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Abstract

We prove that the number of 01-fillings of a given stack polyomino (a polyomino with justified
rows whose lengths form a unimodal sequence) with at most one 1 per column which do not
contain a fixed-size northeast chain and a fixed-size southeast chain, depends only on the set of
row lengths of the polyomino. The proof is via a bijection between fillings of stack polyominoes
which differ only in the position of one row and uses the Hecke insertion algorithm by Buch,
Kresch, Shimozono, Tamvakis, and Yong and the jeu de taquin for increasing tableaux of Thomas
and Yong. Moreover, our bijection gives another proof of the result by Chen, Guo, and Pang
that the crossing number and the nesting number have a symmetric joint distribution over linked
partitions.

Keywords: maximal chains, Hecke insertion, K-theoretic jeu de taquin, stack polyominoes.

MSC Classification: 05A19 , 05A05

1 Introduction

A polyomino is a finite subset of Z2 where every element of Z2 is represented by a square box.
The polyomino is row-convex (resp. column-convex ) if its every row (resp. column) is connected.
If the polyomino is both row- and column-convex, we say that it is convex. It is intersection-free if
every two columns are comparable, i.e., the row-coordinates of one column form a subset of those
of the other column. Equivalently, it is intersection-free if every two rows are comparable. A moon
polyomino is a convex and intersection-free polyomino (e.g. Figure 1a). By stack polyomino in this
paper, we mean a moon polyomino in which the columns are arranged by length in descending order
from left to right, so that the rows are left justified (e.g. Figure 1b). We note that the term ’stack
polyomino’ has been used in other papers to denote polyominoes with justified columns rather than
rows.
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a. A moon polyomino b. A stack polyomino

Figure 1: A moon polyomino and a stack polyomino with same row lengths.

The main result in this paper is about certain fillings of stack polyominoes. An arbitrary filling
of a polyomino is an assignment of natural numbers to the boxes of the polyomino. Here we are
concerned with 01-fillings of moon polyomino with restricted column sums. That is, given a moon
polyomino M, a 0 or a 1 is assigned to each box of M so that there is at most one 1 in each
column. We simply use the term filling to denote such a 01-filling. A box is empty if it is assigned
a 0 and it is a 1-box otherwise. A chain is a sequence of non-zero entries in a filling such that the
smallest rectangle containing all the elements of the sequence is completely contained in the moon
polyomino. The length of a chain is the number of entries in the chain. A ne-chain of a filling
is a sequence of non-zero entries in the fillings, such that each entry is strictly to the right and
strictly above the preceding entry of the sequence. Similarly, an se-chain of a filling is a sequence
of non-zero entries in the filling such that each entry is strictly to the right and strictly below the
preceding entry of the sequence. Let N(M;n;ne = u, se = v) be the number of 01-fillings of the
moon polyominoM with at most one 1 in each column such that: the sum of entries equal to n,
the longest ne-chain has length u, and the longest se-chain has length v. Our main result is the
following.

Theorem 1. Let M be a stack polyomino and σ be a permutation of the rows of M, such that
σM is a stack polyomino. Then

N(M;n;ne = u, se = v) = N(σM;n;ne = u, se = v).

In other words, the number N(M;n;ne = u, se = v) only depends on the row lengths of the
stack polyominoM. Since the reflection through the horizontal axis swaps se- and ne-chains, this
implies that for each stack polyominoM the joint distribution of ne and se is symmetric. Precisely,
we have the following.

Corollary 2. Let M be a stack polyomino . Then

N(M;n;ne = u, se = v) = N(M;n;ne = v, se = u).

Chains in fillings of polyominoes have been studied by many people before. Using the Fomin’s
growth diagrams, Krattenthaler [16] proved the analogue of our result for 01-fillings of Ferrers
diagrams with at most one 1 in each row and column as well as variants for N-fillings. In fact,
restricting the number of 1’s in the rows in addition to the columns guarantees that the result
holds even if we preserve the row sums, which is not the case in the present paper (see Section 5
for details). If one considers 01-fillings with arbitrary row and column sums, then it is known that
the number of fillings in which ne = u depends only on the set of columns of the polyomino, but
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not the shape of the polyomino. Algebraic proofs of this fact for stack polyominoes are due to
Jonsson [14] and Jonsson and Welker [15]. Rubey [19] extended this result to moon polyominoes
using a bijection based on the Robinson-Schenstead-Knuth (RSK) insertion and jeu de taquin as
well as the inclusion-exclusion principle. A completely bijective proof and an extension to almost-
moon polyominoes (in which the convexity property is broken by only one row) was given by
Poznanović and Yan [18].

In the context of fillings of Ferrers shapes, the results mentioned above can be viewed as ex-
tensions of results about enumeration of: permutations and involutions with restricted patterns of
Backelin, West, and Xin [1] and of Bousquet-Mélou and Steingŕımsson [2], crossings and nestings in
matchings and set partitions due to Chen, Deng, Du, Stanley, and Yan [6] or graphs with restricted
right and left degree sequences as shown by de Mier [9].

As we discuss in Section 4, our result is an extension of the result of Chen, Guo, and Pang [7]
about the symmetry of the crossing and the nesting numbers over linked partitions. To prove
their result, Chen, Guo, and Pang introduced vacillating Hecke tableaux and found a bijection
between vacillating Hecke tableaux and linked partitions using the Hecke insertion of Buch, Kresch,
Shimozono, Tamvakis, and Yong [4]. While our proof is based on a bijection using the Hecke
insertion as well, our bijection is different from the one in [7] even for the case of linked partitions.

This paper is organized as follows. To prove Theorem 1, we construct a bijection between fillings
of M and fillings of σM where σ only moves the bottom row of M. The bijection, described in
Section 3 uses the Hecke insertion of Buch, Kresch, Shimozono, Tamvakis and Yong [4] and the jeu
de taquin for increasing tableaux of Thomas, and Yong [20]. In addition, the proof uses K-Knuth
equivalence on words and increasing tableaux [5, 21]. The background that we need is presented in
Section 2. In Section 4, we show that the main result in [7] is a special case of Theorem 1 and give
an example to show that our bijection for the special case is different from the one in [7]. Finally,
in Section 5 we discuss possible and impossible extensions of Theorem 1.

2 Main Tools

The Hecke insertion [4], the Hecke growth diagrams [17], the jeu de taquin for increasing tableaux [20],
and the notion of K-Knuth equivalence on words and increasing tableaux [5, 21] are the main tools
in Section 3. For the convenience of the reader, in this section we give all the necessary definitions,
following the original description and notation as much as possible. The description of all of these
concepts except the Hecke growth diagrams can also be found in [13].

2.1 Hecke Insertion

The Hecke insertion was developed in [4] for the study of the stable Grothendieck polynomials.

An increasing tableau is a filling of a Ferrers shape assigning to each box a positive integer
such that the entries strictly increase along each row and down each column. The Hecke insertion
is a procedure to insert a positive integer x into an increasing tableau Y , resulting in another
increasing tableau Z, so that either Z has the same shape as Y or it has one extra box c. In
the case when Z has the same shape as Y , it also contains a special corner c where the insertion
algorithm terminated. A parameter α ∈ {0, 1} is used to distinguish these two cases: α is set to
1 if and only if the corner c is outside the shape of Y . Thus the complete output of the insertion
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algorithm is the triple (Z, c, α). We write (Z, c, α) = (Y
H
←− x).

The Hecke insertion algorithm proceeds by inserting the integer x into the first row of Y . This
may modify this row, and possibly produce an output integer, which is then inserted into the second
row of Y , etc. This process is repeated until an insertion does not produce an output integer. The
rules for inserting an integer x into a row R are as follows.

If x is larger than or equal to all entries in R, then no output integer is produced and the
algorithm terminates. If adding x as a new box to the end of R results in an increasing tableau,
then Z is the resulting tableau, α = 1, and c is the corner where x was added. If adding x as a
new box to the end of R does not result in an increasing tableau, then let Z = Y , α = 0, and c is
the corner at the bottom of the column of Z containing the rightmost box of R.

Otherwise the integer x is strictly smaller than some entry in R, and we let y be the smallest
integer in R that is strictly larger than x. If replacing y with x results in an increasing tableau,
then replace y with x and insert y into the next row. If replacing y with x does not result in an
increasing tableau, then insert y into the next row and do not change R.

Example 3. Let Y be an increasing Young tableau given in Figure 2a. Suppose we wish to compute

(Y
H
←− 2). Since the first row of Y contains 2, 4 is inserted into the second row, whose largest value

is 4. So, the algorithm terminates with α = 0, and c = (3, 2) is the corner in the third row and
second column. The resulting tableau Z is given in Figure 2b. On the other hand, suppose we wish

to compute (Y
H
←− 5). In the first step, 5 is inserted into the first row of Y , replacing 6. The integer

6 is then inserted into the second row, adding 6 to the end of this row. The algorithm terminates
with the tableau Z in Figure 2c, α = 1, and c = (2, 3).

1

3

5

6

2

4

7

4 6 1

3

5

6

2

4

7←− c

4 6 1

3

5

6

2

4

7

4

6←− c

5

a. Increasing tableau Y b. (Z, c, 0) = (Y
H
←− 2) c. (Z, c, 1) = (Y

H
←− 5)

Figure 2: Two examples of Hecke insertion.

The Hecke insertion is reversible. Let Z be an increasing Young tableau, c be a corner of Z,
and α ∈ {0, 1}. Reverse Hecke insertion applied to the triple (Z, c, α) produces a pair (Y, x) of an
increasing Young tableau Y and a positive integer x as follows. Let y be the integer in the box c
of Z. If α = 1 then remove y. In any case, reverse insert y into the row above the corner c.

Whenever y is reverse inserted into a row R, let x be the largest entry of R such that x < y. If
replacing x with y results in an increasing tableau, then replace x with y and x is reverse inserted
into the row above of R. If replacing x with y does not result in an increasing tableau, then x is
reverse inserted into the row above of R and R remains the same. This process is repeated until R
is the top row, then x becomes the final output value, along with the modified tableau.

Hecke insertion is a generalization of the standard RSK algorithm. While the RSK algorithm
associates a permutation to a pair of standard Young tableaux of the same shape, the Hecke
insertion gives a correspondence between words and a pair (P, Q), where P is an increasing tableau
and Q is a set-valued tableau of the same shape. P is the Hecke insertion tableau while Q is the

4



Hecke recording tableau. Set-valued tableaux, introduced by Buch [3] in the study of the K-theory of
Graßmannians, are N-fillings of a Young diagram assigning to each box a nonempty set of positive
integers such that the largest entry of a box is smaller than the smallest entry in the boxes directly
to the right of it and directly below it. For a word of nonnegative integers w, the corresponding
pair (P, Q) is constructed as follows.

Let w = w1 · · ·wn be a word. The insertion tableau of w is formed by recursively Hecke inserting
the letters of w from left to right:

P (w) = (· · · ((∅
H
←− w1)

H
←− w2) · · ·

H
←− wn).

The set-valued tableau of w is obtained recursively as follows. Set Q(∅) = ∅. At each step of the
insertion of w, let Q(w1 · · ·wk) be obtained from Q(w1 · · ·wk−1) by labeling the special corner c, in
the insertion of wk into P (w1 · · ·wk−1) with the positive integer k. Then Q(w) = Q(w1 · · ·wn) is the
resulting set-valued tableau. Similarly as in the case of the RSK correspondence, the tableaux Q
determines the order in which numbers from P need to be reverse inserted, so that the corresponding
word can be recovered.

Example 4. Let w = 32412143, P (w) and Q(w) are given in Figure 3.

1

2

3

2

4

3

P (w) =

1

2

4, 6

3

5, 8

7

Q(w) =

Figure 3: The pair (P (w), Q(w)) of an increasing and set-valued tableaux for w = 32412143.

In [21], Thomas and Yong prove that the insertion tableau of a word generated by the Hecke
insertion determines the lengths of the longest strictly increasing and strictly decreasing subse-
quences in the word. That is to say, for a word w, let lis(w) (resp. lds(w)) denote the length of the
longest strictly increasing (resp. decreasing) subsequence of word w, and for an increasing tableau
P , let c(P ) (resp. r(P )) denote the number of columns (resp. rows) of P , Thomas and Yong [21]
established the following theorem.

Theorem 5. [21] Let w be a word and let P be the Hecke insertion tableau of w. Then lis(w) = c(P )
and lds(w) = r(P ).

2.2 Hecke Growth Diagrams

It is well-known that the pair of standard Young tableaux that correspond to a permutation π via
RSK can also be obtained using the growth diagrams introduced by Fomin in [10, 11, 12]. The
growth diagrams for Hecke insertion was given by Patrias and Pylyavksyy in [17]. In the following
we follow [17] to give a description of the Hecke growth diagram of a word.

We represent a word w = w1w2 · · · containing a1 copies of 1, a2 copies of 2, . . . , am copies of
m as a filling of an m × (a1 + a2 + · · · + am) rectangle, by placing a X into the j-th column and
wj-th row (we number the rows from bottom to top), for j = 1, 2, . . . , a1 + a2 + · · · + am. We say
this is the matrix representation of w. For example, the word 213312 is represented by the filling
of Figure 4.
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X

X

X X

X

X

Figure 4: The matrix representation of 213312.

For a filling of a rectangle, we label each of the four corners of each square with a partition
and possibly label the horizontal edge of the square with a positive integer r, where r records the
row of the inner corner at which the Hecke insertion terminates. We start by labeling all corners
along the bottom row and left side of the diagram with the partition ∅ and then use the following
forward local rules to label the other corners of the squares and some of the horizontal edges of the
squares.

Suppose we have the labels of the three corners of each square except the upper right one, for
example, given λ, µ, ν in Figure 5, we can construct γ and possibly the positive integer for the
horizontal edge of the square.

λ ν

µ γ

Figure 5: A square of a growth diagram.

Case 1. If the square contains an X:

(F1) If µ1 = ν1, then γ/µ consists of one box in row 1.

(F2) If µ1 6= ν1, then γ = µ and the edge between them is labeled by the row of the highest inner
corner of µ (an inner corner is a maximally southeast box of µ).

Case 2. If the square does not contain an X and if either µ = λ or ν = λ with no label between
λ and ν:

(F3) If µ = λ, then γ = ν. If ν = λ, then γ = µ.

Case 3. If the square does not contain an X, dose not satisfy the condition of Case 2, and if
ν * µ:

(F4) For Case 3, γ = ν ∪ µ.

Case 4. If the square does not contain an X, dose not satisfy the condition of Case 2, and if
ν ⊆ µ:

(F5) If ν/λ is one box in row i and µ/ν has no boxes in row i+1, then γ/µ is one box in row i+1.

6



∅ ∅ ∅ ∅ ∅ ∅

∅

X

∅ 1 1 1 1

∅ 1 11 11

X

11 11

∅ 1 11 21 21 21

X X

X

X

∅

1

21

22
1

1

2

2

Figure 6: The Hecke growth diagram of the word 213312.

(F6) If ν/λ is one box in row i and µ/ν has a box in row i+ 1, then γ = µ and the edge between
them is labeled i+ 1.

(F7) If ν = λ, the edge between them is labeled i, and there are no boxes of µ/ν immediately
to the right or immediately below the inner corner of ν in row i, then γ = µ with the edge
between them labeled i.

(F8) If ν = λ, the edge between them is labeled i, and there is a box of µ/ν directly below the
inner corner of ν in row i, then γ = µ with the edge between them labeled i+ 1.

(F9) If ν = λ, the edge between them is labeled i, and there is a box of µ/ν immediately to the
right of the inner corner of ν in row i but no box of µ/ν in row i+ 1, then γ/µ is one box in
row i+ 1.

(F10) If ν = λ, the edge between them is labeled i, and there is a box of µ/ν immediately to the
right of this inner corner of ν in row i and a box of µ/ν in row i + 1, then γ = µ with the
edge between them labeled i+ 1.

We call the resulting diagram the Hecke growth diagram. For example, in Figure 6 we have the
Hecke growth diagram for the word 213312.

In the Hecke growth diagram of a word w, the sequence of partitions ∅ = µ0 ⊆ µ1 ⊆ . . . ⊆ µk

along the upper border of the Hecke growth diagram corresponds to a set-valued tableau Q(w):
if µi−1 6= µi, then we put i into the square by which µi−1 and µi differ. Otherwise, µi−1 = µi

and the edge between µi−1 and µi is labeled c, then we put i into the box at the end of row c of
µi−1. We also have the sequence of partitions ∅ = ν0 ⊆ ν1 ⊆ . . . ⊆ νn along the right border of the
Hecke growth diagram corresponds to an increasing tableau P (w): we put i’s into the squares of
νi/νi−1. For example, from the chains of partitions on the rightmost edge and uppermost edge of
the diagram in Figure 6, we obtain the insertion and recording tableau in Figure 7.

1 2

2 3
P (213312) =

1 3, 4

2, 5 6
Q(213312) =

Figure 7: Hecke insertion and recording tableaux obtained from the growth diagram.

In [17], Patrias and Pylyavskyy also formulate the backward local rules, that is, given γ, µ, ν
and the edge label between µ and γ, one can reconstruct λ, the edge label between λ and ν, and
the filling of the square.
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Theorem 6. [17, Theorem 4.16 ] For any word w, the increasing tableau P (w) and set-valued
tableau Q(w) obtained from the sequence of partitions along the right border of the Hecke growth
diagram for w and along the upper border of the Hecke growth diagram for w, respectively, are the
Hecke insertion tableau and the Hecke recording tableau for w.

2.3 Jeu de Taquin for Increasing Tableaux

In this section, we give the description of jeu de taquin for increasing tableaux which was introduced
by Thomas and Yong in [20].

An increasing tableau T of skew shape λ/µ is a N-filling of λ/µ assigning to each box a positive
integer such that the entries of T strictly increasing down columns and from left to right along
rows. Let INC(λ/µ) be the set of these increasing tableaux.

For T ∈ INC(λ/µ), an inner corner is a maximally southeast box of µ. Let C be a set of some
inner corners of µ, and mark the boxes in C with •. The jeu de taquin for T and C can be described
as follows. We begin with the shape T1 which is made of boxes with entries • and 1 in T ∪C. If 1
is directly below or right of •, then we swap • and 1 in T1, otherwise we keep the same labels for
these boxes in T1. Next we consider the shape T2 which is made of boxes with entries • and 2. If
2 is directly below or right of •, then we swap • and 2 in T2, otherwise we keep the same labels for
these boxes in T2. We repeat the above processes until the •’s become the inner corners of λ. The
final placement of the numerical entries gives the jeu de taquin for T and C and we write jdtC(T ).
It is easy to see that jdtC(T ) is an increasing tableau as well.

Example 7. Let T be an increasing tableau as given in Figure 8 and C indicated with •. See
Figure 8e for jdtC(T ).

•

1

•

2

3

2

3 1

•

•

2

3

2

3 1

•

2

•

3

•

3 1

3

2

3

•

3

• 1

3

2

3

3

a. T ∪C b. Swap • and 1 c. Swap • and 2 d. Swap • and 3 e. jdtC(T )

Figure 8: An example of jeu de taquin for increasing tableaux.

Reverse jeu de taquin for T ′ ∈ INC(λ/µ), where •’s are located in outer corners - the maximally
northwest boxes in γ/λ - is performed in a similar manner. Let C ′ be a set of some outer corners,
and mark the boxes in C ′ with •. We begin with the shape T ′

n which is made of boxes with entries
• and n (the maximum value of T ′) in T ′ ∪ C ′. If n is directly above or left of •, then we swap •
and n in T ′

n, otherwise we keep the same labels for these boxes in T ′
n. Next we consider the shape

T ′
n−1 which is made of boxes with entries • and n − 1. If n − 1 is directly above or left of •, then

we swap • and n − 1 in T ′
n−1, otherwise we keep the same labels for these boxes in T ′

n−1. We can
repeat the above processes until the •’s become the outer corners of λ/µ. The final placement of
the numerical entries gives the reverse jeu de taquin for T ′ and C ′ and write revjdtC′(T ′). See
Figure 9 for an example.

Two increasing skew tableaux T and T ′ are K-jeu de taquin equivalent if T can be obtained by
applying a sequence of jeu de taquin or reverse jeu de taquin operations to T ′ [5].
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1

3

1

2

•

2

• 1

•

1

2

3

2

• 1

•

1

•

3

•

2 •

1

•

1

3

1

2

1

1

3

1

2

a. T ′ ∪ C′ b. Swap • and 3 c. Swap • and 2 d. Swap • and 1 e. revjdtC′(T ′)

Figure 9: An example of reverse jeu de taquin for increasing tableaux.

2.4 K-Knuth Equivalence on Words and Increasing Tableaux

Two permutations have the same insertion tableau by the standard RSK algorithm if and only if
they are Knuth equivalent, i.e., one can be obtained from the other via a finite series of applications
of the Knuth relations: (1) for x < y < z, xzy ∼ zxy; (2) for x < y < z, yxz ∼ yzx. Knuth
equivalence on permutations has a generalization referred to as K-Knuth equivalence on words,
which was defined by Buch and Samuel in [5] and motivated by [20].

Two words are said to be K-Knuth equivalent if one can be obtained from the other via a finite
series of applications of the following K-Knuth relations:

xzy ≡ zxy, (x < y < z)

yxz ≡ yzx, (x < y < z)

x ≡ xx,

xyx ≡ yxy.

We say that two words are Hecke insertion equivalent if they have the same Hecke insertion
tableau. Hecke insertion equivalence implies K-Knuth equivalence [5]. However, unlike the RSK
case, the converse is not true - K-Knuth equivalent words may have different Hecke insertion
tableaux.

Let T be an increasing tableau, we write row(T ) for the reading word of T , which is obtained
by reading the entries of T from left to right along each row, starting from the bottom row and
moving upward. For example, the reading word of P (w) in Figure 3 is 324123. For two increasing
tableaux T and T ′, if row(T ) ≡ row(T ′), we say T is K-Knuth equivalent to T ′, and write T ≡ T ′.
We list some results which will be used for the proof of the main theorem in Section 3.

Lemma 8. [5, Lemma 5.5] Let [a, b] be an integer interval. Let w1 and w2 be K-Knuth equivalent
words. For i = 1, 2, let wi|[a,b] be the word obtained from wi by deleting all integers not contained
in the interval [a, b]. Then w1|[a,b] and w2|[a,b] are K-Knuth equivalent words.

Theorem 9. [5, Theorem 6.2] Let T and T ′ be increasing tableaux. Then T and T ′ are K-Knuth
equivalent if and only if T and T ′ are K-jeu de taquin equivalent.

Proposition 10. [13, Proposition 37] If w1 ≡ w2 then lis(w1) = lis(w2) and lds(w1) = lds(w2).

Lemma 11. [13, Lemma 58] If w be a word and P (w) be the Hecke insertion tableau of w, then
w and row(P (w)) are K-Knuth equivalent.

Proposition 12. [7, Proposition 3.2] Let w = w1w2 · · ·wn be a word of positive integers, and k be
the maximal element appearing in w. Let w′ = a1a2 · · · am be the word obtained from w by deleting
the elements equal to k. Assume that T is the insertion tableau of w and T ′ is the insertion tableau
of w′. Then T ′ is obtained from T by deleting the squares occupied with k.
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3 Proof of the Main Theorem

Recall that N(M;n;ne = u, se = v) denotes the number of 01-fillings of the polyomino M such
that the sum of entries equal to n, the longest ne-chain has length u, and the longest se-chain has
length v. The goal of this section is to provide proof of Theorem 1 which relates the fillings of the
stack polyominosM and σM.

LetM be a stack polyomino. Since the rows are left-justified, it is determined by its sequence of
row lengths (r1, r2, . . . , rk) counted from bottom up. For example, the stack polyomino in Figure 1b
is represented by (2, 3, 5, 6, 6, 4, 1). If the bottom row ofM is not the longest then it can be moved
up and inserted in a new position above the longest row so that the resulting shape is still a stack
polyomino. Such a position always exists and if there are multiple positions where the bottom row
can be reinserted we think of inserting it in the highest position possible. This way, by applying
only such “move the bottom row up” moves the rows ofM can be reordered so that the resulting
polyomino is a Ferrers shape F in French notation (the row lengths weakly increase top to bottom).
For example, M = (3, 4, 5, 4, 2) → (4, 5, 4, 3, 2) → (5, 4, 4, 3, 2) = F . The Ferrers shape F depends
only on the set of row lengths of M and not the actual sequence, so any stack polyomino σM
can be transformed to the same Ferrers shape F by applying “move the bottom row up” moves.
Theoerefore, to prove Theorem 1, it suffices to prove only

Proposition 13. LetM be a stack polyomino which is not a Ferrers shape and letM′ be obtained
by moving the bottom row of M up as much as possible so that the resulting polyomino is also a
stack polyomino. Then

N(M;n;ne = u, se = v) = N(M′;n;ne = u, se = v).

Proof. Let F(M) denote the set of fillings of a polyominoM. We prove this claim by constructing
a bijection f : F(M) → F(M′) between the fillings of M andM′ which preserves the lengths of
the longest ne- and se-chains. For M ∈ F(M), the filling f(M) ofM′ is defined by modifying the
filling inside one maximal rectangle as follows.

Let r be the bottom row ofM and let R be the largest rectangle contained inM that contains
row r. Let R′ be the maximal rectangle in M′ of the same size as R. We first define a bijection
ϕR,R′ : F(R) → F(R′) between the fillings of R and R′ as follows. Let T ∈ F(R). In general, T
may contain some empty rows and columns. If the bottom row of T is empty then ϕR,R′(T ) is the
filling T ′ whose top row is empty while the k-th row, k ≥ 1 is the same as the (k + 1)-st row of T .
Otherwise, if 1 < a1 < a2 < . . . < ai are the empty rows of T then the rows a1−1, a2−1, . . . , ai−1
in T ′ = ϕR,R′(T ) are empty. If b1, b2, . . . , bj are the empty columns of T then b1, b2, . . . , bj are also
empty columns in T ′. Let w be the word that corresponds to the filling T when the empty rows
and columns are ignored. For example, the word that corresponds to the rectangle R in Figure 10
is w = 236126415.

Let (P,Q) be the Hecke insertion tableau and the Hecke recording tableau for w, respectively.
Let P ′ be the tableau obtained in the following way:

Step 1. Let C be the top left box of P . Replace the entry 1 appearing in C with a •.

Step 2. Swap adjacent •’s and 2’s, then swap adjacent •’s and 3’s, etc, until the •’s have been
swapped with all the entries of P . The increasing tableau obtained this way is jdt{1}(P/1).

Step 3. Decrease all entries by 1 and then replace the •’s with the maximum value of P . The
resulting increasing tableau is P ′.
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X

X

X

X

X

X

X

X

X

X

X

X

X

X

R1

R

R2

r →

Figure 10: A filling of the stack polyominoM.

See Figure 11 for an illustration of obtaining P ′ for the Hecke insertion tableau P of the word
w = 236126415.

Let w′ be the word that corresponds to (P ′, Q), obtained by reverse Hecke insertion. Then T ′

is the filling of R′ which, when the empty rows a1 − 1, a2 − 1, . . . , ai − 1 and the empty columns
b1, b2, . . . , bj are deleted, is the matrix representation of w′. Finally, we set ϕR,R′(T ) = T ′ for
T ∈ F(R).

The map ϕR,R′ is clearly invertible since the tableau P can be constructed from P ′ by doing
the following:

Step 1. Replace the maximal entries m appearing in P ′ with •.

Step 2. Swap adjacent •’s and m− 1’s, then swap •’s and m− 2’s, etc, until the •’s have been
swapped with all the entries of P ′.

Step 3. Increase all entries by 1 and then replace the • with 1. The resulting increasing tableau
is P .

We now define f : F(M) −→ F(M′) as follows. Let T ∈ F(M). Then f(T ) is the filling ofM′

in which all the entries outside of the rectangle R′ inM′ are the same as in the filling ofM, while
the filling of the rectangle R′ is ϕR,R′(T |R) obtained by applying ϕR,R′ to the filling T restricted
on R. Figure 12 shows the result of applying f to the filling ofM in Figure 10.

Since the map ϕR,R′ is a bijection, the map f is as well. The map ϕR,R′ preserves the number

1

2

3

2

3

4

6

5 •

2

3

2

3

4

6

5 2

3

•

3

6

4

•

5 1

2

6

2

5

3

6

4

a. P b. P/1 c. jdt{1}(P/1) d. P ′

Figure 11: An example of constructing P ′ for the tableau P .
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X

X

X

X

X

X

X

X

X

X

X

R′
1

R′

R′
2

r′ →

Figure 12: A filling of the stack polyominoM′.

of ones, because the words that correspond to the fillings in R and R′ under this map have the
same recording tableau Q, whose number of entries gives the length of the words. Therefore, the
map f also preserves the number of ones.

We claim that f preserves the lengths of the longest ne- and se-chains. To prove this it suffices
to show that these statistics are the same when the fillings M and f(M) are restricted to the same
maximal rectangle. Recall that the fillings of the rectangles represent words as described before
and ne-chains (resp. se-chains) correspond to increasing (resp. decreasing) subsequences in those
words.

First let T (resp. T ′) be the filling M (resp. f(M)) restricted to the rectangle R (resp. R’) in
M (resp. M′). By Theorem 5, ne(T ) and se(T ) are equal to the number of columns and rows of
the Hecke insertion tableau P , respectively. Similarly, ne(T ′) and se(T ′) are equal to the number of
columns and rows of the tableau P ′. Since P and P ′ have the same shape, we have ne(T ) = ne(T ′)
and se(T ) = se(T ′).

r →

R1

R

R2

r′ →

R′
1

R′

R′
2

a. M b. M′

Figure 13: Moving up the bottom row of a stack polyomino.

The rest of the maximal rectangles inM andM′ fall into two classes: those that are narrower
and those that are wider than the rectangle R. Let R1 be a maximal rectangle in M that is
narrower than R and let R′

1 be the corresponding rectangle of the same size in M′, as shown in
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Figure 13. We can divide the filling T1 of R1 into two parts, w1 (inside R) and α (outside of R), as
in the left filling in Figure 14. Similarly, the filling T ′

1 of R′
1, also consists of two parts, w′

1 (inside
R′) and α (outside of R′), as in the right filling in Figure 14.

R1

R
α

w1

R′
1

R′
α

w′
1

Figure 14: Decompositions of the fillings in R1 and R′
1.

Recall that the growth diagrams of the fillings T and T ′ are constructed from the bottom left
corner and the recording tableau is encoded by the sequence of partitions and edge labels along the
top border. Therefore, since the words encoded by T and T ′ have the same Hecke recording tableau
Q by construction, the recording tableaux Q(w1) and Q(w′

1) are also the same and are obtained
by deleting the values that correspond to the columns outside of the rectangle R ∩R1. Moreover,
since the rules for building the growth diagrams are local and the top filling α is the same in both
R1 and R′

1, it follows that the words in both R1 and R′
1 have the same recording tableaux as well.

Since the Hecke insertion and recording tableaux have the same shape, by Theorem 5, we have
ne(T1) = ne(T ′

1) and se(T1) = se(T ′
1).

Consider now a maximal rectangle R2 inM which is wider than R and let R′
2 be the maximal

rectangle inM′ of the same size, as in Figure 15. Let T and T2 be the fillings of R and R2 within
the filling M ofM and let T ′ and T ′

2 be the fillings of R′ and R′
2 within the filling M ′ = f(M) of

M′. These fillings consist of several parts, as represented in Figure 15 (some of these parts may
be empty). Suppose the filling of T , read from bottom up, is the filling of the row r, the filling γ
between row r and R2, w2 inside R ∩ R2, and δ above R2, and let β be the filling inside R2 but
outside of R. Similarly, suppose the filling T ′ of R′ consists of γ′ in the bottom, followed by w′

2

inside R′∩R′
2, followed by δ′, followed by the filling r′ of the row that was moved. The filling inside

R′
2 but outside of R′ is the same β by construction.

r

γ

w2

δ

β

R

R2

r′

γ′

w′
2

δ′

β

R′

R′
2

Figure 15: Decompositions of the fillings in R, R2, R
′, and R′

2.

If the row r is empty, then so is r′ and we have γ′ = γ, w′
2 = w2, δ

′ = δ by construction. So, in
this case, ne(T ′

2) = ne(T2) and se(T ′
2) = se(T2).
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Now, consider the case when the row r is not empty. For a word a = a1a2 · · · ar, let x1 < x2 <
· · · < xk be the ordered list of letters appearing in a. The standardization of a, denoted by I(a),
is the word obtained by replacing xi with i in a. By construction, if (P,Q) is the pair of tableaux
that corresponds to I(w) then (P ′, Q) is the pair of tableaux that correspond to I(w′), where P ′

is constructed from P as explained in the definition of the map ϕR,R′ . By Lemma 11, we have
I(w) ≡ row(P ). Deleting row r corresponds to deleting the 1’s in the word w, so by Lemma 8, we
have

I(w)\1 ≡ row(P )\1 = row(P/1),

where w\1 means delete 1’s from the word w and P/1 is the increasing filling of skew shape obtained
by deleting the top left corner from P . The construction of the tableau P ′ and Theorem 9 imply
that

I(row(P/1)) ≡ row(P ′/m),

where m is the maximal number appearing in P ′. Since P ′ is the insertion tableau of I(w′), by
Proposition 12, we have that the Hecke insertion tableau of I(w′)\m is P ′/m, which implies

row(P ′/m) ≡ I(w′)\m.

Therefore I(γ + w2 + δ) ≡ I(γ′ + w′
2 + δ′). Since γ (resp. δ) and γ′ (resp. δ′) have the same

number of nonempty rows, by using Lemma 8 again, we have I(w2) ≡ I(w′
2). Since the K-Knuth

relations consist of local transformations, this implies I(w2β) ≡ I(w′
2β). By Proposition 10, we

have ne(T2) = ne(T ′
2) and se(T2) = se(T ′

2).

4 Special case: Ferrers shapes

In this section, we explain how Theorem 1 gives a different proof of the main result in [7].

1. The objects of consideration in [7] are linked partitions of [n] = {1, 2, . . . , n}. A linked
partition of [n] is a collection of nonempty subsets B1, B2, . . ., Bk of [n], called blocks, such that
∪ki=1Bi = [n] and any two distinct blocks are nearly disjoint. Two distinct blocks Bi and Bj are
said to be nearly disjoint if for any t ∈ Bi ∩Bj, one of the following conditions holds:

(1) t = min(Bi), |Bi| > 1, and t 6= min(Bj),

(2) t = min(Bj), |Bj| > 1, and t 6= min(Bi).

Given a linked partition P of [n], a block {i1, i2, . . . , im}, i1 < i2 < · · · < im of P is rep-
resented by the set of pairs {(i1, i2), (i1, i3), . . . , (i1, im)}. More generally, a linked partition is
represented by the union of all set of pairs, the union being taken over all its blocks. This represen-
tation is called the standard representation of the linked partition. For example, the linked partition
{{1, 3, 6}, {2, 5, 8}, {4}, {5, 9}, {6, 7}} is represented as the set {(1, 3), (1, 6), (2, 5), (2, 8), (5, 9), (6, 7)}.
Next, one defines a k-crossing of a linked partition to be a subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of
its standard representation where i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. Similarly, one defines
a k-nesting of a linked partition to be a subset {(i1, j1), (i2, j2), . . . , (ik, jk)} of its standard repre-
sentation where i1 < i2 < · · · < ik < jk < · · · < j2 < j1. (These notions have intuitive pictorial
meanings if one connects a pair (i, j) in the standard representation of a linked partition by an arc,
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cf. [7].) Finally, given a linked partition P , we write cross(P ) for the maximal number k such that
P has a k-crossing, and we write nest(P ) for the maximal number k such that P has a k-nesting.

Given a linked partition P , let comp1(P ) be the set of the first components of the pairs of its
standard representation, and let comp2(P ) be the set of the second components of the pairs of its
standard representation. Then Theorem 4.2 from [7] reads as follows.

Theorem 14 ([7]). Let n, x, y be positive integers, and let S and T be two subsets of [n]. Then the
number of linked partitions P of [n] with cross(P ) = x, nest(P ) = y, comp1(P ) = S, comp2(P ) = T
is equal to the number of linked partitions of [n] with cross(P ) = y, nest(P ) = x, comp1(P ) = S,
comp2(P ) = T .

There is a one-to-one correspondence between linked partitions on [n] and fillings of △n, the
triangular shape with n − 1 squares in the bottom row, n − 2 squares in the row above, etc., and
1 square in the top-most row. We represent a linked partition P of [n], given by its standard
representation, as a filling, by putting an X to the square in row i (from top to bottom) and
column j (counted from right to left, including one empty column) if and only if (i, j) is a pair in
the standard representation of P . See Figure 16 for two examples in which n = 7. (The labeling of
the corners and edges of the fillings should be ignored at this point.) This defines a correspondence
between linked partitions of [n] and 01-fillings of △n with at most one 1 in each column. Moreover,
a k-crossing of P corresponds to a se-chain of length k in △n, and a k-nesting of P corresponds to
a ne-chain of length k in △n.
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a. P = {{1, 2, 3, 5, 6}, {2, 4, 7}} b. P ′ = {{1, 2, 4, 7}, {2, 3, 5, 6}}

Figure 16: Bijection on linked partitions using Hecke growth diagrams.

If we specialize Theorem 1 to the case where M =△n and σM = ▽n is a reflection of M
through a horizontal line, we obtain

N(△n;n;ne = u, se = v) = N(▽n;n;ne = u, se = v).

On the other hand reflecting the polyomino with a filling about a horizontal line exchanges the se-
and ne-chains, so we have

N(▽n;n;ne = u, se = v) = N(△n;n;ne = v, se = u).
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The set of the first (resp. second) components of the linked partition correspond to the nonempty
rows (resp. columns). Since our bijection f in Section 3 and the reflection both preserve the empty
rows and columns, we obtain Theorem 14.

2. The proof of Theorem 14 in [7] goes via a bijection φ between linked partitions and vacillating
Hecke tableaux of empty shape. These are certain sequences of Hecke diagrams, which are Young
diagrams with a possibly marked corner. For a linked partition P , the corresponding vacillating
Hecke tableaux φ(P ) is obtained via Hecke insertion. The maximum number of columns and rows
in the Hecke diagrams in φ(P ) is equal to ness(P ) and cross(P ). Transposing a vacillating Hecke
tableaux of empty shape yields a vacillating Hecke tableaux of empty shape, so applying φ−1 yields
a bijection on linked partitions which preserves the first and second components, which proves
Theorem 14.

Though we omit the full definition of vacillating Hecke tableaux here, we note that even though
the authors in [7] do not use the language of growth diagrams, φ(P ) is equivalent to the sequence
of labels of the vertices and the horizontal edges along the top right border of the Hecke growth
diagram of P obtained as explained in Section 2. The sequence should be read from bottom right
to top left. The labels of the horizontal edges indicate the rows which have marked corners. For
example, the vacillating Hecke tableaux φ(P ) for the linked partition P in Figure 16a is given in
Figure 17. This matches the example shown in Figure 12 in [7]. Transposing the vacillating Hecke
tableau corresponds to transposing the partitions along the top right border of △n and changing the
labels of the horizontal edges along that border to indicate the column in which the marked corner
appears. Then by applying the reverse local growth rules, we obtain a filling which represents a
linked partition, like in Figure 16b.

Note that this description of the map in [7] in terms of Hecke growth diagrams is analogous to
the description of the map from [6] between set partitions and vacillating tableaux that Kratten-
thaler [16] gave in terms of Fomin’s growth diagrams for RSK.

∅∅••
•∅∅

Figure 17: A vacillating Hecke tableau for the linked partition P = {{1, 2, 3, 5, 6}, {2, 4, 7}}.

Since our map f from Section 3 preserves the 1’s outside the maximal rectangle that contains
the main row, the bijection on linked partitions that we get by successively applying f between the
fillings of △n and ▽n is different from the one in [7]. Indeed, consider the linked partition:

L = {{1, 2, 4, 7, 10}, {2, 3, 6, 15}, {3, 11}, {4, 5, 8}, {5, 12, 14, 16}, {6, 9}, {7, 13}}.

The corresponding linked partition that we get via our bijection is

L1 = {{1, 2, 3, 8, 9, 13}, {2, 5, 14}, {3, 4, 6}, {4, 12, 16}, {5, 7, 11}, {6, 15}, {7, 10}},

while the bijection in [7] produces

L2 = {{1, 2, 3, 13}, {2, 5, 14}, {3, 4, 6}, {4, 12, 16}, {5, 7, 8, 9}, {6, 11, 15}, {7, 10}}.

5 Discussion

In this section we comment on possible and impossible extensions of the results in this paper.
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1. As observed in [8], Theorem 1 doesn’t hold if we fix the number of 1’s in each row. Let
N (a1,a2,··· )(F;n;ne = u, se = v) be the number of fillings of the Ferrers shape F (in French notation)
such that: the sum of entries equal to n, the longest ne-chain has length u, the longest se-chain has
length v, and with ai 1’s in row i, i = 1, 2, . . . . Then for F = (7, 7, 6, 4), we have N (4,1,1,1)(F;n =
7;ne = 4, se = 1) = 0, but N (4,1,1,1)(F;n = 7;ne = 1, se = 4) = 1.

2. In Section 3, we showed

N(M;n;ne = u, se = v) = N(M′;n;ne = u, se = v)

whereM′ is a stack polyomino obtained by moving the bottom row ofM up as much as possible, by
using the transformation ϕR,R′ within the maximal rectangle containing the bottom row, while the
rest of the filling remained the same. One may ask whether one can use the same transformation
ϕ on fillings of rectangles to move an arbitrary row of a stack polyomino up (such that the result
is again a stack polyomino) so that the ne and se statistics are preserved.

The answer to this question is negative. In the following we give a counterexample. Figure 18
shows a filling F of a stack polyominoM with ne = 5 and se = 6. Moving the row r (third from
below) of M to the top produces the stack polyomino M′ in Figure 19. Let R (resp. R′) be the
largest rectangle contained inM (resp. M′) that contains r (resp. r′). By applying the bijection
ϕR,R′ (defined in Section 3) between the filling of R and the filling of R′, while all entries out of R′

stay the same, one obtains the filling ofM′ in Figure 19, for which ne = 4 and se = 6.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

r →

Figure 18: A filling ofM with ne = 5, se = 6.

3. With a help of a computer program, we computed
∑

M∈F(M) x
ne(M)yse(M) for different moon

polyominoesM and, based on these calculations, we make the following conjecture.

Conjecture 15. LetM be a moon polyomino. The number N(M;n;ne = u; se = v) only depends
on the lengths of the rows ofM, not the actual shape. In other words, ifM1 andM2 are obtained
by permuting the rows and columns of M, respectively, then

N(M;n;ne = u; se = v) = N(M1;n;ne = u; se = v) = N(M2;n;ne = u; se = v).

For example, let M1, M2, M3 and M4 be the moon polyominoes given in Figure 20. For
1 ≤ i ≤ 4, let Gi(x, y) =

∑
M∈F(Mi)

xne(M)yse(M) be the joint distribution of (ne, se) over fillings

ofM′
i. Then

G1(x, y) = G2(x, y) = G3(x, y) = G4(x, y)

= 40x3y3 + 238(x3y2 + x2y3) + 4(x3y + xy3) + 348x2y2 + 2(x2y + xy2).
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Figure 19: A filling ofM′ with ne = 4, se = 6.

However, this conjecture cannot be proved using the same map from Section 3 which moves
the bottom row r up while everything outside the maximal rectangle which contains r remains the
same. Namely, applying this idea to the filling in Figure 21 which has ne = 5, se = 5 yields the
filling in Figure 22 with ne = 4, se = 5.

4. The results of Rubey in [19] for moon polyominoes were extended to almost-moon poly-
ominoes by Poznanović and Yan [18]. We say a row r is an exceptional row of a polyomino M
if there are rows above r and below r which are longer than r. Similarly, define the exceptional
column c of a polyomino M to be a column which has longer columns to both its right and its
left. An almost-moon polyomino is either a polyomino with comparable convex rows and at most
one exceptional row or a polyomino with comparable convex columns and at most one exceptional
column. See Figure 23 for an illustration of almost-moon polyominoes with one exceptional row r
and one exceptional column c.

One may wonder whether the results in this paper could be extended to almost-moon polyomi-
noes. The answer to this question is negative. We give two counterexamples below.

Example 16. Let A1 be the almost-moon polyomino with one exceptional row given in Figure 23a.
Let G1(x, y) =

∑
M∈F(A1)

xne(M)yse(M) be the joint distribution of (ne, se) over fillings of P1. Then

G1(x, y) = (15x5y3 + 13x3y5) + 56x4y4 + (80x5y2 + 82x2y5) + (1180x4y3 + 1178x3y4)

+5(x5y + xy5) + (1210x4y2 + 1212x2y4) + 5370x3y3 + 10(x4y + xy4)

+(1477x3y2 + 1473x2y3) + 64x2y2.

Example 17. Let A2 be the almost-moon polyomino as given in Figure 23b. Let G2(x, y) =

a. M1 b. M2 c. M3 d. M4

Figure 20: Moon polyominoes with same row lengths.
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Figure 21: The filling ofM with ne = 5, se = 5.
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Figure 22: The filling ofM′ with ne = 4, se = 5.

∑
M∈F(A2)

xne(M)yse(M) be the joint distribution of (ne, se) over fillings of P2. Then

G2(x, y) = (8x5y3 + 15x3y5) + 48x4y4 + (83x5y2 + 77x2y5) + (1129x4y3 + 1174x3y4)

+(9x5y + 8xy5) + (1273x4y2 + 1227x2y4) + 5434x3y3 + (6x4y + 7xy4)

+(1415x3y2 + 1467x2y3) + 60x2y2.

r →

c

↓

a. A1 b. A2

Figure 23: Two almost-moon polyominoes.

Note that if the generating function of (ne, se) is invariant under row or column permutations,
then it is symmetric in x and y. However, in Examples 16 and 17 we have G1(x, y) 6= G1(y, x) and
G2(x, y) 6= G2(y, x).

19



Acknowledgments

The authors thank Christian Krattenthaler for many helpful discussions, also for his comments and
corrections on a preliminary draft of the paper. TG thanks the members of the combinatorics group
at the University of Vienna for creating a wonderful, stimulating working environment and for their
support during her stay in Vienna. SP also thanks the combinatorics group at the University of
Vienna for their hospitality during her visit in the fall of 2018.

References

[1] Jörgen Backelin, Julian West, and Guoce Xin. Wilf-equivalence for singleton classes. Adv. in
Appl. Math., 38(2):133–148, 2007.
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