ARC-TRANSITIVE CAYLEY GRAPHS ON NONABELIAN SIMPLE GROUPS WITH PRIME VALENCY

FU-GANG YIN, YAN-QUAN FENG, JIN-XIN ZHOU, SHAN-SHAN CHEN

Abstract

In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency d, where either $d \leq 20$ or d is a prime number. The only case for which the complete solution of this problem is known is of $d=3$. Except this, a lot of efforts have been made to attack this problem by considering the following problem: Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $d \geq 4$. Even for this problem, it was only solved for the cases when either $d \leq 5$ or $d=7$ and the vertex stabilizer is solvable. In this paper, we make crucial progress towards the above problems by completely solving the second problem for the case when $d \geq 11$ is a prime and the vertex stabilizer is solvable.

Keywords. Cayley graph, simple group, arc-transitive graph.

1. Introduction

Throughout this paper, graphs are assumed to be finite undirected graphs without loops and multiple edges, and groups are assumed to be finite. Let G be a permutation group on a set Ω, and let $\alpha \in \Omega$. Denote by G_{α} the stabiliser of α in G, that is, the subgroup of G fixing the point α. The group G is semiregular if $G_{\alpha}=1$ for every $\alpha \in \Omega$, and regular if G is transitive and semiregular.

For a graph Γ, denote by $V(\Gamma), E(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ its vertex set, edge set and full automorphism group, respectively. For a vertex $v \in V(\Gamma)$, let $\Gamma(v)$ be the neighbourhood of v in Γ. An s-arc in Γ is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of Γ such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i<s$. A graph Γ, with $G \leq \operatorname{Aut}(\Gamma)$, is said to be (G, s)-arc-transitive or G-regular if G is transitive on the s-arc set of Γ or G is regular on the vertex set $V(\Gamma)$ of Γ, respectively. For short, a 1 -arc means an arc, and $(G, 1)$-arc-transitive means G-arc-transitive. If a graph Γ is G-regular, then Γ is also called a Cayley graph of G, and the Cayley graph is normal if G is normal in $\operatorname{Aut}(\Gamma)$. A graph Γ is said to be s-arc-transitive if it is $(\operatorname{Aut}(\Gamma), s)$ -arc-transitive. In particular, 0-arc-transitive is vertex-transitive, and 1-arc-transitive is arc-transitive or symmetric.

A fair amount of work have been done on symmetric Cayley graphs on non-abeian simple groups in the literature. One of the remarkable achievements in this research field is the complete classification of cubic non-normal symmetric Cayley graphs of nonabelian simple groups, and it turns out that up to isomorphism, there are only two cubic non-normal symmetric Cayley graphs of non-abelian simple groups which are both cubic

[^0]5 -arc-transitive Cayley graphs on A_{47} (see [14, 26, 25]). Recall that a graph Γ is called locally primitive if for any $v \in V(\Gamma)$, the stabilizer $\operatorname{Aut}(\Gamma)_{v}$ of v in $\operatorname{Aut}(\Gamma)$ is primitive on $\Gamma(v)$. In view of the fact that every cubic symmetric graph is locally primitive, a natural question arises: What can we say about locally primitive non-normal symmetric Cayley graphs of non-abelian simple groups?

On locally primitive graphs, Weiss [23] conjectured that there is a function f defined on the positive integers such that, whenever Γ is a G-vertex-transitive locally primitive graph of valency d with $G \leq \operatorname{Aut}(\Gamma)$ then, for any vertex $v \in V(\Gamma),\left|G_{v}\right| \leq f(d)$. By Conder et al. [1], Weiss conjecture is true for vertex-transitive locally primitive d-valent graphs if $d \leq 20$ or d is a prime number, and by Spiga [21]. Weiss conjecture is also true if the restriction $G^{\Gamma(v)}$ of G on $\Gamma(v)$ contains an abelian regular subgroup, that is, of affine type. In 2007, Fang et al. [8, Theorem 1.1] shown that for any valency d for which the Weiss conjecture holds, all but finitely many locally primitive Cayley graphs of valency d on the finite nonabelian simple groups are normal, and based on this, the following problem was proposed:

Problem 1.1. [8, Problem 1.2] Classify non-normal locally primitive Cayley graphs of finite simple groups of valency d, where either $d \leq 20$ or d is a prime number.

As mentioned above, this problem has been completely solved by Li et al. for the case when $d=3$. For the case when $d \geq 4$, however, it is quite difficult to give a complete solution of Problem 1.1. Because of this, researchers have focused on the following slightly easier problem.

Problem 1.2. Characterize finite nonabelian simple groups which admit non-normal locally primitive Cayley graphs of certain valency $d \geq 4$.

Clearly, a tetravalent graph is locally primitive if and only if the graph is 2-arctransitive. In 2004, Fang et al [7] proved that except 22 groups given in [7, Table 1], every tetravalent 2-arc-transitive Cayley graph Γ of a non-abelian simple group G is normal, and based on this, in 2018, Du and Feng [5] proved that there are exactly 7 non-abelian simple groups which admit at least one non-normal 2-arc-transitive Cayley graph, thus giving a complete solution of Problem 1.2 for the case when $d=4$.

There are also some partial solutions of Problem 1.2 for the case when d is a prime number. It is easy to see that a graph with prime valency is locally primitive if and only if it is symmetric. Fang et al in [8] constructed an infinite family of p-valent non-normal symmetric Cayley graphs of the alternating groups for all prime $p \geq 5$, and using a result in [9] on the automorphism groups of Cayley graphs of non-abelian simple groups, they also gave all possible candidates of finite nonabelian simple groups which might have a pentavalent non-normal symmetric Cayley graph. This was recently improved by Du et al [6] by proving that there are only 13 finite nonabelian simple groups which admit a pentavalent non-normal symmetric Cayley graph.

More recently, Pan et al [17] considered Problem 1.2 for the case when $d=7$, and they proved that for a 7 -valent Cayley graph Γ of a non-abelian simple group G with solvable vertex stabilizer, either Γ is normal, or $\operatorname{Aut}(\Gamma)$ has a normal arc-transitive nonabelian simple subgroup T such that $G<T$ and $(G, T)=\left(\mathrm{A}_{6}, \mathrm{~A}_{7}\right),\left(\mathrm{A}_{20}, \mathrm{~A}_{21}\right),\left(\mathrm{A}_{62}, \mathrm{~A}_{63}\right)$ or $\left(\mathrm{A}_{83}, \mathrm{~A}_{84}\right)$, and for each of these 4 pairs (G, T), there do exist a 7 -valent G-regular T-arc-transitive graph.

In this paper, we shall prove the following theorem which generalizes the result in [17] to all prime valent cases, and hence gives a solution of Problem 1.2 for the case when d is a prime and the vertex-stabilizer is solvable.

Theorem 1.3. Let G be a non-abelian simple group and Γ a connected arc-transitive Cayley graph of G with prime valency $p \geq 11$. If $\operatorname{Aut}(\Gamma)_{v}$ is solvable for $v \in V(\Gamma)$, then either $G \unlhd \operatorname{Aut}(\Gamma)$, or $\operatorname{Aut}(\Gamma)$ has a normal subgroup T with $G<T$ such that Γ is T-arc-transitive and (G, T, p) is one of the following four triples:

$$
\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), 11\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), 29\right),\left(\mathrm{M}_{22}, \mathrm{M}_{23}, 23\right),\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}, p\right)
$$

where $n=p k \ell$ with $k \mid \ell$ and $\ell \mid(p-1)$, and k and ℓ have the same parity.
Conversely, we show that all the first three triples as well as the fourth triple in case of $n=p$ can happen.

Theorem 1.4. Use the same notation as Theorem 1.3. If (G, T, p) is one of the following triples:

$$
\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), 11\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), 29\right),\left(\mathrm{M}_{22}, \mathrm{M}_{23}, 23\right),\left(\mathrm{A}_{p-1}, \mathrm{~A}_{p}, p\right)
$$

then there exists a p-valent symmetric Cayley graph Γ of G such that $\operatorname{Aut}(\Gamma)_{v}$ is solvable for some $v \in V(\Gamma)$.

Let p be a prime and ℓ, k integers with $k \mid \ell$ and $\ell \mid(p-1)$ such that k and ℓ have the same parity. The triple (p, ℓ, k) is called conceivable if there exists an arc-transitive Cayley graph of the alternating group $\mathrm{A}_{p k \ell-1}$ with valency p and its automorphism group has solvable vertex stabilizer. We have been unable to determine all the conceivable triples (p, ℓ, k), and we would like to leave it as an open problem for future research.

Problem 1.5. Determine conceivable triples (p, ℓ, k).
By Theorem 1.4, $(p, 1,1)$ is conceivable for each prime $p \geq 5$, and by $[6],(5,4,2)$ is conceivable, but not $(5,2,2)$. For the case $p=7$, it was shown in [17] that $(7,1,1)$, $(7,3,1),(7,3,3)$ and $(7,6,2)$ are the only conceivable triples.

The paper is organized as follows. In Section 2 we introduce some preliminary results on nonabelian simple groups and arc-transitive graphs with prime valency. Then we prove Theorem 1.3 in Section 3 and Theorem 1.4 in Section 4.

2. Preliminary

In this section, we introduce some preliminary results that will be used latter.
For a positive integer n, we use \mathbb{Z}_{n} to denote the cyclic group of order n. For a group G and a subgroup H of G, denote by $N_{G}(H)$ and $C_{G}(H)$ the normalizer and the centralizer of H in G respectively. Given two groups N and H, denote by $N \times H$ the direct product of N and H, by $N . H$ an extension of N by H, and if such an extension is split, then we write $N: H$ instead of $N . H$.

The following proposition is an exercise in Dixon and Mortimer's textbook [4, p.49].
Proposition 2.1. Let n be a positive integer and p a prime. Let $p^{\nu(n)}$ be the largest power of p which divides $n!$. Then $\nu(n)=\sum_{i=1}\left\lfloor\frac{n}{p^{2}}\right\rfloor<\frac{n}{p-1}$.

The next proposition is called the Frattini argument on transitive permutation group, and we refer to $[4, ~ p .9]$.

Proposition 2.2. Let G be a transitive permutation group on Ω, H a subgroup of G and $v \in \Omega$. Then H is transitive if and only if $G=H G_{v}$.

We denote by $\operatorname{Aut}(G)$ the automorphism group of a group G, and by $\operatorname{Inn}(G)$ the inner automorphism group of G consisting of these automorphisms of G induced by all element of G by conjugation on G. Then $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$, and the quotient group $\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the outer automorphism of G, denoted by Out (G). The following proposition is a direct consequence of the classification of finite simple groups (see [13, Table 5.1.A-C] for example).
Proposition 2.3. Let T be a finite non-abelian simple group. Then $\operatorname{Out}(T)$ is solvable.
Let G and E be two groups. We call an extension E of G by N a central extension of G if E has a central subgroup N such that $E / N \cong G$, and if further E is perfect, that is, the derived group E^{\prime} equals to E, we call E a covering group of G. A covering group E of G is called a double cover if $|E|=2|G|$. Schur [20] proved that for every non-abelian simple group G there is a unique maximal covering group M such that every covering group of G is a factor group of M (see [12, Kapitel V, S23]). This group M is called the full covering group of G, and the center of M is the Schur multiplier of G, denoted by Mult (G). By Kleidman and Liebeck [13, Theorem 5.1.4] and Du et al [6, Proposition 2.6], we have the following proposition.

Proposition 2.4. $\operatorname{Mult}\left(\mathrm{A}_{n}\right)=\mathbb{Z}_{2}$ with $n \geq 8$. For $n \geq 5, \mathrm{~A}_{n}$ has a unique double cover $2 . \mathrm{A}_{n}$, and for $n \geq 7$, all subgroups of index n of $2 . \mathrm{A}_{n}$ are isomorphic to $2 . \mathrm{A}_{n-1}$.

By Kleidman and Liebeck [13, Proposition 5.3.7], we have the following proposition.
Proposition 2.5. Let r be a prime power and f a positive integer. If $\mathrm{A}_{n} \leq \mathrm{GL}(f, r)$ with $n \geq 9$, then $f \geq n-2$.

Let Γ be a connected graph and G a group of automorphisms of Γ. For $v \in V(\Gamma)$, denote by $G_{v}^{\Gamma(v)}$ the induced permutation group of the natural action of G_{v} on the neighbourhood $\Gamma(v)$. Let G_{v}^{*} be the subgroup of G_{v} fixing every vertex in $\Gamma(v)$. Then G_{v}^{*} is the kernel of the natural action of G_{v} on $\Gamma(v)$, and hence $G_{v} / G_{v}^{*} \cong G_{v}^{\Gamma(v)}$. By the connectivity of Γ, there exists a path $v=v_{0}, v_{1}, v_{2}, \cdots, v_{m}$ such that $G_{v_{0} v_{1} \cdots v_{m}}^{*}:=$ $G_{v_{0}}^{*} \cap G_{v_{1}}^{*} \cap \cdots \cap G_{v_{m}}^{*}=1$. Clearly,

$$
1=G_{v_{0} v_{1} \cdots v_{m}}^{*} \unlhd G_{v_{0} v_{1} \cdots v_{m-1}}^{*} \unlhd \cdots \unlhd G_{v_{0} v_{1}}^{*} \unlhd G_{v_{0}}^{*}=G_{v}^{*} \unlhd G_{v}
$$

and for $0 \leq i<m$, we have $G_{v_{0} v_{1} \cdots v_{i}}^{*} / G_{v_{0} v_{1} \cdots v_{i+1}}^{*} \cong\left(G_{v_{0} v_{1} \cdots v_{i}}^{*}\right)^{\Gamma\left(v_{i+1}\right)}$. Then we can easily obtain the following proposition, and this was known from a series of lectures given by Cai Heng Li in Peking University in 2013.

Proposition 2.6. Let Γ be a connected graph and let G be a vertex-transitive group of automorphisms of Γ. Then G_{v} is nonsolvable if and only if $G_{v}^{\Gamma(v)}$ is nonsolvable.

For self-containing, we give a short proof of the following proposition, which is mainly owed to an anonymous referee (also see [11] for another proof).

Proposition 2.7. Let Γ be a connected G-arc-transitive graph of prime valency $p \geq 5$, and let (u, v) be an arc of Γ. Assume that G_{v} is solvable. Then $G_{u v}^{*}=1$ and $G_{v} \cong$ $\mathbb{Z}_{k} \times\left(\mathbb{Z}_{p}: \mathbb{Z}_{\ell}\right)$ with $k|\ell|(p-1)$, where $\mathbb{Z}_{p}: \mathbb{Z}_{\ell} \leq \operatorname{AGL}(1, p)$.

Proof. It follows from [23] that $G_{u v}^{*}=1$. Let P be a Sylow p-subgroup of G_{v}. Note that $G_{v}^{\Gamma(v)}$ is a transitive solvable group of prime degree. By the Burnside Theorem (also see [4, Theorem 3.5B]), $G_{v} / G_{v}^{*} \cong G_{v}^{\Gamma(v)} \cong \mathbb{Z}_{p}: \mathbb{Z}_{\ell} \leq \operatorname{AGL}(1, p)$ with $\ell \mid(p-1)$ and $G_{u v} / G_{v}^{*} \cong \mathbb{Z}_{\ell}$. In particular, $P G_{v}^{*} / G_{v}^{*} \unlhd G_{v} / G_{v}^{*}$, and so $P G_{v}^{*} \unlhd G_{v}$. Since $G_{u}^{*}=$ $G_{u}^{*} / G_{u v}^{*}=G_{u}^{*} /\left(G_{u}^{*} \cap G_{v}^{*}\right) \cong G_{u}^{*} G_{v}^{*} / G_{v}^{*} \leq G_{u v} / G_{v}^{*} \cong \mathbb{Z}_{\ell}$, we have $G_{v}^{*} \cong \mathbb{Z}_{k}$ with $k \mid \ell$, and then $\left|G_{v}\right|=p k \ell$ with $k|\ell|(p-1)$. Since $G_{u v}=G_{u v} / G_{u v}^{*}=G_{u v} /\left(G_{u}^{*} \cap G_{v}^{*}\right) \lesssim$ $G_{u v} / G_{u}^{*} \times G_{u v} / G_{v}^{*} \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}, G_{u v}$ is abelian of exponent ℓ. Let $G_{u v} / G_{v}^{*}=\left\langle a G_{v}^{*}\right\rangle \cong \mathbb{Z}_{\ell}$. Then $\langle a\rangle \cong \mathbb{Z}_{\ell}$ and $\langle a\rangle \cap G_{v}^{*}=1$. It follows that $G_{u v}=\langle a\rangle \times G_{v}^{*}$.

Since $\left|G_{v}^{*}\right|=\ell \mid(p-1), P G_{v}^{*}$ has a unique Sylow p-subgroup P and hence $P G_{v}^{*}=$ $P \times G_{v}^{*}$. Then P is characteristic in $P G_{v}^{*}$, and since $P G_{v}^{*} \unlhd G_{v}$, we have $P \unlhd G_{v}$. It follows that $G_{v}=P: G_{u v}=P:\left(\langle a\rangle \times G_{v}^{*}\right)=G_{v}^{*} \times(P:\langle a\rangle) \cong \mathbb{Z}_{k} \times\left(\mathbb{Z}_{p}: \mathbb{Z}_{\ell}\right)$.

Taking normal quotient graphs is a useful method for studying arc-transitive graphs. Let Γ be an X-vertex-transitive graph, where $X \leq \operatorname{Aut}(\Gamma)$ has an intransitive normal subgroup N. The normal quotient graph Γ_{N} of Γ induced by N is defined to be a graph with vertex set $\left\{\alpha^{N} \mid \alpha \in V(\Gamma)\right\}$, the set of all N-orbits on $V(\Gamma)$, such that two vertices $B, C \in\left\{\alpha^{N} \mid \alpha \in V(\Gamma)\right\}$ are adjacent if and only if some vertex in B is adjacent in Γ to some vertex in C. If Γ and Γ_{N} have the same valency, then Γ is called a normal cover of Γ_{N}. The following proposition is a special case of [15, Lemma 2.5], which slightly improves a remarkable result of Praeger [18, Theorem 4.1].

Proposition 2.8. Let Γ be a connected X-arc-transitive graph of prime valency, with $X \leq \operatorname{Aut}(\Gamma)$, and let $N \unlhd X$ have at least three orbits on $V(\Gamma)$. Then the following statements hold.
(1) N is semi-regular on $V(\Gamma), X / N \leq \operatorname{Aut}\left(\Gamma_{N}\right), \Gamma_{N}$ is a connected X / N-arctransitive graph, and Γ is a normal cover of Γ_{N}.
(2) $X_{v} \cong(X / N)_{\Delta}$ for any $v \in V(\Gamma)$ and $\Delta \in V\left(\Gamma_{N}\right)$.

3. Proof of Theorem 1.3

Throughout this section we make the following assumption.
Assumption: Γ is a symmetric graph of prime valency $p \geq 11$ with $v \in V(\Gamma)$, Aut $(\Gamma)_{v}$ is solvable, and $G \leq \operatorname{Aut}(\Gamma)$ is a non-abelian simple group and transitive on $V(\Gamma)$.

The proof of the following lemma is straightforward, but will be used frequently latter.
Lemma 3.1. Let $X=H: K$ be a transitive permutation group on Ω. Let $w \in \Omega$. If H is transitive, then K is isomorphic to X_{w} / H_{w}.
Proof. Since H is transitive, $X=H X_{w}$ by Proposition 2.2. So $K \cong X / H=H X_{w} / H \cong$ $X_{w} /\left(X_{w} \cap H\right)=X_{w} / H_{w}$.

The product of all minimal normal subgroups of a group X is called the socle of X, denoted by $\operatorname{soc}(X)$, and the largest normal solvable subgroup of X is called the radical of X, denoted by $\operatorname{rad}(X)$.

Lemma 3.2. Let G, Γ, p and v be as given in Assumption. Let Γ be X-arc-transitive with $G \leq X \leq \operatorname{Aut}(\Gamma)$, and let $\operatorname{rad}(X)=1$. Then either $\operatorname{soc}(X)=G$, or Γ is $\operatorname{soc}(X)$ -arc-transitive with $G<\operatorname{soc}(X)$ and one of the following holds:
(1) $(G, \operatorname{soc}(X))=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$ with $n \geq 6$, and $(\operatorname{soc}(X))_{v}$ is transitive on $\{1,2, \cdots, n\}$.
(2) $(G, \operatorname{soc}(X))=\left(\mathrm{M}_{22}, \mathrm{M}_{23}\right)$, and $(\operatorname{soc}(X))_{v}=\mathbb{Z}_{23}$.
(3) $(G, \operatorname{soc}(X))=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11)\right)$, and $(\operatorname{soc}(X))_{v}=\mathbb{Z}_{11}$.
(4) $(G, \operatorname{soc}(X))=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29)\right)$, and $(\operatorname{soc}(X))_{v}=\mathbb{Z}_{29}: \mathbb{Z}_{7}$.

In particular, Γ is a Cayley graph of G for cases (2)-(4).
Proof. Let N be a minimal normal subgroup of X. Since $\operatorname{rad}(X)=1$, we have $N=$ $T_{1} \times \cdots \times T_{d} \cong T^{d}$ for a non-abelian simple group T. Write $K=N G$.

Assume that $G \unlhd X$. If $N \cap G=1$, applying Lemma 3.1 with $K=G: N$ we have that $N \cong(K)_{v} / G_{v}$ is solvable, a contradiction. Therefore, $N \cap G \neq 1$, forcing $G \leq N$, and since G is normal, the minimality of N implies $N=G$. By the arbitrariness of N, we have $\operatorname{soc}(X)=G$.

In what follows we assume that $G \nexists X$. If Γ is bipartite, then the transitivity of G on $V(\Gamma)$ implies that G has a normal subgroup of index 2 , contradicting the simplicity of G. Thus, Γ is not bipartite. Therefore N has either one or at least three orbits on $V(\Gamma)$. We claim that the latter cannot occur.

We argue by contradiction and we suppose that N has at least three orbits on $V(\Gamma)$. By Proposition 2.8, N is semiregular on $V(\Gamma)$, and so $|N|=|T|^{d}$ is a divisor of $|V(\Gamma)|$. In particular, $|N|||G|$. Since N has at least three orbits, $| G|\geq 3| N \mid$ and hence $N \cap G=1$.

Consider the conjugate action of G on N, and since G is simple, the action is trivial or faithful. If it is trivial then $K=N \times G$, and by Lemma 3.1, $N \cong K_{v} / G_{v}$ is solvable, a contradiction. It follows that the conjugate action of G on N is faithful, and hence we may assume $G \leq \operatorname{Aut}(N)$.

Note that $\operatorname{Aut}(N) \cong \operatorname{Aut}(T)^{d}: \mathrm{S}_{d}$. Set $M=\operatorname{Aut}(T)^{d}$ and $M_{1}=\operatorname{Inn}(N) \cong T^{d}$. Then $\left|M_{1}\right|=|N|, M_{1} \unlhd M, M \unlhd \operatorname{Aut}(N)$ and $M_{1} \unlhd \operatorname{Aut}(N)$. Clearly, $G \cap M_{1}=1$ as $|G| \geq 3|N|=$ $3\left|M_{1}\right|$. If $G \cap M \neq 1$ then $G \leq M$ and hence $G \cong G /\left(G \cap M_{1}\right) \cong G M_{1} / M_{1} \leq M / M_{1} \cong$ $\operatorname{Out}(T)^{d}$, which is impossible because $\operatorname{Out}(T)$ is solvable by Propostion 2.3. This means that $G \cap M=1$, and therefore, $G \cong G /(G \cap M) \cong G M / M \leq \operatorname{Aut}(N) / M \cong \mathrm{~S}_{d}$. Recall that $|N|=|T|^{d}$ and $|N|||G|$. Then for any prime p with $p||T|$, we have $p^{d} \mid d!$, and by Proposition 2.1, $d<\frac{d}{p-1}$, a contradiction.

We have just shown that N has one orbit, that is, N is transitive on $V(\Gamma)$. If $N \cap G=1$, Lemma 3.1 implies that $G \cong K_{v} / N_{v}$ is solvable, a contradiction. Therefore, $G \leq N$, and by the arbitrariness of N, X has only one minimal normal subgroup, that is, $\operatorname{soc}(X)=N$.

Since G is not normal in X, we have $G<N$, and hence $N_{v} \neq 1$ as Γ is G-vertextransitive. Clearly, we may chose v such that $N_{v}^{\Gamma(v)} \neq 1$. Since Γ has prime valency and $N_{v}^{\Gamma(v)} \unlhd X_{v}^{\Gamma(v)}, N_{v}^{\Gamma(v)}$ is transitive on $\Gamma(v)$, that is, Γ is N-arc-transitive.

Recall that $N=T_{1} \times T_{2} \times \cdots \times T_{d} \cong T^{d}$. Suppose $d \geq 2$. If T_{1} is transitive, then by Lemma 3.1, $T_{2} \times \cdots \times T_{d} \cong N_{v} /\left(T_{1}\right)_{v}$ is solvable, a contradiction. Thus, T_{1} has at least three orbits, and hence $|G| \geq 3\left|T_{1}\right|$. In particular, $G \cap T_{1}=1$. By the simplicity of G, the conjugate action of G on T_{1} is trivial or faithful. If it is trivial then $G T_{1}=G \times T_{1}$, and by Lemma 3.1, $T_{1} \cong\left(G T_{1}\right)_{v} / G_{v}$ is solvable, a contradiction. Thus, the conjugate action of G on T_{1} is faithful and hence we may assume $G \leq \operatorname{Aut}\left(T_{1}\right)$. Since $|G| \geq 3\left|T_{1}\right|=3\left|\operatorname{lnn}\left(T_{1}\right)\right|$, we have $G \cap \operatorname{Inn}\left(T_{1}\right)=1$ and hence $G=G /\left(G \cap \operatorname{lnn}\left(T_{1}\right)\right) \cong$ $G \operatorname{lnn}\left(T_{1}\right) / \operatorname{lnn}\left(T_{1}\right) \leq \operatorname{Aut}\left(T_{1}\right) / \operatorname{Inn}\left(T_{1}\right)=\operatorname{Out}\left(T_{1}\right)$, which is impossible because $\operatorname{Out}\left(T_{1}\right)$ is solvable. Thus, $\operatorname{soc}(X)=N=T$ is a non-abelian simple group.

By the Frattini argument, $T=G T_{v}$. Then the triple (T, G, T_{v}) can be read out from [16], where T_{v} is a group given in Proposition 2.7. Note that $p \geq 11$.

By [16, Proposition 4.2], T cannot be any exceptional group of Lie type.
Assume that $T=\mathrm{A}_{n}$. By [16, Proposition 4.3], one of the following occurs:
(a) $G=\mathrm{A}_{n-1}, T=\mathrm{A}_{n}$ with $n \geq 6$ and T_{v} is transitive on $\{1,2, \cdots, n\}$, or
(b) $G=\mathrm{A}_{n-2}, T=\mathrm{A}_{n}$ with $n=q^{f}$ for some prime q, and $T_{v} \leq \mathrm{A} \Gamma \mathrm{L}\left(1, q^{f}\right)$ is 2 -homogeneous on $\{1,2, \cdots, n\}$.

If (b) occurs, then T_{v} is primitive on $\left\{1,2,3, \cdots, q^{f}\right\}$ because it is 2-homogeneous. By Proposition 2.7, T_{v} has a normal subgroup \mathbb{Z}_{p}, and by the primitivity of T_{v}, \mathbb{Z}_{p} is transitive and so regular on $\left\{1,2,3, \cdots, q^{f}\right\}$. It follows $q^{f}=p$ and $T_{v} \leq \operatorname{AGL}(1, p)=$ $\mathbb{Z}_{p}: \mathbb{Z}_{p-1}$. Moreover, since $\left|T_{v}\right|=\frac{|T|\left|G_{v}\right|}{|G|} \geq \frac{|T|}{|G|}=p(p-1)$, we have that $T_{v}=\operatorname{AGL}(1, p)=$ $\mathbb{Z}_{p}: \mathbb{Z}_{p-1}$. Thus, A_{p} contains a cyclic subgroup \mathbb{Z}_{p-1}, which is impossible because \mathbb{Z}_{p-1} contains odd permutations on $\{1,2,3, \cdots, p\}$. It follows that $T=\mathrm{A}_{n}, G=\mathrm{A}_{n-1}$ and T_{v} is transitive on the n points, which is the case (1) of the lemma.

Assume that T is a sporadic simple group. By [16, Proposition 4.4], $G=\mathrm{M}_{22}, T=$ M_{23}, and $T_{v}=\mathbb{Z}_{23}$ or $\mathbb{Z}_{23}: \mathbb{Z}_{11}$. Suppose on the contrary that $T_{v}=\mathbb{Z}_{23}: \mathbb{Z}_{11}$. We may let $T_{u v}=\mathbb{Z}_{11}$ for $u \in \Gamma(v)$. Since Γ is T-arc-transitive, there is an element $g \in T$ interchanging u and v, and hence $T_{u v}^{g}=T_{u^{g} v^{g}}=T_{u v}$, that is, $g \in N_{T}\left(T_{u v}\right)$. A computation with MAGMA [2] shows that there is only one conjugate class of \mathbb{Z}_{11} in M_{23}, and the normalizer of \mathbb{Z}_{11} in \mathbb{M}_{23} is $\mathbb{Z}_{11}: \mathbb{Z}_{5}$. Thus, $g \in \mathbb{Z}_{11}: \mathbb{Z}_{5}$ has odd order, which is impossible because g interchanges u and v. It follows that $T_{v}=\mathbb{Z}_{23}$, which is the case (2) of the lemma.

Assume that T is a classical simple group of Lie type. Note that $T=G T_{v}, G$ is non-abelian simple and T_{v} is solvable. Let H is a maximal subgroup subject to that $T_{v} \leq H$ and H is solvable. Then $T=G H$, and (T, G, H) is listed in [16, Table 1.1 and Table 1.2]. Clearly, $|T: G|\left|\left|T_{v}\right|\right||H|$. For an integer m and a prime r, we use m_{r} to denote the largest r-power dividing m.

By Proposition $2.7, T_{v}=\mathbb{Z}_{k} \times\left(\mathbb{Z}_{p}: \mathbb{Z}_{\ell}\right)$ with $k|\ell| p-1$, where $\mathbb{Z}_{p}: \mathbb{Z}_{\ell} \leq \operatorname{AGL}(1, p)$. Let P and Q be the maximal normal r-subgroup of T_{v} and H respectively. Then $Q \cap T_{v} \leq P$, and since $T_{v} /\left(T_{v} \cap Q\right) \cong Q T_{v} / Q \leq H / Q$, we have $\left|T_{v}\right|_{r} \leq\left|T_{v} \cap Q\right| \cdot|H / Q|_{r} \leq|P||H / Q|_{r}$. Clearly, $\left|T_{v}\right|_{p}=p$ and hence $|T: G|_{p} \leq p$.

Suppose that $r \neq p$ and $r\left|\left|T_{v}\right|\right.$. If P is not contained in \mathbb{Z}_{k}, then $1 \neq P \mathbb{Z}_{k} / \mathbb{Z}_{k} \unlhd$ $T_{v} / \mathbb{Z}_{k} \cong \mathbb{Z}_{p}: \mathbb{Z}_{\ell}$, which is impossible because \mathbb{Z}_{p} is the unique minimal normal subgroup of $\mathbb{Z}_{p}: \mathbb{Z}_{\ell}$. Therefore $P \leq \mathbb{Z}_{k}$. It follows from $k \mid \ell$ that $|P|^{2} \leq\left|T_{v}\right|_{r}$, and from $\left|T_{v}\right|_{r} \leq$ $|P||H / Q|_{r}$ that $|P| \leq|H / Q|_{r}$. Thus, $|T: G|_{r} \leq\left|T_{v}\right|_{r} \leq\left(|H / Q|_{r}\right)^{2}$.

Since G is a non-abelian simple group, we may exclude Row 1 of [16, Table 1.1] and Rows $7-10,17$ and 21 of [16, Table 1.2], and since $p \geq 11$ and $p||H|$, we may exclude Rows $6,11-13,16-20,22$ and $24-27$ of [16, Table 1.2]. The remaining cases are Rows 2-9 of [16, Table 1.1], and Rows 1-5, 14, 15, 23 and 28 of [16, Table 1.2].

In what follows we write $q=r^{f}$ for some prime r and positive integer f.
For Row 2 of [16, Table 1.1], $T=\operatorname{PSL}(4, q), G=\operatorname{PSp}(4, q)$, and $H=q^{3}: \frac{q^{3}-1}{(4, q-1)} .3$. By [13, Table 5.1A], $q^{2}| | T: G \mid$. Thus $r \neq p$. Note that $|H / Q|_{r}=1$ or 3 . Since $r^{2 f}=q^{2} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}$, we have $r=3$ and $f=1$, that is, $q=3$. This is impossible because a computation with Magma shows $T=\operatorname{PSL}(4,3)$ has no factorization $T=G H$.

For Row 3 of [16, Table 1.1], $T=\operatorname{PSp}(2 m, q), G=\Omega^{-}(2 m, q)$, and $H=q^{m(m+1) / 2}$: $\left(q^{m}-1\right) . m$ with $m \geq 2$ and q even. Then $r=2$. By [13, Table 5.1A], $q^{m}| | T: G \mid$, implying $r \neq p$. Furthermore, $r^{f m}=q^{m} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}=m_{r}^{2}$. It follows $r^{m_{2}} \leq$ $r^{f m} \leq m_{2}^{2}$, and this holds if and only if $m_{2}=2$ or 4 . If $m_{2}=2$, then $2^{f m} \leq m_{2}^{2}=4$ implies $f=1, m=2$, which is impossible because $\operatorname{PSp}(4,2) \cong \mathrm{S}_{6}$ is not a simple group. If $m_{2}=4$, then $2^{f m} \leq m_{2}^{2}=16$ implies that $m=4$ and $f=1$. In this case, $|H|=2^{12} \cdot 15$, contradicting that $p||H|$ with $p \geq 11$.

For Rows 4 and 5 of [16, Table 1.1], $T=\operatorname{PSp}(4, q), G=\operatorname{PSp}\left(2, q^{2}\right)$, and $H=q^{3}$: $\frac{q^{2}-1}{(2, q-1)}$.2. By [13, Table 5.1A], $q^{2}| | T: G \mid$, and so $r \neq p$. Note that $|H / Q|_{r}=1$ or 2 . Since $r^{2 f}=q^{2} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}$, we have that $r=2$ and $f=1$. This is impossible because $T=\operatorname{PSp}(4,2) \cong \mathrm{S}_{6}$ is not simple.

For Row 6 of [16, Table 1.1], $T=\operatorname{PSU}(2 m, q), G=\operatorname{SU}(2 m-1, q)$, and $H=q^{m^{2}}$: $\frac{q^{2 m}-1}{q+1(2 m, q+1)} . m$ with $m \geq 2$. By [13, Table 5.1A], $q^{2 m-1}=r^{(2 m-1) f}| | T: G \mid$ and $r \neq$ p. Thus $r^{(2 m-1) f}=q^{2 m-1} \leq\left|T_{v}\right|_{r} \leq H /\left.Q\right|_{r} ^{2}=m_{r}^{2}$, implying $r^{2 m_{r}-1} \leq m_{r}^{2}$, which is impossible.

For Row 7 of [16, Table 1.1], $T=\mathrm{P} \Omega(2 m+1, q), G=\Omega^{-}(2 m, q)$, and $H=$ $\left(q^{m(m-1) / 2} \cdot q^{m}\right): \frac{q^{m}-1}{2} . m$ with $m \geq 3$ and q odd. Then $r, m_{r} \geq 3$. By [13, Table 5.1A], $q^{m}=2^{f m}| | T: G \mid$ and hence $r \neq p$. Then $r^{f m}=q^{m} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}=m_{r}^{2}$, and so $r^{m_{r}} \leq m_{r}^{2}$, which is impossible.

For Row 8 of [16, Table 1.1], $T=\mathrm{P} \Omega^{+}(2 m, q), G=\Omega(2 m-1, q)$, and $H=q^{m(m-1) / 2}$: $\frac{q^{m}-1}{\left(4, q^{m}-1\right)} . m$ with $m \geq 5$. By [13, Table 5.1A], $q^{m-1}=r^{f(m-1)}| | T: G \mid$ and $r \neq p$. Then $r^{f(m-1)}=q^{m-1} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}=m_{r}^{2}$. Note that the inequality $2^{x}>x^{2}$ always holds for $x \geq 5$. Thus $m_{r} \leq 4$. Since $r^{f(m-1)} \leq m_{r}^{2}$ and $m \geq 5$, we have that $r=2, m_{r}=4$ and $m=5$, which is impossible because $m_{r}=5_{2}=1$.

For Row 9 of [16, Table 1.1], $T=\mathrm{P} \Omega^{+}(8, q), G=\Omega(7, q)$, and $H=q^{6}: \frac{q^{4}-1}{\left(4, q^{4}-1\right)} \cdot 4$. By [13, Table 5.1A], $q^{3}=r^{3 f}| | T: G \mid$, and $r \neq p$. Then $r^{3 f}=q^{3} \leq\left|T_{v}\right|_{r} \leq|H / Q|_{r}^{2}=\left(4_{r}\right)^{2}$, implying $r=2$ and $f=1$. In this case, $|H|=2^{8} \cdot 15$, contradicting $p||H|$ with $p \geq 11$.

For Row 14 of [16, Table 1.2$], T=\operatorname{PSp}(4,11), H=11_{+}^{1+2}: 10 . \mathrm{A}_{4}$, and $G=$ $\operatorname{PSL}\left(2,11^{2}\right)$. By [13, Table 5.1 A$], 11^{2}| | T: G| |\left|T_{v}\right|$ and hence $p \neq 11$, which is impossible because p is the largest prime divisor of $\left|T_{v}\right|$. Similarly, we may exclude Row 15 of [16, Table 1.2], because $T=\operatorname{PSp}(4,23), H=23_{+}^{1+2}: 22 . \mathrm{S}_{4}, G=\operatorname{PSL}\left(2,23^{2}\right)$, and $23^{2}| | T: G| |\left|T_{v}\right|$ by [13, Table 5.1A].

For Row 23 of [16, Table 1.2], $T=\Omega(7,3), H=3^{3+3}: 13: 3$ and $G=\operatorname{Sp}(6,2)$. Then $p=13$, and since $\left|T_{v}\right|=p k \ell$ with $k|\ell|(p-1)$, we have $3^{5} \nmid\left|T_{v}\right|$. However, $|T: G|=|\Omega(7,3)| /|\operatorname{Sp}(6,2)|=13 \cdot 3^{5}$ implies $3^{5}| | T_{v} \mid$, a contradiction. Similarly, we may exclude Row 28 of [16, Table 1.2] because $T=\mathrm{P} \Omega^{+}(8,3), H=3^{6}:\left(3^{3}: 13: 3\right)$ or $3^{3+6}: 13: 3, G=\Omega^{+}(8,2)$ and $|T: G|=13 \cdot 3^{7}$.

For Rows 1-5 of [16, Table 1.2], by Magma we obtain the following:
(a) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), \mathbb{Z}_{11}\right)$,
(b) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), \mathbb{Z}_{11}: \mathbb{Z}_{5}\right)$,
(c) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,19), \mathbb{Z}_{19}: \mathbb{Z}_{9}\right)$,
(d) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), \mathbb{Z}_{29}: \mathbb{Z}_{7}\right)$,
(e) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), \mathbb{Z}_{29}: \mathbb{Z}_{14}\right)$,
(f) $\left(G, T, T_{v}\right)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,59), \mathbb{Z}_{59}: \mathbb{Z}_{29}\right)$.

For case (b), $|V(\Gamma)|=\left|T: T_{v}\right|=12$ and hence Γ is a complete graph of order 12, contradicting that $\operatorname{Aut}(\Gamma)_{v}$ is solvable. Similarly, cases (c),(e) and (f) cannot occur because Γ is a complete graph of order 20,30 or 60 , respectively. Thus, we have (a) or (d), which is the case (3) or (4) of the lemma.

For cases (2)-(4), it is easy to see that $G_{v}=G \cap T_{v}=1$. Since G is transitive, it is regular, that is, Γ is Cayley graph of G.

Lemma 3.3. Let G, Γ, p and v be as given in Assumption and further assume that G is regular on $V(\Gamma)$. Then $\operatorname{rad}(\operatorname{Aut}(\Gamma))$ has at least three orbits on $V(\Gamma)$, and if $\operatorname{rad}(\operatorname{Aut}(\Gamma)) G \unlhd \operatorname{Aut}(\Gamma)$ then $\operatorname{rad}(\operatorname{Aut}(\Gamma)) G=\operatorname{rad}(\operatorname{Aut}(\Gamma)) \times G$.

Proof. Set $A=\operatorname{Aut}(\Gamma), R=\operatorname{rad}(A)$ and $B=R G$. If R is transitive on $V(\Gamma)$, then Lemma 3.1 implies that $G \cong B_{v} / R_{v}$ is solvable, a contradiction. Since G is transitive, Γ is not bipartite and hence R has at least three orbits. Assume that $B \unlhd A$. To finish the proof, it suffices to show $B=R \times G$. This is clearly true for $R=1$.

Assume $R \neq 1$. Then $R \cap G=1$. Since G is regular, $B_{v} \neq 1$, and since $B \unlhd A$, Γ is B-arc-transitive. By Proposition 2.7, B_{v} has a normal sylow p-subgroup \mathbb{Z}_{p}, and $\left|B_{v}\right|=p m$ with $(p, m)=1$. Note that $R G=B=G B_{v}$. Again by the regularity of G, we have $\left|B_{v}\right|=|R|=p m$. Let R_{p} be a Sylow p-subgroup of R. We claim $R_{p} \unlhd B$.

Suppose to the contrary that $R_{p} \nexists B$. Since $R \unlhd B$ is solvable, by the Jordan-Holder Theorem, B has a normal series: $1 \unlhd R_{1} \unlhd R_{2} \unlhd \cdots \unlhd R \unlhd B$ such that $R_{1} \unlhd B, R_{2} \unlhd B$, $R_{2} / R_{1} \cong \mathbb{Z}_{p}$ and $R_{1} \neq 1$. Since $(p, m)=1$, we have $p \nmid\left|R_{1}\right|$. Note that $R_{2} / R_{1} \unlhd B / R_{1}$ and $G R_{1} / R_{1} \cong G /\left(G \cap R_{1}\right)=G$. Since $R_{2} / R_{1} \cong \mathbb{Z}_{p}$, the conjugate action of $G R_{1} / R_{1}$ on R_{2} / R_{1} must be trivial by the simplicity of G. It follows that $G R_{2} / R_{1}=R_{2} / R_{1} \times G R_{1} / R_{1}$, and hence, $G R_{1} / R_{1} \unlhd G R_{2} / R_{1}$, forcing $G R_{1} \unlhd G R_{2}$. Since $p\left|\left|R_{2}\right|, G R_{2}\right.$ is arc-transitive on Γ, and hence $G R_{1}$ is also arc-transitive because $\left|\left(G R_{1}\right)_{v}\right|=\left|R_{1}\right| \neq 1$. It follows $p\left|\left|R_{1}\right|\right.$, a contradiction. Thus, $R_{p} \unlhd B$, as claimed.

Let $C=C_{B}\left(R_{p}\right)$. Since $R_{p} \unlhd B$ and $R_{p} \cong \mathbb{Z}_{p}$, the conjugate action of G on R_{p} is trivial and so $R_{p} G=R_{p} \times G$. It follows that $G \leq C$ and $C=C \cap B=C \cap(R G)=(C \cap R) G$. Clearly, $R_{p} \leq C \cap R$ and hence R_{p} is a Sylow p-subgroup of $C \cap R$. This implies that $C \cap R=R_{p} \times L$ where L is a p^{\prime}-subgroup of $C \cap R$, and in particular, L is characteristic in $C \cap R$ and so normal in B. Thus, $C=\left(R_{p} \times L\right) G=R_{p} \times L G$, and therefore, $L G \unlhd C$. Note that C is arc-transitive because $G \leq C$ and $R_{p} \leq C$. If $L \neq 1$ then $(L G)_{v} \neq 1$ and then $L G \unlhd C$ implies that $L G$ is arc-transitive. This means that $p \|(L G)_{v} \mid$, and since $L G=G(L G)_{v}$, we have $\left|(L G)_{v}\right|=|L|$ and $p||L|$, which is impossible. It follows that $L=1$ and $C=R_{p} \times G$. Furthermore, $G \unlhd B$ and so $B=R \times G$.

Proof of Theorem 1.3: Let G, Γ, p and v as given in Assumption and further let G be regular on $V(\Gamma)$. Write $A=\operatorname{Aut}(\Gamma), R=\operatorname{rad}(A)$ and $B=R G$. Then $R \cap G=1$ and $B / R \cong G$. By the Frattini argument, $B=G R=G B_{v}$, and so $|R|=\left|B_{v}\right|$.

Assume $R=1$. By Lemma 3.2, either $\operatorname{soc}(A)=G$, or Γ is $\operatorname{soc}(A)$-arc-transitive and $G<\operatorname{soc}(A)$ with $(G, \operatorname{soc}(A))=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right),\left(\mathrm{M}_{22}, \mathrm{M}_{23}\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11)\right)$ or $\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29)\right)$.

Assume $R \neq 1$. By Lemma 3.3, R has at least three orbits, and by Proposition 2.8, the quotient graph Γ_{R} has valency p with A / R-arc-transitive and B / R-vertex-transitive. Moreover, $(A / R)_{\Delta} \cong A_{v}$ is solvable for any $\Delta \in V\left(\Gamma_{R}\right)$. Write $I / R=\operatorname{soc}(A / R)$. Since
$B / R \cong G$, Lemma 3.2 implies that either $B / R=I / R \unlhd A / R$, or Γ_{R} is I / R-arctransitive with $B / R<I / R$ and $(B / R, I / R)=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$ with $(I / R)_{\Delta}$ being transitive on $\{1,2, \cdots, n\}$, or $\left(B / R, I / R,(I / R)_{\Delta}\right)=\left(\mathrm{M}_{22}, \mathrm{M}_{23}, \mathbb{Z}_{23}\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), \mathbb{Z}_{11}\right)$ or $\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), \mathbb{Z}_{29}: \mathbb{Z}_{7}\right)$.

Case 1: $B / R=I / R \unlhd A / R$.
In this case, $B=G R \unlhd A$, and by Lemma 3.3, $B=G \times R$. It follows that G is characteristic in B, and hence $G \unlhd A$.

Case 2: Γ_{R} is I / R-arc-transitive with $B / R<I / R$ and $(B / R, I / R)=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$ with $(I / R)_{\Delta}$ being transitive on $\{1,2, \cdots, n\}$, or $\left(B / R, I / R,(I / R)_{\Delta}\right)=\left(\mathrm{M}_{22}, \mathrm{M}_{23}, \mathbb{Z}_{23}\right)$, $\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), \mathbb{Z}_{11}\right)$ or $\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), \mathbb{Z}_{29}: \mathbb{Z}_{7}\right)$.

Let $\left(B / R, I / R,(I / R)_{\Delta}\right)=\left(\mathrm{M}_{22}, \mathrm{M}_{23}, \mathbb{Z}_{23}\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11), \mathbb{Z}_{11}\right)$ or $\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29), \mathbb{Z}_{29}\right.$: \mathbb{Z}_{7}). By Lemma 3.2, Γ is a Cayley graph on $G B / R \cong G$. Since Γ is a Cayley graph on G, we have that $|V(\Gamma)|=\left|V\left(\Gamma_{R}\right)\right|$, which contradicts the assumption $R \neq 1$. Thus $(B / R, I / R)=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$ with $(I / R)_{\Delta}$ being transitive on $\{1,2, \cdots, n\}$.

First we claim $B=R \times G$. Suppose to the contrary that $B \neq R \times G$. Since R is solvable, there exists a series of normal subgroups of $B: R_{0}=1<R_{1}<\cdots<R_{s}=B$ such that $R_{i} \triangleleft B$ and R_{i+1} / R_{i} is an elementary abelian group for each $0 \leq i \leq s-1$. Since $R G \neq R \times G$, there exists $0 \leq j \leq s-1$ such that $G R_{i}=G \times R_{i}$ for any $0 \leq i \leq j$, but $G R_{j+1} \neq G \times R_{j+1}$.

Write $R_{j+1} / R_{j}=\mathbb{Z}_{r}^{f}$ for some prime r and positive integer f. Note that $G \cap R_{i}=1$ for $0 \leq i \leq s$ and so $R_{i+1} G / R_{i} \cong G$ for $0 \leq i \leq s-1$. In particular, the conjugate action of $R_{j+1} G / R_{j}$ on R_{j+1} / R_{j} is trivial or faithful. If it is trivial, then $R_{j+1} G / R_{j}=$ $\left(R_{j+1} / R_{j}\right)\left(R_{j} G / R_{j}\right)=R_{j+1} / R_{j} \times R_{j} G / R_{j}$, implying $R_{j} G \triangleleft R_{j+1} G$, and since $G R_{j}=$ $G \times R_{j}$, we have $G \unlhd R_{j+1} G$ and $G R_{j+1}=G \times R_{j+1}$, a contradiction. It follows that the conjugate action of $R_{j+1} G / R_{j}$ on R_{j+1} / R_{j} is faithful, and we may assume $G \leq \mathrm{GL}(f, r)$.

Recall that $\left|B_{v}\right|=|R|$ and $R_{j+1} / R_{j}=\mathbb{Z}_{r}^{f}$. Then $r^{f}| | B_{v} \mid$, and since Γ_{R} is I / R -arc-transitive, Γ is I-arc-transitive and Proposition 2.8 implies $I_{v} \cong(I / R)_{\Delta}$. Since $B / R<I / R$, we have $\left|B_{v}\right|\left|\left|I_{v}\right|\right.$ and so $\left.r^{f}\right|\left|(I / R)_{\Delta}\right|$. If $r=p$ then Proposition 2.7 implies $r^{2} \nmid\left|(I / R)_{\Delta}\right|$ and hence $G \leq \mathrm{GL}(1, p)$, a contradiction. It follows $r \neq p$, and again by Proposition 2.7, $r^{f} \mid(p-1)^{2}$.

Now $B / R=\mathrm{A}_{n-1} \leq \mathrm{GL}(f, r)$. By assumption, $p \geq 11$. Since $(I / R)_{\Delta}$ contains a normal subgroup \mathbb{Z}_{p}, we have $p \mid n$ and so $n-1 \geq 11-1=10$. By Proposition 2.5, $f \geq(n-1)-2 \geq p-3$ and so $(p-1)^{2} \geq r^{f} \geq 2^{p-3}$. This is impossible because the function $f(x)=2^{x-3}-(x-1)^{2}>0$ always holds for $x \geq 11$. This completes the proof of the claim, and hence $B=R \times G$.

Set $C=C_{I}(R)$. Then $G \leq C, C \unlhd I$ and $C \cap R \leq Z(C)$. Recall that $I / R=$ A_{n} or M_{23}. Since $G \cong(R \times G) / R \leq C R / R \unlhd I / R$, we have $I=C R$, and since $Z(C) /(C \cap R) \unlhd C / C \cap R \cong C R / R=I / R$, we have $C \cap R=Z(C)$ and $C / Z(C) \cong I / R$. Furthermore, $C^{\prime} /\left(C^{\prime} \cap Z(C)\right) \cong C^{\prime} Z(C) / Z(C)=(C / Z(C))^{\prime}=C / Z(C) \cong I / R$, and so $Z\left(C^{\prime}\right)=C^{\prime} \cap Z(C), C=C^{\prime} Z(C)$ and $C^{\prime} / Z\left(C^{\prime}\right) \cong I / R$. It follows $C^{\prime}=\left(C^{\prime} Z(C)\right)^{\prime}=C^{\prime \prime}$, and hence C^{\prime} is a covering group of I / R.

Suppose $Z\left(C^{\prime}\right) \neq 1$. Then Proposition 2.4 implies that $Z\left(C^{\prime}\right)=\mathbb{Z}_{2}$ and $C^{\prime} \cong 2 . \mathrm{A}_{n}$. Since $G \leq C$ and C / C^{\prime} is abelian, we have $G \leq C^{\prime}$. So $G \times Z\left(C^{\prime}\right) \cong \mathrm{A}_{n-1} \times \mathbb{Z}_{2}$ is a subgroup of $C^{\prime} \cong 2$. A_{n}, which is impossible by Proposition 2.4.

Thus, $Z\left(C^{\prime}\right)=1$. It follows $C^{\prime} \cong I / R$. Since $G<C$ and C / C^{\prime} is abelian, we have $G<C^{\prime} \unlhd I$, and since $|I|=|I / R||R|=\left|C^{\prime}\right||R|$ and $C^{\prime} \cap R=1$, we have $I=C^{\prime} \times R$. Since C^{\prime} is a nonabelian simple group, C^{\prime} is characteristic in I, and hence $C^{\prime} \unlhd A$ because $I \unlhd A$. Since G is regular on Γ and $G<C^{\prime} \unlhd I, C^{\prime}$ has non-trivial stabilizer, and hence Γ is C^{\prime}-arc-transitive on Γ. Note that $C^{\prime} \cong I / R=\mathrm{A}_{n}$.

Summing up, we have proved that either $G \unlhd A$, or A has a normal arc-transitive subgroup T such that $G<T$ and $(G, T)=\left(\mathrm{A}_{5}, \operatorname{PSL}(2,11)\right),\left(\mathrm{A}_{5}, \operatorname{PSL}(2,29)\right),\left(\mathrm{M}_{22}, \mathrm{M}_{23}\right)$ or $\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$ (for $R=1, T=\operatorname{soc}(A)$, and for $\left.R \neq 1, T=C^{\prime}\right)$. Let $(G, T)=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$. Since G is regular, $\left|T_{v}\right|=n$, and by Proposition $2.7, n=p k \ell$ with $k|\ell|(p-1)$. To finish the proof, we are left to show that k and ℓ have the same parity.

Suppose to the contrary that k and ℓ has different parity. Then k is odd and ℓ is even as $k \mid \ell$. Since $(G, T)=\left(\mathrm{A}_{n-1}, \mathrm{~A}_{n}\right)$, we have $|T: G|=n$ and T can be viewed as the alternating permutation group by the well-known right multiplication action of T on the set $[T: G]$ of all right cosets of G in T, still denoted by A_{n}. By the regularity of G on $\Gamma, T=G T_{v}$ and $G \cap T_{v}=1$, which implies that $T_{v} \leq \mathrm{A}_{n}$ is a regular permutation group on $[T: G]$. By Proposition $2.7, T_{v}=\mathbb{Z}_{k} \times\left(\mathbb{Z}_{p}: \mathbb{Z}_{\ell}\right)$, and so T_{v} has a cyclic group \mathbb{Z}_{ℓ} with odd index $\left|T_{v}: \mathbb{Z}_{\ell}\right|=p k$. Let $\mathbb{Z}_{\ell}=\langle a\rangle$. Since T_{v} is regular, a is a product of $p k \ell$-cycles on $[T: G]$ in its distinct cycle decomposition, so an odd permutation as ℓ is even and $k p$ is odd, which is impossible because $T_{v} \leq \mathrm{A}_{n}$. This completes the proof.

4. Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. To do that, we first describe a widely known construction for vertex-transitive and symmetric graphs, part of which is attributed to Sabidussi [19].

Let G be a group, H a subgroup of G, and D a union of some double cosets of H in G such that $H \nsubseteq D$ and $D^{-1}=D$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, D)$ is defined as the graph with vertex-set $[G: H]$, the set of all right cosets of H in G, and edge-set $E(\Gamma)=\{\{H g, H x g\}: g \in G, x \in D\}$. This graph is regular with valency $|D| /|H|$, and is connected if and only if $G=\langle D, H\rangle$, that is, if and only if G is generated by D and H. The group G acts vertex-transitively on Γ by right multiplication. More precisely, for $g \in G$, the permutation $\hat{g}_{H}: H x \mapsto H x g, x \in G$, on $[G: H]$ is an automorphism of $\operatorname{Aut}(\Gamma)$, and $\hat{G}_{H}:=\left\{\hat{g}_{H} \mid g \in G\right\}$ is a transitive subgroup of Aut (Γ). The map $g \mapsto \hat{g}_{H}$, $g \in G$, is a homomorphism from G to $S_{[G: H]}$, the well-known coset action of G on H, and the kernel of this coset action is $H_{G}=\bigcap_{g \in G} H^{g}$, the largest normal subgroup of G contained in H. It follows that $G / H_{G} \cong \hat{G}_{H}$. Furthermore, Γ is \hat{G}_{H}-arc-transitive if and only if D consists of just one double coset $H a H$. If $H_{G}=1$, we say that H is core-free in G, and in this case, $G \cong \hat{G}_{H}$.

If $H=1$, denote $\operatorname{Cos}(G, H, D)$ and \hat{G}_{H} by $\operatorname{Cay}(G, D)$ and \hat{G}, respectively. In this case, \hat{G} is the right regular representation of G, and it is regular on the vertex set of $\operatorname{Cay}(G, D)$. By definition, $\operatorname{Cay}(G, D)$ is Cayley graph of \hat{G}, and for short, Cay (G, D) is also called a Cayley graph of G with respect to D.

Conversely, suppose Γ is any graph on which the group G acts faithfully and vertextransitively. Then it is easy to show that Γ is isomorphic to the coset graph $\operatorname{Cos}(G, H, D)$, where $H=G_{v}$ is the stabiliser in G of the vertex $v \in V(\Gamma)$, and D is a union of double cosets of H, consisting of all elements of G taking v to one of its neighbours. Then
$H \nsubseteq D$ and $D^{-1}=D$. Moreover, if G is arc-transitive on Γ and g is an element of G that swaps v with one of its neighbours, then $g^{2} \in H$ and $D=H g H$, and the valency of Γ is $|D| /|H|=\left|H: H \cap H^{g}\right|$. Also a can be chosen as a 2-element in G. In particular, if $L \leq G$ is regular on vertex set of Γ, then Γ is also isomorphic to Cay (L, S), where S consists of all elements of L taking v to one of its neighbours with $S^{-1}=S$, and by the regularity, we have $S=D \cap L$. Thus, we have the following proposition.

Proposition 4.1. Let Γ be a G-vertex-transitive graph and L be a regular subgroup of G. Then $\Gamma \cong \operatorname{Cos}(G, H, D) \cong \operatorname{Cay}(L, S)$ with $S=L \cap D$, where $H=G_{v}$ for $v \in V(\Gamma)$, D is a union of double cosets of H, consisting of all elements of G taking v to one of its neighbours, and S consists of all elements of L taking v to one of its neighbours. Moreover, Γ be G-arc-transitive if and only if G has a 2-element g such that $D=H g H$, and in this case, Γ has valency $\left|H: H \cap H^{g}\right|$.

Let $\Gamma=\operatorname{Cos}(G, H, D)$ be a coset graph. We set $\operatorname{Aut}(G, H, D)=\left\{\alpha \in \operatorname{Aut}(G) \mid H^{\alpha}=\right.$ $\left.H, D^{\alpha}=D\right\}$. For any $\alpha \in \operatorname{Aut}(G, H, D)$, the permutation $\alpha_{H}: H x \mapsto H x^{\alpha}, x \in G$, on $[G: H]$ is an automorphism of Γ, and the map $\alpha \mapsto \alpha_{H}$ is a natural action of $\operatorname{Aut}(G, H, D)$ on $V(\Gamma)$. It follows that $\operatorname{Aut}(G, H, D) / K \cong \operatorname{Aut}(G, H, D)_{H}$, where $\operatorname{Aut}(G, H, D)_{H}=\left\{\alpha_{H} \mid \alpha \in \operatorname{Aut}(G, H, D)\right\}$ and K is the kernel of the action. Furthermore, $\operatorname{Aut}(G, H, D)_{H} \leq \operatorname{Aut}(\Gamma)$. For $h \in H$, let \tilde{h} be the inner automorphism of G induced by h, that is, $\tilde{h}: g \mapsto h^{-1} g h, g \in G$. Then $\tilde{H}:=\{\tilde{h} \mid h \in H\} \leq \operatorname{Aut}(G, H, D)$ and hence $\tilde{H}_{H}:=\left\{\tilde{h}_{H} \mid h \in H\right\}$ is a subgroup of $\operatorname{Aut}(G, H, D)_{H}$.

The following proposition was proved by Wang, Feng and Zhou [22, Lemma 2.10], which is important for computing automorphism groups of coset graphs.

Proposition 4.2. Let G be a finite group, H a core-free subgroup of G and D a union of several double-cosets $H g H$ such that $H \nsubseteq D$ and $D=D^{-1}$. Let $\Gamma=\operatorname{Cos}(G, H, D)$ and $A=\operatorname{Aut}(\Gamma)$. Then $\hat{G}_{H} \cong G$, $\operatorname{Aut}(G, H, D)_{H} \cong \operatorname{Aut}(G, H, D), \tilde{H}_{H} \cong \tilde{H}$, and $\mathbf{N}_{A}\left(\hat{G}_{H}\right)=\hat{G}_{H} \operatorname{Aut}(G, H, D)_{H}$ with $\hat{G}_{H} \cap \operatorname{Aut}(G, H, D)_{H}=\tilde{H}_{H}$.

Now we are ready to prove Theorem 1.4 and this follows from Lemmas 4.3-4.6.
Let x, y, t be permutations in S_{11} as following:

$$
\begin{aligned}
x & =(1,11,8,3,6,9,4,10,2,7,5) \\
y & =(2,10,6)(3,11,4)(7,8,9) \\
t & =(2,5)(3,9)(6,11)(8,10)
\end{aligned}
$$

Let $T=\langle x, t\rangle, H=\langle x\rangle, G=\langle y, t\rangle$. Define

$$
\Gamma=\operatorname{Cos}(T, H, H t H)
$$

Then a computation with Magma [2] shows that $T \cong \operatorname{PSL}(2,11), H \cong \mathbb{Z}_{11},\left|H \cap H^{t}\right|=$ 1 , and $G \cong \mathrm{~A}_{5}$. By Proposition 4.1, Γ has valency 11 and T acts arc-transitively on Γ. Since $11 X|G|, G$ acts semiregularly on $V(\Gamma)$, and since $|G|=|V(\Gamma)|, G$ is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of A_{5} with $\operatorname{PSL}(2,11)$-arctransitive. A direct computation with Magma shows that $\operatorname{Aut}(\Gamma) \cong \operatorname{PGL}(2,11)$ and this implies the following lemma.

Lemma 4.3. There exists an 11-valent symmetric Cayley graph Γ of A_{5} such that $\operatorname{Aut}(\Gamma) \cong \mathrm{PGL}(2,11)$. In particular, $\operatorname{Aut}(\Gamma)_{v}$ is solvable for $v \in V(\Gamma)$.

Let x, y, t, z be permutations in S_{30} as following:

$$
\begin{aligned}
x= & (1,21,10,9,22,28,13,15,30,6,19,18,7,27,23,4,25,17,20,2,12,29,16,26,8,11, \\
& 3,24,5) \\
y= & (1,24,9)(2,6,5)(3,27,21)(4,12,20)(7,25,26)(8,10,13)(11,14,16)(15,30,23)(17, \\
& 28,29)(18,22,19) \\
t= & (1,3)(2,10)(4,11)(5,19)(6,24)(7,16)(8,17)(9,28)(12,27)(13,20)(14,22)(15,26) \\
& (18,30)(21,23) \\
z= & (2,18,23,10,29,9,17)(3,7,19,20,4,24,30)(5,22,27,13,28,6,16)(8,12,15,21,11, \\
& 25,26)
\end{aligned}
$$

Let $T=\langle x, t\rangle, H=\langle x, z\rangle, G=\langle y, t\rangle$. Define

$$
\Gamma=\operatorname{Cos}(T, H, H t H)
$$

Then a computation with Magma [2] shows that $T \cong \operatorname{PSL}(2,29), H \cong \mathbb{Z}_{29}: \mathbb{Z}_{7}$, $\left|H \cap H^{t}\right|=7$, and $G \cong A_{5}$. By Proposition 4.1, Γ has valency 29 and T acts arctransitively on Γ. Since $29 \nmid|G|, G$ acts semiregularly on $V(\Gamma)$, and since $|G|=|V(\Gamma)|$, G is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of A_{5} with $\operatorname{PSL}(2,29)$-arc-transitive. A direct computation with MAGMA shows that Aut $(\Gamma) \cong$ $\operatorname{PGL}(2,29)$ and this implies the following lemma.

Lemma 4.4. There exists a 29-valent symmetric Cayley graph Γ of A_{5} such that $\operatorname{Aut}(\Gamma) \cong \mathrm{PGL}(2,29)$. In particular, $\operatorname{Aut}(\Gamma)_{v}$ is solvable for $v \in V(\Gamma)$.

Let x, y, t be permutations in S_{23} as following:

$$
\begin{aligned}
x & =(1,4,6,7,2,19,3,11,9,20,13,23,16,8,21,5,14,22,18,15,17,10,12) \\
y & =(1,14,6,5,9,2,10,3,15,13,11)(4,22,16,19,17,8,21,7,12,18,23) \\
t & =(1,17)(3,9)(5,18)(6,13)(7,12)(10,19)(14,22)(21,23)
\end{aligned}
$$

Let $T=\langle x, t\rangle, H=\langle x\rangle, G=\langle y, t\rangle$. Define

$$
\Gamma=\operatorname{Cos}(T, H, H t H)
$$

Lemma 4.5. The above graph Γ is 23-valent symmetric Cayley graph of M_{22} and $\operatorname{Aut}(\Gamma)=\left(\hat{\mathrm{M}}_{23}\right)_{H} \cong \mathrm{M}_{23}$. In particular, Aut $(\Gamma)_{v}$ is solvable for $v \in V(\Gamma)$.
Proof. A computation with Magma [2] shows that $T \cong \mathrm{M}_{23}, H \cong \mathbb{Z}_{23},\left|H \cap H^{t}\right|=1$, and $G \cong \mathrm{M}_{22}$. By Proposition 4.1, Γ has valency 23 and T acts arc-transitively on Γ. Since $23 \chi|G|, G$ acts semiregularly on $V(\Gamma)$, and since $|G|=|V(\Gamma)|, G$ is regular on $V(\Gamma)$. It follows that Γ is a non-normal Cayley group of M_{22} with M_{23}-arc-transitive. However, we cannot compute $\operatorname{Aut}(\Gamma)$ with Magma because $|V(\Gamma)|$ is too large. By Proposition 4.1, we may let $\Gamma=\operatorname{Cay}(G, S)$ with $S=G \cap H t H$. Write $A=\operatorname{Aut}(\Gamma)$. By Magma, $S=\left\{s_{i} \mid 1 \leq i \leq 23\right\}$, where

$$
\begin{aligned}
& s_{1}=(1,14,6,5,9,2,10,3,15,13,11)(4,22,16,19,17,8,21,7,12,18,23), \\
& s_{2}=(1,11,13,15,3,10,2,9,5,6,14)(4,23,18,12,7,21,8,17,19,16,22), \\
& s_{3}=(1,15,5,2,12,18,16,14,21,13,7)(3,6,4,22,8,19,10,17,9,23,11), \\
& s_{4}=(1,7,13,21,14,16,18,12,2,5,15)(3,11,23,9,17,10,19,8,22,4,6), \\
& s_{5}=(1,9,14)(2,19,5,4,22,12)(3,21,6)(7,23,15,11,8,18)(10,13)(16,17), \\
& s_{6}=(1,14,9)(2,12,22,4,5,19)(3,6,21)(7,18,8,11,15,23)(10,13)(16,17),
\end{aligned}
$$

$$
\begin{aligned}
& s_{7}=(1,4,3)(2,6)(5,8,7,10,14,21)(9,12,17,22,16,13)(11,19,23)(15,18), \\
& s_{8}=(1,3,4)(2,6)(5,21,14,10,7,8)(9,13,16,22,17,12)(11,23,19)(15,18), \\
& s_{9}=(1,12)(2,19,3)(4,6,18,5,8,10)(7,11,23,16,14,22)(9,13)(15,17,21), \\
& s_{10}=(1,12)(2,3,19)(4,10,8,5,18,6)(7,22,14,16,23,11)(9,13)(15,21,17), \\
& s_{11}=(1,7,3,16,12)(2,11,23,22,14)(4,15,5,18,10)(6,9,13,8,17), \\
& s_{12}=(1,12,16,3,7)(2,14,22,23,11)(4,10,18,5,15)(6,17,8,13,9), \\
& s_{13}=(3,16,23,12,6)(4,11,22,18,10)(5,17,7,19,9)(8,14,15,21,13), \\
& s_{14}=(3,6,12,23,16)(4,10,18,22,11)(5,9,19,7,17)(8,13,21,15,14), \\
& s_{15}=(1,15,12,6,19)(2,11,13,14,7)(3,16,21,22,4)(5,10,17,9,23), \\
& s_{16}=(1,19,6,12,15)(2,7,14,13,11)(3,4,22,21,16)(5,23,9,17,10) \\
& s_{17}=(1,7)(3,8)(4,6)(9,19)(11,23)(12,15)(13,18)(14,21), \\
& s_{18}=(2,6)(3,10)(4,22)(8,16)(11,13)(12,18)(14,15)(21,23), \\
& s_{19}=(1,11)(2,16)(4,19)(6,12)(8,14)(9,13)(15,18)(17,22), \\
& s_{20}=(1,17)(3,9)(5,18)(6,13)(7,12)(10,19)(14,22)(21,23), \\
& s_{21}=(1,15)(5,16)(6,18)(7,19)(8,21)(9,23)(11,12)(17,22), \\
& s_{22}=(1,17)(2,9)(5,11)(6,19)(7,13)(8,23)(10,12)(14,15), \\
& s_{23}=(1,5)(2,4)(3,11)(8,13)(9,19)(10,15)(14,16)(18,23) .
\end{aligned}
$$

Let 1 be the identity in G. Then $1 \in V(\Gamma)$. Suppose to the contrary that A_{1} is nonsolvable. By Proposition 2.6, the restriction $A_{1}^{\Gamma(1)}$ of A_{1} on the neighbourhood $\Gamma(1)$ of 1 in Γ is nonsolvable, and since Γ has prime valency, the Burnside Theorem (also see $\left[4\right.$, Theorem 3.5B]) implies that $A_{1}^{\Gamma(1)}$ is 2-transitive on $\Gamma(1)$. This turns that there exists a 5 -cycle passing though 1 and any two vertices in S because ($1, s_{11}, s_{11}^{2}, s_{11}^{3}, s_{11}^{4}$) is a 5 -cycle in Γ. In particular, there is a 5 -cycle passing through $1, s_{1}$ and $s_{2}=s_{1}^{-1}$, and hence $s_{1}^{2} \in S^{3}=\left\{s_{i_{1}} s_{i_{2}} s_{i_{2}} \mid s_{i_{1}}, s_{i_{2}}, s_{i_{2}} \in S\right\}$, but this is not true by MAGMA [2]. Thus, A_{1} is solvable.

Now we let $\Gamma=\operatorname{Cos}(T, H, H t H)$ and $D=H t H$. Since A has solvable stabilizer, Theorem 1.3 implies that $\hat{T}=\hat{\mathrm{M}}_{23} \unlhd A$. Note that H is core-free in T. By Proposition 4.2, $A=\hat{T}_{H} \operatorname{Aut}(T, H, D)_{H}$ with $\hat{T}_{H} \cap \operatorname{Aut}(T, H, D)_{H}=\tilde{H}_{H}$, where $\hat{T}_{H} \cong T, \operatorname{Aut}(T, H, D)_{H} \cong$ $\operatorname{Aut}(T, H, D)$ and $\tilde{H}_{H} \cong \tilde{H}$. To prove $A=\hat{T}_{H}$, it suffices to show that $\operatorname{Aut}(T, H, D)=\tilde{H}$.

Suppose to the contrary that $\alpha \in \operatorname{Aut}(T, H, D)$, but $\alpha \notin \tilde{H}$. By [13, Table 5.1.C], $\operatorname{Out}\left(\mathrm{M}_{23}\right)=1$, that is, $\operatorname{Aut}\left(\mathrm{M}_{23}\right)=\operatorname{Inn}\left(\mathrm{M}_{23}\right)$. Thus, α is an automorphism of T induced by an element of $b \in T$ by conjugation, namely $g^{\alpha}=g^{b}$ for $g \in T$. Since $\alpha \in \operatorname{Aut}(T, H, D)$, we have $H^{b}=H$ and $D^{b}=D$, and since $\alpha \notin \tilde{H}$, we have $b \notin H$. It follows that $H\langle b\rangle$ is a subgroup of T containing H, and by Atlas $[3], H\langle b\rangle \cong \mathbb{Z}_{23}: \mathbb{Z}_{11}$. Since $\tilde{H} \leq \operatorname{Aut}(T, H, D)$, we may choose b such that b has order 11, and by MAGMA, we may let $\bar{b}=(2,14,18,7,16,6,9,20,8,3,4)(5,21,13,22,12,15,11,19,17,23,10)$ because $H=\langle x\rangle$ with $x=(1,4,6,7,2,19,3,11,9,20,13,23,16,8,21,5,14,22,18,15,17,10,12)$. However, $D^{b}=(H t H)^{b} \neq H t H$ by MAGMA, a contradiction. Thus, $A=\hat{T}_{H} \cong \mathrm{M}_{23}$.

Let $p \geq 5$ be a prime, and let x, t and h be permutations in S_{p} as following:

$$
x=(1,2, \cdots, p), \quad t=(1,2)(3,4), \quad h=(2, p)(3, p-1) \cdots\left(\frac{p-1}{2}, \frac{p+5}{2}\right)\left(\frac{p+1}{2}, \frac{p+3}{2}\right) .
$$

Let $T=\langle x, t\rangle$ and $H=\langle x\rangle$. By [8], $T=\mathrm{A}_{p}, H \cong \mathbb{Z}_{p}$ and $\left|H \cap H^{t}\right|=1$. Define

$$
\Gamma^{p}=\operatorname{Cos}\left(\mathrm{A}_{p}, H, H t H\right)
$$

Lemma 4.6. The above graph Γ^{p} is a p-valent symmetric Cayley graph of A_{p-1} such that $\operatorname{Aut}\left(\Gamma^{p}\right) \cong \mathrm{S}_{p}$ for $p \equiv 3(\bmod 4)$ and $\operatorname{Aut}\left(\Gamma^{p}\right) \cong \mathrm{A}_{p} \times \mathbb{Z}_{2}$ for $p \equiv 1(\bmod 4)$. In particular, $\operatorname{Aut}(\Gamma)_{v}$ is solvable for $v \in V(\Gamma)$.

Proof. By Proposition 4.1, Γ^{p} has valency p and A_{p} acts arc-transitively on Γ^{p}, with vertex stabilizer isomorphic to \mathbb{Z}_{p}. Let A_{p-1} be the subgroup of A_{p} fixing the point p. Since $p \backslash\left|\mathrm{~A}_{p-1}\right|, \mathrm{A}_{p-1}$ acts semiregularly on $V\left(\Gamma^{p}\right)$, and since $\left|\mathrm{A}_{p-1}\right|=\left|V\left(\Gamma^{p}\right)\right|, \mathrm{A}_{p-1}$ is regular on $V\left(\Gamma^{p}\right)$. It follows that Γ^{p} is a non-normal Cayley group of A_{p-1} with A_{p}-arc-transitive.

By Proposition 4.1, we may let $\Gamma^{p}=\operatorname{Cay}\left(\mathrm{A}_{p-1}, S\right)$, where $S=\mathrm{A}_{p-1} \cap H t H$. For $p=5$ or $p=7$, a computing with Magma shows that $\operatorname{Aut}\left(\Gamma^{5}\right) \cong \mathrm{A}_{5} \times \mathbb{Z}_{2}$ and $\operatorname{Aut}\left(\Gamma^{7}\right) \cong \mathrm{S}_{7}$. Write $A=\operatorname{Aut}(\Gamma)$. We may assume $p \geq 11$.
Claim: A has solvable stabilizer.
Recall that $x=(1,2, \cdots, p), t=(1,2)(3,4)$ and $H=\langle x\rangle$. Let $x^{-i} t x^{j} \in S=H t H \cap$ A_{p-1} for $i, j \in \mathbb{Z}_{p}$. Then $p=p^{x^{-i} t x^{j}}=p^{x^{-i} t x^{i} x^{j-i}}$. Note that $x^{-i} t x^{i}=\left(1^{x^{i}}, 2^{x^{i}}\right)\left(3^{x^{i}}, 4^{x^{i}}\right)$, and if $j-i \neq 0$ then x^{j-i} is a p-cycle. For $0 \leq i \leq p-5, p=p^{x^{-i} t x^{i} x^{j-i}}=p^{x^{j-i}}$ implies $j=i$. Furthermore, For $i=p-4, p-3, p-2$ or $p-1, p=p^{x^{-i} t x^{i} x^{j-i}}$ implies that $j=i+1, i-1, i+1$ or $i-1$, respectively. Thus, we may set $S=\left\{s_{1}, s_{2}, \cdots, s_{p}\right\}$, where $s_{i+1}=x^{-i} t x^{i}=(1+i, 2+i)(3+i, 4+i)$ for $0 \leq i \leq p-5$, $s_{p-2}=x^{-(p-3)} t x^{p-4}=(1, p-1, p-3, \cdots, 3,2), \quad s_{p-3}=x^{-(p-4)} t x^{p-3}=\left(s_{p-2}\right)^{-1}$, $s_{p}=x^{-(p-1)} t x^{p-2}=(1, p-1, p-2, \cdots, 4,3), \quad s_{p-1}=x^{-(p-2)} t x^{p-1}=s_{p}^{-1}$.

For $z \in \mathrm{~A}_{p}$, denote by $o(z)$ the order of z and by $\operatorname{supp}(z)$ the support of z, that is, the number of points moving by z. Then $o\left(s_{i}\right)=2$ and $\operatorname{supp}\left(s_{i}\right)=4$ for $1 \leq i \leq p-4$, and $o\left(s_{i}\right)=\operatorname{supp}\left(s_{i}\right)=p-2$ for $p-3 \leq i \leq p$.

To prove the Claim, it suffices to show that A_{1} is solvable. We argue by contradiction and we suppose that A_{1} is nonsolvable. Note that $\Gamma^{p}=\operatorname{Cay}\left(\mathrm{A}_{p-1}, S\right)$ and $\Gamma^{p}(1)=S$.

By Propostion 2.6, $A_{1}^{\Gamma^{p}(1)}$ is nonsolvable, and the Burnside Theorem implies that A_{1} is 2 -transitive on $\Gamma^{p}(1)$. Note that $p \geq 11$. Since $s_{1}=(1,2)(3,4)$ commutes with $s_{5}=(5,6)(7,8)$, there is a 4 -cycle passing through $1, s_{1}$ and s_{5}. By the 2 -transitivity of A_{1} on $\Gamma^{p}(1)$, there exists a 4 -cycle through $1, s_{p}$ and $s_{p-1}=s_{p}^{-1}$, and this implies $\left|S s_{p} \cap S s_{p}^{-1}\right| \geq 2$. Thus, $\left|S s_{p}^{-2} \cap S\right| \geq 2$.

Let $S_{1}=\left\{s_{i} \mid 1 \leq i \leq p-4\right\}$ and $S_{2}=\left\{s_{p-2}, s_{p-2}^{-1}, s_{p}, s_{p}^{-1}\right\}$. Then $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}=\emptyset$. Since s_{p}^{-1} is a $(p-2)$-cycle in A_{p} and $p-2$ is odd, s_{p}^{-2} is also a $(p-2)$-cycle, implying $\operatorname{supp}\left(s_{p}^{-2}\right)=p-2$. Since $\operatorname{supp}\left(s_{i}\right)=4$ for each $1 \leq i \leq p-4$, we have $\operatorname{supp}\left(s_{i} s_{p}^{-2}\right) \geq p-6 \geq 5$, and $s_{i} s_{p}^{-2}$ cannot be any involution in S. Thus, $\left|S_{1} s_{p}^{-2} \cap S_{1}\right|=0$.

Note that $S_{2} s_{p}^{-2}=\left\{s_{p}^{-1}, s_{p}^{-3}, s_{p-2} s_{p}^{-2}, s_{p-2}^{-1} s_{p}^{-2}\right\}$. Then $\left|S_{2} s_{p}^{-2} \cap S_{2}\right|=1$ by a simple checking one by one. If $\left|S_{2} s_{p}^{-2} \cap S_{1}\right| \neq 0$, then $z^{2}=1$ for some $z \in S_{2} s_{p}^{-2}$, and we have $s_{p}^{-2}=1$ or $s_{p}^{-6}=1$ or $\left(s_{p-2} s_{p}^{-2}\right)^{2}=1$ or $\left(s_{p-2}^{-1} s_{p}^{-2}\right)^{2}=1$, of which all are impossible because all these elements cannot fix 1. Thus, $\left|S_{2} s_{p}^{-2} \cap S_{1}\right|=0$. Similarly, $\left|S_{2} s_{p}^{2} \cap S_{1}\right|=0$.

Recall that $\left|S s_{p}^{-2} \cap S\right| \geq 2$. Since $\left|S_{2} s_{p}^{-2} \cap S_{2}\right|=1$ and $\left|S_{2} s_{p}^{-2} \cap S_{1}\right|=0$, we have $\left|S_{1} S_{p}^{-2} \cap S\right|=1$, and since $\left|S_{1} s_{p}^{-2} \cap S_{1}\right|=0$, we have $\left|S_{1} S_{p}^{-2} \cap S_{2}\right|=1$. It follows $\left|S_{2} s_{p}^{2} \cap S_{1}\right|=1$, a contradiction. Thus, A_{1} is solvable, as claimed.

From now on, we write $\Gamma^{p}=\operatorname{Cos}(T, H, H t H)$. Clearly, H is core-free in T. By Claim, $A=\operatorname{Aut}\left(\Gamma^{p}\right)$ has solvable stabilizer. By Theorem 1.3, \hat{T}_{H} is normal in A, and by Proposition 4.2, $A=N_{A}\left(\hat{T}_{H}\right)=\hat{T}_{H} \operatorname{Aut}(T, H, H t H)_{H}$ with $\hat{T}_{H} \cap \operatorname{Aut}(T, H, H t H)_{H}=\tilde{H}_{H}$. Furthermore, $\hat{T}_{H} \cong T, \tilde{H}_{H} \cong H$ and $\operatorname{Aut}(T, H, H t H)_{H} \cong \operatorname{Aut}(T, H, H t H)=\{\alpha \in$ $\left.\operatorname{Aut}(T) \mid H^{\alpha}=H,(H t H)^{\alpha}=H t H\right\}$.

Let $x^{i} t x^{j} \in H t H$ for some $i, j \in \mathbb{Z}_{p}$. If $i+j=0$, then $x^{i} t x^{j}=(1+j, 2+j)(3+$ $j, 4+j)$ and $\operatorname{supp}\left(x^{i} t x^{j}\right)=4$. If $i+j \neq 0$, then x^{i+j} is a p-cycle and $\operatorname{supp}\left(x^{i} t x^{j}\right)=$ $\operatorname{supp}\left(x^{i+j} x^{-j} t x^{j}\right) \geq p-4>4$ because $\operatorname{supp}\left(x^{-j} t x^{j}\right)=4$. Thus, $I:=\left\{x^{-i} t x^{i} \mid i \in \mathbb{Z}_{p}\right\}$ consists of all elements in HtH whose supports are 4.

Now we consider $\operatorname{Aut}(T, H, H t H)$. Let $\beta \in \operatorname{Aut}(T, H, H t H)$. Then $\beta \in \operatorname{Aut}(T)=$ $\operatorname{Aut}\left(\mathrm{A}_{p}\right) \cong \mathrm{S}_{p}$, and β is an automorphism of T induced by some $b \in \mathrm{~S}_{p}$ by conjugation, that is, $t^{\beta}=t^{b}$ for any $t \in T$. Since $(H t H)^{\beta}=(H t H)^{b}=H t H$, we have $I^{\beta}=I$, and in particular, $\operatorname{supp}(y z)=\operatorname{supp}\left(y^{\beta} z^{\beta}\right)$ for any $y, z \in I$. It is easy to see that for any $x^{-i} t x^{i}, x^{-j} t x^{j} \in I, \operatorname{supp}\left(x^{-i} t x^{i} x^{-j} t x^{j}\right)=5$ if and only if $j=i+1$ or $i-1$. In fact, if $j=i+2$ or $i-2$ then $\operatorname{supp}\left(x^{-i} t x^{i} x^{-j} t x^{j}\right)=4$, if $j=i+3$ or $i-3$ then $\operatorname{supp}\left(x^{-i} t x^{i} x^{-j} t x^{j}\right)=7$, and if $|i-j| \geq 4$ then $\operatorname{supp}\left(x^{-i} t x^{i} x^{-j} t x^{j}\right)=8$.

Let Σ be a graph with I as vertex set and with $y, z \in I$ adjacent if and only if $\operatorname{supp}(y z)=5$. By the above paragraph, Σ is a cycle of length p, and β induces an automorphism of Σ. Thus, $\operatorname{Aut}(T, H, H t H)$ acts on I, and since Σ is a p-cycle, $\operatorname{Aut}(T, H, H t H) / K \leq D_{2 p}$, where K is the kernel of this action. Let $\gamma \in K$, and suppose γ is induced by $c \in \mathrm{~S}_{p}$ by conjugation. Then γ fixes each element in I, that is, $\left(x^{-i} t x^{i}\right)^{c}=x^{-i} t x^{i}$ for each $i \in \mathbb{Z}_{p}$. Since $x^{-i} t x^{i}=\left(1^{x^{i}}, 2^{x^{i}}\right)\left(3^{x^{i}}, 4^{x^{i}}\right)$ and $x^{-(i+3)} t x^{i+3}=$ $\left(4^{x^{i}}, 5^{x^{i}}\right)\left(6^{x^{i}}, 7^{x^{i}}\right), c$ fixes $\left\{1^{x^{i}}, 2^{x^{i}}, 3^{x^{i}}, 4^{x^{i}}\right\}$ and $\left\{4^{x^{i}}, 5^{x^{i}}, 6^{x^{i}}, 7^{x^{i}}\right\}$ setwise, and hence fixes $\left.\left.4^{x^{i}}=\left\{1^{x^{i}}, 2^{x^{i}}, 3^{x^{i}}, 4^{x^{i}}\right)\right\} \cap\left\{4^{x^{i}}, 5^{x^{i}}, 6^{x^{i}}, 7^{x^{i}}\right)\right\}$ for each $i \in \mathbb{Z}_{p}$. It follows that c fixes $\{1,2, \cdots, n\}$ pointwise, implying $K=1$. Thus, $|\operatorname{Aut}(T, H, H t H)| \leq|\operatorname{Aut}(\Sigma)|=2 p$.

Recall that $h=(2, p)(3, p-1) \cdots\left(\frac{p-1}{2}, \frac{p+5}{2}\right)\left(\frac{p+1}{2}, \frac{p+3}{2}\right)$. For $p=1 \bmod 4, h$ is an even permutation and $h \in \mathrm{~A}_{p}$, and for $p=3 \bmod 4, h$ is an odd permutation and $h \in \mathrm{~S}_{p}$, but $h \notin \mathrm{~A}_{p}$. Since $x=(1,2, \cdots, p)$, we have $x^{h}=x^{-1}$ and so $H^{h}=H$, and since $t^{h}=\left(1^{h}, 2^{h}\right)\left(3^{h}, 4^{h}\right)=(1, p)(p-1, p-2)=x^{-(p-3)} t x^{p-3} \in I \subset H t H$, we have $(H t H)^{h}=H t H$. Clearly, $H^{x}=H$ and $(H t H)^{x}=H$. For any $z \in \mathrm{~S}_{p}$, denote by \tilde{z} the induced automorphism of A_{p} by z by conjugation. Then $\tilde{x}, \tilde{h} \in \operatorname{Aut}(T, H, H t H)$ and $\langle\tilde{x}, \tilde{h}\rangle \cong D_{2 p}$. Since $|\operatorname{Aut}(T, H, H t H)| \leq 2 p$, we have $\operatorname{Aut}(T, H, H t H)=\langle\tilde{x}, \tilde{h}\rangle \cong D_{2 p}$.

Recall that $\tilde{x}_{H}: H g \mapsto H g^{x}$ for $g \in \mathrm{~A}_{p}$, and $\tilde{h}_{H}: H g \mapsto H g^{h}$ for $g \in \mathrm{~A}_{p}$, are automorphisms of Γ^{p}, and $\tilde{H}_{H}=\left\langle\tilde{x}_{H}\right\rangle$. Since $\operatorname{Aut}(T, H, H t H) \cong \operatorname{Aut}(T, H, H t H)_{H}$, we have $\operatorname{Aut}(T, H, H t H)_{H}=\left\langle\tilde{x}_{H}, \tilde{h}_{H}\right\rangle=\tilde{H}_{H}: \tilde{h}_{H} \cong \mathrm{D}_{2 p}$, and since $\hat{T}_{H} \cap \operatorname{Aut}(T, H, H t H)_{H}=$ \tilde{H}_{H} and $A=\hat{T}_{H} \operatorname{Aut}(T, H, H t H)_{H}$, we have $\left|A: \hat{T}_{H}\right|=2$ and hence $A=\hat{T}_{H}:\left\langle\tilde{h}_{H}\right\rangle$.

Set $C=C_{A}\left(\hat{T}_{H}\right)$, the centralizer of \hat{T}_{H} in A. Since $\hat{T}_{H} \cong \mathrm{~A}_{p}$, we have $C \cap \hat{T}_{H}=1$, and since $A=\hat{T}_{H}:\left\langle\tilde{h}_{H}\right\rangle$, we have $C=1$ or $C \cong \mathbb{Z}_{2}$. For the former, $A \cong \mathrm{~S}_{p}$ by the N/C Theorem, and for the latter, $A=\hat{T}_{H} \times C \cong \mathrm{~A}_{p} \times \mathbb{Z}_{2}$. To finish the proof, we only need to prove that $C \cong \mathbb{Z}_{2}$ if and only if $p=1 \bmod 4$.

Assume $C \cong \mathbb{Z}_{2}$. Since $A=\hat{T}_{H} \rtimes\left\langle\tilde{h}_{H}\right\rangle$, we can let $C=\left\langle\hat{y}_{H} \tilde{h}_{H}\right\rangle$ for some $y \in T$. This implies that for any $z, g \in T$, we have $(H z)^{\hat{y}_{H} \tilde{h}_{H} \hat{g}_{H}}=(H z)^{\hat{g}_{H} \hat{y}_{H} \tilde{h}_{H}}$, that is, $H(z y)^{h} g=$ $H(z g y)^{h}$, implying Hhzyhg $=H h z g y h$. Set $\ell=y h g(g y h)^{-1}$. Then $H h z \ell(h z)^{-1}=H$, that is, $\ell \in H^{h z}=H^{z}$ for any $z \in \mathrm{~A}_{p}$. This implies that $\ell \in \bigcap_{z \in \mathrm{~A}_{p}} H^{z}$, and since
$\bigcap_{z \in \mathrm{~A}_{p}} H^{z}$ is the largest normal subgroup of of A_{p} contained in H, we have $\bigcap_{z \in \mathrm{~A}_{p}} H^{z}=1$ and hence $\ell=1$. This means that $y h g=g y h$, and by the arbitrary of $g \in \mathrm{~A}_{p}$, we have $y h \in C_{\mathrm{A}_{p}}\left(\mathrm{~S}_{p}\right)=1$. It follows that $h=y \in \mathrm{~A}_{p}$ and hence $p=1 \bmod 4$. On the other hand, if $p=1 \bmod 4$ then it is easy to check that $\hat{h} \tilde{h} \in C$. Thus, $C \cong \mathbb{Z}_{2}$ if and only if $p=1 \bmod 4$, as required.

References

[1] M. Conder, C.H. Li, C.E. Praeger, On the Weiss conjecture for finite locally primitive graphs, Proc. Edinb. Math. Soc. 43 (2000) 129-138.
[2] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput. 23 (1997) 235-265.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] J. D. Dixon, B. Mortimer, Permutation Groups, Sprimger-Verlag, 1996.
[5] J. L. Du, Y.-Q. Feng, Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups, Commun. Algebra 47(11) (2019) 4565-4574
[6] J. L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting vertex-transitive nonabelian simple groups, European J. Combin. 63 (2017) 134-145.
[7] X. G. Fang, C. H. Li, M. Y. Xu, On edge-transitive cayley graphs of valency four, European J. Combin. 25 (2004) 1107-1116.
[8] X. G. Fang, X. S. Ma, J. Wang, On locally primitive cayley graphs of finite simple groups, J. Combin. Theory, Ser. A 118 (2011) 1039-1051.
[9] X. G. Fang, C. E. Praeger, J. Wang, On the automorphism group of Cayley graphs of finite simple groups, J. Lond. Math. Soc. 66 (2002) 563-578.
[10] C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[11] S. T. Guo, H. Hou, Y. Xu, A note on solvable vertex stabilizers of s-transitive graphs of prime valency, Czechoslovak Math. J. 65 (2015) 781-785.
[12] B. Huppert, Eudiche Gruppen I, Springer-Verlag, 1967.
[13] P. B. Kleidman, M. W. Liebeck, The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
[14] C. H. Li, Isomorphisms of finite Cayley graphs (Ph.D. thesis), The University of Western Australia, 1996.
[15] C. H. Li, J. M. Pan, Finite 2-arc-transitive abelian Cayley graphs, European J. Combin. 29 (2008) 148-158.
[16] C. H. Li, B. Z. Xia, Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups, submitted, Available online at https://arxiv.org/abs/1408.0350.
[17] J. M. Pan, F. G. Yin, B. Ling, Arc-transitive Cayley graphs on non-abelian simple groups with soluble vertex stabilizers and valency seven, Discrete Math. 342 (2019) 689-696.
[18] C. E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc. 47 (1993) 227-239.
[19] B. O. Sabidussi, Vertex-transitive graphs, Monash Math. 68 (1964) 426-438.
[20] J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904) 20-50.
[21] P. Spiga, An application of the local $C(G ; T)$ theorem to a conjecture of Weiss, Bull. Lond. Math. Soc. 48 (2016) 12-18.
[22] Y. Wang, Y.-Q. Feng, J.-X. Zhou, Cayley digraphs of 2-genetic groups of odd prime-power order, J. Combin. Theory, Ser. A 143 (2016) 88-106.
[23] R. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48.
[24] R. Weiss, s-Transitive graphs, Colloq. Math. Soc. János Bolyai 25 (1978) 827-847.
[25] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, 5-arc-transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28 (2007) 1023-1036.
[26] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, On cubic s-arc-transitive Cayley graphs on finite simple groups, European J. Combin. 26 (2005) 133-143.

Department of Mathematics, Beijing Jiaotong University, Beijing, 100044, China
E-mail address: 181181010@bjtu.edu.cn (F.-G. Yin), yqfeng@bjtu.edu.cn (Y.-Q. Feng), jxzhou@bjtu.edu.cn (J.-X. Zhou), 18121630@bjtu.edu.cn (S.-S. Cheng)

[^0]: 1991 Mathematics Subject Classification. 05C25, 20 B 25.
 This work was supported by the National Natural Science Foundation of China $(11731002,11671030)$ and by the 111 Project of China (B16002).

