU}(2m - 1, q)$, and $H = q^{m^2}$: $\frac{q^{2m}-1}{q+1(2m,q+1)}$ m with $m \ge 2$. By [13, Table 5.1A], $q^{2m-1} = r^{(2m-1)f} ||T : G|$ and $r \ne p$. Thus $r^{(2m-1)f} = q^{2m-1} \le |T_v|_r \le H/Q|_r^2 = m_r^2$, implying $r^{2m_r-1} \le m_r^2$, which is impossible.

For Row 7 of [16, Table 1.1], $T = P\Omega(2m + 1, q)$, $G = \Omega^{-}(2m, q)$, and $H = (q^{m(m-1)/2}.q^m) : \frac{q^m-1}{2}.m$ with $m \ge 3$ and q odd. Then $r, m_r \ge 3$. By [13, Table 5.1A], $q^m = 2^{fm} | |T:G|$ and hence $r \ne p$. Then $r^{fm} = q^m \le |T_v|_r \le |H/Q|_r^2 = m_r^2$, and so $r^{m_r} \le m_r^2$, which is impossible.

For Row 8 of [16, Table 1.1], $T = P\Omega^+(2m, q)$, $G = \Omega(2m - 1, q)$, and $H = q^{m(m-1)/2}$: $\frac{q^{m-1}}{(4,q^{m-1})} m$ with $m \ge 5$. By [13, Table 5.1A], $q^{m-1} = r^{f(m-1)} | |T : G|$ and $r \ne p$. Then $r^{f(m-1)} = q^{m-1} \le |T_v|_r \le |H/Q|_r^2 = m_r^2$. Note that the inequality $2^x > x^2$ always holds for $x \ge 5$. Thus $m_r \le 4$. Since $r^{f(m-1)} \le m_r^2$ and $m \ge 5$, we have that $r = 2, m_r = 4$ and m = 5, which is impossible because $m_r = 5_2 = 1$.

For Row 9 of [16, Table 1.1], $T = \mathsf{P}\Omega^+(8,q)$, $G = \Omega(7,q)$, and $H = q^6 : \frac{q^4-1}{(4,q^4-1)}$.4. By [13, Table 5.1A], $q^3 = r^{3f} | |T:G|$, and $r \neq p$. Then $r^{3f} = q^3 \leq |T_v|_r \leq |H/Q|_r^2 = (4_r)^2$, implying r = 2 and f = 1. In this case, $|H| = 2^8 \cdot 15$, contradicting p | |H| with $p \geq 11$.

For Row 14 of [16, Table 1.2], $T = \mathsf{PSp}(4, 11)$, $H = 11^{1+2}_+$: 10.A₄, and $G = \mathsf{PSL}(2, 11^2)$. By [13, Table 5.1A], $11^2 ||T : G|| |T_v|$ and hence $p \neq 11$, which is impossible because p is the largest prime divisor of $|T_v|$. Similarly, we may exclude Row 15 of [16, Table 1.2], because $T = \mathsf{PSp}(4, 23)$, $H = 23^{1+2}_+ : 22.S_4$, $G = \mathsf{PSL}(2, 23^2)$, and $23^2 ||T : G|| |T_v|$ by [13, Table 5.1A].

For Row 23 of [16, Table 1.2], $T = \Omega(7,3)$, $H = 3^{3+3} : 13 : 3$ and $G = \mathsf{Sp}(6,2)$. Then p = 13, and since $|T_v| = pk\ell$ with $k \mid \ell \mid (p-1)$, we have $3^5 \nmid |T_v|$. However, $|T : G| = |\Omega(7,3)|/|\mathsf{Sp}(6,2)| = 13 \cdot 3^5$ implies $3^5 \mid |T_v|$, a contradiction. Similarly, we may exclude Row 28 of [16, Table 1.2] because $T = \mathsf{P}\Omega^+(8,3)$, $H = 3^6 : (3^3 : 13 : 3)$ or $3^{3+6} : 13 : 3$, $G = \Omega^+(8,2)$ and $|T : G| = 13 \cdot 3^7$.

For Rows 1-5 of [16, Table 1.2], by MAGMA we obtain the following:

- (a) $(G, T, T_v) = (A_5, \mathsf{PSL}(2, 11), \mathbb{Z}_{11}),$
- (b) $(G, T, T_v) = (\mathsf{A}_5, \mathsf{PSL}(2, 11), \mathbb{Z}_{11} : \mathbb{Z}_5),$
- (c) $(G, T, T_v) = (\mathsf{A}_5, \mathsf{PSL}(2, 19), \mathbb{Z}_{19} : \mathbb{Z}_9),$
- (d) $(G, T, T_v) = (\mathsf{A}_5, \mathsf{PSL}(2, 29), \mathbb{Z}_{29} : \mathbb{Z}_7),$
- (e) $(G, T, T_v) = (\mathsf{A}_5, \mathsf{PSL}(2, 29), \mathbb{Z}_{29} : \mathbb{Z}_{14}),$
- (f) $(G, T, T_v) = (A_5, \mathsf{PSL}(2, 59), \mathbb{Z}_{59} : \mathbb{Z}_{29}).$

9

For case (b), $|V(\Gamma)| = |T : T_v| = 12$ and hence Γ is a complete graph of order 12, contradicting that $\operatorname{Aut}(\Gamma)_v$ is solvable. Similarly, cases (c),(e) and (f) cannot occur because Γ is a complete graph of order 20, 30 or 60, respectively. Thus, we have (a) or (d), which is the case (3) or (4) of the lemma.

For cases (2)-(4), it is easy to see that $G_v = G \cap T_v = 1$. Since G is transitive, it is regular, that is, Γ is Cayley graph of G.

Lemma 3.3. Let G, Γ , p and v be as given in Assumption and further assume that G is regular on $V(\Gamma)$. Then $\operatorname{rad}(\operatorname{Aut}(\Gamma))$ has at least three orbits on $V(\Gamma)$, and if $\operatorname{rad}(\operatorname{Aut}(\Gamma))G \trianglelefteq \operatorname{Aut}(\Gamma)$ then $\operatorname{rad}(\operatorname{Aut}(\Gamma))G = \operatorname{rad}(\operatorname{Aut}(\Gamma)) \times G$.

Proof. Set $A = \operatorname{Aut}(\Gamma)$, $R = \operatorname{rad}(A)$ and B = RG. If R is transitive on $V(\Gamma)$, then Lemma 3.1 implies that $G \cong B_v/R_v$ is solvable, a contradiction. Since G is transitive, Γ is not bipartite and hence R has at least three orbits. Assume that $B \leq A$. To finish the proof, it suffices to show $B = R \times G$. This is clearly true for R = 1.

Assume $R \neq 1$. Then $R \cap G = 1$. Since G is regular, $B_v \neq 1$, and since $B \leq A$, Γ is B-arc-transitive. By Proposition 2.7, B_v has a normal sylow p-subgroup \mathbb{Z}_p , and $|B_v| = pm$ with (p, m) = 1. Note that $RG = B = GB_v$. Again by the regularity of G, we have $|B_v| = |R| = pm$. Let R_p be a Sylow p-subgroup of R. We claim $R_p \leq B$.

Suppose to the contrary that $R_p \not \leq B$. Since $R \leq B$ is solvable, by the Jordan-Holder Theorem, B has a normal series: $1 \leq R_1 \leq R_2 \leq \cdots \leq R \leq B$ such that $R_1 \leq B$, $R_2 \leq B$, $R_2/R_1 \cong \mathbb{Z}_p$ and $R_1 \neq 1$. Since (p, m) = 1, we have $p \not \mid \mid R_1 \mid$. Note that $R_2/R_1 \leq B/R_1$ and $GR_1/R_1 \cong G/(G \cap R_1) = G$. Since $R_2/R_1 \cong \mathbb{Z}_p$, the conjugate action of GR_1/R_1 on R_2/R_1 must be trivial by the simplicity of G. It follows that $GR_2/R_1 = R_2/R_1 \times GR_1/R_1$, and hence, $GR_1/R_1 \leq GR_2/R_1$, forcing $GR_1 \leq GR_2$. Since $p \mid \mid R_2 \mid$, GR_2 is arc-transitive on Γ , and hence GR_1 is also arc-transitive because $\mid (GR_1)_v \mid = \mid R_1 \mid \neq 1$. It follows $p \mid \mid R_1 \mid$, a contradiction. Thus, $R_p \leq B$, as claimed.

Let $C = C_B(R_p)$. Since $R_p \leq B$ and $R_p \approx \mathbb{Z}_p$, the conjugate action of G on R_p is trivial and so $R_pG = R_p \times G$. It follows that $G \leq C$ and $C = C \cap B = C \cap (RG) = (C \cap R)G$. Clearly, $R_p \leq C \cap R$ and hence R_p is a Sylow *p*-subgroup of $C \cap R$. This implies that $C \cap R = R_p \times L$ where L is a *p*'-subgroup of $C \cap R$, and in particular, L is characteristic in $C \cap R$ and so normal in B. Thus, $C = (R_p \times L)G = R_p \times LG$, and therefore, $LG \leq C$. Note that C is arc-transitive because $G \leq C$ and $R_p \leq C$. If $L \neq 1$ then $(LG)_v \neq 1$ and then $LG \leq C$ implies that LG is arc-transitive. This means that $p \mid |(LG)_v|$, and since $LG = G(LG)_v$, we have $|(LG)_v| = |L|$ and $p \mid |L|$, which is impossible. It follows that L = 1 and $C = R_p \times G$. Furthermore, $G \leq B$ and so $B = R \times G$.

Proof of Theorem 1.3: Let G, Γ , p and v as given in Assumption and further let G be regular on $V(\Gamma)$. Write $A = \operatorname{Aut}(\Gamma)$, $R = \operatorname{rad}(A)$ and B = RG. Then $R \cap G = 1$ and $B/R \cong G$. By the Frattini argument, $B = GR = GB_v$, and so $|R| = |B_v|$.

Assume R = 1. By Lemma 3.2, either $\operatorname{soc}(A) = G$, or Γ is $\operatorname{soc}(A)$ -arc-transitive and $G < \operatorname{soc}(A)$ with $(G, \operatorname{soc}(A)) = (A_{n-1}, A_n), (M_{22}, M_{23}), (A_5, \mathsf{PSL}(2, 11))$ or $(A_5, \mathsf{PSL}(2, 29))$.

Assume $R \neq 1$. By Lemma 3.3, R has at least three orbits, and by Proposition 2.8, the quotient graph Γ_R has valency p with A/R-arc-transitive and B/R-vertex-transitive. Moreover, $(A/R)_{\Delta} \cong A_v$ is solvable for any $\Delta \in V(\Gamma_R)$. Write $I/R = \operatorname{soc}(A/R)$. Since $B/R \cong G$, Lemma 3.2 implies that either $B/R = I/R \trianglelefteq A/R$, or Γ_R is I/R-arctransitive with B/R < I/R and $(B/R, I/R) = (\mathsf{A}_{n-1}, \mathsf{A}_n)$ with $(I/R)_\Delta$ being transitive on $\{1, 2, \dots, n\}$, or $(B/R, I/R, (I/R)_\Delta) = (\mathsf{M}_{22}, \mathsf{M}_{23}, \mathbb{Z}_{23}), (\mathsf{A}_5, \mathsf{PSL}(2, 11), \mathbb{Z}_{11})$ or $(\mathsf{A}_5, \mathsf{PSL}(2, 29), \mathbb{Z}_{29} : \mathbb{Z}_7).$

Case 1: $B/R = I/R \leq A/R$.

In this case, $B = GR \leq A$, and by Lemma 3.3, $B = G \times R$. It follows that G is characteristic in B, and hence $G \leq A$.

Case 2: Γ_R is I/R-arc-transitive with B/R < I/R and $(B/R, I/R) = (A_{n-1}, A_n)$ with $(I/R)_{\Delta}$ being transitive on $\{1, 2, \dots, n\}$, or $(B/R, I/R, (I/R)_{\Delta}) = (M_{22}, M_{23}, \mathbb{Z}_{23}),$ $(A_5, \mathsf{PSL}(2, 11), \mathbb{Z}_{11})$ or $(A_5, \mathsf{PSL}(2, 29), \mathbb{Z}_{29} : \mathbb{Z}_7).$

Let $(B/R, I/R, (I/R)_{\Delta}) = (\mathsf{M}_{22}, \mathsf{M}_{23}, \mathbb{Z}_{23}), (\mathsf{A}_5, \mathsf{PSL}(2, 11), \mathbb{Z}_{11})$ or $(\mathsf{A}_5, \mathsf{PSL}(2, 29), \mathbb{Z}_{29} : \mathbb{Z}_7)$. By Lemma 3.2, Γ is a Cayley graph on $GB/R \cong G$. Since Γ is a Cayley graph on G, we have that $|V(\Gamma)| = |V(\Gamma_R)|$, which contradicts the assumption $R \neq 1$. Thus $(B/R, I/R) = (\mathsf{A}_{n-1}, \mathsf{A}_n)$ with $(I/R)_{\Delta}$ being transitive on $\{1, 2, \cdots, n\}$.

First we claim $B = R \times G$. Suppose to the contrary that $B \neq R \times G$. Since R is solvable, there exists a series of normal subgroups of B: $R_0 = 1 < R_1 < \cdots < R_s = B$ such that $R_i \triangleleft B$ and R_{i+1}/R_i is an elementary abelian group for each $0 \le i \le s - 1$. Since $RG \ne R \times G$, there exists $0 \le j \le s - 1$ such that $GR_i = G \times R_i$ for any $0 \le i \le j$, but $GR_{j+1} \ne G \times R_{j+1}$.

Write $R_{j+1}/R_j = \mathbb{Z}_r^f$ for some prime r and positive integer f. Note that $G \cap R_i = 1$ for $0 \leq i \leq s$ and so $R_{i+1}G/R_i \cong G$ for $0 \leq i \leq s-1$. In particular, the conjugate action of $R_{j+1}G/R_j$ on R_{j+1}/R_j is trivial or faithful. If it is trivial, then $R_{j+1}G/R_j =$ $(R_{j+1}/R_j)(R_jG/R_j) = R_{j+1}/R_j \times R_jG/R_j$, implying $R_jG \triangleleft R_{j+1}G$, and since $GR_j =$ $G \times R_j$, we have $G \trianglelefteq R_{j+1}G$ and $GR_{j+1} = G \times R_{j+1}$, a contradiction. It follows that the conjugate action of $R_{j+1}G/R_j$ on R_{j+1}/R_j is faithful, and we may assume $G \leq \mathsf{GL}(f, r)$.

Recall that $|B_v| = |R|$ and $R_{j+1}/R_j = \mathbb{Z}_r^f$. Then $r^f ||B_v|$, and since Γ_R is I/Rarc-transitive, Γ is *I*-arc-transitive and Proposition 2.8 implies $I_v \cong (I/R)_{\Delta}$. Since B/R < I/R, we have $|B_v| ||I_v|$ and so $r^f ||(I/R)_{\Delta}|$. If r = p then Proposition 2.7 implies $r^2 \nmid |(I/R)_{\Delta}|$ and hence $G \leq \mathsf{GL}(1, p)$, a contradiction. It follows $r \neq p$, and again by Proposition 2.7, $r^f | (p-1)^2$.

Now $B/R = A_{n-1} \leq \mathsf{GL}(f, r)$. By assumption, $p \geq 11$. Since $(I/R)_{\Delta}$ contains a normal subgroup \mathbb{Z}_p , we have $p \mid n$ and so $n-1 \geq 11-1 = 10$. By Proposition 2.5, $f \geq (n-1)-2 \geq p-3$ and so $(p-1)^2 \geq r^f \geq 2^{p-3}$. This is impossible because the function $f(x) = 2^{x-3} - (x-1)^2 > 0$ always holds for $x \geq 11$. This completes the proof of the claim, and hence $B = R \times G$.

Set $C = C_I(R)$. Then $G \leq C$, $C \leq I$ and $C \cap R \leq Z(C)$. Recall that $I/R = A_n$ or M_{23} . Since $G \cong (R \times G)/R \leq CR/R \leq I/R$, we have I = CR, and since $Z(C)/(C \cap R) \leq C/C \cap R \cong CR/R = I/R$, we have $C \cap R = Z(C)$ and $C/Z(C) \cong I/R$. Furthermore, $C'/(C' \cap Z(C)) \cong C'Z(C)/Z(C) = (C/Z(C))' = C/Z(C) \cong I/R$, and so $Z(C') = C' \cap Z(C)$, C = C'Z(C) and $C'/Z(C') \cong I/R$. It follows C' = (C'Z(C))' = C'', and hence C' is a covering group of I/R.

Suppose $Z(C') \neq 1$. Then Proposition 2.4 implies that $Z(C') = \mathbb{Z}_2$ and $C' \cong 2.A_n$. Since $G \leq C$ and C/C' is abelian, we have $G \leq C'$. So $G \times Z(C') \cong A_{n-1} \times \mathbb{Z}_2$ is a subgroup of $C' \cong 2.A_n$, which is impossible by Proposition 2.4. Thus, Z(C') = 1. It follows $C' \cong I/R$. Since G < C and C/C' is abelian, we have $G < C' \trianglelefteq I$, and since |I| = |I/R||R| = |C'||R| and $C' \cap R = 1$, we have $I = C' \times R$. Since C' is a nonabelian simple group, C' is characteristic in I, and hence $C' \trianglelefteq A$ because $I \trianglelefteq A$. Since G is regular on Γ and $G < C' \trianglelefteq I$, C' has non-trivial stabilizer, and hence Γ is C'-arc-transitive on Γ . Note that $C' \cong I/R = A_n$.

Summing up, we have proved that either $G \leq A$, or A has a normal arc-transitive subgroup T such that G < T and $(G, T) = (\mathsf{A}_5, \mathsf{PSL}(2, 11)), (\mathsf{A}_5, \mathsf{PSL}(2, 29)), (\mathsf{M}_{22}, \mathsf{M}_{23})$ or $(\mathsf{A}_{n-1}, \mathsf{A}_n)$ (for $R = 1, T = \mathsf{soc}(A)$, and for $R \neq 1, T = C'$). Let $(G, T) = (\mathsf{A}_{n-1}, \mathsf{A}_n)$. Since G is regular, $|T_v| = n$, and by Proposition 2.7, $n = pk\ell$ with $k \mid \ell \mid (p-1)$. To finish the proof, we are left to show that k and ℓ have the same parity.

Suppose to the contrary that k and ℓ has different parity. Then k is odd and ℓ is even as $k \mid \ell$. Since $(G, T) = (A_{n-1}, A_n)$, we have |T : G| = n and T can be viewed as the alternating permutation group by the well-known right multiplication action of Ton the set [T : G] of all right cosets of G in T, still denoted by A_n . By the regularity of G on Γ , $T = GT_v$ and $G \cap T_v = 1$, which implies that $T_v \leq A_n$ is a regular permutation group on [T : G]. By Proposition 2.7, $T_v = \mathbb{Z}_k \times (\mathbb{Z}_p : \mathbb{Z}_\ell)$, and so T_v has a cyclic group \mathbb{Z}_ℓ with odd index $|T_v : \mathbb{Z}_\ell| = pk$. Let $\mathbb{Z}_\ell = \langle a \rangle$. Since T_v is regular, a is a product of $pk \ell$ -cycles on [T : G] in its distinct cycle decomposition, so an odd permutation as ℓ is even and kp is odd, which is impossible because $T_v \leq A_n$. This completes the proof. \Box

4. Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. To do that, we first describe a widely known construction for vertex-transitive and symmetric graphs, part of which is attributed to Sabidussi [19].

Let G be a group, H a subgroup of G, and D a union of some double cosets of H in G such that $H \not\subseteq D$ and $D^{-1} = D$. Then the coset graph $\Gamma = \mathsf{Cos}(G, H, D)$ is defined as the graph with vertex-set [G:H], the set of all right cosets of H in G, and edge-set $E(\Gamma) = \{\{Hg, Hxg\} : g \in G, x \in D\}$. This graph is regular with valency |D|/|H|, and is connected if and only if $G = \langle D, H \rangle$, that is, if and only if G is generated by D and H. The group G acts vertex-transitively on Γ by right multiplication. More precisely, for $g \in G$, the permutation $\hat{g}_H : Hx \mapsto Hxg, x \in G$, on [G:H] is an automorphism of $\mathsf{Aut}(\Gamma)$, and $\hat{G}_H := \{\hat{g}_H \mid g \in G\}$ is a transitive subgroup of $\mathsf{Aut}(\Gamma)$. The map $g \mapsto \hat{g}_H$, $g \in G$, is a homomorphism from G to $S_{[G:H]}$, the well-known coset action of G on H, and the kernel of this coset action is $H_G = \bigcap_{g \in G} H^g$, the largest normal subgroup of G contained in H. It follows that $G/H_G \cong \hat{G}_H$. Furthermore, Γ is \hat{G}_H -arc-transitive if and only if D consists of just one double coset HaH. If $H_G = 1$, we say that H is core-free in G, and in this case, $G \cong \hat{G}_H$.

If H = 1, denote Cos(G, H, D) and \hat{G}_H by Cay(G, D) and \hat{G} , respectively. In this case, \hat{G} is the right regular representation of G, and it is regular on the vertex set of Cay(G, D). By definition, Cay(G, D) is Cayley graph of \hat{G} , and for short, Cay(G, D) is also called a Cayley graph of G with respect to D.

Conversely, suppose Γ is any graph on which the group G acts faithfully and vertextransitively. Then it is easy to show that Γ is isomorphic to the coset graph $\mathsf{Cos}(G, H, D)$, where $H = G_v$ is the stabiliser in G of the vertex $v \in V(\Gamma)$, and D is a union of double cosets of H, consisting of all elements of G taking v to one of its neighbours. Then $H \not\subseteq D$ and $D^{-1} = D$. Moreover, if G is arc-transitive on Γ and g is an element of G that swaps v with one of its neighbours, then $g^2 \in H$ and D = HgH, and the valency of Γ is $|D|/|H| = |H : H \cap H^g|$. Also a can be chosen as a 2-element in G. In particular, if $L \leq G$ is regular on vertex set of Γ , then Γ is also isomorphic to Cay(L, S), where S consists of all elements of L taking v to one of its neighbours with $S^{-1} = S$, and by the regularity, we have $S = D \cap L$. Thus, we have the following proposition.

Proposition 4.1. Let Γ be a *G*-vertex-transitive graph and *L* be a regular subgroup of *G*. Then $\Gamma \cong Cos(G, H, D) \cong Cay(L, S)$ with $S = L \cap D$, where $H = G_v$ for $v \in V(\Gamma)$, *D* is a union of double cosets of *H*, consisting of all elements of *G* taking *v* to one of its neighbours, and *S* consists of all elements of *L* taking *v* to one of its neighbours. Moreover, Γ be *G*-arc-transitive if and only if *G* has a 2-element *g* such that D = HgH, and in this case, Γ has valency $|H: H \cap H^g|$.

Let $\Gamma = \mathsf{Cos}(G, H, D)$ be a coset graph. We set $\mathsf{Aut}(G, H, D) = \{\alpha \in \mathsf{Aut}(G) \mid H^{\alpha} = H, D^{\alpha} = D\}$. For any $\alpha \in \mathsf{Aut}(G, H, D)$, the permutation $\alpha_H : Hx \mapsto Hx^{\alpha}, x \in G$, on [G : H] is an automorphism of Γ , and the map $\alpha \mapsto \alpha_H$ is a natural action of $\mathsf{Aut}(G, H, D)$ on $V(\Gamma)$. It follows that $\mathsf{Aut}(G, H, D)/K \cong \mathsf{Aut}(G, H, D)_H$, where $\mathsf{Aut}(G, H, D)_H = \{\alpha_H \mid \alpha \in \mathsf{Aut}(G, H, D)\}$ and K is the kernel of the action. Furthermore, $\mathsf{Aut}(G, H, D)_H \leq \mathsf{Aut}(\Gamma)$. For $h \in H$, let \tilde{h} be the inner automorphism of Ginduced by h, that is, $\tilde{h} : g \mapsto h^{-1}gh, g \in G$. Then $\tilde{H} := \{\tilde{h} \mid h \in H\} \leq \mathsf{Aut}(G, H, D)_H$.

The following proposition was proved by Wang, Feng and Zhou [22, Lemma 2.10], which is important for computing automorphism groups of coset graphs.

Proposition 4.2. Let G be a finite group, H a core-free subgroup of G and D a union of several double-cosets HgH such that $H \nsubseteq D$ and $D = D^{-1}$. Let $\Gamma = \mathsf{Cos}(G, H, D)$ and $A = \mathsf{Aut}(\Gamma)$. Then $\hat{G}_H \cong G$, $\mathsf{Aut}(G, H, D)_H \cong \mathsf{Aut}(G, H, D)$, $\tilde{H}_H \cong \tilde{H}$, and $\mathbf{N}_A(\hat{G}_H) = \hat{G}_H \mathsf{Aut}(G, H, D)_H$ with $\hat{G}_H \cap \mathsf{Aut}(G, H, D)_H = \tilde{H}_H$.

Now we are ready to prove Theorem 1.4 and this follows from Lemmas 4.3-4.6.

Let x, y, t be permutations in S_{11} as following:

$$x = (1, 11, 8, 3, 6, 9, 4, 10, 2, 7, 5)$$

$$y = (2, 10, 6)(3, 11, 4)(7, 8, 9)$$

$$t = (2, 5)(3, 9)(6, 11)(8, 10)$$

Let $T = \langle x, t \rangle$, $H = \langle x \rangle$, $G = \langle y, t \rangle$. Define

$$\Gamma = \mathsf{Cos}(T, H, HtH).$$

Then a computation with MAGMA [2] shows that $T \cong \mathsf{PSL}(2, 11), H \cong \mathbb{Z}_{11}, |H \cap H^t| = 1$, and $G \cong \mathsf{A}_5$. By Proposition 4.1, Γ has valency 11 and T acts arc-transitively on Γ . Since 11 $\not| |G|, G$ acts semiregularly on $V(\Gamma)$, and since $|G| = |V(\Gamma)|, G$ is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of A_5 with $\mathsf{PSL}(2, 11)$ -arc-transitive. A direct computation with MAGMA shows that $\mathsf{Aut}(\Gamma) \cong \mathsf{PGL}(2, 11)$ and this implies the following lemma.

Lemma 4.3. There exists an 11-valent symmetric Cayley graph Γ of A_5 such that $\operatorname{Aut}(\Gamma) \cong \operatorname{PGL}(2,11)$. In particular, $\operatorname{Aut}(\Gamma)_v$ is solvable for $v \in V(\Gamma)$.

Let x, y, t, z be permutations in S_{30} as following:

- x = (1, 21, 10, 9, 22, 28, 13, 15, 30, 6, 19, 18, 7, 27, 23, 4, 25, 17, 20, 2, 12, 29, 16, 26, 8, 11, 3, 24, 5)
- y = (1, 24, 9)(2, 6, 5)(3, 27, 21)(4, 12, 20)(7, 25, 26)(8, 10, 13)(11, 14, 16)(15, 30, 23)(17, 28, 29)(18, 22, 19)
- t = (1,3)(2,10)(4,11)(5,19)(6,24)(7,16)(8,17)(9,28)(12,27)(13,20)(14,22)(15,26)(18,30)(21,23)
- z = (2, 18, 23, 10, 29, 9, 17)(3, 7, 19, 20, 4, 24, 30)(5, 22, 27, 13, 28, 6, 16)(8, 12, 15, 21, 11, 25, 26)

Let $T = \langle x, t \rangle$, $H = \langle x, z \rangle$, $G = \langle y, t \rangle$. Define

$$\Gamma = \mathsf{Cos}(T, H, HtH).$$

Then a computation with MAGMA [2] shows that $T \cong \mathsf{PSL}(2,29)$, $H \cong \mathbb{Z}_{29} : \mathbb{Z}_7$, $|H \cap H^t| = 7$, and $G \cong \mathsf{A}_5$. By Proposition 4.1, Γ has valency 29 and T acts arctransitively on Γ . Since $29 \not| |G|$, G acts semiregularly on $V(\Gamma)$, and since $|G| = |V(\Gamma)|$, G is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of A_5 with $\mathsf{PSL}(2,29)$ -arc-transitive. A direct computation with MAGMA shows that $\mathsf{Aut}(\Gamma) \cong$ $\mathsf{PGL}(2,29)$ and this implies the following lemma.

Lemma 4.4. There exists a 29-valent symmetric Cayley graph Γ of A_5 such that $\operatorname{Aut}(\Gamma) \cong \operatorname{PGL}(2,29)$. In particular, $\operatorname{Aut}(\Gamma)_v$ is solvable for $v \in V(\Gamma)$.

Let x, y, t be permutations in S_{23} as following:

x = (1, 4, 6, 7, 2, 19, 3, 11, 9, 20, 13, 23, 16, 8, 21, 5, 14, 22, 18, 15, 17, 10, 12)

y = (1, 14, 6, 5, 9, 2, 10, 3, 15, 13, 11)(4, 22, 16, 19, 17, 8, 21, 7, 12, 18, 23)

t = (1,17)(3,9)(5,18)(6,13)(7,12)(10,19)(14,22)(21,23)

Let $T = \langle x, t \rangle$, $H = \langle x \rangle$, $G = \langle y, t \rangle$. Define

$$\Gamma = \mathsf{Cos}(T, H, HtH).$$

Lemma 4.5. The above graph Γ is 23-valent symmetric Cayley graph of M_{22} and $\operatorname{Aut}(\Gamma) = (\widehat{M}_{23})_H \cong M_{23}$. In particular, $\operatorname{Aut}(\Gamma)_v$ is solvable for $v \in V(\Gamma)$.

Proof. A computation with MAGMA [2] shows that $T \cong M_{23}$, $H \cong \mathbb{Z}_{23}$, $|H \cap H^t| = 1$, and $G \cong M_{22}$. By Proposition 4.1, Γ has valency 23 and T acts arc-transitively on Γ . Since 23 $/\!\!/|G|$, G acts semiregularly on $V(\Gamma)$, and since $|G| = |V(\Gamma)|$, G is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of M_{22} with M_{23} -arc-transitive. However, we cannot compute $\operatorname{Aut}(\Gamma)$ with MAGMA because $|V(\Gamma)|$ is too large. By Proposition 4.1, we may let $\Gamma = \operatorname{Cay}(G, S)$ with $S = G \cap HtH$. Write $A = \operatorname{Aut}(\Gamma)$. By MAGMA, $S = \{s_i \mid 1 \leq i \leq 23\}$, where

 $s_1 = (1, 14, 6, 5, 9, 2, 10, 3, 15, 13, 11)(4, 22, 16, 19, 17, 8, 21, 7, 12, 18, 23),$ $s_2 = (1, 11, 13, 15, 3, 10, 2, 9, 5, 6, 14)(4, 23, 18, 12, 7, 21, 8, 17, 19, 16, 22),$ $s_3 = (1, 15, 5, 2, 12, 18, 16, 14, 21, 13, 7)(3, 6, 4, 22, 8, 19, 10, 17, 9, 23, 11),$ $s_4 = (1, 7, 13, 21, 14, 16, 18, 12, 2, 5, 15)(3, 11, 23, 9, 17, 10, 19, 8, 22, 4, 6),$ $s_5 = (1, 9, 14)(2, 19, 5, 4, 22, 12)(3, 21, 6)(7, 23, 15, 11, 8, 18)(10, 13)(16, 17),$ $s_6 = (1, 14, 9)(2, 12, 22, 4, 5, 19)(3, 6, 21)(7, 18, 8, 11, 15, 23)(10, 13)(16, 17),$ $s_7 = (1, 4, 3)(2, 6)(5, 8, 7, 10, 14, 21)(9, 12, 17, 22, 16, 13)(11, 19, 23)(15, 18),$ $s_8 = (1, 3, 4)(2, 6)(5, 21, 14, 10, 7, 8)(9, 13, 16, 22, 17, 12)(11, 23, 19)(15, 18),$ $s_9 = (1, 12)(2, 19, 3)(4, 6, 18, 5, 8, 10)(7, 11, 23, 16, 14, 22)(9, 13)(15, 17, 21),$ $s_{10} = (1, 12)(2, 3, 19)(4, 10, 8, 5, 18, 6)(7, 22, 14, 16, 23, 11)(9, 13)(15, 21, 17),$ $s_{11} = (1, 7, 3, 16, 12)(2, 11, 23, 22, 14)(4, 15, 5, 18, 10)(6, 9, 13, 8, 17),$ $s_{12} = (1, 12, 16, 3, 7)(2, 14, 22, 23, 11)(4, 10, 18, 5, 15)(6, 17, 8, 13, 9),$ $s_{13} = (3, 16, 23, 12, 6)(4, 11, 22, 18, 10)(5, 17, 7, 19, 9)(8, 14, 15, 21, 13),$ $s_{14} = (3, 6, 12, 23, 16)(4, 10, 18, 22, 11)(5, 9, 19, 7, 17)(8, 13, 21, 15, 14),$ $s_{15} = (1, 15, 12, 6, 19)(2, 11, 13, 14, 7)(3, 16, 21, 22, 4)(5, 10, 17, 9, 23),$ $s_{16} = (1, 19, 6, 12, 15)(2, 7, 14, 13, 11)(3, 4, 22, 21, 16)(5, 23, 9, 17, 10)$ $s_{17} = (1,7)(3,8)(4,6)(9,19)(11,23)(12,15)(13,18)(14,21),$ $s_{18} = (2,6)(3,10)(4,22)(8,16)(11,13)(12,18)(14,15)(21,23),$ $s_{19} = (1, 11)(2, 16)(4, 19)(6, 12)(8, 14)(9, 13)(15, 18)(17, 22),$ $s_{20} = (1, 17)(3, 9)(5, 18)(6, 13)(7, 12)(10, 19)(14, 22)(21, 23),$ $s_{21} = (1, 15)(5, 16)(6, 18)(7, 19)(8, 21)(9, 23)(11, 12)(17, 22),$ $s_{22} = (1, 17)(2, 9)(5, 11)(6, 19)(7, 13)(8, 23)(10, 12)(14, 15),$ $s_{23} = (1,5)(2,4)(3,11)(8,13)(9,19)(10,15)(14,16)(18,23).$

Let 1 be the identity in G. Then $1 \in V(\Gamma)$. Suppose to the contrary that A_1 is nonsolvable. By Proposition 2.6, the restriction $A_1^{\Gamma(1)}$ of A_1 on the neighbourhood $\Gamma(1)$ of 1 in Γ is nonsolvable, and since Γ has prime valency, the Burnside Theorem (also see [4, Theorem 3.5B]) implies that $A_1^{\Gamma(1)}$ is 2-transitive on $\Gamma(1)$. This turns that there exists a 5-cycle passing though 1 and any two vertices in S because $(1, s_{11}, s_{11}^2, s_{11}^3, s_{11}^4)$ is a 5-cycle in Γ . In particular, there is a 5-cycle passing through 1, s_1 and $s_2 = s_1^{-1}$, and hence $s_1^2 \in S^3 = \{s_{i_1}s_{i_2}s_{i_2} \mid s_{i_1}, s_{i_2}, s_{i_2} \in S\}$, but this is not true by MAGMA [2]. Thus, A_1 is solvable.

Now we let $\Gamma = \mathsf{Cos}(T, H, HtH)$ and D = HtH. Since A has solvable stabilizer, Theorem 1.3 implies that $\hat{T} = \hat{\mathsf{M}}_{23} \leq A$. Note that H is core-free in T. By Proposition 4.2, $A = \hat{T}_H \mathsf{Aut}(T, H, D)_H$ with $\hat{T}_H \cap \mathsf{Aut}(T, H, D)_H = \tilde{H}_H$, where $\hat{T}_H \cong T$, $\mathsf{Aut}(T, H, D)_H \cong$ $\mathsf{Aut}(T, H, D)$ and $\tilde{H}_H \cong \tilde{H}$. To prove $A = \hat{T}_H$, it suffices to show that $\mathsf{Aut}(T, H, D) = \tilde{H}$.

Suppose to the contrary that $\alpha \in \operatorname{Aut}(T, H, D)$, but $\alpha \notin \tilde{H}$. By [13, Table 5.1.C], Out(M₂₃) = 1, that is, Aut(M₂₃) = Inn(M₂₃). Thus, α is an automorphism of T induced by an element of $b \in T$ by conjugation, namely $g^{\alpha} = g^{b}$ for $g \in T$. Since $\alpha \in \operatorname{Aut}(T, H, D)$, we have $H^{b} = H$ and $D^{b} = D$, and since $\alpha \notin \tilde{H}$, we have $b \notin H$. It follows that $H\langle b \rangle$ is a subgroup of T containing H, and by Atlas [3], $H\langle b \rangle \cong \mathbb{Z}_{23} : \mathbb{Z}_{11}$. Since $\tilde{H} \leq \operatorname{Aut}(T, H, D)$, we may choose b such that b has order 11, and by MAGMA, we may let b = (2, 14, 18, 7, 16, 6, 9, 20, 8, 3, 4)(5, 21, 13, 22, 12, 15, 11, 19, 17, 23, 10) because $H = \langle x \rangle$ with x = (1, 4, 6, 7, 2, 19, 3, 11, 9, 20, 13, 23, 16, 8, 21, 5, 14, 22, 18, 15, 17, 10, 12). However, $D^{b} = (HtH)^{b} \neq HtH$ by MAGMA, a contradiction. Thus, $A = \hat{T}_{H} \cong M_{23}$. \Box

Let $p \ge 5$ be a prime, and let x, t and h be permutations in S_p as following:

$$x = (1, 2, \dots, p), \quad t = (1, 2)(3, 4), \quad h = (2, p)(3, p - 1) \cdots (\frac{p - 1}{2}, \frac{p + 5}{2})(\frac{p + 1}{2}, \frac{p + 3}{2})$$

Let $T = \langle x, t \rangle$ and $H = \langle x \rangle$. By [8], $T = \mathsf{A}_p, H \cong \mathbb{Z}_p$ and $|H \cap H^t| = 1$. Define
 $\Gamma^p = \mathsf{Cos}(\mathsf{A}_p, H, HtH).$

Lemma 4.6. The above graph Γ^p is a p-valent symmetric Cayley graph of A_{p-1} such that $\operatorname{Aut}(\Gamma^p) \cong S_p$ for $p \equiv 3 \pmod{4}$ and $\operatorname{Aut}(\Gamma^p) \cong A_p \times \mathbb{Z}_2$ for $p \equiv 1 \pmod{4}$. In particular, $\operatorname{Aut}(\Gamma)_v$ is solvable for $v \in V(\Gamma)$.

Proof. By Proposition 4.1, Γ^p has valency p and A_p acts arc-transitively on Γ^p , with vertex stabilizer isomorphic to \mathbb{Z}_p . Let A_{p-1} be the subgroup of A_p fixing the point p. Since $p \not| |A_{p-1}|$, A_{p-1} acts semiregularly on $V(\Gamma^p)$, and since $|A_{p-1}| = |V(\Gamma^p)|$, A_{p-1} is regular on $V(\Gamma^p)$. It follows that Γ^p is a non-normal Cayley group of A_{p-1} with A_p -arc-transitive.

By Proposition 4.1, we may let $\Gamma^p = \mathsf{Cay}(\mathsf{A}_{p-1}, S)$, where $S = \mathsf{A}_{p-1} \cap HtH$. For p = 5 or p = 7, a computing with MAGMA shows that $\mathsf{Aut}(\Gamma^5) \cong \mathsf{A}_5 \times \mathbb{Z}_2$ and $\mathsf{Aut}(\Gamma^7) \cong \mathsf{S}_7$. Write $A = \mathsf{Aut}(\Gamma)$. We may assume $p \geq 11$.

Claim: A has solvable stabilizer.

Recall that $x = (1, 2, \dots, p), t = (1, 2)(3, 4)$ and $H = \langle x \rangle$. Let $x^{-i}tx^j \in S = HtH \cap A_{p-1}$ for $i, j \in \mathbb{Z}_p$. Then $p = p^{x^{-i}tx^j} = p^{x^{-i}tx^{i}x^{j-i}}$. Note that $x^{-i}tx^i = (1^{x^i}, 2^{x^i})(3^{x^i}, 4^{x^i})$, and if $j - i \neq 0$ then x^{j-i} is a *p*-cycle. For $0 \le i \le p - 5$, $p = p^{x^{-i}tx^{i}x^{j-i}} = p^{x^{j-i}}$ implies j = i. Furthermore, For i = p - 4, p - 3, p - 2 or $p - 1, p = p^{x^{-i}tx^{i}x^{j-i}}$ implies that j = i + 1, i - 1, i + 1 or i - 1, respectively. Thus, we may set $S = \{s_1, s_2, \dots, s_p\}$, where $s_{i+1} = x^{-i}tx^i = (1 + i, 2 + i)(3 + i, 4 + i)$ for $0 \le i \le p - 5$, $s_{p-2} = x^{-(p-3)}tx^{p-4} = (1, p - 1, p - 3, \dots, 3, 2), \quad s_{p-3} = x^{-(p-4)}tx^{p-3} = (s_{p-2})^{-1}, s_p = x^{-(p-1)}tx^{p-2} = (1, p - 1, p - 2, \dots, 4, 3), \quad s_{p-1} = x^{-(p-2)}tx^{p-1} = s_p^{-1}$.

For $z \in A_p$, denote by o(z) the order of z and by supp(z) the support of z, that is, the number of points moving by z. Then $o(s_i) = 2$ and $supp(s_i) = 4$ for $1 \le i \le p - 4$, and $o(s_i) = supp(s_i) = p - 2$ for $p - 3 \le i \le p$.

To prove the Claim, it suffices to show that A_1 is solvable. We argue by contradiction and we suppose that A_1 is nonsolvable. Note that $\Gamma^p = \mathsf{Cay}(\mathsf{A}_{p-1}, S)$ and $\Gamma^p(1) = S$.

By Propostion 2.6, $A_1^{\Gamma^p(1)}$ is nonsolvable, and the Burnside Theorem implies that A_1 is 2-transitive on $\Gamma^p(1)$. Note that $p \ge 11$. Since $s_1 = (1,2)(3,4)$ commutes with $s_5 = (5,6)(7,8)$, there is a 4-cycle passing through $1, s_1$ and s_5 . By the 2-transitivity of A_1 on $\Gamma^p(1)$, there exists a 4-cycle through $1, s_p$ and $s_{p-1} = s_p^{-1}$, and this implies $|Ss_p \cap Ss_p^{-1}| \ge 2$. Thus, $|Ss_p^{-2} \cap S| \ge 2$.

Let $S_1 = \{s_i \mid 1 \leq i \leq p-4\}$ and $S_2 = \{s_{p-2}, s_{p-2}^{-1}, s_p, s_p^{-1}\}$. Then $S = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$. Since s_p^{-1} is a (p-2)-cycle in A_p and p-2 is odd, s_p^{-2} is also a (p-2)-cycle, implying $supp(s_p^{-2}) = p-2$. Since $supp(s_i) = 4$ for each $1 \leq i \leq p-4$, we have $supp(s_i s_p^{-2}) \geq p-6 \geq 5$, and $s_i s_p^{-2}$ cannot be any involution in S. Thus, $|S_1 s_p^{-2} \cap S_1| = 0$.

Note that $S_2 s_p^{-2} = \{s_p^{-1}, s_p^{-3}, s_{p-2} s_p^{-2}, s_{p-2}^{-1} s_p^{-2}\}$. Then $|S_2 s_p^{-2} \cap S_2| = 1$ by a simple checking one by one. If $|S_2 s_p^{-2} \cap S_1| \neq 0$, then $z^2 = 1$ for some $z \in S_2 s_p^{-2}$, and we have $s_p^{-2} = 1$ or $s_p^{-6} = 1$ or $(s_{p-2} s_p^{-2})^2 = 1$ or $(s_{p-2}^{-1} s_p^{-2})^2 = 1$, of which all are impossible because all these elements cannot fix 1. Thus, $|S_2 s_p^{-2} \cap S_1| = 0$. Similarly, $|S_2 s_p^2 \cap S_1| = 0$.

Recall that $|Ss_p^{-2} \cap S| \ge 2$. Since $|S_2s_p^{-2} \cap S_2| = 1$ and $|S_2s_p^{-2} \cap S_1| = 0$, we have $|S_1s_p^{-2} \cap S| = 1$, and since $|S_1s_p^{-2} \cap S_1| = 0$, we have $|S_1s_p^{-2} \cap S_2| = 1$. It follows $|S_2s_p^2 \cap S_1| = 1$, a contradiction. Thus, A_1 is solvable, as claimed.

From now on, we write $\Gamma^p = \mathsf{Cos}(T, H, HtH)$. Clearly, H is core-free in T. By Claim, $A = \mathsf{Aut}(\Gamma^p)$ has solvable stabilizer. By Theorem 1.3, \hat{T}_H is normal in A, and by Proposition 4.2, $A = N_A(\hat{T}_H) = \hat{T}_H \mathsf{Aut}(T, H, HtH)_H$ with $\hat{T}_H \cap \mathsf{Aut}(T, H, HtH)_H = \tilde{H}_H$. Furthermore, $\hat{T}_H \cong T$, $\tilde{H}_H \cong H$ and $\mathsf{Aut}(T, H, HtH)_H \cong \mathsf{Aut}(T, H, HtH) = \{\alpha \in \mathsf{Aut}(T) | H^{\alpha} = H, (HtH)^{\alpha} = HtH\}.$

Let $x^i tx^j \in HtH$ for some $i, j \in \mathbb{Z}_p$. If i + j = 0, then $x^i tx^j = (1 + j, 2 + j)(3 + j, 4 + j)$ and $supp(x^i tx^j) = 4$. If $i + j \neq 0$, then x^{i+j} is a *p*-cycle and $supp(x^i tx^j) = supp(x^{i+j}x^{-j}tx^j) \geq p - 4 > 4$ because $supp(x^{-j}tx^j) = 4$. Thus, $I := \{x^{-i}tx^i \mid i \in \mathbb{Z}_p\}$ consists of all elements in HtH whose supports are 4.

Now we consider $\operatorname{Aut}(T, H, HtH)$. Let $\beta \in \operatorname{Aut}(T, H, HtH)$. Then $\beta \in \operatorname{Aut}(T) = \operatorname{Aut}(\mathsf{A}_p) \cong \mathsf{S}_p$, and β is an automorphism of T induced by some $b \in \mathsf{S}_p$ by conjugation, that is, $t^{\beta} = t^{b}$ for any $t \in T$. Since $(HtH)^{\beta} = (HtH)^{b} = HtH$, we have $I^{\beta} = I$, and in particular, $supp(yz) = supp(y^{\beta}z^{\beta})$ for any $y, z \in I$. It is easy to see that for any $x^{-i}tx^{i}, x^{-j}tx^{j} \in I$, $supp(x^{-i}tx^{i}x^{-j}tx^{j}) = 5$ if and only if j = i + 1 or i - 1. In fact, if j = i + 2 or i - 2 then $supp(x^{-i}tx^{i}x^{-j}tx^{j}) = 4$, if j = i + 3 or i - 3 then $supp(x^{-i}tx^{i}x^{-j}tx^{j}) = 8$.

Let Σ be a graph with I as vertex set and with $y, z \in I$ adjacent if and only if supp(yz) = 5. By the above paragraph, Σ is a cycle of length p, and β induces an automorphism of Σ . Thus, $\operatorname{Aut}(T, H, HtH)$ acts on I, and since Σ is a p-cycle, $\operatorname{Aut}(T, H, HtH)/K \leq D_{2p}$, where K is the kernel of this action. Let $\gamma \in K$, and suppose γ is induced by $c \in S_p$ by conjugation. Then γ fixes each element in I, that is, $(x^{-i}tx^i)^c = x^{-i}tx^i$ for each $i \in \mathbb{Z}_p$. Since $x^{-i}tx^i = (1^{x^i}, 2^{x^i})(3^{x^i}, 4^{x^i})$ and $x^{-(i+3)}tx^{i+3} = (4^{x^i}, 5^{x^i})(6^{x^i}, 7^{x^i}), c$ fixes $\{1^{x^i}, 2^{x^i}, 3^{x^i}, 4^{x^i}\}$ and $\{4^{x^i}, 5^{x^i}, 6^{x^i}, 7^{x^i}\}$ setwise, and hence fixes $4^{x^i} = \{1^{x^i}, 2^{x^i}, 3^{x^i}, 4^{x^i}\} \cap \{4^{x^i}, 5^{x^i}, 6^{x^i}, 7^{x^i}\}$ for each $i \in \mathbb{Z}_p$. It follows that c fixes $\{1, 2, \dots, n\}$ pointwise, implying K = 1. Thus, $|\operatorname{Aut}(T, H, HtH)| \leq |\operatorname{Aut}(\Sigma)| = 2p$.

Recall that $h = (2, p)(3, p-1) \cdots (\frac{p-1}{2}, \frac{p+5}{2})(\frac{p+1}{2}, \frac{p+3}{2})$. For $p = 1 \mod 4$, h is an even permutation and $h \in A_p$, and for $p = 3 \mod 4$, h is an odd permutation and $h \in S_p$, but $h \notin A_p$. Since $x = (1, 2, \cdots, p)$, we have $x^h = x^{-1}$ and so $H^h = H$, and since $t^h = (1^h, 2^h)(3^h, 4^h) = (1, p)(p-1, p-2) = x^{-(p-3)}tx^{p-3} \in I \subset HtH$, we have $(HtH)^h = HtH$. Clearly, $H^x = H$ and $(HtH)^x = H$. For any $z \in S_p$, denote by \tilde{z} the induced automorphism of A_p by z by conjugation. Then $\tilde{x}, \tilde{h} \in Aut(T, H, HtH)$ and $\langle \tilde{x}, \tilde{h} \rangle \cong D_{2p}$. Since $|Aut(T, H, HtH)| \leq 2p$, we have $Aut(T, H, HtH) = \langle \tilde{x}, \tilde{h} \rangle \cong D_{2p}$.

Recall that $\tilde{x}_H : Hg \mapsto Hg^x$ for $g \in A_p$, and $\tilde{h}_H : Hg \mapsto Hg^h$ for $g \in A_p$, are automorphisms of Γ^p , and $\tilde{H}_H = \langle \tilde{x}_H \rangle$. Since $\operatorname{Aut}(T, H, HtH) \cong \operatorname{Aut}(T, H, HtH)_H$, we have $\operatorname{Aut}(T, H, HtH)_H = \langle \tilde{x}_H, \tilde{h}_H \rangle = \tilde{H}_H : \tilde{h}_H \cong \mathsf{D}_{2p}$, and since $\hat{T}_H \cap \operatorname{Aut}(T, H, HtH)_H =$ \tilde{H}_H and $A = \hat{T}_H \operatorname{Aut}(T, H, HtH)_H$, we have $|A : \hat{T}_H| = 2$ and hence $A = \hat{T}_H : \langle \tilde{h}_H \rangle$.

Set $C = C_A(\hat{T}_H)$, the centralizer of \hat{T}_H in A. Since $\hat{T}_H \cong \mathsf{A}_p$, we have $C \cap \hat{T}_H = 1$, and since $A = \hat{T}_H : \langle \tilde{h}_H \rangle$, we have C = 1 or $C \cong \mathbb{Z}_2$. For the former, $A \cong \mathsf{S}_p$ by the N/C Theorem, and for the latter, $A = \hat{T}_H \times C \cong \mathsf{A}_p \times \mathbb{Z}_2$. To finish the proof, we only need to prove that $C \cong \mathbb{Z}_2$ if and only if $p = 1 \mod 4$.

Assume $C \cong \mathbb{Z}_2$. Since $A = \hat{T}_H \rtimes \langle \tilde{h}_H \rangle$, we can let $C = \langle \hat{y}_H \tilde{h}_H \rangle$ for some $y \in T$. This implies that for any $z, g \in T$, we have $(Hz)^{\hat{y}_H \tilde{h}_H \hat{g}_H} = (Hz)^{\hat{g}_H \hat{y}_H \tilde{h}_H}$, that is, $H(zy)^h g =$ $H(zgy)^h$, implying Hhzyhg = Hhzgyh. Set $\ell = yhg(gyh)^{-1}$. Then $Hhz\ell(hz)^{-1} = H$, that is, $\ell \in H^{hz} = H^z$ for any $z \in A_p$. This implies that $\ell \in \bigcap_{z \in A_p} H^z$, and since $\bigcap_{z \in A_p} H^z$ is the largest normal subgroup of A_p contained in H, we have $\bigcap_{z \in A_p} H^z = 1$ and hence $\ell = 1$. This means that yhg = gyh, and by the arbitrary of $g \in A_p$, we have $yh \in C_{A_p}(S_p) = 1$. It follows that $h = y \in A_p$ and hence $p = 1 \mod 4$. On the other hand, if $p = 1 \mod 4$ then it is easy to check that $\hat{h}\tilde{h} \in C$. Thus, $C \cong \mathbb{Z}_2$ if and only if $p = 1 \mod 4$, as required. \Box

References

- M. Conder, C.H. Li, C.E. Praeger, On the Weiss conjecture for finite locally primitive graphs, Proc. Edinb. Math. Soc. 43 (2000) 129-138.
- [2] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 23 (1997) 235-265.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [4] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, 1996.
- [5] J. L. Du, Y.-Q. Feng, Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups, Commun. Algebra 47(11) (2019) 4565-4574
- [6] J. L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting vertex-transitive nonabelian simple groups, European J. Combin. 63 (2017) 134-145.
- [7] X. G. Fang, C. H. Li, M. Y. Xu, On edge-transitive cayley graphs of valency four, European J. Combin. 25 (2004) 1107-1116.
- [8] X. G. Fang, X. S. Ma, J. Wang, On locally primitive cayley graphs of finite simple groups, J. Combin. Theory, Ser. A 118 (2011) 1039-1051.
- [9] X. G. Fang, C. E. Praeger, J. Wang, On the automorphism group of Cayley graphs of finite simple groups, J. Lond. Math. Soc. 66 (2002) 563-578.
- [10] C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
- [11] S. T. Guo, H. Hou, Y. Xu, A note on solvable vertex stabilizers of s-transitive graphs of prime valency, Czechoslovak Math. J. 65 (2015) 781-785.
- [12] B. Huppert, Eudiche Gruppen I, Springer-Verlag, 1967.
- [13] P. B. Kleidman, M. W. Liebeck, The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
- [14] C. H. Li, Isomorphisms of finite Cayley graphs (Ph.D. thesis), The University of Western Australia, 1996.
- [15] C. H. Li, J. M. Pan, Finite 2-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008) 148-158.
- [16] C. H. Li, B. Z. Xia, Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups, submitted, Available online at https://arxiv.org/abs/1408.0350.
- [17] J. M. Pan, F. G. Yin, B. Ling, Arc-transitive Cayley graphs on non-abelian simple groups with soluble vertex stabilizers and valency seven, Discrete Math. 342 (2019) 689-696.
- [18] C. E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc. 47 (1993) 227-239.
- [19] B. O. Sabidussi, Vertex-transitive graphs, Monash Math. 68 (1964) 426-438.
- [20] J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904) 20-50.
- [21] P. Spiga, An application of the local C(G;T) theorem to a conjecture of Weiss, Bull. Lond. Math. Soc. 48 (2016) 12-18.
- [22] Y. Wang, Y.-Q. Feng, J.-X. Zhou, Cayley digraphs of 2-genetic groups of odd prime-power order, J. Combin. Theory, Ser. A 143 (2016) 88-106.
- [23] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48.
- [24] R. Weiss, s-Transitive graphs, Colloq. Math. Soc. János Bolyai 25 (1978) 827-847.
- [25] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, 5-arc-transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28 (2007) 1023-1036.

[26] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, On cubic s-arc-transitive Cayley graphs on finite simple groups, European J. Combin. 26 (2005) 133-143.

DEPARTMENT OF MATHEMATICS, BEIJING JIAOTONG UNIVERSITY, BEIJING, 100044, CHINA *E-mail address*: 181181010@bjtu.edu.cn (F.-G. Yin), yqfeng@bjtu.edu.cn (Y.-Q. Feng), jxzhou@bjtu.edu.cn (J.-X. Zhou), 18121630@bjtu.edu.cn (S.-S. Cheng)