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On flag-transitive 2-(v, k, 2) designs

Alice Devillers∗ Hongxue Liang† Cheryl E. Praeger Binzhou Xia

Abstract

This paper is devoted to the classification of flag-transitive 2-(v, k, 2) designs. We
show that apart from two known symmetric 2-(16, 6, 2) designs, every flag-transitive
subgroup G of the automorphism group of a nontrivial 2-(v, k, 2) design is primitive of
affine or almost simple type. Moreover, we classify the 2-(v, k, 2) designs admitting a
flag transitive almost simple group G with socle PSL(n, q) for some n > 3. Alongside
this analysis we give a construction for a flag-transitive 2-(v, k − 1, k − 2) design from
a given flag-transitive 2-(v, k, 1) design which induces a 2-transitive action on a line.
Taking the design of points and lines of the projective space PG(n − 1, 3) as input to
this construction yields a G-flag-transitive 2-(v, 3, 2) design whereG has socle PSL(n, 3)
and v = (3n−1)/2. Apart from these designs, our PSL-classification yields exactly one
other example, namely the complement of the Fano plane.

Keywords: flag-transitive design; projective linear group

MSC2020: 05B05, 05B25, 20B25

1 Introduction

A 2-(v, k, λ) design D is a pair (P,B) with a set P of v points and a set B of blocks such
that each block is a k-subset of P and each two distinct points are contained in λ blocks.
We say D is nontrivial if 2 < k < v, and symmetric if v = b. All 2-(v, k, λ) designs in this
paper are assumed to be nontrivial. An automorphism of D is a permutation of the point
set which preserves the block set. The set of all automorphisms of D with the composition
of permutations forms a group, denoted by Aut(D). For a subgroup G of Aut(D), G is said
to be point-primitive if G acts primitively on P, and said to be point-imprimitive otherwise.
A flag of D is a point-block pair (α,B) where α is a point and B is a block incident with α.
A subgroup G of Aut(D) is said to be flag-transitive if G acts transitively on the set of flags
of D.

A 2-(v, k, λ) design with λ = 1 is also called a finite linear space. In 1990, Buekenhout,
Delandtsheer, Doyen, Kleidman, Liebeck and Saxl [5] classified all flag-transitive linear spaces
apart from those with a one-dimensional affine automorphism group. Since then, there
have been efforts to classify 2-(v, k, 2) designs D admitting a flag-transitive group G of
automorphisms. Through a series of papers [24, 25, 26, 27], Regueiro proved that, if D is
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†The second author was supported by the NSFC (Grant No.11871150).
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symmetric, then either (v, k) ∈ {(7, 4), (11, 5), (16, 6)}, or G 6 AΓL(1, q) for some odd prime
power q. Recently, Zhou and the second author [15] proved that, if D is not symmetric and
G is point-primitive, then G is affine or almost simple. In each of these cases G has a unique
minimal normal subgroup, its socle Soc(G), which is elementary abelian or a nonabelian
simple group, respectively.

Our first objective in this paper is to fill in a missing piece in this story, namely to treat the
case where G is flag-transitive and point-imprimitive and D is a not-necessarily-symmetric
2-(v, k, 2) design. Such flag-transitive, point-imprimitive designs exist: it was shown in 1945
by Hussain [12], and independently in 1946 by Nandi [19], that there are exactly three 2-
(16, 6, 2)-designs. O’Reilly Regueiro [24, Examples 1.2] showed that exactly two of these
designs are flag-transitive, and each admits a point-imprimitive, flag-transitive subgroup of
automorphisms (one with automorphism group 24S6 and point stabiliser (Z2 × Z8)(S4.2)
and the other with automorphism group S6 and point stabiliser S4.2, see also [23, Remark
1.4(1)]). We prove that these are the only point-imprimitive examples, and thus, together
with [15, Theorem 1.1] and [24, Theorem 2], we obtain the following result.

Theorem 1.1. Let D be a 2-(v, k, 2) design with a flag-transitive group G of automorphisms.
Then either

(i) D is one of two known symmetric 2-(16, 6, 2) designs with G point-imprimitive; or

(ii) G is point-primitive of affine or almost simple type.

Theorem 1.1 reduces the study of flag-transitive 2-(v, k, 2) designs to those whose auto-
morphism group G is point-primitive of affine or almost simple type. Regueiro [24, 25, 26, 27]
has classified all such examples where the design is symmetric (up to those admitting a one-
dimensional affine group). In the non-symmetric case, the second author and Zhou have
dealt with the cases where the socle Soc(G) is a sporadic simple group or an alternating
group, identifying three possibilities: namely (v, k) = (176, 8) with G = HS, the Higman-
Sims group in [15], and (v, k) = (6, 3) or (10, 4) with Soc(G) = Av in [16]. Our contribution
is the case where Soc(G) = PSL(n, q) for some n > 3 and q a prime power. In contrast to the
cases considered previously, an infinite family of examples occurs, which may be obtained
from the following general construction method for flag-transitive designs from linear spaces.

Construction 1.1. For a 2-(v, k, 1) design S = (P,L) with k > 3, let

B = {ℓ \ {α} | ℓ ∈ L, α ∈ ℓ}

and D(S) = (P,B).
We show in Proposition 4.1 that D(S) is a 2-(v, k − 1, k − 2) design, and moreover,

that D(S) is G-flag-transitive whenever G 6 Aut(S) is flag-transitive on S and induces a
2-transitive action on each line of S. In particular, these conditions hold if S is the design of
points and lines of PG(n− 1, 3), for some n > 3, and Soc(G) = PSL(n, 3) (Proposition 4.1).
Apart from these designs, our analysis shows that there is only one other G-flag-transitive
2− (v, k, 2) design with Soc(G) = PSL(n, q), n > 3.

Theorem 1.2. Let D be a 2-(v, k, 2) design admitting a flag-transitive group G of automor-
phisms, such that Soc(G) = PSL(n, q) for some n > 3 and prime power q. Then either
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(a) D = D(S) is as in Construction 1.1, where S is the design of points and lines of PG(n−
1, 3); or

(b) D is the complement of the Fano plane (that is, blocks are the complements of the lines
of PG(2, 2)).

The designs in part (a) are non-symmetric (Proposition 4.1), while the complement of the
Fano plane is symmetric, and arises also in Regueiro’s classification [26, Theorem 1] (noting
that the group PSL(3, 2) is isomorphic to the group PSL(2, 7) in her result).

The proofs of Theorems 1.1 and 1.2 will be given in Sections 3 and 4, respectively.

2 Preliminaries

We first collect some useful results on flag-transitive designs and groups of Lie type.

Lemma 2.1. Let D be a 2-(v, k, λ) design and let b be the number of blocks of D. Then the
number of blocks containing each point of D is a constant r satisfying the following:

(i) r(k − 1) = λ(v − 1);

(ii) bk = vr;

(iii) b > v and r > k;

(iv) r2 > λv.

In particular, if D is non-symmetric then b > v and r > k.

Proof. Parts (i) and (ii) follow immediately by simple counting. Part (iii) is Fisher’s
Inequality [28, p.99]. By (i) and (iii) we have

r(r − 1) > r(k − 1) = λ(v − 1)

and so r2 > λv+ r−λ. Since D is nontrivial, we deduce from (i) that r > λ. Hence r2 > λv,
as stated in part (iv).

For a permutation group G on a set P and an element α of P, denote by Gα the stabiliser
of α in G, that is, the subgroup of G fixing α. A subdegree s of a transitive permutation
group G is the length of some orbit of Gα. We say that s is non-trivial if the orbit is not
{α}, and s is unique if Gα has only one orbit of size s.

Lemma 2.2. Let D be a 2-(v, k, λ) design, let G be a flag-transitive subgroup of Aut(D),
and let α be a point of D. Then the following statements hold:

(i) |Gα|3 > λ|G|;

(ii) r divides gcd(λ(v − 1), |Gα|);

(iii) r divides λ gcd(v − 1, |Gα|);
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(iv) r divides s gcd(r, λ) for every nontrivial subdegree s of G.

Proof. By Lemma 2.1 we have r2 > λv. Moreover, the flag-transitivity of G implies that
v = |G|/|Gα| and r divides |Gα|, and in particular, |Gα| > r. It follows that

|Gα|2 > r2 > λv =
λ|G|
|Gα|

and so |Gα|3 > λ|G|. This proves statement (i).
Since r divides r(k − 1) = λ(v − 1) and r divides |Gα|, we conclude that r divides

gcd(λ(v − 1), |Gα|), (2.1)

as statement (ii) asserts. Note that the quantity in (2.1) divides

gcd(λ(v − 1), λ|Gα|) = λ gcd(v − 1, |Gα|).

We then conclude that r divides λ gcd(v − 1, |Gα|), proving statement (iii).
Finally, statement (iv) is proved in [8, p.91] and [9].
For a positive integer n and prime number p, let np denote the p-part of n and let np′

denote the p′-part of n, that is, np = pt such that pt | n but pt+1 ∤ n and np′ = n/np. We will
denote by d the greatest common divisor of n and q − 1.

Lemma 2.3. Suppose that D is a 2-(v, k, 2) design admitting a flag-transitive point-primitive
group G of automorphisms with socle X = PSL(n, q), where n > 3 and q = pf for some
prime p and positive integer f , and d = gcd(n, q−1). Then for any point α of D the following
statements hold:

(i) |X| < 2(df)2|Xα|3;

(ii) r divides 2df |Xα|;

(iii) if p | v, then rp divides 2, r divides 2df |Xα|p′, and |X| < 2(df)2|Xα|2p′|Xα|.

Proof. Since G is point-primitive and X is normal in G, the group X is transitive on the
point set. Hence G = XGα and so

|Gα|
|Xα|

=
|Gα|

|X ∩Gα|
=

|XGα|
|X| =

|G|
|X| .

Moreover, as Soc(G) = X = PSL(n, q), we have G 6 Aut(X). Hence |Gα|/|Xα| = |G|/|X|
divides |Out(X)| = 2df . Consequently, |Gα|/|Xα| 6 2df . Since Lemma 2.2(i) yields

|Gα|3 > 2|G| = 2|X||Gα|
|Xα|

,

it follows that

2|X| < |Xα||Gα|2 =
( |Gα|
|Xα|

)2

|Xα|3 6 (2df)2|Xα|3.
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This leads to statement (i). Since |Gα|/|Xα| divides |Out(X)| = 2df and the flag-transitivity
of G implies that r divides |Gα|, we derive that r divides 2df |Xα|, as in statement (ii).

Now suppose that p divides v. Then the equality 2(v − 1) = r(k − 1) implies that rp
divides 2. As a consequence of this and part (ii) we see that r divides 2df |Xα|p′. Since
r2 > 2v by Lemma 2.1(iv), and v = |X|/|Xα| by the point-transitivity of X , it then follows
that

(2df |Xα|p′)2 > 2v =
2|X|
|Xα|

.

This implies that 2(df)2|Xα|2p′|Xα| > |X|, completing the proof of part (iii).

Lemma 2.4. Suppose that D is a 2-(v, k, 2) design admitting a flag-transitive point-primitive
group G of automorphisms with socle X = PSL(n, q), where n > 3 and q = pf for some
prime p and positive integer f , and d = gcd(n, q − 1). Let α and β be distinct points of D,
and suppose H 6 Gα,β. Then r divides 4df |Xα|/|H|.
Proof. By Lemma 2.2(iv), r divides 2|βGα| = 2|Gα|/|Gαβ|. Since |Gα| divides 2df |Xα| (see
proof of Lemma 2.3) and H divides |Gα,β|, it follows that r divides 4df |Xα|/|H|.

We will need the following results on finite groups of Lie type.

Lemma 2.5. Suppose that D is a 2-(v, k, 2) design admitting a flag-transitive point-primitive
group G of automorphisms with socle X = PSL(n, q), where n > 3 and q = pf for some
prime p and positive integer f , and r is the number of blocks incident with a given point. Let
α be a point of D. Suppose that Xα has a normal subgroup Y , which is a finite simple group
of Lie type in characteristic p, and Y is not isomorphic to A5 or A6 if p = 2. If rp | 2p, then
r is divisible by the index of a proper parabolic subgroup of Y .

Proof. Since G is flag-transitive, we have r = |Gα|/|Gα,B|, where B is a block through α.
Since XαEGα, |Xα|/|Xα,B| divides r. Now since Y EXα, we also have that |Y |/|YB| divides
r. Let H := YB. Since rp | 2p, we have that |Y :H|p 6 2p. We claim that H is contained in a
proper parabolic subgroup of Y . First assume |Y :H|p = 1. Then by [29, Lemma 2.3], H is
contained in a proper parabolic subgroup of Y . Now suppose |Y :H|p = 2. Then p = 2 and
4 ∤ |Y :H|, and so by [26, Lemma 7], H is contained in a proper parabolic subgroup of Y . So
the claim is proved in both cases. It follows that r is divisible by the index of a parabolic
subgroup of Y .

Lemma 2.6. ([1, Lemma 4.2, Corollary 4.3]) Table 1 gives upper bounds and lower bounds
for the orders of certain n-dimensional classical groups defined over a field of order q, where
n satisfies the conditions in the last column.

We finish this section with an arithmetic result.

Lemma 2.7. ([4, Lemma 1.13.5]) Let p be a prime, let n, e and f be positive integers such
that n > 1 and e | f , and let q0 = pe and q = pf . Then

(i)
q − 1

lcm(q0 − 1, (q − 1)/ gcd(n, q − 1))
= gcd

(

n,
q − 1

q0 − 1

)

;

(ii)
q + 1

lcm(q0 + 1, (q + 1)/ gcd(n, q + 1))
= gcd

(

n,
q + 1

q0 + 1

)

;
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Table 1: Bounds for the order of some classical groups

Group G Lower bound on |G| Upper bound on |G| Conditions on n

GL(n, q) > (1− q−1 − q−2)qn
2

6 (1− q−1)(1− q−2)qn
2

n > 2

PSL(n, q) > qn
2−2 6 (1− q−2)qn

2−1 n > 2

GU(n, q) > (1 + q−1)(1− q−2)qn
2

6 (1 + q−1)(1− q−2)(1 + q−3)qn
2

n > 2

PSU(n, q) > (1− q−1)qn
2−2 6 (1− q−2)(1 + q−3)qn

2−1 n > 3

Sp(n, q) > (1− q−2 − q−4)q
1

2
n(n+1) 6 (1− q−2)(1− q−4)q

1

2
n(n+1) n > 4

(iii) If f is even, then q1/2 = pf/2 and
q − 1

lcm(q1/2 + 1, (q − 1)/ gcd(n, q − 1))
= gcd

(

n, q1/2 − 1
)

.

3 Proof of Theorem 1.1

Let D = (P,B) be a 2-(v, k, 2) design admitting a flag-transitive group G of automor-
phisms. If G is point-primitive, then by [15] and [24], G is of affine or almost simple type.
Thus we may assume that G leaves invariant a non-trivial partition C = {∆1,∆2, . . . ,∆y}
of P, where

v = xy. (3.2)

with 1 < y < v and |∆i| = x for each i. If (v, k) = (16, 6) then by Lemma 2.1, it follows that
D is symmetric and hence, in the light of the discussion before the statement of Theorem 1.1,
in this case Theorem 1.1(i) holds. Hence we may assume further that (v, k) 6= (16, 6). Our
objective now is to derive a contradiction to these assumptions. Our proof uses the facts,
which can easily be verified by Magma [3], that for each 2-transitive permutation group of
degree 2p = 10 or 22 there is a unique class of subgroups of index 2p and each such group
is almost simple with a 2-transitive unique minimal normal subgroup (its socle). In fact the
socle is one of PSL(2, 9) or A10 (for degree 10), or M22 or A22 (for degree 22).

First we introduce a new parameter ℓ: let α ∈ P and ∆ ∈ C such that α ∈ ∆; choose
B ∈ B containing α, and let ℓ = |B ∩ ∆|. It follows from [23, Lemma 2.1] that, for each
B′ ∈ B and ∆′ ∈ C such that B′∩∆′ 6= ∅, the intersection size |B′∩∆′| = ℓ, so that B′ meets
each of exactly k/ℓ parts of C in ℓ points and is disjoint from the other parts. Moreover,

ℓ | k and 1 < ℓ < k. (3.3)

(Note that the proof of [23, Lemma 2.1] uses flag-transitivity of D, but is valid for all 2-
designs, not only symmetric ones.)

Claim 1: (v, b, r, k, ℓ) = (x2, 2x2(x−1)
x+2

, 2x− 2, x+ 2, 2), and x = 2p with p ∈ {5, 11}.
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Proof of Claim: Counting the point-block pairs (α′, B′) with α′ ∈ ∆\{α} and B′ containing
α and α′, we obtain

2(x− 1) = r(ℓ− 1). (3.4)

It follows from (3.2) and Lemma 2.1(i) that

r(k − 1) = 2(xy − 1) = 2y(x− 1) + 2(y − 1),

which together with (3.4) yields

r(k − 1) = yr(ℓ− 1) + 2(y − 1). (3.5)

Let z = k − 1 − y(ℓ − 1). Then z is an integer and, by (3.5), rz = 2(y − 1) > 0 so z is a
positive integer and

y =
rz + 2

2
. (3.6)

This in conjunction with (3.5) leads to

r(k − 1) + 2 = y(r(ℓ− 1) + 2) =
(rz + 2)(r(ℓ− 1) + 2)

2
.

Hence
2(k − ℓ− z) = rz(ℓ− 1). (3.7)

Since k 6 r (Lemma 2.1(iii)), we have

kz(ℓ− 1) 6 rz(ℓ− 1) = 2(k − ℓ− z) < 2k,

and hence z = 1 and ℓ = 2. Then (3.4) becomes r = 2x − 2, and so (3.6) gives y = x (and
hence v = x2) and the definition of z gives k = x+2. It then follows from r > k that x > 4,
and from (3.3) that k, and hence also x, is even. Finally by Lemma 2.1(ii),

b =
vr

k
=

x2(2x− 2)

x+ 2
= 2x2 − 6x+ 12− 24

x+ 2
,

and hence (x + 2) | 24. Therefore, x = 4, 6, 10 or 22, but since we are assuming that
(v, k) 6= (16, 6) the parameter x 6= 4. If x = 6, then (v, b, r, k) = (36, 45, 10, 8), but one can
see from [6, II.1.35] that there is no 2-(36, 8, 2) design. Thus x = 10 or 22, and Claim 1 is
proved.

Claim 2: For ∆ ∈ C, the induced group G∆
∆ is 2-transitive. Moreover the kernel K :=

G(C) 6= 1, C is the set of K-orbits in P, and K∆ and its socle Soc(K)∆ are 2-transitive with
2-transitive socle PSL(2, 9) or A10 for degree 10, and M22 or A22 for degree 22.

Proof of Claim: Since each element of G fixing α stabilises ∆, we have the inclusion Gα 6

G∆. Let β, γ be arbitrary points in ∆ \ {α}, and consider B1 ∈ B containing α and β,
and B2 ∈ B containing α and γ. Since G is flag-transitive, there exists h ∈ Gα such that
Bh

1 = B2, and in particular, βh ∈ B2. As ℓ = 2 (by Claim 1), each block of D through α
contains exactly one point in ∆ \ {α}. Since βh ∈ (∆ \ {α})h = ∆ \ {α}, it then follows
that βh = γ. This shows that Gα is transitive on ∆ \ {α}, and hence G∆

∆ is 2-transitive and
hence primitive.
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By Claim 1, each non-trivial block of imprimitivity for G in P has size x =
√
v = 2p

(with p = 5 or 11), and hence the induced permutation group GC on C is primitive. Suppose
that K = 1, so GC ∼= G. Since G is point-transitive and v = 4p2, it follows that |G| = |GC| is
divisible by p2, and hence GC

∆
∼= G∆ has order divisible by p (since |G : G∆| = 2p). Thus GC

∆

contains an element of order p which acts on C as a p-cycle fixing p of the parts. Then by a
result of Jordan [30, Theorem 13.9] we have GC = A2p or S2p and thus G∆

∼= GC
∆ = A2p−1 or

S2p−1. The kernel of the action of G∆ on ∆ is normal in G∆ and so can only be 1, A2p−1 or
S2p−1. Since G∆

∆ is transitive of degree 2p > 2, this kernel must be trivial. Hence G∆
∼= G∆

∆

is primitive of degree 2p and neither A2p−1 nor S2p−1 has such an action, for p ∈ {5, 11}.
This contradiction implies that K 6= 1.

Since K 6= 1 and K is normal in G, its orbits are nontrivial blocks of imprimitivity for
G in P, and by Claim 1, they must have size x = 2p. Hence the set of K-orbits in P is
the partition C. Since 1 6= Soc(K) E G it follows that Soc(K)∆ 6= 1 and hence Soc(K)∆

contains the socle of G∆
∆, which is 2-transitive on ∆ (see above). Therefore Soc(K)∆ is 2-

transitive, and so also K∆ is 2-transitive. By Burnside’s Theorem (see [22, Theorem 3.21]),
since |∆| = 2p is not a prime power, G∆

∆ , K∆ and Soc(K)∆ are almost simple with 2-
transitive nonabelian simple socle. As mentioned above these 2-transitive groups must have
socle PSL(2, 9) or A10 for degree 10, and M22 or A22 for degree 22, and that socle is also
2-transitive on ∆.

Claim 3: The group K is faithful on ∆, so K is almost simple with nonabelian simple socle.

Proof of Claim: Let ∆ ∈ C and suppose that A = K(∆) 6= 1. Let F denote the set of fixed
points of A, so ∆ ⊆ F . If β ∈ F and β ∈ ∆′ ∈ C, then since K is transitive on ∆′ (Claim 2)
and AEK, it follows that A fixes ∆′ pointwise. Thus A 6 K(∆′), and since K(∆), K(∆′) are
conjugate in G we have A = K(∆′). Therefore F is a union of parts of C.

If g ∈ G, then Ag has fixed point set F g and F g is a union of some parts of C. Thus if
F ∩ F g contains a point β and β ∈ ∆′ ∈ C, then by the previous paragraph A = K(∆′) = Ag

and so F = F g. It follows that F is a block of imprimitivity for G in P, and F is non-trivial
since A 6= 1. Thus C′ := { F g | g ∈ G} is a non-trivial G-invariant partition of P. By Claim
1, |F | = x, and since F contains ∆ we conclude that F = ∆. This means that A∆′ 6= 1 for
each ∆′ ∈ C \ {∆}, and since K∆′

is 2-transitive (Claim 2), it follows that A∆′

is transitive.
Now choose α, β ∈ F = ∆ and let B1, B2 ∈ B be the two blocks containing {α, β}. Then
A 6 Gαβ , and Gαβ fixes B1 ∪ B2 setwise. By Claim 1, there exists ∆′ ∈ C \ {∆} such
that |B1 ∩ ∆′| = ℓ = 2, and |B2 ∩ ∆′| = 0 or 2. Thus (B1 ∪ B2) ∩ ∆′ has size between
2 and 4 and is fixed setwise by A. This is a contradiction since A is transitive on ∆′ and
|∆′| = 2p > 10. Therefore A = 1 so K is faithful on ∆. By Claim 2, K ∼= K∆ is almost
simple with nonabelian simple socle.

Since K is 2-transitive of degree c = 2p, as mentioned above, K has only one conjugacy
class of subgroups of index 2p, and so K has a unique 2-transitive representation of degree
c, up to permutational equivalence. It follows that, for α ∈ ∆, the stabiliser Kα fixes exactly
one point in each part of C. Let β be another point fixed by Kα. Let B1, B2 ∈ B be the two
blocks containing {α, β}. By Claim 1, |Bi ∩∆| = 2 for each i and hence Kαβ fixes setwise
(B1 ∪B2) ∩∆, a set of size 2 or 3. On the other hand Kαβ = Kα since β is a fixed point of
Kα, and by Claim 2, K is 2-transitive on ∆, so the Kα-orbits in ∆ have sizes 1, c− 1. This
final contradiction completes the proof of Theorem 1.1.
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4 Proof of Theorem 1.2

Our first result in this section proves that the designs arising from Construction 1.1 are
all 2-designs, and inherit certain symmetry properties from those of the input design. In
particular we show that the designs coming from projective geometries over a field of three
elements give examples for Theorem 1.2.

Proposition 4.1. Let S = (P,L) be a 2-(v, k, 1) design, ℓ ∈ L and G 6 Aut(S).

(i) Then the design D(S) given in Construction 1.1 is a non-symmetric 2-(v, k− 1, k− 2)
design and G is a subgroup of Aut(D(S));

(ii) Moreover, if G is flag-transitive on S and Gℓ is 2-transitive on ℓ, then G is flag-
transitive and point-primitive on D(S);

(iii) In particular, if S is the design of points and lines of the projective space PG(n− 1, 3)
(n > 3), and G > PSL(n, 3), then D(S) is a non-symmetric G-flag-transitive, G-point-
primitive 2-(v, 3, 2) design.

Proof. Let D = D(S) with block set B = {ℓ \ {α} | ℓ ∈ L, α ∈ ℓ}, so D = (P,B). Let
α, β be distinct points of P. Then there exists a unique line ℓ ∈ L, such that α, β ∈ ℓ. As
|ℓ| = k, exactly k − 2 blocks of B contain α and β. Thus, D is a 2-(v, k − 1, k − 2) design,
which is nontrivial provided that 3 < k. By Lemma 2.1 applied to S, |L| > v, and since
|B| = k|L| > |L| it follows that D is not symmetric. Moreover, for all B = ℓ \ {α} ∈ B and
for all g ∈ G 6 Aut(S), we have ℓg ∈ L and αg ∈ ℓg, and so Bg = (ℓ\{α})g = ℓg\{αg} ∈ B.
Thus, G 6 Aut(D) and part (i) is proved.

Now assume that G is flag-transitive on S and Gℓ is 2-transitive on ℓ. Let α ∈ ℓ and
B = ℓ\{α}. From the flag-transitivity of G, we know that G acts primitively on the point set
P by [11, Propositions 1–3], and G acts transitively on the block set B of D. Furthermore,
Gℓ,α 6 GB. Since Gℓ is 2-transitive on ℓ, Gℓ,α is transitive on B. Hence GB is transitive on
B, and so G is flag-transitive on D and part (ii) is proved.

In the special case where S is the design of points and lines of the projective space
PG(n − 1, 3) (n > 3), and H = PSL(n, 3), H is flag-transitive on S and Hℓ induces the
2-transitive group PGL(2, 3) ∼= S4 on ℓ. Thus part (iii) follows from part (i) and (ii) for any
group G such that H 6 G 6 Aut(G).

4.1 Broad proof strategy and the natural projective action

In the remainder of the paper we assume the following hypothesis:

Hypothesis 4.1. Let D = (P,B) be a 2-(v, k, 2) design admitting a flag-transitive point-
primitive group G of automorphisms with socle X = PSL(n, q) for some n > 3, where q = pf

with prime p and positive integer f .
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Observe that G ∩ PΓL(n, q) has a natural projective action on a vector space V of
dimension n over the field Fq. Consider a point α of D and a basis v1, v2, . . . , vn of the
vector space V . Since G is primitive on P, the stabiliser Gα is maximal in G, and so by
Aschbacher’s Theorem [2](see also [14]), Gα lies in one of the geometric subgroup families
Ci(1 6 i 6 8), or in the family C9 of almost simple subgroups not contained in any of these
families. When investigating the subgroups in the Aschbacher families, we make frequent use
of the information on their structures in [14, Chap. 4]. We will sometimes use the symbol
H̃ to indicate that we are giving the structure of the pre-image of H in the corresponding
(semi)linear group.

In the next proposition we treat the case where P is the point set of the projective space
PG(n− 1, q) associated with V .

Proposition 4.2. Assume Hypothesis 4.1, and that P is the point set of the projective space
PG(n− 1, q), with G acting naturally on P. Then either

(a) q = 3, k = 3, v = (3n − 1)/2 and D = D(S) from Construction 1.1, where S is the
design of points and lines of PG(n− 1, 3); or

(b) q = 2, k = 4, v = 2 and D is the complement of the Fano plane (that is, blocks are the
complements of the lines in PG(2, 2)).

Proof. Let α, β be distinct points. Since λ = 2, there are exactly two blocks B1 and B2

containing α and β. Moreover, Gαβ fixes B1 ∪ B2 setwise, so B1 ∪ B2 is a union of Gα,β-
orbits. Let ℓ be the unique projective line containing α and β. Then Gα,β is transitive on
the v − (q + 1) points P\ℓ and on ℓ\{α, β}. Hence, either

1. (B1 ∪ B2)\{α, β} ⊇ P\ℓ, or

2. B1 ∪B2 = ℓ.

Suppose first that (B1 ∪ B2)\{α, β} ⊇ P\ℓ. Then 2k − 2 > |B1 ∪ B2| > 2 + v − (q + 1),
that is k−1 > (v− q+1)/2. Now r(k−1) = 2(v−1) (Lemma 2.1) and v = (qn−1)/(q−1),
so that

r =
2(v − 1)

k − 1
6

4(v − 1)

v − q + 1
= 4 ·

(

1 +
q − 2

qn−1 + · · ·+ q2 + 2

)

< 8. (4.8)

Since r > k, we have that k 6 7. Now combining this with k − 1 > (v − q + 1)/2, we have
that 12 > 2(k−1) > qn−1+ · · ·+q2+2. If n > 4, then 12 > qn−1+ · · ·+q2+2 > q3+q2+2 >

23 + 22 + 2 = 14, a contradiction. So n = 3 and 12 > q2 + 2, which implies that q 6 3. If
q = 3, then v = 13, and 6 > k−1 > (v−q+1)/2 implies that k = 7. Now r(k−1) = 2(v−1)
implies that r = 4, contradicting r > k. Hence (n, q) = (3, 2). Then v = 7, k − 1 > 3, and
r = 2(v − 1)/(k − 1) 6 4, and so r 6 4 6 k. Since r > k, we get that r = k = 4, and thus
b = (vr)/k = 7. Thus, D is a symmetric 2-(7, 4, 2) design with X = PSL(3, 2). Since k = 4,
and GB is transitive on the block B, it follows that B does not contain a line of PG(2, 2).
The only possibility is that B = P\ℓ′, where ℓ′ is a line of PG(2, 2), that is, the blocks are
complements of the lines of PG(2, 2). Hence D is the complement of the Fano projective
plane and (b) holds.
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Now assume that B1 ∪ B2 = ℓ, and every block is contained in a line of the projectice
space. We get 2k − 2 > |B1 ∪ B2| = q + 1, while q + 1 = |ℓ| > |Bi| = k. Hence q > k − 1 >

(q + 1)/2 > q/2.
Assume that there are s blocks of D through α contained in the projective line ℓ. Since

G acts flag-transitively on the projective space PG(n − 1, q), for any projective line ℓ′ and
any point α′ ∈ ℓ′, there are s blocks containing α′ that are contained in ℓ′. Since for any
two distinct points, there is a unique projective line containing them, the sets of blocks
on α that are contained in distinct lines ℓ, ℓ′ through α are disjoint. Note that there
are (qn−1 − 1)/(q − 1) projective lines through α, so the number of blocks through α is
r = s(qn−1 − 1)/(q − 1).

As r(k−1) = 2(v−1), it follows that s(k−1)(qn−1−1)/(q−1) = 2((qn−1)/(q−1)−1),
so s(k − 1) = 2q. Then it follows from q > k − 1 > q/2 that 1 > 2/s > 1/2, and so s = 3.
Thus there are 3 blocks through α contained in ℓ, and k − 1 = 2q/3, so q = 3f for some f ,
and k = 2 · 3f−1 + 1.

Assume that there are c blocks of D contained in the projective line ℓ. Since G acts
transitively on the projective lines, for any projective line ℓ′, there are c blocks contained in
ℓ′. Now, counting the number of flags (γ, B) in two ways, where γ ∈ ℓ and B ⊆ ℓ for a fixed
line ℓ, we have that 3(q + 1) = ck, so 3(3f + 1) = c(2 · 3f−1 + 1), which can be rewritten as
3f−1(9 − 2c) = c − 3. Suppose f > 2. Then 3 divides c: when c = 3, the equation cannot
hold, and when c > 6 the left hand side is negative while the right hand side is positive.
Hence f = 1, q = 3, k = 3, and c = 4. Therefore, the blocks contained in ℓ are all the sets
ℓ\{γ}, for γ ∈ ℓ, and this implies that B = {ℓ\{γ} | ℓ ∈ L, γ ∈ ℓ}. Therefore, D = D(S) is
the design in Construction 1.1, where S is the design of points and lines of PG(n−1, 3).

In what follows, we analyse each of the families C1–C9 for Gα.

4.2 C1-subgroups
In this analysis we repeatedly use the Gaussian binomial coefficient

[

m
i

]

q
for the number

of i-spaces in an m-dimensional space Fm
q , where 0 6 i 6 m. A straightforward argument

counting bases of Fm
q and its subspaces shows that, for i > 1,

[

m

i

]

q

=
(qm − 1)(qm − q) · · · (qm − qi−1)

(qi − 1)(qi − q) · · · (qi − qi−1)
=

∏i
j=1(q

m−i+j − 1)
∏i

j=1(q
j − 1)

=
i
∏

j=1

qm−i+j − 1

qj − 1
.

We use this equality without further comment. We also use the facts that
[

m
i

]

q
=
[

m
m−i

]

q
,

that the number of complements in Fm
q of a given i-space is qi(m−i), and hence that the

number of decompositions U ⊕W of Fm
q with dim(U) = i is

[

m
i

]

q
· qi(m−i).

Lemma 4.1. Assume Hypothesis 4.1. If the point-stabilizer Gα ∈ C1, then Gα is the stabiliser
in G of an i-space and G 6 PΓL(n, q).

Proof. If G 6 PΓL(n, q) then Gα is the stabiliser in G of an i-space, for some i, so assume
that G � PΓL(n, q). Then G contains a graph automorphism of PSL(n, q), so in particular
n > 3, and Gα stabilizes a pair {U,W} of subspaces U and W , where U has dimension i and
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W has dimension n− i with 1 6 i < n/2. It follows that G∗ := G ∩ PΓL(n, q) has index 2
in G. Moreover, either U ⊆ W or U ∩W = 0.

Case 1: U ⊂ W .
In this case, v is the number

[

n
n−i

]

q
of (n− i)-spaces W in V , times the number

[

n−i
i

]

q
of

i-spaces U in W , so

v =

[

n

n− i

]

q

·
[

n− i

i

]

q

=

n−i
∏

j=1

qn−(n−i)+j − 1

qj − 1
·

i
∏

j=1

q(n−i)−i+j − 1

qj − 1

=
n−i
∏

j=1

(qi+j − 1)

/(

n−2i
∏

j=1

(qj − 1) ·
i
∏

j=1

(qj − 1)

)

=
i
∏

j=1

qi+j − 1

qj − 1
·
n−2i
∏

j=1

q2i+j − 1

qj − 1
.

Then, using the fact that qm − 1 > qm−j(qj − 1), for integers 1 6 j < m,

v >

i
∏

j=1

qi ·
n−2i
∏

j=1

q2i = qi
2+2i(n−2i) = qi(2n−3i).

Consider the following points of D: α = {U,W}, where W = 〈v1, v2, . . . , vn−i〉 and
U = 〈v1, v2, . . . , vi〉, and β = {U ′,W}, where U ′ = 〈v1, v2, . . . , vi−1, vi+1〉. Then the G∗

α-
orbit ∆ containing β consists of all the points {U ′′,W} such that the i-space U ′′ ⊂ W and
dim(U ∩U ′′) = i− 1. Thus the cardinality |∆| is the number

[

i
i−1

]

q
of (i− 1)-spaces U ∩U ′′

in U , times the number
[

n−2i+1
1

]

q
− 1 of 1-spaces in W/(U ∩ U ′′) distinct from U/(U ∩ U ′′).

Therefore, since
[

i
i−1

]

q
=
[

i
1

]

q
,

|G∗
α : G∗

αβ| = |∆| =
[

i

1

]

q

·
(

[

n− 2i+ 1

1

]

q

− 1

)

=
qi − 1

q − 1
· q(q

n−2i − 1)

q − 1
.

Note that Gα contains a graph automorphism, and each such graph automorphism in-
terchanges U and W , and hence does not leave ∆ invariant. Thus the Gα-orbit containing
β has cardinality 2|∆| (a subdegree of G), so by Lemma 2.2(iv), r divides

4|∆| = 4q(qn−2i − 1)(qi − 1)

(q − 1)2
.

Note that (qj − 1)/(q − 1) < 2qj−1 for each integer j > 0. It follows that

r 6
4q(qn−2i − 1)(qi − 1)

(q − 1)2
< 4q · 2qn−2i−1 · 2qi−1 = 16qn−i−1.

Combining this with r2 > 2v and v > qi(2n−3i), we see that 162q2(n−i−1) > 2qi(2n−3i), that is,

27 > q2(i−1)n−3i2+2i+2
> 22(i−1)n−3i2+2i+2. (4.9)
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Since n > 2i, it follows that 2(i− 1)n− 3i2 + 2i+ 2 > 4i(i− 1)− 3i2 + 2i+ 2 = i2 − 2i+ 2,
and so i2 − 2i− 5 < 0, which implies i 6 3.

Subcase 1.1: i = 3.
Then n > 2i = 6. From (4.9) we have 27 > q4n−19 > 24n−19, which implies n 6 6, a

contradiction.
Subcase 1.2: i = 2.
Then n > 4. From (4.9) we have 27 > q2n−6 > 22n−6, which implies n = 5 or 6. Then

r | 4q(q + 1)n−4 (for n = 5 or 6) and v > q4n−12. Combining this with r2 > 2v, we deduce
16q2(q+1)2n−8 > 2q4n−12, that is, 8(q+1)2n−8 > q4n−14. For n = 6, this gives 8(q+1)4 > q10,
which is impossible. Thus n = 5 and 8(q + 1)2 > q6, so q = 2 and v = 5 · 7 · 31. On the one
hand r | 24 and on the other hand the condition r2 > 2v implies r > 47, a contradiction.

Subcase 1.3: i = 1.
Then n > 2, r divides 4q(qn−2 − 1)/(q − 1), and

v =
(qn − 1)(qn−1 − 1)

(q − 1)2
.

Combining this with the condition r | 2(v − 1), we seee that r divides

R : = gcd

(

2(v − 1),
4q(qn−2 − 1)

q − 1

)

= 2 gcd

(

(qn − 1)(qn−1 − 1)

(q − 1)2
− 1,

2q(qn−2 − 1)

q − 1

)

,

=
2q

(q − 1)2
· gcd

(

q2n−2 − qn−1 − qn−2 − q + 2, 2(q − 1)(qn−2 − 1)
)

.

Since
(q2n−2 − qn−1 − qn−2 − q + 2)− (q − 1)2 = (qn + q2 − q − 1)(qn−2 − 1)

is divisible by (q − 1)(qn−2 − 1), we see that

gcd
(

q2n−2 − qn−1 − qn−2 − q + 2, (q − 1)(qn−2 − 1)
)

divides (q − 1)2,

and so

gcd
(

q2n−2 − qn−1 − qn−2 − q + 2, 2(q − 1)(qn−2 − 1)
)

divides 2(q − 1)2.

Therefore, R divides
2q

(q − 1)2
· 2(q − 1)2 = 4q.

Combining this with r | R, r2 > 2v and v > q2n−3, we deduce 16q2 > 2q2n−3. Therefore,
8 > q2n−5 > 22n−5, which leads to n = 3, and q < 8. Note that v = (q2 + q + 1)(q + 1), so
R = gcd (2(v − 1), 4q) = 2 gcd (q(q2 + 2q + 2), 2q) = 2q gcd (q2 + 2q + 2, 2). When q is odd
we see that R = 2q. Then r2 > 2v leads to 2(q2 + q + 1)(q + 1) < r2 6 R2 = 4q2, which is
not possible. Hence q ∈ {2, 4} and R = 4q.

First assume that q = 4. Then v = 105 and R = 16. Combining this with r | R and
r2 > 2v, we conclude that r = 16. Then it follows from r(k−1) = 2(v−1) and bk = vr that
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k = 14 and b = 120. Since G is block-transitive, it follows that X := Soc(G) = PSL(3, 4)
has equal length orbits on blocks, of length dividing b = 120. This implies that X has a
maximal subgroup of index dividing 120, and hence by [7, page 23], we conclude that X is
primitive on blocks, that the stabiliser XB of a block B is a maximal C5-subgroup stabilising
an F2-structure V0 = F3

2 < V , and XB has two orbits on 1-spaces, and on 2-spaces in V .
An easy computation shows that XB has precisely four orbits on the point set P, of lengths
14, 14, 21, 56: these are subsets of flags {U,W} determined by whether U ∩ V0 contains a
non-zero vector or not, and whether W ∩ V0 is a 2-space of V0 or not. Since XB preserves
the k = 14 points of B, it follows that B is equal to one of the XB-orbits of length 14, so
that X acts flag-transitively and point-imprimitively on D, contradicting Theorem 1.1. (In
fact GB interchanges the two XB-orbits of length 14 and so GB does not leave invariant a
point-subset of size 14.)

Thus q = 2. Then v = 21 and R = 8 and G = PSL(3, 2).2 ∼= PGL(2, 7). This together
with r | R and r2 > 2v implies r = 8. Then we derive from r(k − 1) = 2(v − 1) and bk = vr
that k = 6 and b = 28. However, one can see from [6, II.1.35] that there is no 2-(21, 6, 2)
design, a contradiction. We also checked with Magma that considering every subgroup of
index 28 as a block stabiliser, and each of its orbits of size 6 as a possible block, the orbit of
that block under G does not yield a 2-design.

Case 2: V = U ⊕W .
In this case the number v of points is the number

[

n
i

]

q
of i-spaces U of V , times the

number qi(n−i) of complements W to U in V , so

v = qi(n−i)
i
∏

j=1

qn−i+j − 1

qj − 1
,

so in particular p | v, and by Lemma 2.3(iii), rp divides 2.
Note that qi − 1 > qi−j(qj − 1), for integers i > j. Thus

v > qi(n−i)
i
∏

j=1

qn−i = qi(n−i)(qn−i)i = q2i(n−i).

We consider the point α = {U,W} with U = 〈v1, . . . , vi〉,W = 〈vi+1, . . . , vn〉 and the G∗
α-

orbit ∆ containing β = {U ′,W ′} with U ′ = 〈v1, . . . , vi−1, vi+1〉,W ′ = 〈vi, vi+2, . . . , vn〉. Then
∆ consists of all {U ′′,W ′′} with dim(U ′′∩U) = i−1, dim(W ′′∩W ) = n−i−1, dim(U ′′∩W ) =
dim(W ′′∩U) = 1, so |∆| is the number

[

i
1

]

q
·qi−1 of decompositions U = (U ′′∩U)⊕(W ′′∩U),

times the number
[

n−i
1

]

q
· qn−i−1 of decompositions W = (U ′′ ∩W )⊕ (W ′′ ∩W ). Thus

|G∗
α : G∗

αβ | = |∆| = qi−1 q
i − 1

q − 1
· qn−i−1 q

n−i − 1

q − 1
= qn−2 (q

i − 1)(qn−i − 1)

(q − 1)2
,

and G has a subdegree |∆| or 2|∆|. By Lemma 2.2(iv), r divides 4|∆|. Since rp | 2, we
deduce that r divides 4(qi − 1)(qn−i − 1)/(q − 1)2 (and even 2(qi − 1)(qn−i − 1)/(q− 1)2 if q
is even). Let a = 1 if q is even and 2 otherwise. Then r divides 2a(qi − 1)(qn−i − 1)/(q− 1)2
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Considering the inequality r2 > 2v > 2q2i(n−i) and the fact that (qj − 1)/(q − 1) < 2qj−1

for each integer j > 0, it follows that

q2i(n−i) < 22a−1 (q
i − 1)2(qn−i − 1)2

(q − 1)4
< 22a−1(2qi−1)2(2qn−i−1)2 = 22a+3q2n−4. (4.10)

Thus 22a+3 > q2n(i−1)−2i2+4 > 22n(i−1)−2i2+4, so (since n > 2i)

2a− 2 > 2n(i− 1)− 2i2 > 4i(i− 1)− 2i2 = 2i(i− 2).

Hence i = 1 or 2, and the case i = 2 only happens if a = 2, that is if q is odd.
Assume i = 2, so q is odd. Then 2 > 2n(i−1)−2i2 = 2n−8, so n 6 5. On the other hand

n > 2i, so n = 5. By (4.10) q12 < 27q6, so q6 < 27, a contradiction since q > 3. Therefore

i = 1. In this case v = qn−1 qn−1
q−1

and we compute that v − 1 = qn−1−1
q−1

· (qn + q − 1). Since

r | 2(v−1), r divides gcd(2 qn−1−1
q−1

·(qn+q−1), 4 qn−1−1
q−1

) = 2 qn−1−1
q−1

gcd(qn+q−1, 2) = 2 qn−1−1
q−1

.

In other words a = 1 in the computation above whether q is odd or even. Then by (4.10)
q2(n−1) < 2(qn−1 − 1)2/(q − 1)2 < 2(2qn−2)2 = 23q2n−4, which can be rewritten as q2 < 23,
so q = 2. Thus v = 2n−1(2n − 1) and r divides 2(2n−1 − 1), so r2 > 2v implies that
22n−1 − 2n−1 < 2(2n−1 − 1)2 = 22n−1 − 2n+1 + 2, which is impossible.

Lemma 4.2. Assume Hypothesis 4.1, and that the point-stabilizer Gα ∈ C1. Then either

(a) D = D(S) is as in Construction 1.1, where S is the design of points and lines of PG(n−
1, 3); or

(b) D is the complement of the Fano plane.

Proof. By Lemma 4.1, G 6 PΓL(n, q), and Gα
∼= Pi is the stabiliser of a subspace W of

V of dimension i, for some i. As we will work with the action on the underlying space V
we will usually consider a linear group G̃ satisfying X̃ = SL(n, q) 6 G̃ 6 ΓL(n, q), acting
unfaithfully on P with kernel a subgroup of scalars. By Proposition 4.2 we may assume that
i > 2. Also, on applying a graph automorphism that interchanges i-spaces and (n−i)-spaces
(and replacing D by an isomorphic design) we may assume further that i 6 n/2. Then v is
the number of i-spaces:

v =

[

n

i

]

q

=
i
∏

j=1

qn−i+j − 1

qj − 1
.

Using the fact that qi − 1 > qi−j(qj − 1), for integers i > j, it follows that v > qi(n−i).
Consider the following points of D: α = W , where W = 〈v1, v2, . . . , vi〉, and β = W ′,

where W ′ = 〈v1, v2, . . . , vi−1, vi+1〉. Then the G̃α-orbit ∆ containing β consists of all the
points W ′′ such that dim(W ∩W ′′) = i − 1. Thus the cardinality |∆| is the number

[

i
i−1

]

q

of (i− 1)-spaces W ∩W ′′ in W , times the number
[

n−i+1
1

]

q
− 1 of 1-spaces in V/(W ∩W ′′)

distinct from W/(W ∩W ′′). Therefore, since
[

i
i−1

]

q
=
[

i
1

]

q
,

|∆| =
[

i

1

]

q

·
(

[

n− i+ 1

1

]

q

− 1

)

=
q(qi − 1)(qn−i − 1)

(q − 1)2
.
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Since G̃ is flag-transitive, r divides 2|∆| (by Lemma 2.2(iv)). Combining this with r2 > 2v
(Lemma 2.1(iv)) we have that

2q2(qi − 1)2(qn−i − 1)2

(q − 1)4
>

(qn − 1) · · · (qn−i+1 − 1)

(qi − 1) · · · (q − 1)
> qi(n−i).

Since 2qj−1 > (qj − 1)/(q − 1) for all j ∈ N, it follows that

qi(n−i) <
2q2(qi − 1)2(qn−i − 1)2

(q − 1)4
< 2q2(2qi−1)2(2qn−i−1)2 = 32q2n−2

6 q2n+3 (4.11)

Hence
2n+ 3 > i(n− i) (4.12)

and so i2 + 3 > n(i − 2) > 2i(i − 2), which implies that i 6 4. Note from Lemma 2.1 that
r | 2(v − 1). Let R = 2 gcd(|∆|, v − 1). As r divides 2|∆|, it follows that r divides R and
hence r 6 R.

Case 1: i = 4.
In this case, we derive from (4.12) that n 6 9. This together with the restriction n >

2i = 8 leads to n = 8 or 9. We also deduce from (4.11) that 32q2n−2 > q4(n−4), that is
32 > q2n−14. First assume that n = 8. Then 32 > q2, so q 6 5. We get

|∆| = q(q4 − 1)2

(q − 1)2

and

v =
(q8 − 1)(q7 − 1)(q6 − 1)(q5 − 1)

(q4 − 1)(q3 − 1)(q2 − 1)(q − 1)

We easily compute that R = 4, 6, 40, 10 when q = 2, 3, 4, 5 respectively, in each case
contradicting r2 > 2v, since r 6 R.

Next assume n = 9. Then 32 > q4, so q = 2. We get

|∆| = q(q4 − 1)(q5 − 1)

(q − 1)2
= 930

and

v =
(q9 − 1)(q8 − 1)(q7 − 1)(q6 − 1)

(q4 − 1)(q3 − 1)(q2 − 1)(q − 1)
= 3309747.

Therefore R = 124, again contradicting r2 > 2v.
Case 2: i = 3.
In this case, we derive from (4.12) that n 6 11. Together with the restriction n > 2i = 6

leads to n ∈ {6, 7, 8, 9, 10, 11}.
For n = 6, |∆| = q(q3−1)2

(q−1)2
= q(q2 + q + 1)2, while

v − 1 =
(q6 − 1)(q5 − 1)(q4 − 1)

(q3 − 1)(q2 − 1)(q − 1)
− 1 = q(q8 + q7 + 2q6 + 3q5 + 3q4 + 3q3 + 3q2 + 2q + 1).
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Thus R = 2 gcd(|∆|, v−1) = 2q gcd((q2+q+1)2, q8+q7+2q6+3q5+3q4+3q3+3q2+2q+1).
Using the Euclidean algorithm, we easily see that

gcd(q2 + q + 1, q8 + q7 + 2q6 + 3q5 + 3q4 + 3q3 + 3q2 + 2q + 1) = 1,

so R = 2q, contradicting r2 > 2v.

For n = 7, |∆| = q(q3−1)(q4−1)
(q−1)2

= q(q2 + q + 1)(q + 1)(q2 + 1), while

v−1 =
(q7 − 1)(q6 − 1)(q5 − 1)

(q3 − 1)(q2 − 1)(q − 1)
−1 = q(q2+1)(q9+q8+q7+2q6+3q5+2q4+2q3+2q2+2q+1).

Thus

R = 2 gcd(|∆|, v−1) = 2q(q2+1) gcd((q2+q+1)(q+1), q9+q8+q7+2q6+3q5+2q4+2q3+2q2+2q+1).

Using the Euclidean algorithm, we easily see that

gcd(q2 + q + 1, q9 + q8 + q7 + 2q6 + 3q5 + 2q4 + 2q3 + 2q2 + 2q + 1) = 1

and
gcd(q + 1, q9 + q8 + q7 + 2q6 + 3q5 + 2q4 + 2q3 + 2q2 + 2q + 1) = 1,

so R = 2q(q2 + 1), contradicting r2 > 2v.
Assume now that 8 6 n 6 11. We deduce from (4.11) that 32q2n−2 > q3(n−3), that is

32 > qn−7. So there are only a finite number of cases to consider and we easily check that
for all of them, R2 < 2v, a contradiction.

Case 3: i = 2.
In this case, the point set is the set of 2-spaces and n > 4, but the above restrictions on

r do not lead easily to contradictions as they do for larger values of i. So we have a different
approach. Recall that X̃ = SL(n, q) 6 G̃ 6 ΓL(n, q), acting unfaithfully on P (with kernel
a scalar subgroup of G̃). First we deal with n = 4. In this case

v =
(q4 − 1)(q3 − 1)

(q2 − 1)(q − 1)
= (q2 + 1)(q2 + q + 1), |∆| = q(q2 − 1)2

(q − 1)2
= q(q + 1)2

and by Lemmas 2.1 and 2.2, r2 > 2v and r divides

2 gcd(v − 1, |∆|) = 2 gcd(q4 + q3 + 2q2 + q, q(q + 1)2)

= 2q gcd(q3 + q2 + 2q + 1, (q + 1)2)

= 2q gcd((q + 1)2(q − 1) + 3q + 2, (q + 1)2)

= 2q gcd(3q + 2, (q + 1)2) = 2q

which implies 4q2 > r2 > 2v > q4, a contradiction. Thus n > 5.
Let H := G̃∩GL(n, q). Then setwise stabiliser H{α,β} of the points α = W = 〈v1, v2〉 and

β = W ′ = 〈v1, v3〉, fixes setwise the two blocks B1, B2 of D containing {α, β}. Also H{α,β}

leaves invariant the spaces Y = W + W ′ = 〈v1, v2, v3〉 and Y ′ = W ∩ W ′ = 〈v1〉, induces
GL(n−3, q) on V/Y (since even SL(V )∩ (GL(〈v1〉)×GL(〈v4, . . . , vn〉)) induces GL(n−3, q)
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on V/Y ). Moreover H{α,β} is transitive on V \ Y , and has orbits of lengths 1, 2q, q2 − q on

the 1-spaces in Y . Since H{α,β} ∩ G̃B1
= H{α,β} ∩ HB1

is normal of index 1 or 2 in H{α,β},
it follows that H{α,β} ∩ HB1

also induces at least SL(n − 3, q) on V/Y and is transitive on
V \ Y . Hence the only non-zero proper subspaces of V left invariant by H{α,β} ∩ HB1

are
Y,W,W ′, Y ′, and if q = 2, 3 then possibly also the q − 1 other 2-spaces of Y containing Y ′.

We claim that HB1
is irreducible on V . Suppose to the contrary that HB1

leaves invariant
a nonzero proper subspace U . Then also H{α,β} ∩HB1

leaves U invariant. We see from the

previous paragraph that U must be contained in Y . If U = Y , then as G̃B1
is transitive

on the set [B1] of points of D incident with B1, it follows that all such points must be 2-
spaces contained in Y . This is impossible since dim(Y ) = 3, while some block, and hence
all blocks, must be incident with a pair of 2-spaces which intersect trivially. Thus U is a
proper subspace of Y . The only 1-space invariant under H{α,β} ∩ HB1

is Y ′, and if U = Y ′

then the same argument would yield that all 2-spaces incident with B1 would contain Y ′,
which is not true since some block, and hence all blocks, must be incident with a pair of
2-spaces which intersect trivially. Thus dim(U) = 2, and U is a 2-space of Y containing Y ′.
Since HB1

does not fix α or β, it follows that U 6= W or W ′, and hence q = 2 or 3, and
U is one of the q − 1 other 2-spaces containing Y ′. Again, since G̃B1

is transitive on [B1],
each 2-space α′ ∈ [B1] intersects U in a 1-space. Let γ = W ′′ be a 2-space which intersects
α = W trivially, and let B be a block of D containing {α, γ}. Then HB leaves invariant a
2-space, say U ′, and we have shown that both W ∩ U ′ and W ′′ ∩ U ′ have dimension 1, so
U ′ is contained in the 4-space W ⊕W ′′. Now the subgroup induced by H{α,γ} on W ⊕W ′′

contains GL(W )×GL(W ′′). The orbit of U ′ under this group has size (q+1)2. However the
group H{α,γ} ∩ HB has index at most 2 in H{α,γ} and fixes U ′, so we have a contradiction.
Thus we conclude that HB1

is irreducible.
The irreducible group HB1

has a subgroup H{α,β} ∩HB1
inducing at least SL(n− 3, q) on

V/Y . We will apply a deep theorem from [21] which relies on the presence of various prime
divisors of the subgroup order |HB1

|. For b, e > 2, a primitive prime divisor (ppd) of be−1 is
a prime r which divides be−1 but which does not divide bi−1 for any i < e. Such ppd’s are
known to exist unless either (b, e) = (2, 6), or e = 2 and b = 2s − 1 for some s, (a theorem
of Zsigmondy, see [21, Theorem 2.1]). Each ppd r of be − 1 satisfies r ≡ 1 (mod e), and if
r > e + 1 then r is said to be large; usually be − 1 has a large ppd and the rare exceptions
are known explicitly, see [21, Theorem 2.2]. Also, if b = pf for a prime p then each ppd of
pfe − 1 is a ppd of be − 1 (but not conversely) and this type of ppd of be − 1 is called basic.
We will apply [21, Theorem 4.8] which, in particular, classifies all subgroups HB1

with the
following properties:

1. for some integer e such that n/2 < e 6 n− 4, |HB1
| is divisible by a ppd of qe − 1 and

also by a ppd of qe+1 − 1;

2. for some (not necessarily different) integers e′, e′′ such that n/2 < e′ 6 n − 3 and
n/2 < e′′ 6 n−3, |HB1

| is divisible by a large ppd of qe
′ −1 and a basic ppd of qe

′′ −1.

Since |HB1
| is divisible by |SL(n− 3, q)|, it is straightforward to check, using [21, Theorems

2.1 and 2.2], that HB1
has these properties whenever either n > 11 with arbitrary q, or

n ∈ {9, 10} with q > 2. In these cases we can apply [21, Theorem 4.8] to the irreducible
subgroup HB1

of GL(n, q). Note that H does not contain SL(n, q) since it fixes [B1] setwise;
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also, since e, e+1 differ by 1 and e+1 6 n−3, H is not one of the ‘Extension field examples’
from [21, Theorem 4.8 (b), see Lemma 4.2], and finally since n > 9 and e+ 1 6 n− 3, H is
not one of the ‘Nearly simple examples’ from [21, Theorem 4.8 (c)]. Thus we conclude that
either n ∈ {9, 10} with q = 2, or n ∈ {5, 6, 7, 8}.

Finally we deal with the remaining values of n. Since H{α,β}∩HB1
has index at most 2 in

H{α,β} it follows thatHB1
has a subgroup of the form [q3×(n−3)].SL(n−3, q) which is transitive

on V \ Y , and hence HB1
has order divisible by qx with x = x(n) = 3(n − 3) +

(

n−3
2

)

=
(n − 3)(n + 2)/2; also HB1

does not contain SL(n, q) since it fixes [B1] setwise. It follows
that HB1

∩SL(n, q) is contained in a maximal subgroup of SL(n, q) which is irreducible (that
is, not in class C1 in [4]) and has order divisible by qx(n). A careful check of the possible
maximal subgroups in the relevant tables in [4], as listed in Table 2, shows that no such
subgroup exists. This completes the proof.

Table 2: Tables from [4] to check for the proof of Lemma 4.2, Case i = 2

n x(n) Tables from [4] for n
5 7 Tables 8.18 and 8.19
6 12 Tables 8.24 and 8.25
7 18 Tables 8.35 and 8.36
8 25 Tables 8.44 and 8.45
9 33 Tables 8.54 and 8.55
10 42 Tables 8.60 and 8.61

4.3 C2-subgroups
Here Gα is a subgroup of type GL(m, q) ≀St, preserving a decomposition V = V1⊕· · ·⊕Vt

with each Vi of the same dimension m, where n = mt, t > 2. We can think of the pointset of
D as the set of these decompositions (for a fixed m and t). Note that graph automorphisms
swap i-spaces with n − i-spaces, so G 6 PΓL(n, q) unless t = 2. When t = 2 we have to
consider that G could contain graph automorphisms, and so could Gα.

Lemma 4.3. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C2.

Proof. Recall that we denote gcd(n, q−1) by d. By Lemma 2.6, |X| = |PSL(n, q)| > qn
2−2,

and by [14, Proposition 4.2.9],

v =
|GL(mt, q)|
|GL(m, q)|tt! so |Xα| =

|X|
v

=
t!|GL(m, q)|t
d(q − 1)

.

Case 1: m = 1.
Then n = t > 3, so G̃ 6 ΓL(n, q). Take α as the decomposition ⊕n

i=1〈ei〉 and β as the
decomposition 〈e1+ e2〉⊕ (⊕n

i=2〈ei〉). The orbit of β under Gα consists of the decomposition
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〈ei + λej〉 ⊕ (⊕ℓ 6=i〈eℓ〉), which has size s := n(n − 1)(q − 1). Thus by Lemmas 2.1(iv)
and 2.2(iv), and Table 1,

4n2(n− 1)2(q − 1)2 > (2s)2 > r2 > 2v = 2
|GL(n, q)|
(q − 1)nn!

> 2
qn

2

4(q − 1)nn!

so 8n2(n−1)2n! > qn
2

/(q−1)n+2 > qn
2−n−2. This implies that either (n, q) = (5, 2) or (4, 2),

or n = 3 and q 6 5.
Suppose first that n = 3. Then v = q3(q2+ q+1)(q+1)/6 and r 6 2s = 12(q− 1). Since

r2 > 2v we conclude that q = 2 or 3. In either case v is divisible by q, and since r divides
2(v − 1) (Lemma 2.1), r is not divisible by 4 if q = 2, and not divisible by 3 if q = 3. Hence
r divides 6(q − 1) if q = 2, or 4(q − 1) if q = 3 (Lemma 2.2), and then r2 > 2v leads to a
contradiction. Thus q = 2 and n is 4 or 5. In either case, v is divisible by 4, so 4 does not
divide r (Lemma 2.3). Then, since r divides 2s = 2n(n−1), we see that r divides 6 or 10 for
n = 4, 5 respectively, giving a contradiction to r2 > 2v. Thus we may assume that m > 2.

Case 2: t = 2.
Next we deal with the case where G may contain a graph automorphism, namely the

case t = 2, so n = mt > 4, and G acts on decomposition into two subspaces of dimension
m = n/2. Let α be the decomposition V1 ⊕ V2 where

V1 = 〈v1, . . . , vm〉, V2 = 〈vm+1, . . . , v2m〉.

Leet β be the decomposition V ′
1⊕V ′

2 , where V
′
1 = 〈v1, . . . , vm−1, vm+1〉 and V ′

2 = 〈vm, vm+2, . . . , v2m〉.
Let G∗ := G ∩ PΓL(n, q), so |G : G∗| 6 2. Since G is point-primitive, G is point-transitive,
and so |Gα : G∗

α| = |G : G∗| 6 2.
Moreover, let G∗

V1,V2
be the subgroup of G∗

α fixing V1 and V2, so G∗
V1,V2

has index at
most 2 in G∗

α. If m > 2, then we are in the same situation as in Lemma 4.1 (Case 2) with
i = m = n/2 and

|βG∗

V1,V2 | = qn−2 (q
m − 1)2

(q − 1)2
= q2(m−1) (q

m − 1)2

(q − 1)2
.

If m = 2, then we have double counted (as G∗
V1,V2

does not fix each of the spaces Vi ∩ V ′
j ;

in fact it contains an element x : v1 ↔ v2, v3 ↔ v4), and |βG∗

V1,V2 | = q2(m−1) (q
m−1)2

2(q−1)2
. In both

cases, |βGα| | 4q2(m−1) (q
m−1)2

(q−1)2
. By Lemma 2.2(iv), r divides 2|βGα|, and hence

r | 8q2(m−1) (q
m − 1)2

(q − 1)2
.

Note that

v =
|X|
|Xα|

=
qm

2

(q2m − 1) · · · (qm+1 − 1)

2(qm − 1) · · · (q − 1)
>

q2m
2

2

and in particular p | v. By Lemma 2.3(iii), rp divides 2, and hence r divides 8(qm−1)2

(q−1)2
. This

together with r2 > 2v leads to
64(qm − 1)4

(q − 1)4
> q2m

2

. (4.13)
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It follows that 64 · (2qm−1)4 > q2m
2

and so

210 > q2(m
2−2m+2)

> 22(m
2−2m+2).

Hence 10 > 2(m2 − 2m + 2) and so m = 2 and r | 8(q + 1)2. Then we deduce from (4.13)
that 64(q + 1)4 > q8, which implies that q = 2 or 3. Assume q = 2. Then r2 | 2, so r divides
2(q+1)2 = 18, contradicting the condition r2 > 2v = 560. Hence q = 3, r | 27 and v = 5265.
Combining this with r | 2(v − 1) we conclude that r divides 25, again contradicting the
condition r2 > 2v. Thus t > 3 and in particular n = mt > 6 and G 6 ΓL(n, q).

Case 3: t > 3.
Since |GL(m, q)| < qm

2

, we have

|Xα| =
t!|GL(m, q)|t
d(q − 1)

<
t!qn

2/t

d(q − 1)
.

Combining this with the assertion |X| < 2(df)2|Xα|3 from Lemma 2.3(i), we obtain

|X| < 2f 2(t!)3q3n
2/t

d(q − 1)3
< 2(t!)3q3n

2/t.

It then follows from |X| > qn
2−2 that qn

2−2 < 2(t!)3q3n
2/t, that is,

qn
2(1− 3

t
)−2 < 2(t!)3. (4.14)

Since n > 2t, we derive from (4.14) that

24t(t−3)−2
6 q4t(t−3)−2

6 qn
2(1− 3

t
)−2 < 2(t!)3. (4.15)

Hence either t = 3 or (t, q) = (4, 2). Consider the latter case. Here (4.14) becomes 2n
2/4−2 <

2 · (4!)3 and hence n 6 8. As n > 2t = 8, we conclude that n = 8 and m = 2. However, then
|X| = |PSL(8, 2)| and |Xα| = 24|GL(2, 2)|4, contradicting the condition |X| < 2(df)2|Xα|3 =
2|Xα|3 from Lemma 2.3(i).

Thus t = 3, and α is a decomposition V1 ⊕ V2 ⊕ V3 with dim(V1) = dim(V2) = dim(V3) =
m = n/3. Say

V1 = 〈v1, . . . , vm〉, V2 = 〈vm+1, . . . , v2m〉, V3 = 〈v2m+1, . . . , v3m〉.

Let β be the decomposition 〈v1, . . . , vm−1, vm+1〉 ⊕ 〈vm, vm+2, . . . , v2m〉 ⊕ V3. Arguing as in

Case 2 we find that |βGV1,V2,V3 | = q2(m−1) (q
m−1)2

(q−1)2
if m > 3, or |βGV1,V2,V3 | = q2(m−1) (q

m−1)2

2(q−1)2

if m = 2. Now GV1,V2,V3
has index dividing 6 in Gα, so |βGα| divides 6q2(m−1) (q

m−1)2

(q−1)2
. By

Lemma 2.2(iv), r divides 2|βGα|. Since v = |GL(3m,q)|
|GL(m,q)|33!

, it follows that p divides v and so by
Lemma 2.3, rp divides 2, and hence

r | 12(q
m − 1)2

(q − 1)2
, so r2 < 144(2qm−1)4 = 2304q4m−4.
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Note that

v =
|GL(3m, q)|
|GL(m, q)|33! =

q3m
2

6

m
∏

i=1

q2m+i − 1

qi − 1
·

m
∏

i=1

qm+i − 1

qi − 1
>

1

6
q3m

2+2m·m+m·m =
q6m

2

6
,

and since r2 > 2v, we get
q6m

2

3
< 2v < r2 < 2304q4m−4,

and so 6912 > q6m
2−4m+4 > 26m

2−4m+4 > 220, a contradiction.

4.4 C3-subgroups
Here Gα is an extension field subgroup.

Lemma 4.4. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C3.

Proof. By Lemma 2.6 we have |X| > qn
2−2, and by [14, Proposition 4.3.6],

Xα
∼= Za.PSL(n/s, q

s).Zb.Zs,

where s is a prime divisor of n, d = gcd(n, q− 1), a = gcd(n/s, q− 1)(qs− 1)/(d(q− 1)), and
b = gcd(n/s, qs − 1)/ gcd(n/s, q − 1). Thus,

|Xα| =
s|GL(n/s, qs)|

d(q − 1)
.

Case 1: n = s.
Here n is a prime, |Xα| = n(qn − 1)/(d(q − 1)), and by Lemma 2.3(i),

|X| < 2(df)2|Xα|3 =
2f 2n3

d

(

qn − 1

q − 1

)3

< 2q2n3 · (2qn−1)3 = 16n3q3n−1.

Combining this with |X| > qn
2−2 we obtain

qn
2−3n−1 < 16n3, (4.16)

and so 2n
2−3n−1 < 16n3, which implies n 6 5.

Subcase 1.1: n = 5.
In this case (4.16) implies that q9 < 16·53, which leads to q = 2. However, this means that

|X| = |PSL(5, 2)| and |Xα| = 5 · 31, contradicting the condition |X| < 2(df)2|Xα|3 = 2|Xα|3
from Lemma 2.3(i).

Subcase 1.2: n = 3.
Then X = PSL(3, q), |Xα| = 3(q2 + q + 1)/d and so v = q3(q2 − 1)(q − 1)/3. It follows

from Lemma 2.3(ii) that r divides 2df |Xα| = 6f(q2 + q + 1). Combining this with r2 > 2v,
we obtain that 54f 2(q2 + q + 1)2 > q3(q2 − 1)(q − 1), that is,

54f 2 >
q6 − q5 − q4 + q3

(q2 + q + 1)2
.
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Table 3: Possible values of q, v and R

q v R q v R
2 8 14 8 75264 146
3 144 26 9 155520 182
4 960 14 16 5222400 182
5 4000 186 32 346390528 6342
7 32928 38

This inequality holds only when

q ∈ {2, 3, 4, 5, 7, 8, 9, 16, 32}.

Let R = gcd(6f(q2 + q + 1), 2(v − 1)). Then r is a divisor of R. For each q and f as above,
the possible values of v and R are listed in Table 3. Hence the condition r2 > 2v implies
that q ∈ {2, 3, 5}.

Assume q = 2. Then v = 8 and r and divides 14. From r(k−1) = 2(v−1) and r > k > 3
we deduce that r = 7 and k = 3, which contradicts the condition that bk = vr. Similarly,
we have q 6= 5 (two cases to check: (r, k) ∈ {(186, 44), (93, 87)}.) Hence q = 3. By Table 3,
v = 144 and r divides 26. Then from r(k − 1) = 2(v − 1), bk = vr and r > k > 3, we
deduce that r = 26, k = 12 and b = 312. Since |Xα| = 39, Lemma 2.2(ii) implies that
G > X . Since Out(X) has size 2, we must have G = X.2 (with graph automorphism). By
flag-transitivity, a block stabiliser must have index 312 and have an orbit of size 12. We
checked with Magma, considering every subgroup of index 312, and only one has an orbit
of size 12 (which is unique), and the orbit of that block under G does not yield a 2-design.

Case 2: n > 2s.
By Lemma 2.6 we have

|Xα| =
s|GL(n/s, qs)|

d(q − 1)
6

s(1− q−s)(1− q−2s)qn
2/s

d(q − 1)
<

sqn
2/s

d(q − 1)
.

Moreover |Xα|p = sp ·qn(n−s)/2s and |X|p = qn(n−1)/2. We deduce that p divides v = |X : Xα|,
so by Lemma 2.3(iii), rp divides 2, and

|X| < 2(df)2|Xα|2p′|Xα| = 2(df)2|Xα|3/|Xα|2p <
2f 2s3q(3n

2/s)−n(n−s)/s

(sp)2d(q − 1)3
6

n3

4
q(2n

2/s)+n.

For the last inequality, we used that s 6 n/2 and f 2 6 (q − 1)3. Combining this with
|X| > qn

2−2 we obtain

4q(1−2/s)n2−n−2
6 n3. (4.17)

Subcase 2.1: s > 3.
Then n > 2s > 6 and (4.17) implies that

n3
> 4q(1−2/s)n2−n−2

> 4q(n
2/3)−n−2

> 2(n
2/3)−n.
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We easily see that this inequality only holds for n 6 6. Therefore n = 2s = 6, and so (4.17)
implies that q = 2. It follows that X = PSL(6, 2) and |Xα| = 3|GL(2, 8)| = 23 · 33 · 72, so we
can compute v = |X|/|Xα| = 212 ·3 ·5 ·31 and v−1 = 11 ·173149. We know that r | 2(v−1).
By Lemma 2.3(iii), we also know that r | 2df |Xα|p′ = 2 · 33 · 72, thus r | 2, contradicting
r2 > 2v.

Subcase 2.2: s = 2.
Then n = 2m > 4 and n is even,

|Xα| =
2|GL(n/2, q2)|

d(q − 1)
=

2qn(n−2)/4(qn − 1)(qn−2 − 1) · · · (q2 − 1)

d(q − 1)
,

and

v =
qn

2/4(qn−1 − 1)(qn−3 − 1) · · · (q3 − 1)(q − 1)

2
.

As we observed, rp | 2. Also v is even, and so, from r(k− 1) = 2(v− 1) we deduce that 4 ∤ r.
First assume that n = 4. Then

|Xα| =
2q2(q4 − 1)(q + 1)

d
and v =

q4(q3 − 1)(q − 1)

2
.

By Lemma 2.3(iii), r divides 2df |Xα|p′ and hence r | 2f(q4−1)(q+1), which can be rewritten
as r | 2f(q2 + 1)(q − 1)(q + 1)2 . Note that

v − 1 =
(q + 1)(q7 − 2q6 + 2q5 − 3q4 + 4q3 − 4q2 + 4q − 4)

2
+ 1,

so that gcd(v − 1, q + 1) = 1. Hence, since r | 2(v − 1), it follows that gcd(r, q + 1) | 2.
Moreover, it follows from (q − 1) | v that gcd(r, q − 1) | 2. Combining this with 4 ∤ r and
r | 2f(q4 − 1)(q + 1), we obtain r | 2f(q2 + 1). Therefore, using Lemma 2.1(iv),

4f 2(q2 + 1)2 > r2 > 2v = q4(q3 − 1)(q − 1).

However, there is no q = pf satisfying 4f 2(q2 + 1)2 > q4(q3 − 1)(q − 1), a contradiction.
Thus n > 6. Recall that X̃ = SL(n, q) 6 G̃ 6 ΓL(n, q), acting unfaithfully on P (with

kernel a scalar subgroup of G̃). We regard V as an m-dimensional vector space over Fq2 with

basis {e1, e2, . . . , em} and G̃α the subgroup of G̃ preserving this vector space structure. Take
w ∈ Fq2\Fq. Then

V = 〈e1, e2, . . . , em〉F
q2

= 〈e1, we1, e2, we2, . . . , em, wem〉Fq
.

Let
W = 〈e1, e2〉F

q2
= 〈e1, we1, e2, we2〉Fq

.

Consider g ∈ SL(n, q) defined by

{

eg1 = e1, eg2 = −e2, (we1)
g = we2, (we2)

g = we1 for 1 6 i 6 2;

(ei)
g = ei , (wei)

g = wei for 3 6 i 6 m.
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Then g does not fix α. Let β = αg and let G̃α,(W ) be the subgroup of G̃α fixing every vector

of W . Note that W g = 〈e1, we1,−e2, we2〉Fq
= W and so G̃α,(W ) 6 G̃α,β. Now SL(n, q)α,(W )

contains I4×SL(n/2−2, q2), and since this subgroup intersects the scalar subgroup trivially it
follows thatXα,(W ) contains a subgroup isomorphic to SL(n/2−2, q2) (and so do Gα,(W ), Gα,β,
andXα,β). By Lemma 2.4, r divides 4df |Xα|/|SL(n2−2, q2)| = 8fq2n−6(qn−1)(qn−2−1)(q+1).
Combining this with rp | 2 and 4 ∤ r, we obtain

r | 2f(qn − 1)(qn−2 − 1)(q + 1). (4.18)

Then from r2 > 2v and

2v = qn
2/4(qn−1 − 1)(qn−3 − 1) · · · (q3 − 1)(q − 1)

we deduce that

4f 2(qn − 1)2(qn−2 − 1)2(q + 1)2 > qn
2/4(qn−1 − 1)(qn−3 − 1) · · · (q3 − 1)(q − 1), (4.19)

and so
4q2(qn)2(qn−2)2(2q)2 > qn

2/4qn−2qn−4 · · · q4q2 = q(n
2−n)/2.

Therefore,
24q4n > q(n

2−n)/2.

This implies that
24 > qn(n−9)/2 ≥ 2n(n−9)/2,

and hence n ≤ 8 (since n is even).
Assume that n = 8. By (4.19) we have that

4f 2(q8 − 1)2(q6 − 1)2(q + 1)2 > q16(q7 − 1)(q5 − 1)(q3 − 1)(q − 1),

and this implies that q ∈ {2, 3, 4}. By (4.18), r divides u := 2f(q8 − 1)(q6 − 1)(q + 1), and
hence r divides R := gcd(2(v − 1), u). However, for each q ∈ {2, 3, 4}, we find R2 < 2v,
contradicting the fact that r2 > 2v.

Hence n = 6, and here r | 2f(q6 − 1)(q4 − 1)(q + 1) by (4.18), which can be rewritten
as r | 2f(q2 − q + 1)(q2 + 1)(q3 − 1)(q − 1)(q + 1)3 . Recall that r | 2(v − 1), and in this
case 2(v − 1) = q9(q5 − 1)(q3 − 1)(q − 1) − 2, which is congruent to 6 module q + 1. Thus
gcd(2(v − 1), q + 1) = 6, and so gcd(r, q + 1) divides 6. On the other hand, (q3 − 1)(q − 1)
divides v, so gcd(r, (q3 − 1)(q − 1)) divides 2. Recall that 4 ∤ r. We conclude that r |
54f(q2 − q + 1)(q2 + 1). Thus

2916f 2(q2 − q + 1)2(q2 + 1)2 > r2 > 2v = q9(q5 − 1)(q3 − 1)(q − 1),

which implies that q = 2. It then follows that v = 55, 552 and r | 810. However, as
r | 2(v − 1), we conclude that r | 6, contradicting r2 > 2v.
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4.5 C4-subgroups
Here Gα stabilises a tensor product V1 ⊗ V2, where V1 has dimension a, for some divisor

a of n, and V2 has dimension n/a, with 2 6 a < n/a, that is 2 6 a <
√
n. In particular

n > 6. Recall that d = gcd(n, q − 1).

Lemma 4.5. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C4.

Proof. According to [14, Proposition 4.4.10], we have

|Xα| =
gcd(a, n/a, q − 1)

d
· |PGL(a, q)| · |PGL(n/a, q)|.

By Lemma 2.6,

|Xα| 6 |PGL(a, q)| · |PGL(n/a, q)| < (1− q−1)qa
2

q − 1
· (1− q−1)qn

2/a2

q − 1
= qa

2+(n2/a2)−2.

Let f(a) = a2+ n2

a2
− 2 = (a+ n

a
)2− 2− 2n. This is a decreasing function of a on the interval

(2,
√
n), and hence f(a) 6 f(2) = (n2/4) + 2. Hence |Xα| < qa

2+(n2/a2)−2 6 q(n
2/4)+2. By

Lemma 2.3(i),

|X| < 2(df)2|Xα|3 < 2d2f 2q(3n
2/4)+6 < 2q(3n

2/4)+10.

Combining this with the fact that |X| > qn
2−2 (from Lemma 2.6), we obtain

q(n
2/4)−12 < 2.

Therefore, n2/4 6 12, which implies that n = 6, and hence that a = 2. Thus

|Xα| =
q4(q3 − 1)(q2 − 1)2

d
and v = q11(q6 − 1)(q5 − 1)(q2 + 1).

Consequently, p | v and v is even. By Lemma 2.3(iii), rp divides 2, 4 ∤ r, and r divides
2df |Xα|p′ and hence r divides 2f(q3 − 1)(q2 − 1)2. Note that (q3 − 1)(q + 1) | q6 − 1 and
q− 1 | q5 − 1, so (q3 − 1)(q2 − 1) divides v. We conclude that gcd(r, (q3 − 1)(q2 − 1)) divides
2. Hence, r | 2f(q2 − 1), contradicting the condition r2 > 2v.

4.6 C5-subgroups
Here Gα is a subfield subgroup of G of type GL(n, q0), where q = pf = qs0 for some prime

divisor s of f .

Lemma 4.6. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C5.

Proof. According to [14, Proposition 4.5.3],

|Xα| ∼=
q − 1

d · lcm(q0 − 1, (q − 1)/ gcd(n, q − 1))
PGL(n, q0)
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and, setting d0 = gcd(n, (q − 1)/(q0 − 1)) (a divisor of d), by Lemma 2.7(i) we have

|Xα| =
d0
d

· |PGL(n, q0)| =
d0
d

· qn(n−1)/2
0 (qn0 − 1)(qn−1

0 − 1) · · · (q20 − 1). (4.20)

In particular, the p-part |Xα|p = q
n(n−1)/2
0 is strictly less than |X|p = qn(n−1)/2, so v =

|X|/|Xα| is divisible by p, and hence, by Lemma 2.3(iii), rp divides 2, and 2(df)2|Xα|2p′|Xα| >
|X|. Hence

qn
2−2 < |X| < 2d2f 2q

n(n−1)/2
0 · d

3
0

d3
· ((qn0 − 1)(qn−1

0 − 1) · · · (q20 − 1))3.

Since d0 6 d < q, f < q and 2 6 q0, this implies that

qn
2−2 < 2d2f 2 · qn(n−1)/2

0 · q3(n+2)(n−1)/2
0 < q0 · q4 · q2n

2+n−3
0 . (4.21)

As q = qs0, we have s(n2 − 2) < 4s+ 2n2 + n− 2, so

2n2 + n− 3 > s(n2 − 6).

Case 1: s > 5.
Then 2n2 + n− 3 > 5(n2 − 6), and so n = 3. However, the first inequality in (4.21) then

implies
q7 < 2 · 32 · q2 · q180 ,

that is, q5s−18
0 < 18. This is not possible as q5s−18

0 > q70 > 27.
Case 2: s = 3, that is q = q30.
Then 2n2+n−3 > 3(n2−6), and so n = 3 or 4. Suppose n = 4. Then the first inequality

in (4.21) implies
q14 < 2 · 42 · q2 · q330 ,

that is, 32 > q30 . This leads to q0 = 2 or 3, and so q = q30 = 8 or 27, which does not
satisfy the first inequality in (4.21), a contradiction. Therefore, n = 3 = s, and examining
d = gcd(3, q − 1) and d0 = gcd(3, q20 + q0 + 1), we see that d0 = d ∈ {1, 3}. The inequality
|X| < 2(df)2|Xα|2p′|Xα| from Lemma 2.3(iii) becomes (using (4.20))

q3(q3 − 1)(q2 − 1)/d = |X| < 2d2f 2q30 · (q30 − 1)3(q20 − 1)3,

or equivalently, since q = q30,

q60(q
9
0 − 1)(q60 − 1) < 2d3f 2 · (q30 − 1)3(q20 − 1)3.

Since (q30 − 1)3(q20 − 1)3 < (q90 − 1)(q60 − 1) and d 6 n = 3, it follows that

q60 < 2d3f 2
6 54f 2. (4.22)

As 3 | f and q0 = pf/3, we then conclude that f = 3 and q0 = 2, but this means that d = 1,
contradicting the first inequality of (4.22).

Case 3: s = 2, that is q = q20.
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In this case, d0 = gcd(n, q0 + 1) in the expression for |Xα| in (4.20). Let a ∈ Fq\Fq0 and
consider

g =





a
a−1

In−2



 ∈ X̃ = SL(n, q).

Now g does not preserve α. Let β = αg 6= α. Then










1
1

B





∣

∣

∣

∣

∣

∣

B ∈ SL(n− 2, q0)







6 X̃α ∩ (X̃α)
g = X̃αβ .

Since this subgroup intersects the scalar subgroup trivially, Xαβ contains a subgroup isomor-
phic to SL(n−2, q0), and hence so does Gαβ . By Lemma 2.4, r divides 4df |Xα|/|SL(n−2, q0)|.
Thus, using (4.20),

r | 4fd0q2n−3
0 (qn0 − 1)(qn−1

0 − 1).

Recall that rp | 2. Moreover,

v =
|X|
|Xα|

=
q
n(n−1)/2
0 (qn0 + 1)(qn−1

0 + 1) · · · (q20 + 1)

d0

is even, and so 4 ∤ r. Therefore,

r | 2fd0(qn0 − 1)(qn−1
0 − 1). (4.23)

From r2 > 2v, that is to say, r2/2 > v, we see that

2f 2d20(q
n
0 − 1)2(qn−1

0 − 1)2 >
q
n(n−1)/2
0 (qn0 + 1)(qn−1

0 + 1) · · · (q20 + 1)

d0
, (4.24)

and so, using f < q = q20,

2d30q
4n+2
0 > qn

2−1
0 ,

that is, 2 gcd(n, q0 + 1)3 = 2d30 > qn
2−4n−3

0 . If n > 6, then it follows that 2(q0 + 1)3 > q90 , a
contradiction. Thus 3 6 n 6 5.

Assume that n = 5, so 2d30 > q20 . It follows that d0 6= 1, and so d0 = gcd(5, q0 + 1) = 5.
This together with 250 > q20 implies that q0 ∈ {4, 9}. In either case f = 4, and the inequality
(4.24) does not hold, a contradiction. Hence n 6 4.

Since PSL(n, q0)⊳Xα and rp | 2p, by Lemma 2.5, r is divisible by the index of a parabolic
subgroup of PSL(n, q0), that is, the number of i-spaces for some i 6 n/2.

Subcase 3.1: n = 4. There are (q0+1)(q20+1) 1-spaces and (q20+1)(q20+q0+1) 2-spaces,
so q20 + 1 divides r. Moreover, it follows from v = q60(q

4
0 + 1)(q30 + 1)(q20 + 1)/ gcd(4, q0 + 1)

that q20 + 1 divides v, since gcd(4, q0 + 1) is a divisor of q30 + 1. Therefore, q20 + 1 divides
gcd(r, v). However r | 2(v − 1) and hence gcd(r, v) | 2, and this implies that q20 + 1 divides
2, a contradiction.

Subcase 3.2: n = 3. Here the number q20 + q0 + 1 of 1-spaces must divide r. Since
r | 2(v − 1) and q20 + q0 + 1 is odd, it follows that q20 + q0 + 1 divides v − 1. On the other
hand v = q30(q

3
0 +1)(q20 +1)/d0, and it follows that gcd(v− 1, q20 + q0 +1) = q20 + q0 +1 must

divide 2q0 + d0. This implies that q0 = 2 and d0 = gcd(3, q0 +1) = 3. Therefore, 7 | r, f = 2
and v = 120. However, from (4.23) and r | 2(v − 1) we obtain r = 7 or 14, contradicting
r2 > 2v.
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4.7 C6-subgroups
Here Gα is of type t2m · Sp2m(t), where n = tm for some prime t 6= p and positive integer

m, and moreover f is odd and is minimal such that t gcd(2, t) divides q− 1 = pf − 1(see [14,
Table 3.5.A]).

Lemma 4.7. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C6.

Proof. From [14, Propositions 4.6.5 and 4.6.6] we have |Xα| 6 t2m|Sp2m(t)|, and from
Lemma 2.6 we have |Sp2m(t)| < tm(2m+1). Moreover t < q, since t gcd(2, t) divides q − 1.
Hence |Xα| < t2m+m(2m+1) < q2m

2+3m. By Lemma 2.3(i), recalling that d = gcd(n, q − 1),

|X| < 2(df)2|Xα|3 < 2d2f 2q6m
2+9m < 2q6m

2+9m+4.

Combining this with the fact that |X| > qn
2−2 = qt

2m−2 (by Lemma 2.6), we obtain

qt
2m−(6m2+9m+6) < 2.

Therefore,
t2m 6 6m2 + 9m+ 6. (4.25)

As t > 2, we deduce that 22m 6 6m2 + 9m+ 6, and hence m 6 3.
Case 1: m = 1. Here t = n > 3, so t is an odd prime, and from (4.25) we have t2 6 21.

Hence t = n = 3, so that t gcd(2, t) = 3 divides q − 1, and d = gcd(n, q − 1) = 3. Also
|Xα| 6 t2m|Sp2m(t)| = 32|Sp2(3)| = 23·33, and then it follows from qn

2−2 < |X| < 2(df)2|Xα|3
that

q7 < 2(3f)2|Xα|3 6 2 · (3f)2 · (23 · 33)3 = f 2 · 210 · 311.
This inequality, together with the fact that f is odd and is minimal such that t gcd(2, t) = 3
divides pf − 1, implies that q ∈ {7, 13}, and hence also that f = 1. In particular, q ≡ 4 or
7 (mod 9), so that, by [14, Proposition 4.6.5], we have Xα

∼= 32.Q8. According to Lemma
2.3(ii), r divides 2df |Xα| = 432. Thus r divides R := gcd(432, 2(v − 1)). If q = 7 then
v = 22 · 73 · 19, and so R = 6; and if q = 13, then v = 22 · 7 · 133 · 61, and again R = 6. Then
R2 < 2v, contradicting r2 > 2v.

Case 2: m = 2. In this case (4.25) shows that t4 6 48 and so t = 2 and n = 4. Thus
|Xα| 6 t2m|Sp2m(t)| = 24|Sp4(2)| < 214. From [14, Proposition 4.6.6] we see that q = p ≡ 1
(mod 4). In particular, f = 1 and d = 4. Then the condition qn

2−2 < |X| < 2(df)2|Xα|3
implies that

q14 < 2 · 42 · (214)3 = 247,

which yields q = 5. Then by [14, Proposition 4.6.6] we have Xα
∼= 24.A6. Therefore,

v = |X|/|Xα| = 55 · 13 · 31. By Lemma 2.3(ii), r divides 2df |Xα| = 210 · 32 · 5. This together
with r | 2(v − 1) implies that r | 4, contradicting the condition r2 > 2v.

Case 3: m = 3. We conclude similarly (using [14, Proposition 4.6.6]) that t = 2,
n = 8, q = p ≡ 1 (mod 4) (so f = 1) and |Xα| < 227. However, this together with
qn

2−2 < |X| < 2(df)2|Xα|3 implies that q62 < 282 gcd(8, q − 1)2 < 288. Thus q = 2, a
contradiction.
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4.8 C7-subgroups
Here Gα is a tensor product subgroup of type GL(m, q) ≀ St, where t > 2, m > 3 and

n = mt (see [14, Table 3.5.A]).

Lemma 4.8. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C7.

Proof. From [14, Proposition 4.7.3] we deduce that |Xα| 6 |PGL(m, q)|t · t!. This together
with Lemma 2.6 implies that |Xα| < qt(m

2−1) · t!. Then by Lemma 2.3(i),

|X| < 2(df)2|Xα|3 < 2d2f 2q3t(m
2−1) · (t!)3 < q3t(m

2−1)+5 · (t!)3.

Combining this with the fact that |X| > qn
2−2 = qm

2t−2 (by Lemma 2.6), we obtain

(t!)3 > qm
2t−3t(m2−1)−7

> 2m
2t−3t(m2−1)−7. (4.26)

Let f(m) = m2t − 3t(m2 − 1)− 7. It is straightforward to check that f(m) is an increasing
function of m, for m > 3, and hence f(m) > f(3) = 32t − 24t− 7. Thus (4.26) implies that

23
2t−24t−7 < (t!)3 6 t3t.

Taking logarithms to base 2 we have 32t − 24t − 7 < 3t log2(t), which has no solutions for
t > 2.

4.9 C8-subgroups
Here Gα is a classical group in its natural representation.

Lemma 4.9. Assume Hypothesis 4.1. If the point-stabilizer Gα ∈ C8, then Gα cannot be
symplectic.

Proof. Suppose for a contradiction that Gα is a symplectic group in C8. Then by [14,
Proposition 4.8.3], n is even, n > 4, and

Xα
∼= PSp(n, q) ·

[

gcd(2, q − 1) gcd(n/2, q − 1)

d

]

,

where d = gcd(n, q − 1). For convenience we will also use the notation d′ = gcd(n/2, q − 1)
in this proof. Therefore,

|Xα| = qn
2/4(qn − 1)(qn−2 − 1) · · · (q2 − 1)d′/d,

and so

v =
|X|
|Xα|

=
q(n

2−2n)/4(qn−1 − 1)(qn−3 − 1) · · · (q3 − 1)

d′
,

so in particular p | v. By Lemma 2.3(iii), rp divides 2. Since PSp(n, q) E Xα, except for
(n, q) = (4, 2), we can apply Lemma 2.5, and so in these cases r is divisible by the index of
a parabolic subgroup of PSp(n, q). We first treat the case n = 4.

Case 1: n = 4.
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In this case,

Xα
∼= PSp(4, q) ·

[

gcd(2, q − 1)2

gcd(4, q − 1)

]

and v =
q2(q3 − 1)

gcd(2, q − 1)
.

If (n, q) = (4, 2), then a Magma computation shows that the subdegrees of G are 12 and
15, so by Lemma 2.2 (iv), r | gcd(24, 30) = 6, contradicting r2 > 2v. Since X ∼= A8, using
[25, Theorem 1] for symmetric designs and [16, Theorem 1.1] for non-symmetric designs also
rules out this case. Hence (n, q) 6= (4, 2). Then, since the indices of the parabolic subgroups
P1 and P2 in PSp(4, q) are both equal to (q + 1)(q2 + 1), it follows that (q + 1)(q2 + 1) | r
and, since r | 2(v − 1), that (q + 1)(q2 + 1) divides 2(v − 1). Suppose first that q is even.
Then

2(v − 1) = 2q2(q3 − 1)− 2 = 2(q2 + 1)(q3 − q − 1) + 2q,

which is not divisible by q2 + 1. Thus q is odd, and we have

2(v − 1) = q2(q3 − 1)− 2 = (q2 + 1)(q3 − q − 1) + q − 1,

and again this is not divisible by q2 + 1. Thus n 6= 4.
Case 2: n > 6.
Let X̃ = SL(n, q), the preimage of X in GL(n, q), and let {e1, . . . , en/2, f1, . . . , fn/2} be a

basis for V such that the nondegenerate alternating form preserved by X̃α satisfies

(ei, ej) = (fi, fj) = 0 and (ei, fj) = δij for all i, j.

Let SL(4, q) denote the subgroup of X̃ acting naturally on U := 〈e1, e2, f1, f2〉 and fixing
W := 〈e3, . . . , en/2, f3, . . . , fn/2〉 pointwise, and let Sp(4, q) = SL(4, q) ∩ X̃α, namely the

pointwise stabiliser of W in X̃α. Let g ∈ SL(4, q) \ NSL(4,q)(Sp(4, q)) so g 6∈ X̃α, and let
β = αg 6= α. Since g fixes W pointwise, it follows that the alternating forms preserved by
α and β agree on W and hence that X̃αβ = X̃α ∩ (X̃α)

g contains the pointwise stabiliser
Sp(n− 4, q) of U in X̃α.

Since this subgroup Sp(n − 4, q) intersects the scalar subgroup trivially, Xαβ contains
a subgroup isomorphic to Sp(n − 4, q), and hence so does Gαβ . By Lemma 2.4, r divides
4df |Xα|/|Sp(n− 4, q)|, that is,

r | 4d′fq2n−4(qn − 1)(qn−2 − 1).

Recall that rp | 2. Also, since n > 6, v is even, and hence 4 ∤ r. Similarly, it follows from
(q − 1) | v that rt | 2 for each prime divisor t of q − 1. Therefore,

r | 2f · q
n − 1

q − 1
· q

n−2 − 1

q − 1
.

As f < q and (qj − 1)/(q − 1) < 2qj−1 for all j, it follows that r < 8q2n−3. From r2 > 2v we
derive that

64q4n−6 > 2q(n
2−2n)/4(qn−1 − 1)(qn−3 − 1) · · · (q3 − 1)/d′

> 2q(n
2−2n)/4(qn−2qn−4 · · · q2)/q = 2q(n

2/2)−n−1,
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and so 32 > q(n
2/2)−5n+5 > 2(n

2/2)−5n+5, that is, n2 − 10n < 0. This implies that n 6 8.
Suppose that n = 8. Here d′ = gcd(4, q − 1). In this case the index of each of the

parabolic subgroups Pi, for 1 6 i 6 4, is divisible by q4+1, and hence q4+1 divides r, which
in turn divides 2(v − 1) by Lemma 2.2. Then

q4 + 1 | 2d′(v − 1) = 2q12(q7 − 1)(q5 − 1)(q3 − 1)− 2d′.

Since the remainders on dividing q12, q7 − 1, q5 − 1 by q4 + 1 are −1,−q3 − 1 and −q − 1,
respectively, it follows that

q4 + 1 | −2(q3 + 1)(q + 1)(q3 − 1)− 2d′ = −2(q6 − 1)(q + 1)− 2d′.

The remainder on dividing q6 − 1 by q4 + 1 is −q2 − 1, and hence

q4 + 1 | 2(q2 + 1)(q + 1)− 2d′ = 2(
q4 − 1

q − 1
− d′).

This implies that

q4 + 1 | 2(q4 − 1)− 2d′(q − 1) = 2(q4 + 1)− 4− 2d′(q − 1)

and hence q4 + 1 6 2d′(q − 1) + 4 6 8q − 4 (since d′ 6 4), a contradiction.
Thus n = 6. Here d′ = gcd(3, q − 1). The indices of the parabolic subgroups P1, P2 and

P3 in PSp(6, q) are (q3+1)(q2+ q+1), (q3+1)(q2+ q+1)(q2+1) and (q3+1)(q2+1)(q+1),
and since one of these numbers divides r, we deduce that (q3+1) | r, and so (q3+1) divides
2d′(v − 1) = 2 (q6(q5 − 1)(q3 − 1)− d′). Since the remainders on dividing q6, q5 − 1, q3 − 1
by q3+1 are 1,−q2− 1 and −2, respectively, it follows that q3 +1 divides 2 (2(q2 + 1)− d′).
Hence q3 + 1 6 2(2q2 + 2 − d′) 6 2(2q2 + 1), which implies that q 6 4. If q = 3, but then
d′ = 1 and q3 + 1 = 28 does not divide 2(2(q2 + 1) − d′) = 38. Thus q is even and the
divisibility condition implies that q3 + 1 divides 2(q2 + 1)− d′ 6 2q2 + 1, which forces q = 2
and d′ = 1. Hence v = 26 · 7 · 31, and therefore v − 1 is coprime to 5 and 7. However r, and
hence also 2(v − 1) is divisible by the index of one of the parabolic subgroups P1, P2 or P3

of PSp(6, 2), and these are 32 · 7, 32 · 5 · 7, 33 · 5. This is a contradiction.

Lemma 4.10. Assume Hypothesis 4.1. If the point-stabilizer Gα ∈ C8, then Gα cannot be
orthogonal.

Proof. Suppose for a contradiction that Gα is an orthogonal group in C8. Then by [14,
Proposition 4.8.4], q is odd, n > 3, and

Xα
∼= PSOǫ(n, q). gcd(n, 2),

where ǫ ∈ {◦,+,−}. Let X̃ = SL(n, q) and let X̃α denote the full preimage of Xα in X̃ .
Let ϕ be the non-degenerate symmetric bilinear form on V preserved by X̃α, and let

e1, f1 ∈ V be a hyperbolic pair, that is e1, f1 are isotropic vectors and ϕ(e1, f1) = 1. Let
U = 〈e1, f1〉, and consider the decomposition V = U ⊕ U⊥. Let g ∈ X̃ fixing U⊥ pointwise
and mapping e1 onto itself and f1 onto e1 + f1. Then g maps the isotropic vector f1 onto
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the non-isotropic vector e1 + f1, and so g /∈ X̃α. Let β = αg, so that X̃β leaves invariant the
form ϕg. Then, since ϕ and ϕg restrict to the same form on U⊥, we have that

{(

I2
B

) ∣

∣

∣

∣

B ∈ SOǫ(n− 2, q)

}

6 X̃α ∩ X̃g
α = X̃αβ.

Since this group intersects the scalar subgroup trivially, Xαβ contains a subgroup isomorphic
to SOǫ(n− 2, q), and hence so does Gαβ . By Lemma 2.4,

r | 4df |Xα|/|SOǫ(n− 2, q)|. (4.27)

We now split into cases where n is odd or even.
Case 1: n = 2m+ 1 is odd, so ǫ = ◦ and is usually omitted.
In this case, Xα

∼= PSO(2m+ 1, q). Thus

|Xα| = qm
2

(q2m − 1)(q2m−2 − 1) · · · (q2 − 1),

and so
v = |X|/|Xα| = qm

2+m(q2m+1 − 1)(q2m−1 − 1) · · · (q3 − 1)/d,

where d = gcd(2m+ 1, q − 1), and this implies that v is even and p | v. By Lemma 2.3(iii),
rp divides 2, so rp = 1 since q is odd. Moreover, since r | 2(v − 1), it follows that 4 ∤ r.

Subcase 1.1: m = 1.
Then

|Xα| = q(q2 − 1) and v = q2(q3 − 1)/d.

As p | v, it follows from Lemma 2.3(iii) that r divides 2df |Xα|p′ and hence r divides 2df(q2−
1). Combining this with r | 2(v − 1), we deduce that r divides

2 gcd
(

d(v − 1), df(q2 − 1)
)

=2 gcd
(

q2(q3 − 1)− d, df(q2 − 1)
)

.

Noting that gcd (q2(q3 − 1)− d, q2 − 1) divides

q2(q3 − 1)− d− (q2 − 1)(q3 + q − 1) = q − 1− d,

we conclude that r divides 2df(q−1−d). If d = gcd(3, q−1) = 3, then q > 7 (since q is odd)
and r | 6f(q − 4). From r2 > 2v = 2q2(q3 − 1)/3 we derive that 54f 2(q − 4)2 > q2(q3 − 1),
which yields a contradiction. Consequently, d = 1. Then r | 2f(q − 2), and from r2 > 2v =
2q2(q3 − 1) we derive that 2f 2(q − 2)2 > q2(q3 − 1), which is not possible.

Subcase 1.2: m > 2. By (4.27), r | 4df |Xα|/|SOǫ(n− 2, q)|, that is,

r | 4dfq2m−1(q2m − 1).

Recall that rp = 1 and 4 ∤ r. We conclude that

r | 2df(q2m − 1).

Therefore, as r2 > 2v, we have

4d2f 2(q2m − 1)2 >
2qm

2+m(q2m+1 − 1)(q2m−1 − 1) · · · (q3 − 1)

d
,
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and hence

2q3 · q2 · q4m > 2d3f 2(q2m − 1)2

> qm
2+m(q2m+1 − 1)(q2m−1 − 1) · · · (q3 − 1)

> qm
2+m(q2mq2m−2 · · · q2)

= q2m
2+2m,

This implies that q2m
2−2m−5 < 2 and so 2m2−2m−5 6 0. Thus m = 2 and d 6 5. Therefore

q6(q5 − 1)(q3 − 1) < 2d3f 2(q4 − 1)2 < 250f 2(q4 − 1)2, which implies q = 2, a contradiction.
Case 2: n = 2m is even, where m > 2 since 2m = n > 3.
In this case, Xα

∼= PSOǫ(2m, q) · 2 with ǫ = ± (we identify ± with ±1 for superscripts).
Hence

|Xα| = qm(m−1)(qm − ǫ)(q2m−2 − 1)(q2m−4 − 1) · · · (q2 − 1),

and so

v =
|X|
|Xα|

=
qm

2

(qm + ǫ)(q2m−1 − 1)(q2m−3 − 1) · · · (q3 − 1)

d
,

where d = gcd(2m, q − 1), and this implies that v is even and p | v. By Lemma 2.3(iii), rp
divides 2, so rp = 1 since q is odd. Moreover, since r | 2(v − 1), it follows that 4 ∤ r.

By (4.27), r | 4df |Xα|/|SOǫ(n− 2, q)|, that is, r divides

4dfq2m−2(qm − ǫ)
q2m−2 − 1

qm−1 − ǫ
= 4dfq2m−2(qm − ǫ)(qm−1 + ǫ).

As rp = 1 and 4 ∤ r, it follows that

r | 2df(qm − ǫ)(qm−1 + ǫ). (4.28)

Then we deduce from r2 > 2v that

2d3f 2(qm − ǫ)2(qm−1 + ǫ)2

>qm
2

(qm + ǫ)(q2m−1 − 1)(q2m−3 − 1) · · · (q3 − 1), (4.29)

and so

2q3 · q2(2q2m−1)2 > 2d3f 2(qm − ǫ)2(qm−1 + ǫ)2

> qm
2

(qm + ǫ)(q2m−1 − 1)(q2m−3 − 1) · · · (q3 − 1)

> qm
2

(2qm−1)(q2m−2 · · · q2)
= 2q2m

2−1.

Hence q2m
2−4m−4 < 4 and so 2m2 − 4m − 4 < 2, which implies m = 2 and d 6 4. Thus

Xα
∼= PSOǫ(4, q) · 2.
Suppose ǫ = −, so that Xα

∼= PSO−(4, q) · 2. Then (4.29) gives

2d3f 2(q2 + 1)2(q − 1)2 > q4(q2 − 1)(q3 − 1),
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which can be simplified to

2d3f 2(q2 + 1)2 > q4(q + 1)(q2 + q + 1). (4.30)

Thus 128f 2(q2 + 1)2 > q4(q + 1)(q2 + q + 1). Since q is odd, this implies that q = 3 so that
d = 2, but then (4.30) is not satisfied.

Therefore ǫ = +, so that Xα
∼= PSO+(4, q) · 2. Then (4.29) gives

2d3f 2(q2 − 1)2(q + 1)2 > q4(q2 + 1)(q3 − 1) (4.31)

and thus
128f 2(q + 1)2 > (q2 + 1)(q3 − 1).

Since q is odd, we conclude that q = 3 or 5. However, q = 3 does not satisfy (4.31), thus
q = 5, f = 1 and d = 4. Then v = |X|/|Xα| = 503750. By (??), r | 2df(q2−1)(q+1) = 27∗33.
This together with r | 2(v − 1) (Lemma 2.1(i)) leads to r | 2, contradicting r2 > 2v.

Lemma 4.11. Assume Hypothesis 4.1. If the point-stabilizer Gα ∈ C8, then Gα cannot be
unitary.

Proof. Suppose that Gα is a unitary group in C8. Then by [14, Proposition 4.8.5], n > 3,
q = q20, and

Xα
∼= PSU(n, q0) ·

[

gcd(n, q0 + 1)c

d

]

,

where d = gcd(n, q − 1) and c = (q − 1)/lcm(q0 + 1, (q − 1)/d). By Lemma 2.7(iii), c =
gcd(n, q0 − 1). Hence

|Xα| = |PSU(n, q0)| ·
gcd(n, q0 + 1) gcd(n, q0 − 1)

gcd(n, q20 − 1)

=
c

d
· qn(n−1)/2

0

n
∏

i=2

(qi0 − (−1)i)

and

v =
|X|
|Xα|

=
1

c
· qn(n−1)/2

0

n
∏

i=2

(qi0 + (−1)i),

which implies that p | v and v is even. Since r | 2(v − 1), it follows that rp | 2 and 4 ∤ r.
Case 1: n = 3.
In this case,

|Xα| =
cq30(q

3
0 + 1)(q20 − 1)

d
and v =

q30(q
3
0 − 1)(q20 + 1)

c
,

where c = gcd(3, q0 − 1) and d = gcd(3, q20 − 1). Since PSU(n, q0) E Xα, by Lemma 2.5, r is
divisible by the index of a parabolic subgroup of PSU(3, q0), that is, q

3
0+1. Hence (q30+1) | r,

which implies that (q30+1) divides 2(v−1) and hence also 2c(v−1) = 2q30(q
3
0−1)(q20+1)−2c.

Since the remainders on dividing q30, q
3
0 − 1 by q30 +1 are −1,−2, respectively, it follows that

q30 + 1 | 4(q20 + 1)− 2c,
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which implies that q0 = 2, d = 3, c = 1, and f = 2. Thus v = q30(q
3
0 − 1)(q20 + 1) = 280 and

|Xα| = q30(q
3
0 + 1)(q20 − 1)/3 = 72. Since r | 2(v − 1) and r | 2df |Xα|p′ by Lemma 2.3(iii), we

conclude that r divides 18, contradicting the condition r2 > 2v.

Case 2: n > 4.
Let X̃ = SL(n, q) and let X̃α denote the full preimage of Xα in X̃ . Let U = 〈e1, f1〉

be a nondegenerate 2-subspace of V relative to the unitary form ϕ preserved by X̃α. Let
A ∈ SL(U) such that A does not preserve modulo scalars the restriction of ϕ to U . Then

the element g =

(

A
I

)

∈ X̃ but g does not lie in X̃α. Hence β := αg 6= α. On the other

hand
{(

I
B

) ∣

∣

∣

∣

B ∈ SU(n− 2, q0)

}

6 X̃α ∩ X̃g
α = X̃αβ.

Since this group intersects the scalar subgroup trivially, Xαβ contains a subgroup isomorphic
to SU(n − 2, q), and hence so does Gαβ. By Lemma 2.4, r divides 4df |Xα|/|SU(n − 2, q0)|,
that is,

r | 4cfq2n−3
0 (qn0 − (−1)n)(qn−1

0 − (−1)n−1).

Since rp | 2 and 4 ∤ r, we derive that

r | 2cf(qn0 − (−1)n)(qn−1
0 − (−1)n−1).

This together with r2 > 2v and v = |X|/|Xα| leads to r2|Xα| > 2|X|. By Lemma 2.6 we
have

|X| > q2n
2−4

0 and |Xα| <
qn

2−1
0 c gcd(n, q0 + 1)

d
.

Consequently, noting that gcd(n, q0 + 1) 6 d = gcd(n, q20 − 1), c = gcd(n, q0 − 1) < q0, and
f < q = q20, we get

2q2n
2−4

0 < 4c3f 2(qn0 − (−1)n)2(qn−1
0 − (−1)n−1)2 · q

n2−1
0 gcd(n, q0 + 1)

d

< 4q70(q
n
0 − (−1)n)2(qn−1

0 − (−1)n−1)2 · qn2−1
0

< 4qn
2+6

0 (2qn+n−1
0 )2 = 16qn

2+4n+4
0

and hence
qn

2−4n−8
0 < 8.

It follows that n2 − 4n− 8 < 3, which implies n = 4 or 5.
Subcase 2.1: n = 4.
Then

v = q60(q
4
0 + 1)(q30 − 1)(q20 + 1)/c,

where c = gcd(4, q0 − 1). Since r is divisible by the index of a parabolic subgroup of
PSU(4, q0), which is either (q20 + 1)(q30 + 1) or (q0 + 1)(q30 + 1), we derive that (q30 + 1) | r.
Hence (q30 + 1) divides 2(v − 1), and hence also 2c(v − 1) = 2q60(q

4
0 + 1)(q30 − 1)(q20 + 1)− 2c.

Since the remainders on dividing q60, q
4
0+1, q30−1 by q30+1 are 1,−q0+1 and −2, respectively,

it follows that q30 + 1 divides 2(−q0 + 1)(−2)(q20 + 1) − 2c = 4(q0 − 1)(q20 + 1) − 2c, which
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equals 4(q30 +1)− 4(q20 − q0+2)− 2c. It follows that q30 +1 divides 4(q20 − q0+2)+ 2c, which
implies q0 = 2. Thus v = 26 · 5 · 7 · 17, and the index of a parabolic subgroup of PSU(4, q0)
is either 45 or 27. However, neither 45 nor 27 divides 2(v − 1), a contradiction.

Subcase 2.2: n = 5.
Then

v = q100 (q50 − 1)(q40 + 1)(q30 − 1)(q20 + 1)/c,

where c = gcd(5, q0 − 1). Since r is divisible by the index of a parabolic subgroup of
PSU(5, q0), which is either (q20 + 1)(q50 + 1) or (q30 + 1)(q50 + 1), we derive that (q50 + 1) | r.
Hence (q50+1) divides 2(v−1), and hence also 2c(v−1) = 2q100 (q50−1)(q40+1)(q30−1)(q20+1)−2c.
Since the remainders on dividing q100 , q50−1, (q30−1)(q20+1) by q50+1 are 1,−2 and q30−q20−2,
respectively, it follows that q50 + 1 divides −4(q40 + 1)(q30 − q20 − 2)− 2c, which equals

−4(q50 + 1)(q20 − q0)− 4(−2q40 + q30 − 2q20 + q0 − 2)− 2c.

Thus q50 + 1 divides 8q40 − 4q30 + 8q20 − 4q0 + 8 − 2c. However, there is no prime power q0
satisfying this condition, a contradiction.

4.10 C9-subgroups
Here Gα is an almost simple group not contained in any of the subgroups in C1–C8.

Lemma 4.12. Assume Hypothesis 4.1. Then the point-stabilizer Gα /∈ C9.

Proof. By Lemma 2.2(i) and Lemma 2.6, we have |Gα|3 > |G| > |X| = |PSL(n, q)| > qn
2−2.

Moreover, by [17, Theorem 4.1], we have that |Gα| < q3n. Hence qn
2−2 < |Gα|3 < q9n, which

yields n2 − 2 < 9n and so 3 6 n 6 9. Further, it follows from [17, Corollary 4.3] that either
n = y(y − 1)/2 for some integer y or |Gα| < q2n+4. If n = y(y − 1)/2, then as 3 6 n 6 9 we
have n = 3 or 6. If |Gα| < q2n+4, then we deduce from |Gα|3 > qn

2−2 that q6n+12 > qn
2−2,

which implies 6n + 12 > n2 − 2 and so 3 6 n 6 7. Therefore, we always have 3 6 n 6 7.
The possibilities for Xα can be read off from [4, Tables 8.4, 8.9, 8.19, 8.25, 8.36]. In Table
4 we list all possibilities, sometimes fusing some cases together. Not all conditions from [4]
are listed, but we list what is necessary for our proof. Note that in some listed cases Xα is
not maximal in X but there is a group G with X < G 6 Aut(X) such that Gα is maximal
in G and Gα ∩X is equal to this non-maximal subgroup Xα.

Table 4: Possible groups X and Xα

Case X Xα Conditions on q from [4] Bound (4.32)
1 PSL(3, q) PSL(2, 7) q = p ≡ 1, 2, 4 (mod 7), q 6= 2 q < 14
2 A6 q = p ≡ 1, 4 (mod 15) q < 19
3 A6 q = p2, p ≡ 2, 3 (mod 5), p 6= 3 q < 23
4 PSL(4, q) PSL(2, 7) q = p ≡ 1, 2, 4 (mod 7), q 6= 2 q < 4
5 A7 q = p ≡ 1, 2, 4 (mod 7) q < 7
6 PSU(4, 2) q = p ≡ 1 (mod 6) q < 12
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7 PSL(5, q) PSL(2, 11) q = p odd q < 3
8 M11 q = 3 q < 4
9 PSU(4, 2) q = p ≡ 1 (mod 6) q < 5
10 PSL(6, q) A6.23 q = p odd q < 3
11 A6 q = p or p2 odd q < 2
12 PSL(2, 11) q = p odd q < 3
13 A7 q = p or p2 odd q < 3
14 PSL(3, 4).2−1 q = p odd q < 3
15 PSL(3, 4) q = p odd q < 3
16 M12 q = 3 q < 4
17 PSU(4, 3).2−2 q = p ≡ 1 (mod 12) q < 5
18 PSU(4, 3) q = p ≡ 7 (mod 12) q < 5
19 PSL(3, q) q odd
20 PSL(7, q) PSU(3, 3) q = p odd q < 2

By Lemma 2.3(i) and Lemma 2.6, we have 2d2f 2|Xα|3 > |X| > qn
2−2. Using the fact

that d = gcd(n, q − 1) 6 n, it follows that

q <
(

2n2f 2|Xα|3
)1/(n2−2)

. (4.32)

Note that, except for case (19), we know that f = 1 or 2. This inequality gives us, in
each case except (19), an upper bound for q, which is listed in the last column in Table 4.
Comparing the last two columns of the table we see the condition and bound are satisfied
only in the following cases: (1) for q = 11, (3) for q = 4, (5) for q = 2, (6) for q = 7,
(8) and (16). For case (19), we know that f < q and |PSL(3, q)| < q8 by Lemma 2.6, so
72q2q24 > q34, that is q8 < 72, which is not satisfied for any q. In case (1) for q = 11, d = 1
and the inequality 2d2f 2|Xα|3 > qn

2−2 is not satisfied.
For each of the remaining cases, we compute v and 2df |Xα|. By Lemma 2.3(ii), r |

2df |Xα|. On the other hand r | 2(v−1), so r divides R := gcd(2(v−1), 2df |Xα|). Now using
R2 > r2 > 2v, this argument rules out cases (3) for q = 4, (6) for q = 7, (8) and (16). This
leaves the single remaining case (5) with q = 2. Then this argument yields r | 14, v = 8. As
r2 > 2v, r = 7 or 14. By Lemma 2.1(i), r(k − 1) = 14, so the condition k > 3 implies that
r = 7 and k = 3. Now Lemma 2.1(ii) yields a contradiction since k ∤ vr. Hence, we rule out
case (5) for q = 2, completing the proof.
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